1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Function.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/PHITransAddr.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/PredIteratorCache.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetData.h"
37 STATISTIC(NumCacheNonLocal
, "Number of fully cached non-local responses");
38 STATISTIC(NumCacheDirtyNonLocal
, "Number of dirty cached non-local responses");
39 STATISTIC(NumUncacheNonLocal
, "Number of uncached non-local responses");
41 STATISTIC(NumCacheNonLocalPtr
,
42 "Number of fully cached non-local ptr responses");
43 STATISTIC(NumCacheDirtyNonLocalPtr
,
44 "Number of cached, but dirty, non-local ptr responses");
45 STATISTIC(NumUncacheNonLocalPtr
,
46 "Number of uncached non-local ptr responses");
47 STATISTIC(NumCacheCompleteNonLocalPtr
,
48 "Number of block queries that were completely cached");
50 // Limit for the number of instructions to scan in a block.
51 // FIXME: Figure out what a sane value is for this.
52 // (500 is relatively insane.)
53 static const int BlockScanLimit
= 500;
55 char MemoryDependenceAnalysis::ID
= 0;
57 // Register this pass...
58 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis
, "memdep",
59 "Memory Dependence Analysis", false, true)
60 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
61 INITIALIZE_PASS_END(MemoryDependenceAnalysis
, "memdep",
62 "Memory Dependence Analysis", false, true)
64 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
65 : FunctionPass(ID
), PredCache(0) {
66 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
68 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
71 /// Clean up memory in between runs
72 void MemoryDependenceAnalysis::releaseMemory() {
75 NonLocalPointerDeps
.clear();
76 ReverseLocalDeps
.clear();
77 ReverseNonLocalDeps
.clear();
78 ReverseNonLocalPtrDeps
.clear();
84 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
86 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage
&AU
) const {
88 AU
.addRequiredTransitive
<AliasAnalysis
>();
91 bool MemoryDependenceAnalysis::runOnFunction(Function
&) {
92 AA
= &getAnalysis
<AliasAnalysis
>();
93 TD
= getAnalysisIfAvailable
<TargetData
>();
95 PredCache
.reset(new PredIteratorCache());
99 /// RemoveFromReverseMap - This is a helper function that removes Val from
100 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
101 template <typename KeyTy
>
102 static void RemoveFromReverseMap(DenseMap
<Instruction
*,
103 SmallPtrSet
<KeyTy
, 4> > &ReverseMap
,
104 Instruction
*Inst
, KeyTy Val
) {
105 typename DenseMap
<Instruction
*, SmallPtrSet
<KeyTy
, 4> >::iterator
106 InstIt
= ReverseMap
.find(Inst
);
107 assert(InstIt
!= ReverseMap
.end() && "Reverse map out of sync?");
108 bool Found
= InstIt
->second
.erase(Val
);
109 assert(Found
&& "Invalid reverse map!"); (void)Found
;
110 if (InstIt
->second
.empty())
111 ReverseMap
.erase(InstIt
);
114 /// GetLocation - If the given instruction references a specific memory
115 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116 /// Return a ModRefInfo value describing the general behavior of the
119 AliasAnalysis::ModRefResult
GetLocation(const Instruction
*Inst
,
120 AliasAnalysis::Location
&Loc
,
122 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
123 if (LI
->isVolatile()) {
124 Loc
= AliasAnalysis::Location();
125 return AliasAnalysis::ModRef
;
127 Loc
= AA
->getLocation(LI
);
128 return AliasAnalysis::Ref
;
131 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
132 if (SI
->isVolatile()) {
133 Loc
= AliasAnalysis::Location();
134 return AliasAnalysis::ModRef
;
136 Loc
= AA
->getLocation(SI
);
137 return AliasAnalysis::Mod
;
140 if (const VAArgInst
*V
= dyn_cast
<VAArgInst
>(Inst
)) {
141 Loc
= AA
->getLocation(V
);
142 return AliasAnalysis::ModRef
;
145 if (const CallInst
*CI
= isFreeCall(Inst
)) {
146 // calls to free() deallocate the entire structure
147 Loc
= AliasAnalysis::Location(CI
->getArgOperand(0));
148 return AliasAnalysis::Mod
;
151 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
))
152 switch (II
->getIntrinsicID()) {
153 case Intrinsic::lifetime_start
:
154 case Intrinsic::lifetime_end
:
155 case Intrinsic::invariant_start
:
156 Loc
= AliasAnalysis::Location(II
->getArgOperand(1),
157 cast
<ConstantInt
>(II
->getArgOperand(0))
159 II
->getMetadata(LLVMContext::MD_tbaa
));
160 // These intrinsics don't really modify the memory, but returning Mod
161 // will allow them to be handled conservatively.
162 return AliasAnalysis::Mod
;
163 case Intrinsic::invariant_end
:
164 Loc
= AliasAnalysis::Location(II
->getArgOperand(2),
165 cast
<ConstantInt
>(II
->getArgOperand(1))
167 II
->getMetadata(LLVMContext::MD_tbaa
));
168 // These intrinsics don't really modify the memory, but returning Mod
169 // will allow them to be handled conservatively.
170 return AliasAnalysis::Mod
;
175 // Otherwise, just do the coarse-grained thing that always works.
176 if (Inst
->mayWriteToMemory())
177 return AliasAnalysis::ModRef
;
178 if (Inst
->mayReadFromMemory())
179 return AliasAnalysis::Ref
;
180 return AliasAnalysis::NoModRef
;
183 /// getCallSiteDependencyFrom - Private helper for finding the local
184 /// dependencies of a call site.
185 MemDepResult
MemoryDependenceAnalysis::
186 getCallSiteDependencyFrom(CallSite CS
, bool isReadOnlyCall
,
187 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
188 unsigned Limit
= BlockScanLimit
;
190 // Walk backwards through the block, looking for dependencies
191 while (ScanIt
!= BB
->begin()) {
192 // Limit the amount of scanning we do so we don't end up with quadratic
193 // running time on extreme testcases.
196 return MemDepResult::getUnknown();
198 Instruction
*Inst
= --ScanIt
;
200 // If this inst is a memory op, get the pointer it accessed
201 AliasAnalysis::Location Loc
;
202 AliasAnalysis::ModRefResult MR
= GetLocation(Inst
, Loc
, AA
);
204 // A simple instruction.
205 if (AA
->getModRefInfo(CS
, Loc
) != AliasAnalysis::NoModRef
)
206 return MemDepResult::getClobber(Inst
);
210 if (CallSite InstCS
= cast
<Value
>(Inst
)) {
211 // Debug intrinsics don't cause dependences.
212 if (isa
<DbgInfoIntrinsic
>(Inst
)) continue;
213 // If these two calls do not interfere, look past it.
214 switch (AA
->getModRefInfo(CS
, InstCS
)) {
215 case AliasAnalysis::NoModRef
:
216 // If the two calls are the same, return InstCS as a Def, so that
217 // CS can be found redundant and eliminated.
218 if (isReadOnlyCall
&& !(MR
& AliasAnalysis::Mod
) &&
219 CS
.getInstruction()->isIdenticalToWhenDefined(Inst
))
220 return MemDepResult::getDef(Inst
);
222 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
226 return MemDepResult::getClobber(Inst
);
231 // No dependence found. If this is the entry block of the function, it is
232 // unknown, otherwise it is non-local.
233 if (BB
!= &BB
->getParent()->getEntryBlock())
234 return MemDepResult::getNonLocal();
235 return MemDepResult::getUnknown();
238 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
239 /// would fully overlap MemLoc if done as a wider legal integer load.
241 /// MemLocBase, MemLocOffset are lazily computed here the first time the
242 /// base/offs of memloc is needed.
244 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location
&MemLoc
,
245 const Value
*&MemLocBase
,
248 const TargetData
*TD
) {
249 // If we have no target data, we can't do this.
250 if (TD
== 0) return false;
252 // If we haven't already computed the base/offset of MemLoc, do so now.
254 MemLocBase
= GetPointerBaseWithConstantOffset(MemLoc
.Ptr
, MemLocOffs
, *TD
);
256 unsigned Size
= MemoryDependenceAnalysis::
257 getLoadLoadClobberFullWidthSize(MemLocBase
, MemLocOffs
, MemLoc
.Size
,
262 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
263 /// looks at a memory location for a load (specified by MemLocBase, Offs,
264 /// and Size) and compares it against a load. If the specified load could
265 /// be safely widened to a larger integer load that is 1) still efficient,
266 /// 2) safe for the target, and 3) would provide the specified memory
267 /// location value, then this function returns the size in bytes of the
268 /// load width to use. If not, this returns zero.
269 unsigned MemoryDependenceAnalysis::
270 getLoadLoadClobberFullWidthSize(const Value
*MemLocBase
, int64_t MemLocOffs
,
271 unsigned MemLocSize
, const LoadInst
*LI
,
272 const TargetData
&TD
) {
273 // We can only extend non-volatile integer loads.
274 if (!isa
<IntegerType
>(LI
->getType()) || LI
->isVolatile()) return 0;
276 // Get the base of this load.
278 const Value
*LIBase
=
279 GetPointerBaseWithConstantOffset(LI
->getPointerOperand(), LIOffs
, TD
);
281 // If the two pointers are not based on the same pointer, we can't tell that
283 if (LIBase
!= MemLocBase
) return 0;
285 // Okay, the two values are based on the same pointer, but returned as
286 // no-alias. This happens when we have things like two byte loads at "P+1"
287 // and "P+3". Check to see if increasing the size of the "LI" load up to its
288 // alignment (or the largest native integer type) will allow us to load all
289 // the bits required by MemLoc.
291 // If MemLoc is before LI, then no widening of LI will help us out.
292 if (MemLocOffs
< LIOffs
) return 0;
294 // Get the alignment of the load in bytes. We assume that it is safe to load
295 // any legal integer up to this size without a problem. For example, if we're
296 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
297 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
299 unsigned LoadAlign
= LI
->getAlignment();
301 int64_t MemLocEnd
= MemLocOffs
+MemLocSize
;
303 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
304 if (LIOffs
+LoadAlign
< MemLocEnd
) return 0;
306 // This is the size of the load to try. Start with the next larger power of
308 unsigned NewLoadByteSize
= LI
->getType()->getPrimitiveSizeInBits()/8U;
309 NewLoadByteSize
= NextPowerOf2(NewLoadByteSize
);
312 // If this load size is bigger than our known alignment or would not fit
313 // into a native integer register, then we fail.
314 if (NewLoadByteSize
> LoadAlign
||
315 !TD
.fitsInLegalInteger(NewLoadByteSize
*8))
318 // If a load of this width would include all of MemLoc, then we succeed.
319 if (LIOffs
+NewLoadByteSize
>= MemLocEnd
)
320 return NewLoadByteSize
;
322 NewLoadByteSize
<<= 1;
328 /// getPointerDependencyFrom - Return the instruction on which a memory
329 /// location depends. If isLoad is true, this routine ignores may-aliases with
330 /// read-only operations. If isLoad is false, this routine ignores may-aliases
331 /// with reads from read-only locations.
332 MemDepResult
MemoryDependenceAnalysis::
333 getPointerDependencyFrom(const AliasAnalysis::Location
&MemLoc
, bool isLoad
,
334 BasicBlock::iterator ScanIt
, BasicBlock
*BB
) {
336 const Value
*MemLocBase
= 0;
337 int64_t MemLocOffset
= 0;
339 unsigned Limit
= BlockScanLimit
;
341 // Walk backwards through the basic block, looking for dependencies.
342 while (ScanIt
!= BB
->begin()) {
343 // Limit the amount of scanning we do so we don't end up with quadratic
344 // running time on extreme testcases.
347 return MemDepResult::getUnknown();
349 Instruction
*Inst
= --ScanIt
;
351 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
352 // Debug intrinsics don't (and can't) cause dependences.
353 if (isa
<DbgInfoIntrinsic
>(II
)) continue;
355 // If we reach a lifetime begin or end marker, then the query ends here
356 // because the value is undefined.
357 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
) {
358 // FIXME: This only considers queries directly on the invariant-tagged
359 // pointer, not on query pointers that are indexed off of them. It'd
360 // be nice to handle that at some point (the right approach is to use
361 // GetPointerBaseWithConstantOffset).
362 if (AA
->isMustAlias(AliasAnalysis::Location(II
->getArgOperand(1)),
364 return MemDepResult::getDef(II
);
369 // Values depend on loads if the pointers are must aliased. This means that
370 // a load depends on another must aliased load from the same value.
371 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
372 AliasAnalysis::Location LoadLoc
= AA
->getLocation(LI
);
374 // If we found a pointer, check if it could be the same as our pointer.
375 AliasAnalysis::AliasResult R
= AA
->alias(LoadLoc
, MemLoc
);
378 if (R
== AliasAnalysis::NoAlias
) {
379 // If this is an over-aligned integer load (for example,
380 // "load i8* %P, align 4") see if it would obviously overlap with the
381 // queried location if widened to a larger load (e.g. if the queried
382 // location is 1 byte at P+1). If so, return it as a load/load
383 // clobber result, allowing the client to decide to widen the load if
385 if (const IntegerType
*ITy
= dyn_cast
<IntegerType
>(LI
->getType()))
386 if (LI
->getAlignment()*8 > ITy
->getPrimitiveSizeInBits() &&
387 isLoadLoadClobberIfExtendedToFullWidth(MemLoc
, MemLocBase
,
388 MemLocOffset
, LI
, TD
))
389 return MemDepResult::getClobber(Inst
);
394 // Must aliased loads are defs of each other.
395 if (R
== AliasAnalysis::MustAlias
)
396 return MemDepResult::getDef(Inst
);
398 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
399 // in terms of clobbering loads, but since it does this by looking
400 // at the clobbering load directly, it doesn't know about any
401 // phi translation that may have happened along the way.
403 // If we have a partial alias, then return this as a clobber for the
405 if (R
== AliasAnalysis::PartialAlias
)
406 return MemDepResult::getClobber(Inst
);
409 // Random may-alias loads don't depend on each other without a
414 // Stores don't depend on other no-aliased accesses.
415 if (R
== AliasAnalysis::NoAlias
)
418 // Stores don't alias loads from read-only memory.
419 if (AA
->pointsToConstantMemory(LoadLoc
))
422 // Stores depend on may/must aliased loads.
423 return MemDepResult::getDef(Inst
);
426 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
427 // If alias analysis can tell that this store is guaranteed to not modify
428 // the query pointer, ignore it. Use getModRefInfo to handle cases where
429 // the query pointer points to constant memory etc.
430 if (AA
->getModRefInfo(SI
, MemLoc
) == AliasAnalysis::NoModRef
)
433 // Ok, this store might clobber the query pointer. Check to see if it is
434 // a must alias: in this case, we want to return this as a def.
435 AliasAnalysis::Location StoreLoc
= AA
->getLocation(SI
);
437 // If we found a pointer, check if it could be the same as our pointer.
438 AliasAnalysis::AliasResult R
= AA
->alias(StoreLoc
, MemLoc
);
440 if (R
== AliasAnalysis::NoAlias
)
442 if (R
== AliasAnalysis::MustAlias
)
443 return MemDepResult::getDef(Inst
);
444 return MemDepResult::getClobber(Inst
);
447 // If this is an allocation, and if we know that the accessed pointer is to
448 // the allocation, return Def. This means that there is no dependence and
449 // the access can be optimized based on that. For example, a load could
451 // Note: Only determine this to be a malloc if Inst is the malloc call, not
452 // a subsequent bitcast of the malloc call result. There can be stores to
453 // the malloced memory between the malloc call and its bitcast uses, and we
454 // need to continue scanning until the malloc call.
455 if (isa
<AllocaInst
>(Inst
) ||
456 (isa
<CallInst
>(Inst
) && extractMallocCall(Inst
))) {
457 const Value
*AccessPtr
= GetUnderlyingObject(MemLoc
.Ptr
, TD
);
459 if (AccessPtr
== Inst
|| AA
->isMustAlias(Inst
, AccessPtr
))
460 return MemDepResult::getDef(Inst
);
464 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
465 switch (AA
->getModRefInfo(Inst
, MemLoc
)) {
466 case AliasAnalysis::NoModRef
:
467 // If the call has no effect on the queried pointer, just ignore it.
469 case AliasAnalysis::Mod
:
470 return MemDepResult::getClobber(Inst
);
471 case AliasAnalysis::Ref
:
472 // If the call is known to never store to the pointer, and if this is a
473 // load query, we can safely ignore it (scan past it).
477 // Otherwise, there is a potential dependence. Return a clobber.
478 return MemDepResult::getClobber(Inst
);
482 // No dependence found. If this is the entry block of the function, it is
483 // unknown, otherwise it is non-local.
484 if (BB
!= &BB
->getParent()->getEntryBlock())
485 return MemDepResult::getNonLocal();
486 return MemDepResult::getUnknown();
489 /// getDependency - Return the instruction on which a memory operation
491 MemDepResult
MemoryDependenceAnalysis::getDependency(Instruction
*QueryInst
) {
492 Instruction
*ScanPos
= QueryInst
;
494 // Check for a cached result
495 MemDepResult
&LocalCache
= LocalDeps
[QueryInst
];
497 // If the cached entry is non-dirty, just return it. Note that this depends
498 // on MemDepResult's default constructing to 'dirty'.
499 if (!LocalCache
.isDirty())
502 // Otherwise, if we have a dirty entry, we know we can start the scan at that
503 // instruction, which may save us some work.
504 if (Instruction
*Inst
= LocalCache
.getInst()) {
507 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, QueryInst
);
510 BasicBlock
*QueryParent
= QueryInst
->getParent();
513 if (BasicBlock::iterator(QueryInst
) == QueryParent
->begin()) {
514 // No dependence found. If this is the entry block of the function, it is
515 // unknown, otherwise it is non-local.
516 if (QueryParent
!= &QueryParent
->getParent()->getEntryBlock())
517 LocalCache
= MemDepResult::getNonLocal();
519 LocalCache
= MemDepResult::getUnknown();
521 AliasAnalysis::Location MemLoc
;
522 AliasAnalysis::ModRefResult MR
= GetLocation(QueryInst
, MemLoc
, AA
);
524 // If we can do a pointer scan, make it happen.
525 bool isLoad
= !(MR
& AliasAnalysis::Mod
);
526 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(QueryInst
))
527 isLoad
|= II
->getIntrinsicID() == Intrinsic::lifetime_start
;
529 LocalCache
= getPointerDependencyFrom(MemLoc
, isLoad
, ScanPos
,
531 } else if (isa
<CallInst
>(QueryInst
) || isa
<InvokeInst
>(QueryInst
)) {
532 CallSite
QueryCS(QueryInst
);
533 bool isReadOnly
= AA
->onlyReadsMemory(QueryCS
);
534 LocalCache
= getCallSiteDependencyFrom(QueryCS
, isReadOnly
, ScanPos
,
537 // Non-memory instruction.
538 LocalCache
= MemDepResult::getUnknown();
541 // Remember the result!
542 if (Instruction
*I
= LocalCache
.getInst())
543 ReverseLocalDeps
[I
].insert(QueryInst
);
549 /// AssertSorted - This method is used when -debug is specified to verify that
550 /// cache arrays are properly kept sorted.
551 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo
&Cache
,
553 if (Count
== -1) Count
= Cache
.size();
554 if (Count
== 0) return;
556 for (unsigned i
= 1; i
!= unsigned(Count
); ++i
)
557 assert(!(Cache
[i
] < Cache
[i
-1]) && "Cache isn't sorted!");
561 /// getNonLocalCallDependency - Perform a full dependency query for the
562 /// specified call, returning the set of blocks that the value is
563 /// potentially live across. The returned set of results will include a
564 /// "NonLocal" result for all blocks where the value is live across.
566 /// This method assumes the instruction returns a "NonLocal" dependency
567 /// within its own block.
569 /// This returns a reference to an internal data structure that may be
570 /// invalidated on the next non-local query or when an instruction is
571 /// removed. Clients must copy this data if they want it around longer than
573 const MemoryDependenceAnalysis::NonLocalDepInfo
&
574 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS
) {
575 assert(getDependency(QueryCS
.getInstruction()).isNonLocal() &&
576 "getNonLocalCallDependency should only be used on calls with non-local deps!");
577 PerInstNLInfo
&CacheP
= NonLocalDeps
[QueryCS
.getInstruction()];
578 NonLocalDepInfo
&Cache
= CacheP
.first
;
580 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
581 /// the cached case, this can happen due to instructions being deleted etc. In
582 /// the uncached case, this starts out as the set of predecessors we care
584 SmallVector
<BasicBlock
*, 32> DirtyBlocks
;
586 if (!Cache
.empty()) {
587 // Okay, we have a cache entry. If we know it is not dirty, just return it
588 // with no computation.
589 if (!CacheP
.second
) {
594 // If we already have a partially computed set of results, scan them to
595 // determine what is dirty, seeding our initial DirtyBlocks worklist.
596 for (NonLocalDepInfo::iterator I
= Cache
.begin(), E
= Cache
.end();
598 if (I
->getResult().isDirty())
599 DirtyBlocks
.push_back(I
->getBB());
601 // Sort the cache so that we can do fast binary search lookups below.
602 std::sort(Cache
.begin(), Cache
.end());
604 ++NumCacheDirtyNonLocal
;
605 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
606 // << Cache.size() << " cached: " << *QueryInst;
608 // Seed DirtyBlocks with each of the preds of QueryInst's block.
609 BasicBlock
*QueryBB
= QueryCS
.getInstruction()->getParent();
610 for (BasicBlock
**PI
= PredCache
->GetPreds(QueryBB
); *PI
; ++PI
)
611 DirtyBlocks
.push_back(*PI
);
612 ++NumUncacheNonLocal
;
615 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
616 bool isReadonlyCall
= AA
->onlyReadsMemory(QueryCS
);
618 SmallPtrSet
<BasicBlock
*, 64> Visited
;
620 unsigned NumSortedEntries
= Cache
.size();
621 DEBUG(AssertSorted(Cache
));
623 // Iterate while we still have blocks to update.
624 while (!DirtyBlocks
.empty()) {
625 BasicBlock
*DirtyBB
= DirtyBlocks
.back();
626 DirtyBlocks
.pop_back();
628 // Already processed this block?
629 if (!Visited
.insert(DirtyBB
))
632 // Do a binary search to see if we already have an entry for this block in
633 // the cache set. If so, find it.
634 DEBUG(AssertSorted(Cache
, NumSortedEntries
));
635 NonLocalDepInfo::iterator Entry
=
636 std::upper_bound(Cache
.begin(), Cache
.begin()+NumSortedEntries
,
637 NonLocalDepEntry(DirtyBB
));
638 if (Entry
!= Cache
.begin() && prior(Entry
)->getBB() == DirtyBB
)
641 NonLocalDepEntry
*ExistingResult
= 0;
642 if (Entry
!= Cache
.begin()+NumSortedEntries
&&
643 Entry
->getBB() == DirtyBB
) {
644 // If we already have an entry, and if it isn't already dirty, the block
646 if (!Entry
->getResult().isDirty())
649 // Otherwise, remember this slot so we can update the value.
650 ExistingResult
= &*Entry
;
653 // If the dirty entry has a pointer, start scanning from it so we don't have
654 // to rescan the entire block.
655 BasicBlock::iterator ScanPos
= DirtyBB
->end();
656 if (ExistingResult
) {
657 if (Instruction
*Inst
= ExistingResult
->getResult().getInst()) {
659 // We're removing QueryInst's use of Inst.
660 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
,
661 QueryCS
.getInstruction());
665 // Find out if this block has a local dependency for QueryInst.
668 if (ScanPos
!= DirtyBB
->begin()) {
669 Dep
= getCallSiteDependencyFrom(QueryCS
, isReadonlyCall
,ScanPos
, DirtyBB
);
670 } else if (DirtyBB
!= &DirtyBB
->getParent()->getEntryBlock()) {
671 // No dependence found. If this is the entry block of the function, it is
672 // a clobber, otherwise it is unknown.
673 Dep
= MemDepResult::getNonLocal();
675 Dep
= MemDepResult::getUnknown();
678 // If we had a dirty entry for the block, update it. Otherwise, just add
681 ExistingResult
->setResult(Dep
);
683 Cache
.push_back(NonLocalDepEntry(DirtyBB
, Dep
));
685 // If the block has a dependency (i.e. it isn't completely transparent to
686 // the value), remember the association!
687 if (!Dep
.isNonLocal()) {
688 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
689 // update this when we remove instructions.
690 if (Instruction
*Inst
= Dep
.getInst())
691 ReverseNonLocalDeps
[Inst
].insert(QueryCS
.getInstruction());
694 // If the block *is* completely transparent to the load, we need to check
695 // the predecessors of this block. Add them to our worklist.
696 for (BasicBlock
**PI
= PredCache
->GetPreds(DirtyBB
); *PI
; ++PI
)
697 DirtyBlocks
.push_back(*PI
);
704 /// getNonLocalPointerDependency - Perform a full dependency query for an
705 /// access to the specified (non-volatile) memory location, returning the
706 /// set of instructions that either define or clobber the value.
708 /// This method assumes the pointer has a "NonLocal" dependency within its
711 void MemoryDependenceAnalysis::
712 getNonLocalPointerDependency(const AliasAnalysis::Location
&Loc
, bool isLoad
,
714 SmallVectorImpl
<NonLocalDepResult
> &Result
) {
715 assert(Loc
.Ptr
->getType()->isPointerTy() &&
716 "Can't get pointer deps of a non-pointer!");
719 PHITransAddr
Address(const_cast<Value
*>(Loc
.Ptr
), TD
);
721 // This is the set of blocks we've inspected, and the pointer we consider in
722 // each block. Because of critical edges, we currently bail out if querying
723 // a block with multiple different pointers. This can happen during PHI
725 DenseMap
<BasicBlock
*, Value
*> Visited
;
726 if (!getNonLocalPointerDepFromBB(Address
, Loc
, isLoad
, FromBB
,
727 Result
, Visited
, true))
730 Result
.push_back(NonLocalDepResult(FromBB
,
731 MemDepResult::getUnknown(),
732 const_cast<Value
*>(Loc
.Ptr
)));
735 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
736 /// Pointer/PointeeSize using either cached information in Cache or by doing a
737 /// lookup (which may use dirty cache info if available). If we do a lookup,
738 /// add the result to the cache.
739 MemDepResult
MemoryDependenceAnalysis::
740 GetNonLocalInfoForBlock(const AliasAnalysis::Location
&Loc
,
741 bool isLoad
, BasicBlock
*BB
,
742 NonLocalDepInfo
*Cache
, unsigned NumSortedEntries
) {
744 // Do a binary search to see if we already have an entry for this block in
745 // the cache set. If so, find it.
746 NonLocalDepInfo::iterator Entry
=
747 std::upper_bound(Cache
->begin(), Cache
->begin()+NumSortedEntries
,
748 NonLocalDepEntry(BB
));
749 if (Entry
!= Cache
->begin() && (Entry
-1)->getBB() == BB
)
752 NonLocalDepEntry
*ExistingResult
= 0;
753 if (Entry
!= Cache
->begin()+NumSortedEntries
&& Entry
->getBB() == BB
)
754 ExistingResult
= &*Entry
;
756 // If we have a cached entry, and it is non-dirty, use it as the value for
758 if (ExistingResult
&& !ExistingResult
->getResult().isDirty()) {
759 ++NumCacheNonLocalPtr
;
760 return ExistingResult
->getResult();
763 // Otherwise, we have to scan for the value. If we have a dirty cache
764 // entry, start scanning from its position, otherwise we scan from the end
766 BasicBlock::iterator ScanPos
= BB
->end();
767 if (ExistingResult
&& ExistingResult
->getResult().getInst()) {
768 assert(ExistingResult
->getResult().getInst()->getParent() == BB
&&
769 "Instruction invalidated?");
770 ++NumCacheDirtyNonLocalPtr
;
771 ScanPos
= ExistingResult
->getResult().getInst();
773 // Eliminating the dirty entry from 'Cache', so update the reverse info.
774 ValueIsLoadPair
CacheKey(Loc
.Ptr
, isLoad
);
775 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, ScanPos
, CacheKey
);
777 ++NumUncacheNonLocalPtr
;
780 // Scan the block for the dependency.
781 MemDepResult Dep
= getPointerDependencyFrom(Loc
, isLoad
, ScanPos
, BB
);
783 // If we had a dirty entry for the block, update it. Otherwise, just add
786 ExistingResult
->setResult(Dep
);
788 Cache
->push_back(NonLocalDepEntry(BB
, Dep
));
790 // If the block has a dependency (i.e. it isn't completely transparent to
791 // the value), remember the reverse association because we just added it
793 if (Dep
.isNonLocal() || Dep
.isUnknown())
796 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
797 // update MemDep when we remove instructions.
798 Instruction
*Inst
= Dep
.getInst();
799 assert(Inst
&& "Didn't depend on anything?");
800 ValueIsLoadPair
CacheKey(Loc
.Ptr
, isLoad
);
801 ReverseNonLocalPtrDeps
[Inst
].insert(CacheKey
);
805 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
806 /// number of elements in the array that are already properly ordered. This is
807 /// optimized for the case when only a few entries are added.
809 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo
&Cache
,
810 unsigned NumSortedEntries
) {
811 switch (Cache
.size() - NumSortedEntries
) {
813 // done, no new entries.
816 // Two new entries, insert the last one into place.
817 NonLocalDepEntry Val
= Cache
.back();
819 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry
=
820 std::upper_bound(Cache
.begin(), Cache
.end()-1, Val
);
821 Cache
.insert(Entry
, Val
);
825 // One new entry, Just insert the new value at the appropriate position.
826 if (Cache
.size() != 1) {
827 NonLocalDepEntry Val
= Cache
.back();
829 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry
=
830 std::upper_bound(Cache
.begin(), Cache
.end(), Val
);
831 Cache
.insert(Entry
, Val
);
835 // Added many values, do a full scale sort.
836 std::sort(Cache
.begin(), Cache
.end());
841 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
842 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
843 /// results to the results vector and keep track of which blocks are visited in
846 /// This has special behavior for the first block queries (when SkipFirstBlock
847 /// is true). In this special case, it ignores the contents of the specified
848 /// block and starts returning dependence info for its predecessors.
850 /// This function returns false on success, or true to indicate that it could
851 /// not compute dependence information for some reason. This should be treated
852 /// as a clobber dependence on the first instruction in the predecessor block.
853 bool MemoryDependenceAnalysis::
854 getNonLocalPointerDepFromBB(const PHITransAddr
&Pointer
,
855 const AliasAnalysis::Location
&Loc
,
856 bool isLoad
, BasicBlock
*StartBB
,
857 SmallVectorImpl
<NonLocalDepResult
> &Result
,
858 DenseMap
<BasicBlock
*, Value
*> &Visited
,
859 bool SkipFirstBlock
) {
861 // Look up the cached info for Pointer.
862 ValueIsLoadPair
CacheKey(Pointer
.getAddr(), isLoad
);
864 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
865 // CacheKey, this value will be inserted as the associated value. Otherwise,
866 // it'll be ignored, and we'll have to check to see if the cached size and
867 // tbaa tag are consistent with the current query.
868 NonLocalPointerInfo InitialNLPI
;
869 InitialNLPI
.Size
= Loc
.Size
;
870 InitialNLPI
.TBAATag
= Loc
.TBAATag
;
872 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
874 std::pair
<CachedNonLocalPointerInfo::iterator
, bool> Pair
=
875 NonLocalPointerDeps
.insert(std::make_pair(CacheKey
, InitialNLPI
));
876 NonLocalPointerInfo
*CacheInfo
= &Pair
.first
->second
;
878 // If we already have a cache entry for this CacheKey, we may need to do some
879 // work to reconcile the cache entry and the current query.
881 if (CacheInfo
->Size
< Loc
.Size
) {
882 // The query's Size is greater than the cached one. Throw out the
883 // cached data and procede with the query at the greater size.
884 CacheInfo
->Pair
= BBSkipFirstBlockPair();
885 CacheInfo
->Size
= Loc
.Size
;
886 for (NonLocalDepInfo::iterator DI
= CacheInfo
->NonLocalDeps
.begin(),
887 DE
= CacheInfo
->NonLocalDeps
.end(); DI
!= DE
; ++DI
)
888 if (Instruction
*Inst
= DI
->getResult().getInst())
889 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Inst
, CacheKey
);
890 CacheInfo
->NonLocalDeps
.clear();
891 } else if (CacheInfo
->Size
> Loc
.Size
) {
892 // This query's Size is less than the cached one. Conservatively restart
893 // the query using the greater size.
894 return getNonLocalPointerDepFromBB(Pointer
,
895 Loc
.getWithNewSize(CacheInfo
->Size
),
896 isLoad
, StartBB
, Result
, Visited
,
900 // If the query's TBAATag is inconsistent with the cached one,
901 // conservatively throw out the cached data and restart the query with
903 if (CacheInfo
->TBAATag
!= Loc
.TBAATag
) {
904 if (CacheInfo
->TBAATag
) {
905 CacheInfo
->Pair
= BBSkipFirstBlockPair();
906 CacheInfo
->TBAATag
= 0;
907 for (NonLocalDepInfo::iterator DI
= CacheInfo
->NonLocalDeps
.begin(),
908 DE
= CacheInfo
->NonLocalDeps
.end(); DI
!= DE
; ++DI
)
909 if (Instruction
*Inst
= DI
->getResult().getInst())
910 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Inst
, CacheKey
);
911 CacheInfo
->NonLocalDeps
.clear();
914 return getNonLocalPointerDepFromBB(Pointer
, Loc
.getWithoutTBAATag(),
915 isLoad
, StartBB
, Result
, Visited
,
920 NonLocalDepInfo
*Cache
= &CacheInfo
->NonLocalDeps
;
922 // If we have valid cached information for exactly the block we are
923 // investigating, just return it with no recomputation.
924 if (CacheInfo
->Pair
== BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
)) {
925 // We have a fully cached result for this query then we can just return the
926 // cached results and populate the visited set. However, we have to verify
927 // that we don't already have conflicting results for these blocks. Check
928 // to ensure that if a block in the results set is in the visited set that
929 // it was for the same pointer query.
930 if (!Visited
.empty()) {
931 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
933 DenseMap
<BasicBlock
*, Value
*>::iterator VI
= Visited
.find(I
->getBB());
934 if (VI
== Visited
.end() || VI
->second
== Pointer
.getAddr())
937 // We have a pointer mismatch in a block. Just return clobber, saying
938 // that something was clobbered in this result. We could also do a
939 // non-fully cached query, but there is little point in doing this.
944 Value
*Addr
= Pointer
.getAddr();
945 for (NonLocalDepInfo::iterator I
= Cache
->begin(), E
= Cache
->end();
947 Visited
.insert(std::make_pair(I
->getBB(), Addr
));
948 if (!I
->getResult().isNonLocal())
949 Result
.push_back(NonLocalDepResult(I
->getBB(), I
->getResult(), Addr
));
951 ++NumCacheCompleteNonLocalPtr
;
955 // Otherwise, either this is a new block, a block with an invalid cache
956 // pointer or one that we're about to invalidate by putting more info into it
957 // than its valid cache info. If empty, the result will be valid cache info,
958 // otherwise it isn't.
960 CacheInfo
->Pair
= BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
);
962 CacheInfo
->Pair
= BBSkipFirstBlockPair();
964 SmallVector
<BasicBlock
*, 32> Worklist
;
965 Worklist
.push_back(StartBB
);
967 // PredList used inside loop.
968 SmallVector
<std::pair
<BasicBlock
*, PHITransAddr
>, 16> PredList
;
970 // Keep track of the entries that we know are sorted. Previously cached
971 // entries will all be sorted. The entries we add we only sort on demand (we
972 // don't insert every element into its sorted position). We know that we
973 // won't get any reuse from currently inserted values, because we don't
974 // revisit blocks after we insert info for them.
975 unsigned NumSortedEntries
= Cache
->size();
976 DEBUG(AssertSorted(*Cache
));
978 while (!Worklist
.empty()) {
979 BasicBlock
*BB
= Worklist
.pop_back_val();
981 // Skip the first block if we have it.
982 if (!SkipFirstBlock
) {
983 // Analyze the dependency of *Pointer in FromBB. See if we already have
985 assert(Visited
.count(BB
) && "Should check 'visited' before adding to WL");
987 // Get the dependency info for Pointer in BB. If we have cached
988 // information, we will use it, otherwise we compute it.
989 DEBUG(AssertSorted(*Cache
, NumSortedEntries
));
990 MemDepResult Dep
= GetNonLocalInfoForBlock(Loc
, isLoad
, BB
, Cache
,
993 // If we got a Def or Clobber, add this to the list of results.
994 if (!Dep
.isNonLocal()) {
995 Result
.push_back(NonLocalDepResult(BB
, Dep
, Pointer
.getAddr()));
1000 // If 'Pointer' is an instruction defined in this block, then we need to do
1001 // phi translation to change it into a value live in the predecessor block.
1002 // If not, we just add the predecessors to the worklist and scan them with
1003 // the same Pointer.
1004 if (!Pointer
.NeedsPHITranslationFromBlock(BB
)) {
1005 SkipFirstBlock
= false;
1006 SmallVector
<BasicBlock
*, 16> NewBlocks
;
1007 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
1008 // Verify that we haven't looked at this block yet.
1009 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
1010 InsertRes
= Visited
.insert(std::make_pair(*PI
, Pointer
.getAddr()));
1011 if (InsertRes
.second
) {
1012 // First time we've looked at *PI.
1013 NewBlocks
.push_back(*PI
);
1017 // If we have seen this block before, but it was with a different
1018 // pointer then we have a phi translation failure and we have to treat
1019 // this as a clobber.
1020 if (InsertRes
.first
->second
!= Pointer
.getAddr()) {
1021 // Make sure to clean up the Visited map before continuing on to
1022 // PredTranslationFailure.
1023 for (unsigned i
= 0; i
< NewBlocks
.size(); i
++)
1024 Visited
.erase(NewBlocks
[i
]);
1025 goto PredTranslationFailure
;
1028 Worklist
.append(NewBlocks
.begin(), NewBlocks
.end());
1032 // We do need to do phi translation, if we know ahead of time we can't phi
1033 // translate this value, don't even try.
1034 if (!Pointer
.IsPotentiallyPHITranslatable())
1035 goto PredTranslationFailure
;
1037 // We may have added values to the cache list before this PHI translation.
1038 // If so, we haven't done anything to ensure that the cache remains sorted.
1039 // Sort it now (if needed) so that recursive invocations of
1040 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1041 // value will only see properly sorted cache arrays.
1042 if (Cache
&& NumSortedEntries
!= Cache
->size()) {
1043 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
1044 NumSortedEntries
= Cache
->size();
1049 for (BasicBlock
**PI
= PredCache
->GetPreds(BB
); *PI
; ++PI
) {
1050 BasicBlock
*Pred
= *PI
;
1051 PredList
.push_back(std::make_pair(Pred
, Pointer
));
1053 // Get the PHI translated pointer in this predecessor. This can fail if
1054 // not translatable, in which case the getAddr() returns null.
1055 PHITransAddr
&PredPointer
= PredList
.back().second
;
1056 PredPointer
.PHITranslateValue(BB
, Pred
, 0);
1058 Value
*PredPtrVal
= PredPointer
.getAddr();
1060 // Check to see if we have already visited this pred block with another
1061 // pointer. If so, we can't do this lookup. This failure can occur
1062 // with PHI translation when a critical edge exists and the PHI node in
1063 // the successor translates to a pointer value different than the
1064 // pointer the block was first analyzed with.
1065 std::pair
<DenseMap
<BasicBlock
*,Value
*>::iterator
, bool>
1066 InsertRes
= Visited
.insert(std::make_pair(Pred
, PredPtrVal
));
1068 if (!InsertRes
.second
) {
1069 // We found the pred; take it off the list of preds to visit.
1070 PredList
.pop_back();
1072 // If the predecessor was visited with PredPtr, then we already did
1073 // the analysis and can ignore it.
1074 if (InsertRes
.first
->second
== PredPtrVal
)
1077 // Otherwise, the block was previously analyzed with a different
1078 // pointer. We can't represent the result of this case, so we just
1079 // treat this as a phi translation failure.
1081 // Make sure to clean up the Visited map before continuing on to
1082 // PredTranslationFailure.
1083 for (unsigned i
= 0; i
< PredList
.size(); i
++)
1084 Visited
.erase(PredList
[i
].first
);
1086 goto PredTranslationFailure
;
1090 // Actually process results here; this need to be a separate loop to avoid
1091 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1092 // any results for. (getNonLocalPointerDepFromBB will modify our
1093 // datastructures in ways the code after the PredTranslationFailure label
1095 for (unsigned i
= 0; i
< PredList
.size(); i
++) {
1096 BasicBlock
*Pred
= PredList
[i
].first
;
1097 PHITransAddr
&PredPointer
= PredList
[i
].second
;
1098 Value
*PredPtrVal
= PredPointer
.getAddr();
1100 bool CanTranslate
= true;
1101 // If PHI translation was unable to find an available pointer in this
1102 // predecessor, then we have to assume that the pointer is clobbered in
1103 // that predecessor. We can still do PRE of the load, which would insert
1104 // a computation of the pointer in this predecessor.
1105 if (PredPtrVal
== 0)
1106 CanTranslate
= false;
1108 // FIXME: it is entirely possible that PHI translating will end up with
1109 // the same value. Consider PHI translating something like:
1110 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1111 // to recurse here, pedantically speaking.
1113 // If getNonLocalPointerDepFromBB fails here, that means the cached
1114 // result conflicted with the Visited list; we have to conservatively
1115 // assume it is unknown, but this also does not block PRE of the load.
1116 if (!CanTranslate
||
1117 getNonLocalPointerDepFromBB(PredPointer
,
1118 Loc
.getWithNewPtr(PredPtrVal
),
1121 // Add the entry to the Result list.
1122 NonLocalDepResult
Entry(Pred
, MemDepResult::getUnknown(), PredPtrVal
);
1123 Result
.push_back(Entry
);
1125 // Since we had a phi translation failure, the cache for CacheKey won't
1126 // include all of the entries that we need to immediately satisfy future
1127 // queries. Mark this in NonLocalPointerDeps by setting the
1128 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1129 // cached value to do more work but not miss the phi trans failure.
1130 NonLocalPointerInfo
&NLPI
= NonLocalPointerDeps
[CacheKey
];
1131 NLPI
.Pair
= BBSkipFirstBlockPair();
1136 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1137 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
1138 Cache
= &CacheInfo
->NonLocalDeps
;
1139 NumSortedEntries
= Cache
->size();
1141 // Since we did phi translation, the "Cache" set won't contain all of the
1142 // results for the query. This is ok (we can still use it to accelerate
1143 // specific block queries) but we can't do the fastpath "return all
1144 // results from the set" Clear out the indicator for this.
1145 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1146 SkipFirstBlock
= false;
1149 PredTranslationFailure
:
1150 // The following code is "failure"; we can't produce a sane translation
1151 // for the given block. It assumes that we haven't modified any of
1152 // our datastructures while processing the current block.
1155 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1156 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
1157 Cache
= &CacheInfo
->NonLocalDeps
;
1158 NumSortedEntries
= Cache
->size();
1161 // Since we failed phi translation, the "Cache" set won't contain all of the
1162 // results for the query. This is ok (we can still use it to accelerate
1163 // specific block queries) but we can't do the fastpath "return all
1164 // results from the set". Clear out the indicator for this.
1165 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1167 // If *nothing* works, mark the pointer as unknown.
1169 // If this is the magic first block, return this as a clobber of the whole
1170 // incoming value. Since we can't phi translate to one of the predecessors,
1171 // we have to bail out.
1175 for (NonLocalDepInfo::reverse_iterator I
= Cache
->rbegin(); ; ++I
) {
1176 assert(I
!= Cache
->rend() && "Didn't find current block??");
1177 if (I
->getBB() != BB
)
1180 assert(I
->getResult().isNonLocal() &&
1181 "Should only be here with transparent block");
1182 I
->setResult(MemDepResult::getUnknown());
1183 Result
.push_back(NonLocalDepResult(I
->getBB(), I
->getResult(),
1184 Pointer
.getAddr()));
1189 // Okay, we're done now. If we added new values to the cache, re-sort it.
1190 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
1191 DEBUG(AssertSorted(*Cache
));
1195 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1196 /// CachedNonLocalPointerInfo, remove it.
1197 void MemoryDependenceAnalysis::
1198 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P
) {
1199 CachedNonLocalPointerInfo::iterator It
=
1200 NonLocalPointerDeps
.find(P
);
1201 if (It
== NonLocalPointerDeps
.end()) return;
1203 // Remove all of the entries in the BB->val map. This involves removing
1204 // instructions from the reverse map.
1205 NonLocalDepInfo
&PInfo
= It
->second
.NonLocalDeps
;
1207 for (unsigned i
= 0, e
= PInfo
.size(); i
!= e
; ++i
) {
1208 Instruction
*Target
= PInfo
[i
].getResult().getInst();
1209 if (Target
== 0) continue; // Ignore non-local dep results.
1210 assert(Target
->getParent() == PInfo
[i
].getBB());
1212 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1213 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Target
, P
);
1216 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1217 NonLocalPointerDeps
.erase(It
);
1221 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1222 /// information about the specified pointer, because it may be too
1223 /// conservative in memdep. This is an optional call that can be used when
1224 /// the client detects an equivalence between the pointer and some other
1225 /// value and replaces the other value with ptr. This can make Ptr available
1226 /// in more places that cached info does not necessarily keep.
1227 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value
*Ptr
) {
1228 // If Ptr isn't really a pointer, just ignore it.
1229 if (!Ptr
->getType()->isPointerTy()) return;
1230 // Flush store info for the pointer.
1231 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, false));
1232 // Flush load info for the pointer.
1233 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, true));
1236 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1237 /// This needs to be done when the CFG changes, e.g., due to splitting
1239 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1243 /// removeInstruction - Remove an instruction from the dependence analysis,
1244 /// updating the dependence of instructions that previously depended on it.
1245 /// This method attempts to keep the cache coherent using the reverse map.
1246 void MemoryDependenceAnalysis::removeInstruction(Instruction
*RemInst
) {
1247 // Walk through the Non-local dependencies, removing this one as the value
1248 // for any cached queries.
1249 NonLocalDepMapType::iterator NLDI
= NonLocalDeps
.find(RemInst
);
1250 if (NLDI
!= NonLocalDeps
.end()) {
1251 NonLocalDepInfo
&BlockMap
= NLDI
->second
.first
;
1252 for (NonLocalDepInfo::iterator DI
= BlockMap
.begin(), DE
= BlockMap
.end();
1254 if (Instruction
*Inst
= DI
->getResult().getInst())
1255 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
, RemInst
);
1256 NonLocalDeps
.erase(NLDI
);
1259 // If we have a cached local dependence query for this instruction, remove it.
1261 LocalDepMapType::iterator LocalDepEntry
= LocalDeps
.find(RemInst
);
1262 if (LocalDepEntry
!= LocalDeps
.end()) {
1263 // Remove us from DepInst's reverse set now that the local dep info is gone.
1264 if (Instruction
*Inst
= LocalDepEntry
->second
.getInst())
1265 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, RemInst
);
1267 // Remove this local dependency info.
1268 LocalDeps
.erase(LocalDepEntry
);
1271 // If we have any cached pointer dependencies on this instruction, remove
1272 // them. If the instruction has non-pointer type, then it can't be a pointer
1275 // Remove it from both the load info and the store info. The instruction
1276 // can't be in either of these maps if it is non-pointer.
1277 if (RemInst
->getType()->isPointerTy()) {
1278 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, false));
1279 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, true));
1282 // Loop over all of the things that depend on the instruction we're removing.
1284 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 8> ReverseDepsToAdd
;
1286 // If we find RemInst as a clobber or Def in any of the maps for other values,
1287 // we need to replace its entry with a dirty version of the instruction after
1288 // it. If RemInst is a terminator, we use a null dirty value.
1290 // Using a dirty version of the instruction after RemInst saves having to scan
1291 // the entire block to get to this point.
1292 MemDepResult NewDirtyVal
;
1293 if (!RemInst
->isTerminator())
1294 NewDirtyVal
= MemDepResult::getDirty(++BasicBlock::iterator(RemInst
));
1296 ReverseDepMapType::iterator ReverseDepIt
= ReverseLocalDeps
.find(RemInst
);
1297 if (ReverseDepIt
!= ReverseLocalDeps
.end()) {
1298 SmallPtrSet
<Instruction
*, 4> &ReverseDeps
= ReverseDepIt
->second
;
1299 // RemInst can't be the terminator if it has local stuff depending on it.
1300 assert(!ReverseDeps
.empty() && !isa
<TerminatorInst
>(RemInst
) &&
1301 "Nothing can locally depend on a terminator");
1303 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= ReverseDeps
.begin(),
1304 E
= ReverseDeps
.end(); I
!= E
; ++I
) {
1305 Instruction
*InstDependingOnRemInst
= *I
;
1306 assert(InstDependingOnRemInst
!= RemInst
&&
1307 "Already removed our local dep info");
1309 LocalDeps
[InstDependingOnRemInst
] = NewDirtyVal
;
1311 // Make sure to remember that new things depend on NewDepInst.
1312 assert(NewDirtyVal
.getInst() && "There is no way something else can have "
1313 "a local dep on this if it is a terminator!");
1314 ReverseDepsToAdd
.push_back(std::make_pair(NewDirtyVal
.getInst(),
1315 InstDependingOnRemInst
));
1318 ReverseLocalDeps
.erase(ReverseDepIt
);
1320 // Add new reverse deps after scanning the set, to avoid invalidating the
1321 // 'ReverseDeps' reference.
1322 while (!ReverseDepsToAdd
.empty()) {
1323 ReverseLocalDeps
[ReverseDepsToAdd
.back().first
]
1324 .insert(ReverseDepsToAdd
.back().second
);
1325 ReverseDepsToAdd
.pop_back();
1329 ReverseDepIt
= ReverseNonLocalDeps
.find(RemInst
);
1330 if (ReverseDepIt
!= ReverseNonLocalDeps
.end()) {
1331 SmallPtrSet
<Instruction
*, 4> &Set
= ReverseDepIt
->second
;
1332 for (SmallPtrSet
<Instruction
*, 4>::iterator I
= Set
.begin(), E
= Set
.end();
1334 assert(*I
!= RemInst
&& "Already removed NonLocalDep info for RemInst");
1336 PerInstNLInfo
&INLD
= NonLocalDeps
[*I
];
1337 // The information is now dirty!
1340 for (NonLocalDepInfo::iterator DI
= INLD
.first
.begin(),
1341 DE
= INLD
.first
.end(); DI
!= DE
; ++DI
) {
1342 if (DI
->getResult().getInst() != RemInst
) continue;
1344 // Convert to a dirty entry for the subsequent instruction.
1345 DI
->setResult(NewDirtyVal
);
1347 if (Instruction
*NextI
= NewDirtyVal
.getInst())
1348 ReverseDepsToAdd
.push_back(std::make_pair(NextI
, *I
));
1352 ReverseNonLocalDeps
.erase(ReverseDepIt
);
1354 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1355 while (!ReverseDepsToAdd
.empty()) {
1356 ReverseNonLocalDeps
[ReverseDepsToAdd
.back().first
]
1357 .insert(ReverseDepsToAdd
.back().second
);
1358 ReverseDepsToAdd
.pop_back();
1362 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1363 // value in the NonLocalPointerDeps info.
1364 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt
=
1365 ReverseNonLocalPtrDeps
.find(RemInst
);
1366 if (ReversePtrDepIt
!= ReverseNonLocalPtrDeps
.end()) {
1367 SmallPtrSet
<ValueIsLoadPair
, 4> &Set
= ReversePtrDepIt
->second
;
1368 SmallVector
<std::pair
<Instruction
*, ValueIsLoadPair
>,8> ReversePtrDepsToAdd
;
1370 for (SmallPtrSet
<ValueIsLoadPair
, 4>::iterator I
= Set
.begin(),
1371 E
= Set
.end(); I
!= E
; ++I
) {
1372 ValueIsLoadPair P
= *I
;
1373 assert(P
.getPointer() != RemInst
&&
1374 "Already removed NonLocalPointerDeps info for RemInst");
1376 NonLocalDepInfo
&NLPDI
= NonLocalPointerDeps
[P
].NonLocalDeps
;
1378 // The cache is not valid for any specific block anymore.
1379 NonLocalPointerDeps
[P
].Pair
= BBSkipFirstBlockPair();
1381 // Update any entries for RemInst to use the instruction after it.
1382 for (NonLocalDepInfo::iterator DI
= NLPDI
.begin(), DE
= NLPDI
.end();
1384 if (DI
->getResult().getInst() != RemInst
) continue;
1386 // Convert to a dirty entry for the subsequent instruction.
1387 DI
->setResult(NewDirtyVal
);
1389 if (Instruction
*NewDirtyInst
= NewDirtyVal
.getInst())
1390 ReversePtrDepsToAdd
.push_back(std::make_pair(NewDirtyInst
, P
));
1393 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1394 // subsequent value may invalidate the sortedness.
1395 std::sort(NLPDI
.begin(), NLPDI
.end());
1398 ReverseNonLocalPtrDeps
.erase(ReversePtrDepIt
);
1400 while (!ReversePtrDepsToAdd
.empty()) {
1401 ReverseNonLocalPtrDeps
[ReversePtrDepsToAdd
.back().first
]
1402 .insert(ReversePtrDepsToAdd
.back().second
);
1403 ReversePtrDepsToAdd
.pop_back();
1408 assert(!NonLocalDeps
.count(RemInst
) && "RemInst got reinserted?");
1409 AA
->deleteValue(RemInst
);
1410 DEBUG(verifyRemoved(RemInst
));
1412 /// verifyRemoved - Verify that the specified instruction does not occur
1413 /// in our internal data structures.
1414 void MemoryDependenceAnalysis::verifyRemoved(Instruction
*D
) const {
1415 for (LocalDepMapType::const_iterator I
= LocalDeps
.begin(),
1416 E
= LocalDeps
.end(); I
!= E
; ++I
) {
1417 assert(I
->first
!= D
&& "Inst occurs in data structures");
1418 assert(I
->second
.getInst() != D
&&
1419 "Inst occurs in data structures");
1422 for (CachedNonLocalPointerInfo::const_iterator I
=NonLocalPointerDeps
.begin(),
1423 E
= NonLocalPointerDeps
.end(); I
!= E
; ++I
) {
1424 assert(I
->first
.getPointer() != D
&& "Inst occurs in NLPD map key");
1425 const NonLocalDepInfo
&Val
= I
->second
.NonLocalDeps
;
1426 for (NonLocalDepInfo::const_iterator II
= Val
.begin(), E
= Val
.end();
1428 assert(II
->getResult().getInst() != D
&& "Inst occurs as NLPD value");
1431 for (NonLocalDepMapType::const_iterator I
= NonLocalDeps
.begin(),
1432 E
= NonLocalDeps
.end(); I
!= E
; ++I
) {
1433 assert(I
->first
!= D
&& "Inst occurs in data structures");
1434 const PerInstNLInfo
&INLD
= I
->second
;
1435 for (NonLocalDepInfo::const_iterator II
= INLD
.first
.begin(),
1436 EE
= INLD
.first
.end(); II
!= EE
; ++II
)
1437 assert(II
->getResult().getInst() != D
&& "Inst occurs in data structures");
1440 for (ReverseDepMapType::const_iterator I
= ReverseLocalDeps
.begin(),
1441 E
= ReverseLocalDeps
.end(); I
!= E
; ++I
) {
1442 assert(I
->first
!= D
&& "Inst occurs in data structures");
1443 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1444 EE
= I
->second
.end(); II
!= EE
; ++II
)
1445 assert(*II
!= D
&& "Inst occurs in data structures");
1448 for (ReverseDepMapType::const_iterator I
= ReverseNonLocalDeps
.begin(),
1449 E
= ReverseNonLocalDeps
.end();
1451 assert(I
->first
!= D
&& "Inst occurs in data structures");
1452 for (SmallPtrSet
<Instruction
*, 4>::const_iterator II
= I
->second
.begin(),
1453 EE
= I
->second
.end(); II
!= EE
; ++II
)
1454 assert(*II
!= D
&& "Inst occurs in data structures");
1457 for (ReverseNonLocalPtrDepTy::const_iterator
1458 I
= ReverseNonLocalPtrDeps
.begin(),
1459 E
= ReverseNonLocalPtrDeps
.end(); I
!= E
; ++I
) {
1460 assert(I
->first
!= D
&& "Inst occurs in rev NLPD map");
1462 for (SmallPtrSet
<ValueIsLoadPair
, 4>::const_iterator II
= I
->second
.begin(),
1463 E
= I
->second
.end(); II
!= E
; ++II
)
1464 assert(*II
!= ValueIsLoadPair(D
, false) &&
1465 *II
!= ValueIsLoadPair(D
, true) &&
1466 "Inst occurs in ReverseNonLocalPtrDeps map");