1 //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LatencyPriorityQueue class, which is a
11 // SchedulingPriorityQueue that schedules using latency information to
12 // reduce the length of the critical path through the basic block.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "scheduler"
17 #include "llvm/CodeGen/LatencyPriorityQueue.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/raw_ostream.h"
22 bool latency_sort::operator()(const SUnit
*LHS
, const SUnit
*RHS
) const {
23 // The isScheduleHigh flag allows nodes with wraparound dependencies that
24 // cannot easily be modeled as edges with latencies to be scheduled as
25 // soon as possible in a top-down schedule.
26 if (LHS
->isScheduleHigh
&& !RHS
->isScheduleHigh
)
28 if (!LHS
->isScheduleHigh
&& RHS
->isScheduleHigh
)
31 unsigned LHSNum
= LHS
->NodeNum
;
32 unsigned RHSNum
= RHS
->NodeNum
;
34 // The most important heuristic is scheduling the critical path.
35 unsigned LHSLatency
= PQ
->getLatency(LHSNum
);
36 unsigned RHSLatency
= PQ
->getLatency(RHSNum
);
37 if (LHSLatency
< RHSLatency
) return true;
38 if (LHSLatency
> RHSLatency
) return false;
40 // After that, if two nodes have identical latencies, look to see if one will
41 // unblock more other nodes than the other.
42 unsigned LHSBlocked
= PQ
->getNumSolelyBlockNodes(LHSNum
);
43 unsigned RHSBlocked
= PQ
->getNumSolelyBlockNodes(RHSNum
);
44 if (LHSBlocked
< RHSBlocked
) return true;
45 if (LHSBlocked
> RHSBlocked
) return false;
47 // Finally, just to provide a stable ordering, use the node number as a
49 return LHSNum
< RHSNum
;
53 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
54 /// of SU, return it, otherwise return null.
55 SUnit
*LatencyPriorityQueue::getSingleUnscheduledPred(SUnit
*SU
) {
56 SUnit
*OnlyAvailablePred
= 0;
57 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
59 SUnit
&Pred
= *I
->getSUnit();
60 if (!Pred
.isScheduled
) {
61 // We found an available, but not scheduled, predecessor. If it's the
62 // only one we have found, keep track of it... otherwise give up.
63 if (OnlyAvailablePred
&& OnlyAvailablePred
!= &Pred
)
65 OnlyAvailablePred
= &Pred
;
69 return OnlyAvailablePred
;
72 void LatencyPriorityQueue::push(SUnit
*SU
) {
73 // Look at all of the successors of this node. Count the number of nodes that
74 // this node is the sole unscheduled node for.
75 unsigned NumNodesBlocking
= 0;
76 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
78 if (getSingleUnscheduledPred(I
->getSUnit()) == SU
)
81 NumNodesSolelyBlocking
[SU
->NodeNum
] = NumNodesBlocking
;
87 // ScheduledNode - As nodes are scheduled, we look to see if there are any
88 // successor nodes that have a single unscheduled predecessor. If so, that
89 // single predecessor has a higher priority, since scheduling it will make
90 // the node available.
91 void LatencyPriorityQueue::ScheduledNode(SUnit
*SU
) {
92 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
94 AdjustPriorityOfUnscheduledPreds(I
->getSUnit());
98 /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
99 /// scheduled. If SU is not itself available, then there is at least one
100 /// predecessor node that has not been scheduled yet. If SU has exactly ONE
101 /// unscheduled predecessor, we want to increase its priority: it getting
102 /// scheduled will make this node available, so it is better than some other
103 /// node of the same priority that will not make a node available.
104 void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit
*SU
) {
105 if (SU
->isAvailable
) return; // All preds scheduled.
107 SUnit
*OnlyAvailablePred
= getSingleUnscheduledPred(SU
);
108 if (OnlyAvailablePred
== 0 || !OnlyAvailablePred
->isAvailable
) return;
110 // Okay, we found a single predecessor that is available, but not scheduled.
111 // Since it is available, it must be in the priority queue. First remove it.
112 remove(OnlyAvailablePred
);
114 // Reinsert the node into the priority queue, which recomputes its
115 // NumNodesSolelyBlocking value.
116 push(OnlyAvailablePred
);
119 SUnit
*LatencyPriorityQueue::pop() {
120 if (empty()) return NULL
;
121 std::vector
<SUnit
*>::iterator Best
= Queue
.begin();
122 for (std::vector
<SUnit
*>::iterator I
= llvm::next(Queue
.begin()),
123 E
= Queue
.end(); I
!= E
; ++I
)
124 if (Picker(*Best
, *I
))
127 if (Best
!= prior(Queue
.end()))
128 std::swap(*Best
, Queue
.back());
133 void LatencyPriorityQueue::remove(SUnit
*SU
) {
134 assert(!Queue
.empty() && "Queue is empty!");
135 std::vector
<SUnit
*>::iterator I
= std::find(Queue
.begin(), Queue
.end(), SU
);
136 if (I
!= prior(Queue
.end()))
137 std::swap(*I
, Queue
.back());
142 void LatencyPriorityQueue::dump(ScheduleDAG
*DAG
) const {}
144 void LatencyPriorityQueue::dump(ScheduleDAG
*DAG
) const {
145 LatencyPriorityQueue q
= *this;
148 dbgs() << "Height " << su
->getHeight() << ": ";