1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "machine-sink"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
36 SplitEdges("machine-sink-split",
37 cl::desc("Split critical edges during machine sinking"),
38 cl::init(true), cl::Hidden
);
40 STATISTIC(NumSunk
, "Number of machine instructions sunk");
41 STATISTIC(NumSplit
, "Number of critical edges split");
42 STATISTIC(NumCoalesces
, "Number of copies coalesced");
45 class MachineSinking
: public MachineFunctionPass
{
46 const TargetInstrInfo
*TII
;
47 const TargetRegisterInfo
*TRI
;
48 MachineRegisterInfo
*MRI
; // Machine register information
49 MachineDominatorTree
*DT
; // Machine dominator tree
52 BitVector AllocatableSet
; // Which physregs are allocatable?
54 // Remember which edges have been considered for breaking.
55 SmallSet
<std::pair
<MachineBasicBlock
*,MachineBasicBlock
*>, 8>
59 static char ID
; // Pass identification
60 MachineSinking() : MachineFunctionPass(ID
) {
61 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
64 virtual bool runOnMachineFunction(MachineFunction
&MF
);
66 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
68 MachineFunctionPass::getAnalysisUsage(AU
);
69 AU
.addRequired
<AliasAnalysis
>();
70 AU
.addRequired
<MachineDominatorTree
>();
71 AU
.addRequired
<MachineLoopInfo
>();
72 AU
.addPreserved
<MachineDominatorTree
>();
73 AU
.addPreserved
<MachineLoopInfo
>();
76 virtual void releaseMemory() {
77 CEBCandidates
.clear();
81 bool ProcessBlock(MachineBasicBlock
&MBB
);
82 bool isWorthBreakingCriticalEdge(MachineInstr
*MI
,
83 MachineBasicBlock
*From
,
84 MachineBasicBlock
*To
);
85 MachineBasicBlock
*SplitCriticalEdge(MachineInstr
*MI
,
86 MachineBasicBlock
*From
,
87 MachineBasicBlock
*To
,
89 bool SinkInstruction(MachineInstr
*MI
, bool &SawStore
);
90 bool AllUsesDominatedByBlock(unsigned Reg
, MachineBasicBlock
*MBB
,
91 MachineBasicBlock
*DefMBB
,
92 bool &BreakPHIEdge
, bool &LocalUse
) const;
93 bool PerformTrivialForwardCoalescing(MachineInstr
*MI
,
94 MachineBasicBlock
*MBB
);
96 } // end anonymous namespace
98 char MachineSinking::ID
= 0;
99 INITIALIZE_PASS_BEGIN(MachineSinking
, "machine-sink",
100 "Machine code sinking", false, false)
101 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
102 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
103 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
104 INITIALIZE_PASS_END(MachineSinking
, "machine-sink",
105 "Machine code sinking", false, false)
107 FunctionPass
*llvm::createMachineSinkingPass() { return new MachineSinking(); }
109 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr
*MI
,
110 MachineBasicBlock
*MBB
) {
114 unsigned SrcReg
= MI
->getOperand(1).getReg();
115 unsigned DstReg
= MI
->getOperand(0).getReg();
116 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
) ||
117 !TargetRegisterInfo::isVirtualRegister(DstReg
) ||
118 !MRI
->hasOneNonDBGUse(SrcReg
))
121 const TargetRegisterClass
*SRC
= MRI
->getRegClass(SrcReg
);
122 const TargetRegisterClass
*DRC
= MRI
->getRegClass(DstReg
);
126 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
127 if (DefMI
->isCopyLike())
129 DEBUG(dbgs() << "Coalescing: " << *DefMI
);
130 DEBUG(dbgs() << "*** to: " << *MI
);
131 MRI
->replaceRegWith(DstReg
, SrcReg
);
132 MI
->eraseFromParent();
137 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
138 /// occur in blocks dominated by the specified block. If any use is in the
139 /// definition block, then return false since it is never legal to move def
142 MachineSinking::AllUsesDominatedByBlock(unsigned Reg
,
143 MachineBasicBlock
*MBB
,
144 MachineBasicBlock
*DefMBB
,
146 bool &LocalUse
) const {
147 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
148 "Only makes sense for vregs");
150 if (MRI
->use_nodbg_empty(Reg
))
153 // Ignoring debug uses is necessary so debug info doesn't affect the code.
154 // This may leave a referencing dbg_value in the original block, before
155 // the definition of the vreg. Dwarf generator handles this although the
156 // user might not get the right info at runtime.
158 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
159 // into and they are all PHI nodes. In this case, machine-sink must break
160 // the critical edge first. e.g.
162 // BB#1: derived from LLVM BB %bb4.preheader
163 // Predecessors according to CFG: BB#0
165 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
167 // JE_4 <BB#37>, %EFLAGS<imp-use>
168 // Successors according to CFG: BB#37 BB#2
170 // BB#2: derived from LLVM BB %bb.nph
171 // Predecessors according to CFG: BB#0 BB#1
172 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
174 for (MachineRegisterInfo::use_nodbg_iterator
175 I
= MRI
->use_nodbg_begin(Reg
), E
= MRI
->use_nodbg_end();
177 MachineInstr
*UseInst
= &*I
;
178 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
179 if (!(UseBlock
== MBB
&& UseInst
->isPHI() &&
180 UseInst
->getOperand(I
.getOperandNo()+1).getMBB() == DefMBB
)) {
181 BreakPHIEdge
= false;
188 for (MachineRegisterInfo::use_nodbg_iterator
189 I
= MRI
->use_nodbg_begin(Reg
), E
= MRI
->use_nodbg_end();
191 // Determine the block of the use.
192 MachineInstr
*UseInst
= &*I
;
193 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
194 if (UseInst
->isPHI()) {
195 // PHI nodes use the operand in the predecessor block, not the block with
197 UseBlock
= UseInst
->getOperand(I
.getOperandNo()+1).getMBB();
198 } else if (UseBlock
== DefMBB
) {
203 // Check that it dominates.
204 if (!DT
->dominates(MBB
, UseBlock
))
211 bool MachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
212 DEBUG(dbgs() << "******** Machine Sinking ********\n");
214 const TargetMachine
&TM
= MF
.getTarget();
215 TII
= TM
.getInstrInfo();
216 TRI
= TM
.getRegisterInfo();
217 MRI
= &MF
.getRegInfo();
218 DT
= &getAnalysis
<MachineDominatorTree
>();
219 LI
= &getAnalysis
<MachineLoopInfo
>();
220 AA
= &getAnalysis
<AliasAnalysis
>();
221 AllocatableSet
= TRI
->getAllocatableSet(MF
);
223 bool EverMadeChange
= false;
226 bool MadeChange
= false;
228 // Process all basic blocks.
229 CEBCandidates
.clear();
230 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end();
232 MadeChange
|= ProcessBlock(*I
);
234 // If this iteration over the code changed anything, keep iterating.
235 if (!MadeChange
) break;
236 EverMadeChange
= true;
238 return EverMadeChange
;
241 bool MachineSinking::ProcessBlock(MachineBasicBlock
&MBB
) {
242 // Can't sink anything out of a block that has less than two successors.
243 if (MBB
.succ_size() <= 1 || MBB
.empty()) return false;
245 // Don't bother sinking code out of unreachable blocks. In addition to being
246 // unprofitable, it can also lead to infinite looping, because in an
247 // unreachable loop there may be nowhere to stop.
248 if (!DT
->isReachableFromEntry(&MBB
)) return false;
250 bool MadeChange
= false;
252 // Walk the basic block bottom-up. Remember if we saw a store.
253 MachineBasicBlock::iterator I
= MBB
.end();
255 bool ProcessedBegin
, SawStore
= false;
257 MachineInstr
*MI
= I
; // The instruction to sink.
259 // Predecrement I (if it's not begin) so that it isn't invalidated by
261 ProcessedBegin
= I
== MBB
.begin();
265 if (MI
->isDebugValue())
268 bool Joined
= PerformTrivialForwardCoalescing(MI
, &MBB
);
274 if (SinkInstruction(MI
, SawStore
))
275 ++NumSunk
, MadeChange
= true;
277 // If we just processed the first instruction in the block, we're done.
278 } while (!ProcessedBegin
);
283 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr
*MI
,
284 MachineBasicBlock
*From
,
285 MachineBasicBlock
*To
) {
286 // FIXME: Need much better heuristics.
288 // If the pass has already considered breaking this edge (during this pass
289 // through the function), then let's go ahead and break it. This means
290 // sinking multiple "cheap" instructions into the same block.
291 if (!CEBCandidates
.insert(std::make_pair(From
, To
)))
294 if (!MI
->isCopy() && !MI
->getDesc().isAsCheapAsAMove())
297 // MI is cheap, we probably don't want to break the critical edge for it.
298 // However, if this would allow some definitions of its source operands
299 // to be sunk then it's probably worth it.
300 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
301 const MachineOperand
&MO
= MI
->getOperand(i
);
302 if (!MO
.isReg()) continue;
303 unsigned Reg
= MO
.getReg();
304 if (Reg
== 0 || !TargetRegisterInfo::isPhysicalRegister(Reg
))
306 if (MRI
->hasOneNonDBGUse(Reg
))
313 MachineBasicBlock
*MachineSinking::SplitCriticalEdge(MachineInstr
*MI
,
314 MachineBasicBlock
*FromBB
,
315 MachineBasicBlock
*ToBB
,
317 if (!isWorthBreakingCriticalEdge(MI
, FromBB
, ToBB
))
320 // Avoid breaking back edge. From == To means backedge for single BB loop.
321 if (!SplitEdges
|| FromBB
== ToBB
)
324 // Check for backedges of more "complex" loops.
325 if (LI
->getLoopFor(FromBB
) == LI
->getLoopFor(ToBB
) &&
326 LI
->isLoopHeader(ToBB
))
329 // It's not always legal to break critical edges and sink the computation
337 // ... no uses of v1024
343 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
352 // ... no uses of v1024
358 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
359 // flow. We need to ensure the new basic block where the computation is
360 // sunk to dominates all the uses.
361 // It's only legal to break critical edge and sink the computation to the
362 // new block if all the predecessors of "To", except for "From", are
363 // not dominated by "From". Given SSA property, this means these
364 // predecessors are dominated by "To".
366 // There is no need to do this check if all the uses are PHI nodes. PHI
367 // sources are only defined on the specific predecessor edges.
369 for (MachineBasicBlock::pred_iterator PI
= ToBB
->pred_begin(),
370 E
= ToBB
->pred_end(); PI
!= E
; ++PI
) {
373 if (!DT
->dominates(ToBB
, *PI
))
378 return FromBB
->SplitCriticalEdge(ToBB
, this);
381 static bool AvoidsSinking(MachineInstr
*MI
, MachineRegisterInfo
*MRI
) {
382 return MI
->isInsertSubreg() || MI
->isSubregToReg() || MI
->isRegSequence();
385 /// SinkInstruction - Determine whether it is safe to sink the specified machine
386 /// instruction out of its current block into a successor.
387 bool MachineSinking::SinkInstruction(MachineInstr
*MI
, bool &SawStore
) {
388 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
389 // be close to the source to make it easier to coalesce.
390 if (AvoidsSinking(MI
, MRI
))
393 // Check if it's safe to move the instruction.
394 if (!MI
->isSafeToMove(TII
, AA
, SawStore
))
397 // FIXME: This should include support for sinking instructions within the
398 // block they are currently in to shorten the live ranges. We often get
399 // instructions sunk into the top of a large block, but it would be better to
400 // also sink them down before their first use in the block. This xform has to
401 // be careful not to *increase* register pressure though, e.g. sinking
402 // "x = y + z" down if it kills y and z would increase the live ranges of y
403 // and z and only shrink the live range of x.
405 // Loop over all the operands of the specified instruction. If there is
406 // anything we can't handle, bail out.
407 MachineBasicBlock
*ParentBlock
= MI
->getParent();
409 // SuccToSinkTo - This is the successor to sink this instruction to, once we
411 MachineBasicBlock
*SuccToSinkTo
= 0;
413 bool BreakPHIEdge
= false;
414 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
415 const MachineOperand
&MO
= MI
->getOperand(i
);
416 if (!MO
.isReg()) continue; // Ignore non-register operands.
418 unsigned Reg
= MO
.getReg();
419 if (Reg
== 0) continue;
421 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
423 // If the physreg has no defs anywhere, it's just an ambient register
424 // and we can freely move its uses. Alternatively, if it's allocatable,
425 // it could get allocated to something with a def during allocation.
426 if (!MRI
->def_empty(Reg
))
429 if (AllocatableSet
.test(Reg
))
432 // Check for a def among the register's aliases too.
433 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
434 unsigned AliasReg
= *Alias
;
435 if (!MRI
->def_empty(AliasReg
))
438 if (AllocatableSet
.test(AliasReg
))
441 } else if (!MO
.isDead()) {
442 // A def that isn't dead. We can't move it.
446 // Virtual register uses are always safe to sink.
447 if (MO
.isUse()) continue;
449 // If it's not safe to move defs of the register class, then abort.
450 if (!TII
->isSafeToMoveRegClassDefs(MRI
->getRegClass(Reg
)))
453 // FIXME: This picks a successor to sink into based on having one
454 // successor that dominates all the uses. However, there are cases where
455 // sinking can happen but where the sink point isn't a successor. For
462 // the instruction could be sunk over the whole diamond for the
463 // if/then/else (or loop, etc), allowing it to be sunk into other blocks
466 // Virtual register defs can only be sunk if all their uses are in blocks
467 // dominated by one of the successors.
469 // If a previous operand picked a block to sink to, then this operand
470 // must be sinkable to the same block.
471 bool LocalUse
= false;
472 if (!AllUsesDominatedByBlock(Reg
, SuccToSinkTo
, ParentBlock
,
473 BreakPHIEdge
, LocalUse
))
479 // Otherwise, we should look at all the successors and decide which one
480 // we should sink to.
481 for (MachineBasicBlock::succ_iterator SI
= ParentBlock
->succ_begin(),
482 E
= ParentBlock
->succ_end(); SI
!= E
; ++SI
) {
483 bool LocalUse
= false;
484 if (AllUsesDominatedByBlock(Reg
, *SI
, ParentBlock
,
485 BreakPHIEdge
, LocalUse
)) {
490 // Def is used locally, it's never safe to move this def.
494 // If we couldn't find a block to sink to, ignore this instruction.
495 if (SuccToSinkTo
== 0)
500 // If there are no outputs, it must have side-effects.
501 if (SuccToSinkTo
== 0)
504 // It's not safe to sink instructions to EH landing pad. Control flow into
505 // landing pad is implicitly defined.
506 if (SuccToSinkTo
->isLandingPad())
509 // It is not possible to sink an instruction into its own block. This can
510 // happen with loops.
511 if (MI
->getParent() == SuccToSinkTo
)
514 // If the instruction to move defines a dead physical register which is live
515 // when leaving the basic block, don't move it because it could turn into a
516 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
517 for (unsigned I
= 0, E
= MI
->getNumOperands(); I
!= E
; ++I
) {
518 const MachineOperand
&MO
= MI
->getOperand(I
);
519 if (!MO
.isReg()) continue;
520 unsigned Reg
= MO
.getReg();
521 if (Reg
== 0 || !TargetRegisterInfo::isPhysicalRegister(Reg
)) continue;
522 if (SuccToSinkTo
->isLiveIn(Reg
))
526 DEBUG(dbgs() << "Sink instr " << *MI
<< "\tinto block " << *SuccToSinkTo
);
528 // If the block has multiple predecessors, this would introduce computation on
529 // a path that it doesn't already exist. We could split the critical edge,
530 // but for now we just punt.
531 if (SuccToSinkTo
->pred_size() > 1) {
532 // We cannot sink a load across a critical edge - there may be stores in
534 bool TryBreak
= false;
536 if (!MI
->isSafeToMove(TII
, AA
, store
)) {
537 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
541 // We don't want to sink across a critical edge if we don't dominate the
542 // successor. We could be introducing calculations to new code paths.
543 if (!TryBreak
&& !DT
->dominates(ParentBlock
, SuccToSinkTo
)) {
544 DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
548 // Don't sink instructions into a loop.
549 if (!TryBreak
&& LI
->isLoopHeader(SuccToSinkTo
)) {
550 DEBUG(dbgs() << " *** NOTE: Loop header found\n");
554 // Otherwise we are OK with sinking along a critical edge.
556 DEBUG(dbgs() << "Sinking along critical edge.\n");
558 MachineBasicBlock
*NewSucc
=
559 SplitCriticalEdge(MI
, ParentBlock
, SuccToSinkTo
, BreakPHIEdge
);
561 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
562 "break critical edge\n");
565 DEBUG(dbgs() << " *** Splitting critical edge:"
566 " BB#" << ParentBlock
->getNumber()
567 << " -- BB#" << NewSucc
->getNumber()
568 << " -- BB#" << SuccToSinkTo
->getNumber() << '\n');
569 SuccToSinkTo
= NewSucc
;
571 BreakPHIEdge
= false;
577 // BreakPHIEdge is true if all the uses are in the successor MBB being
578 // sunken into and they are all PHI nodes. In this case, machine-sink must
579 // break the critical edge first.
580 MachineBasicBlock
*NewSucc
= SplitCriticalEdge(MI
, ParentBlock
,
581 SuccToSinkTo
, BreakPHIEdge
);
583 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
584 "break critical edge\n");
588 DEBUG(dbgs() << " *** Splitting critical edge:"
589 " BB#" << ParentBlock
->getNumber()
590 << " -- BB#" << NewSucc
->getNumber()
591 << " -- BB#" << SuccToSinkTo
->getNumber() << '\n');
592 SuccToSinkTo
= NewSucc
;
596 // Determine where to insert into. Skip phi nodes.
597 MachineBasicBlock::iterator InsertPos
= SuccToSinkTo
->begin();
598 while (InsertPos
!= SuccToSinkTo
->end() && InsertPos
->isPHI())
601 // Move the instruction.
602 SuccToSinkTo
->splice(InsertPos
, ParentBlock
, MI
,
603 ++MachineBasicBlock::iterator(MI
));
605 // Conservatively, clear any kill flags, since it's possible that they are no