the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / lib / CodeGen / PHIElimination.cpp
blobaf65f13bf065eb202152145480a6bf8db7480724
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include <algorithm>
35 using namespace llvm;
37 static cl::opt<bool>
38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
39 cl::Hidden, cl::desc("Disable critical edge splitting "
40 "during PHI elimination"));
42 namespace {
43 class PHIElimination : public MachineFunctionPass {
44 MachineRegisterInfo *MRI; // Machine register information
46 public:
47 static char ID; // Pass identification, replacement for typeid
48 PHIElimination() : MachineFunctionPass(ID) {
49 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
52 virtual bool runOnMachineFunction(MachineFunction &Fn);
53 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
55 private:
56 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
57 /// in predecessor basic blocks.
58 ///
59 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
60 void LowerAtomicPHINode(MachineBasicBlock &MBB,
61 MachineBasicBlock::iterator AfterPHIsIt);
63 /// analyzePHINodes - Gather information about the PHI nodes in
64 /// here. In particular, we want to map the number of uses of a virtual
65 /// register which is used in a PHI node. We map that to the BB the
66 /// vreg is coming from. This is used later to determine when the vreg
67 /// is killed in the BB.
68 ///
69 void analyzePHINodes(const MachineFunction& Fn);
71 /// Split critical edges where necessary for good coalescer performance.
72 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
73 LiveVariables &LV, MachineLoopInfo *MLI);
75 typedef std::pair<unsigned, unsigned> BBVRegPair;
76 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
78 VRegPHIUse VRegPHIUseCount;
80 // Defs of PHI sources which are implicit_def.
81 SmallPtrSet<MachineInstr*, 4> ImpDefs;
83 // Map reusable lowered PHI node -> incoming join register.
84 typedef DenseMap<MachineInstr*, unsigned,
85 MachineInstrExpressionTrait> LoweredPHIMap;
86 LoweredPHIMap LoweredPHIs;
90 STATISTIC(NumAtomic, "Number of atomic phis lowered");
91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
92 STATISTIC(NumReused, "Number of reused lowered phis");
94 char PHIElimination::ID = 0;
95 INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
96 "Eliminate PHI nodes for register allocation", false, false)
98 char& llvm::PHIEliminationID = PHIElimination::ID;
100 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addPreserved<LiveVariables>();
102 AU.addPreserved<MachineDominatorTree>();
103 AU.addPreserved<MachineLoopInfo>();
104 MachineFunctionPass::getAnalysisUsage(AU);
107 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
108 MRI = &MF.getRegInfo();
110 bool Changed = false;
112 // Split critical edges to help the coalescer
113 if (!DisableEdgeSplitting) {
114 if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
115 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
116 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
117 Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
121 // Populate VRegPHIUseCount
122 analyzePHINodes(MF);
124 // Eliminate PHI instructions by inserting copies into predecessor blocks.
125 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
126 Changed |= EliminatePHINodes(MF, *I);
128 // Remove dead IMPLICIT_DEF instructions.
129 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
130 E = ImpDefs.end(); I != E; ++I) {
131 MachineInstr *DefMI = *I;
132 unsigned DefReg = DefMI->getOperand(0).getReg();
133 if (MRI->use_nodbg_empty(DefReg))
134 DefMI->eraseFromParent();
137 // Clean up the lowered PHI instructions.
138 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
139 I != E; ++I)
140 MF.DeleteMachineInstr(I->first);
142 LoweredPHIs.clear();
143 ImpDefs.clear();
144 VRegPHIUseCount.clear();
146 return Changed;
149 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
150 /// predecessor basic blocks.
152 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
153 MachineBasicBlock &MBB) {
154 if (MBB.empty() || !MBB.front().isPHI())
155 return false; // Quick exit for basic blocks without PHIs.
157 // Get an iterator to the first instruction after the last PHI node (this may
158 // also be the end of the basic block).
159 MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
161 while (MBB.front().isPHI())
162 LowerAtomicPHINode(MBB, AfterPHIsIt);
164 return true;
167 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
168 /// are implicit_def's.
169 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
170 const MachineRegisterInfo *MRI) {
171 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
172 unsigned SrcReg = MPhi->getOperand(i).getReg();
173 const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
174 if (!DefMI || !DefMI->isImplicitDef())
175 return false;
177 return true;
182 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
183 /// under the assuption that it needs to be lowered in a way that supports
184 /// atomic execution of PHIs. This lowering method is always correct all of the
185 /// time.
187 void PHIElimination::LowerAtomicPHINode(
188 MachineBasicBlock &MBB,
189 MachineBasicBlock::iterator AfterPHIsIt) {
190 ++NumAtomic;
191 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
192 MachineInstr *MPhi = MBB.remove(MBB.begin());
194 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
195 unsigned DestReg = MPhi->getOperand(0).getReg();
196 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
197 bool isDead = MPhi->getOperand(0).isDead();
199 // Create a new register for the incoming PHI arguments.
200 MachineFunction &MF = *MBB.getParent();
201 unsigned IncomingReg = 0;
202 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
204 // Insert a register to register copy at the top of the current block (but
205 // after any remaining phi nodes) which copies the new incoming register
206 // into the phi node destination.
207 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
208 if (isSourceDefinedByImplicitDef(MPhi, MRI))
209 // If all sources of a PHI node are implicit_def, just emit an
210 // implicit_def instead of a copy.
211 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
212 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
213 else {
214 // Can we reuse an earlier PHI node? This only happens for critical edges,
215 // typically those created by tail duplication.
216 unsigned &entry = LoweredPHIs[MPhi];
217 if (entry) {
218 // An identical PHI node was already lowered. Reuse the incoming register.
219 IncomingReg = entry;
220 reusedIncoming = true;
221 ++NumReused;
222 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
223 } else {
224 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
225 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
227 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
228 TII->get(TargetOpcode::COPY), DestReg)
229 .addReg(IncomingReg);
232 // Update live variable information if there is any.
233 LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
234 if (LV) {
235 MachineInstr *PHICopy = prior(AfterPHIsIt);
237 if (IncomingReg) {
238 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
240 // Increment use count of the newly created virtual register.
241 VI.NumUses++;
242 LV->setPHIJoin(IncomingReg);
244 // When we are reusing the incoming register, it may already have been
245 // killed in this block. The old kill will also have been inserted at
246 // AfterPHIsIt, so it appears before the current PHICopy.
247 if (reusedIncoming)
248 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
249 DEBUG(dbgs() << "Remove old kill from " << *OldKill);
250 LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
251 DEBUG(MBB.dump());
254 // Add information to LiveVariables to know that the incoming value is
255 // killed. Note that because the value is defined in several places (once
256 // each for each incoming block), the "def" block and instruction fields
257 // for the VarInfo is not filled in.
258 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
261 // Since we are going to be deleting the PHI node, if it is the last use of
262 // any registers, or if the value itself is dead, we need to move this
263 // information over to the new copy we just inserted.
264 LV->removeVirtualRegistersKilled(MPhi);
266 // If the result is dead, update LV.
267 if (isDead) {
268 LV->addVirtualRegisterDead(DestReg, PHICopy);
269 LV->removeVirtualRegisterDead(DestReg, MPhi);
273 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
274 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
275 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
276 MPhi->getOperand(i).getReg())];
278 // Now loop over all of the incoming arguments, changing them to copy into the
279 // IncomingReg register in the corresponding predecessor basic block.
280 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
281 for (int i = NumSrcs - 1; i >= 0; --i) {
282 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
283 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
285 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
286 "Machine PHI Operands must all be virtual registers!");
288 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
289 // path the PHI.
290 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
292 // If source is defined by an implicit def, there is no need to insert a
293 // copy.
294 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
295 if (DefMI->isImplicitDef()) {
296 ImpDefs.insert(DefMI);
297 continue;
300 // Check to make sure we haven't already emitted the copy for this block.
301 // This can happen because PHI nodes may have multiple entries for the same
302 // basic block.
303 if (!MBBsInsertedInto.insert(&opBlock))
304 continue; // If the copy has already been emitted, we're done.
306 // Find a safe location to insert the copy, this may be the first terminator
307 // in the block (or end()).
308 MachineBasicBlock::iterator InsertPos =
309 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
311 // Insert the copy.
312 if (!reusedIncoming && IncomingReg)
313 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
314 TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
316 // Now update live variable information if we have it. Otherwise we're done
317 if (!LV) continue;
319 // We want to be able to insert a kill of the register if this PHI (aka, the
320 // copy we just inserted) is the last use of the source value. Live
321 // variable analysis conservatively handles this by saying that the value is
322 // live until the end of the block the PHI entry lives in. If the value
323 // really is dead at the PHI copy, there will be no successor blocks which
324 // have the value live-in.
326 // Also check to see if this register is in use by another PHI node which
327 // has not yet been eliminated. If so, it will be killed at an appropriate
328 // point later.
330 // Is it used by any PHI instructions in this block?
331 bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
333 // Okay, if we now know that the value is not live out of the block, we can
334 // add a kill marker in this block saying that it kills the incoming value!
335 if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
336 // In our final twist, we have to decide which instruction kills the
337 // register. In most cases this is the copy, however, the first
338 // terminator instruction at the end of the block may also use the value.
339 // In this case, we should mark *it* as being the killing block, not the
340 // copy.
341 MachineBasicBlock::iterator KillInst;
342 MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
343 if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
344 KillInst = Term;
346 // Check that no other terminators use values.
347 #ifndef NDEBUG
348 for (MachineBasicBlock::iterator TI = llvm::next(Term);
349 TI != opBlock.end(); ++TI) {
350 if (TI->isDebugValue())
351 continue;
352 assert(!TI->readsRegister(SrcReg) &&
353 "Terminator instructions cannot use virtual registers unless"
354 "they are the first terminator in a block!");
356 #endif
357 } else if (reusedIncoming || !IncomingReg) {
358 // We may have to rewind a bit if we didn't insert a copy this time.
359 KillInst = Term;
360 while (KillInst != opBlock.begin()) {
361 --KillInst;
362 if (KillInst->isDebugValue())
363 continue;
364 if (KillInst->readsRegister(SrcReg))
365 break;
367 } else {
368 // We just inserted this copy.
369 KillInst = prior(InsertPos);
371 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
373 // Finally, mark it killed.
374 LV->addVirtualRegisterKilled(SrcReg, KillInst);
376 // This vreg no longer lives all of the way through opBlock.
377 unsigned opBlockNum = opBlock.getNumber();
378 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
382 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
383 if (reusedIncoming || !IncomingReg)
384 MF.DeleteMachineInstr(MPhi);
387 /// analyzePHINodes - Gather information about the PHI nodes in here. In
388 /// particular, we want to map the number of uses of a virtual register which is
389 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
390 /// used later to determine when the vreg is killed in the BB.
392 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
393 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
394 I != E; ++I)
395 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
396 BBI != BBE && BBI->isPHI(); ++BBI)
397 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
398 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
399 BBI->getOperand(i).getReg())];
402 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
403 MachineBasicBlock &MBB,
404 LiveVariables &LV,
405 MachineLoopInfo *MLI) {
406 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
407 return false; // Quick exit for basic blocks without PHIs.
409 bool Changed = false;
410 for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
411 BBI != BBE && BBI->isPHI(); ++BBI) {
412 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
413 unsigned Reg = BBI->getOperand(i).getReg();
414 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
415 // We break edges when registers are live out from the predecessor block
416 // (not considering PHI nodes). If the register is live in to this block
417 // anyway, we would gain nothing from splitting.
418 // Avoid splitting backedges of loops. It would introduce small
419 // out-of-line blocks into the loop which is very bad for code placement.
420 if (PreMBB != &MBB &&
421 !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
422 if (!MLI ||
423 !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
424 MLI->isLoopHeader(&MBB))) {
425 if (PreMBB->SplitCriticalEdge(&MBB, this)) {
426 Changed = true;
427 ++NumCriticalEdgesSplit;
433 return Changed;