1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
39 cl::Hidden
, cl::desc("Disable critical edge splitting "
40 "during PHI elimination"));
43 class PHIElimination
: public MachineFunctionPass
{
44 MachineRegisterInfo
*MRI
; // Machine register information
47 static char ID
; // Pass identification, replacement for typeid
48 PHIElimination() : MachineFunctionPass(ID
) {
49 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
52 virtual bool runOnMachineFunction(MachineFunction
&Fn
);
53 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const;
56 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
57 /// in predecessor basic blocks.
59 bool EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
60 void LowerAtomicPHINode(MachineBasicBlock
&MBB
,
61 MachineBasicBlock::iterator AfterPHIsIt
);
63 /// analyzePHINodes - Gather information about the PHI nodes in
64 /// here. In particular, we want to map the number of uses of a virtual
65 /// register which is used in a PHI node. We map that to the BB the
66 /// vreg is coming from. This is used later to determine when the vreg
67 /// is killed in the BB.
69 void analyzePHINodes(const MachineFunction
& Fn
);
71 /// Split critical edges where necessary for good coalescer performance.
72 bool SplitPHIEdges(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
73 LiveVariables
&LV
, MachineLoopInfo
*MLI
);
75 typedef std::pair
<unsigned, unsigned> BBVRegPair
;
76 typedef DenseMap
<BBVRegPair
, unsigned> VRegPHIUse
;
78 VRegPHIUse VRegPHIUseCount
;
80 // Defs of PHI sources which are implicit_def.
81 SmallPtrSet
<MachineInstr
*, 4> ImpDefs
;
83 // Map reusable lowered PHI node -> incoming join register.
84 typedef DenseMap
<MachineInstr
*, unsigned,
85 MachineInstrExpressionTrait
> LoweredPHIMap
;
86 LoweredPHIMap LoweredPHIs
;
90 STATISTIC(NumAtomic
, "Number of atomic phis lowered");
91 STATISTIC(NumCriticalEdgesSplit
, "Number of critical edges split");
92 STATISTIC(NumReused
, "Number of reused lowered phis");
94 char PHIElimination::ID
= 0;
95 INITIALIZE_PASS(PHIElimination
, "phi-node-elimination",
96 "Eliminate PHI nodes for register allocation", false, false)
98 char& llvm::PHIEliminationID
= PHIElimination::ID
;
100 void PHIElimination::getAnalysisUsage(AnalysisUsage
&AU
) const {
101 AU
.addPreserved
<LiveVariables
>();
102 AU
.addPreserved
<MachineDominatorTree
>();
103 AU
.addPreserved
<MachineLoopInfo
>();
104 MachineFunctionPass::getAnalysisUsage(AU
);
107 bool PHIElimination::runOnMachineFunction(MachineFunction
&MF
) {
108 MRI
= &MF
.getRegInfo();
110 bool Changed
= false;
112 // Split critical edges to help the coalescer
113 if (!DisableEdgeSplitting
) {
114 if (LiveVariables
*LV
= getAnalysisIfAvailable
<LiveVariables
>()) {
115 MachineLoopInfo
*MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
116 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
)
117 Changed
|= SplitPHIEdges(MF
, *I
, *LV
, MLI
);
121 // Populate VRegPHIUseCount
124 // Eliminate PHI instructions by inserting copies into predecessor blocks.
125 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
)
126 Changed
|= EliminatePHINodes(MF
, *I
);
128 // Remove dead IMPLICIT_DEF instructions.
129 for (SmallPtrSet
<MachineInstr
*, 4>::iterator I
= ImpDefs
.begin(),
130 E
= ImpDefs
.end(); I
!= E
; ++I
) {
131 MachineInstr
*DefMI
= *I
;
132 unsigned DefReg
= DefMI
->getOperand(0).getReg();
133 if (MRI
->use_nodbg_empty(DefReg
))
134 DefMI
->eraseFromParent();
137 // Clean up the lowered PHI instructions.
138 for (LoweredPHIMap::iterator I
= LoweredPHIs
.begin(), E
= LoweredPHIs
.end();
140 MF
.DeleteMachineInstr(I
->first
);
144 VRegPHIUseCount
.clear();
149 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
150 /// predecessor basic blocks.
152 bool PHIElimination::EliminatePHINodes(MachineFunction
&MF
,
153 MachineBasicBlock
&MBB
) {
154 if (MBB
.empty() || !MBB
.front().isPHI())
155 return false; // Quick exit for basic blocks without PHIs.
157 // Get an iterator to the first instruction after the last PHI node (this may
158 // also be the end of the basic block).
159 MachineBasicBlock::iterator AfterPHIsIt
= MBB
.SkipPHIsAndLabels(MBB
.begin());
161 while (MBB
.front().isPHI())
162 LowerAtomicPHINode(MBB
, AfterPHIsIt
);
167 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
168 /// are implicit_def's.
169 static bool isSourceDefinedByImplicitDef(const MachineInstr
*MPhi
,
170 const MachineRegisterInfo
*MRI
) {
171 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2) {
172 unsigned SrcReg
= MPhi
->getOperand(i
).getReg();
173 const MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
174 if (!DefMI
|| !DefMI
->isImplicitDef())
182 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
183 /// under the assuption that it needs to be lowered in a way that supports
184 /// atomic execution of PHIs. This lowering method is always correct all of the
187 void PHIElimination::LowerAtomicPHINode(
188 MachineBasicBlock
&MBB
,
189 MachineBasicBlock::iterator AfterPHIsIt
) {
191 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
192 MachineInstr
*MPhi
= MBB
.remove(MBB
.begin());
194 unsigned NumSrcs
= (MPhi
->getNumOperands() - 1) / 2;
195 unsigned DestReg
= MPhi
->getOperand(0).getReg();
196 assert(MPhi
->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
197 bool isDead
= MPhi
->getOperand(0).isDead();
199 // Create a new register for the incoming PHI arguments.
200 MachineFunction
&MF
= *MBB
.getParent();
201 unsigned IncomingReg
= 0;
202 bool reusedIncoming
= false; // Is IncomingReg reused from an earlier PHI?
204 // Insert a register to register copy at the top of the current block (but
205 // after any remaining phi nodes) which copies the new incoming register
206 // into the phi node destination.
207 const TargetInstrInfo
*TII
= MF
.getTarget().getInstrInfo();
208 if (isSourceDefinedByImplicitDef(MPhi
, MRI
))
209 // If all sources of a PHI node are implicit_def, just emit an
210 // implicit_def instead of a copy.
211 BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
212 TII
->get(TargetOpcode::IMPLICIT_DEF
), DestReg
);
214 // Can we reuse an earlier PHI node? This only happens for critical edges,
215 // typically those created by tail duplication.
216 unsigned &entry
= LoweredPHIs
[MPhi
];
218 // An identical PHI node was already lowered. Reuse the incoming register.
220 reusedIncoming
= true;
222 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg
) << " for " << *MPhi
);
224 const TargetRegisterClass
*RC
= MF
.getRegInfo().getRegClass(DestReg
);
225 entry
= IncomingReg
= MF
.getRegInfo().createVirtualRegister(RC
);
227 BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
228 TII
->get(TargetOpcode::COPY
), DestReg
)
229 .addReg(IncomingReg
);
232 // Update live variable information if there is any.
233 LiveVariables
*LV
= getAnalysisIfAvailable
<LiveVariables
>();
235 MachineInstr
*PHICopy
= prior(AfterPHIsIt
);
238 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(IncomingReg
);
240 // Increment use count of the newly created virtual register.
242 LV
->setPHIJoin(IncomingReg
);
244 // When we are reusing the incoming register, it may already have been
245 // killed in this block. The old kill will also have been inserted at
246 // AfterPHIsIt, so it appears before the current PHICopy.
248 if (MachineInstr
*OldKill
= VI
.findKill(&MBB
)) {
249 DEBUG(dbgs() << "Remove old kill from " << *OldKill
);
250 LV
->removeVirtualRegisterKilled(IncomingReg
, OldKill
);
254 // Add information to LiveVariables to know that the incoming value is
255 // killed. Note that because the value is defined in several places (once
256 // each for each incoming block), the "def" block and instruction fields
257 // for the VarInfo is not filled in.
258 LV
->addVirtualRegisterKilled(IncomingReg
, PHICopy
);
261 // Since we are going to be deleting the PHI node, if it is the last use of
262 // any registers, or if the value itself is dead, we need to move this
263 // information over to the new copy we just inserted.
264 LV
->removeVirtualRegistersKilled(MPhi
);
266 // If the result is dead, update LV.
268 LV
->addVirtualRegisterDead(DestReg
, PHICopy
);
269 LV
->removeVirtualRegisterDead(DestReg
, MPhi
);
273 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
274 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2)
275 --VRegPHIUseCount
[BBVRegPair(MPhi
->getOperand(i
+1).getMBB()->getNumber(),
276 MPhi
->getOperand(i
).getReg())];
278 // Now loop over all of the incoming arguments, changing them to copy into the
279 // IncomingReg register in the corresponding predecessor basic block.
280 SmallPtrSet
<MachineBasicBlock
*, 8> MBBsInsertedInto
;
281 for (int i
= NumSrcs
- 1; i
>= 0; --i
) {
282 unsigned SrcReg
= MPhi
->getOperand(i
*2+1).getReg();
283 unsigned SrcSubReg
= MPhi
->getOperand(i
*2+1).getSubReg();
285 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
286 "Machine PHI Operands must all be virtual registers!");
288 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
290 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
*2+2).getMBB();
292 // If source is defined by an implicit def, there is no need to insert a
294 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
295 if (DefMI
->isImplicitDef()) {
296 ImpDefs
.insert(DefMI
);
300 // Check to make sure we haven't already emitted the copy for this block.
301 // This can happen because PHI nodes may have multiple entries for the same
303 if (!MBBsInsertedInto
.insert(&opBlock
))
304 continue; // If the copy has already been emitted, we're done.
306 // Find a safe location to insert the copy, this may be the first terminator
307 // in the block (or end()).
308 MachineBasicBlock::iterator InsertPos
=
309 findPHICopyInsertPoint(&opBlock
, &MBB
, SrcReg
);
312 if (!reusedIncoming
&& IncomingReg
)
313 BuildMI(opBlock
, InsertPos
, MPhi
->getDebugLoc(),
314 TII
->get(TargetOpcode::COPY
), IncomingReg
).addReg(SrcReg
, 0, SrcSubReg
);
316 // Now update live variable information if we have it. Otherwise we're done
319 // We want to be able to insert a kill of the register if this PHI (aka, the
320 // copy we just inserted) is the last use of the source value. Live
321 // variable analysis conservatively handles this by saying that the value is
322 // live until the end of the block the PHI entry lives in. If the value
323 // really is dead at the PHI copy, there will be no successor blocks which
324 // have the value live-in.
326 // Also check to see if this register is in use by another PHI node which
327 // has not yet been eliminated. If so, it will be killed at an appropriate
330 // Is it used by any PHI instructions in this block?
331 bool ValueIsUsed
= VRegPHIUseCount
[BBVRegPair(opBlock
.getNumber(), SrcReg
)];
333 // Okay, if we now know that the value is not live out of the block, we can
334 // add a kill marker in this block saying that it kills the incoming value!
335 if (!ValueIsUsed
&& !LV
->isLiveOut(SrcReg
, opBlock
)) {
336 // In our final twist, we have to decide which instruction kills the
337 // register. In most cases this is the copy, however, the first
338 // terminator instruction at the end of the block may also use the value.
339 // In this case, we should mark *it* as being the killing block, not the
341 MachineBasicBlock::iterator KillInst
;
342 MachineBasicBlock::iterator Term
= opBlock
.getFirstTerminator();
343 if (Term
!= opBlock
.end() && Term
->readsRegister(SrcReg
)) {
346 // Check that no other terminators use values.
348 for (MachineBasicBlock::iterator TI
= llvm::next(Term
);
349 TI
!= opBlock
.end(); ++TI
) {
350 if (TI
->isDebugValue())
352 assert(!TI
->readsRegister(SrcReg
) &&
353 "Terminator instructions cannot use virtual registers unless"
354 "they are the first terminator in a block!");
357 } else if (reusedIncoming
|| !IncomingReg
) {
358 // We may have to rewind a bit if we didn't insert a copy this time.
360 while (KillInst
!= opBlock
.begin()) {
362 if (KillInst
->isDebugValue())
364 if (KillInst
->readsRegister(SrcReg
))
368 // We just inserted this copy.
369 KillInst
= prior(InsertPos
);
371 assert(KillInst
->readsRegister(SrcReg
) && "Cannot find kill instruction");
373 // Finally, mark it killed.
374 LV
->addVirtualRegisterKilled(SrcReg
, KillInst
);
376 // This vreg no longer lives all of the way through opBlock.
377 unsigned opBlockNum
= opBlock
.getNumber();
378 LV
->getVarInfo(SrcReg
).AliveBlocks
.reset(opBlockNum
);
382 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
383 if (reusedIncoming
|| !IncomingReg
)
384 MF
.DeleteMachineInstr(MPhi
);
387 /// analyzePHINodes - Gather information about the PHI nodes in here. In
388 /// particular, we want to map the number of uses of a virtual register which is
389 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
390 /// used later to determine when the vreg is killed in the BB.
392 void PHIElimination::analyzePHINodes(const MachineFunction
& MF
) {
393 for (MachineFunction::const_iterator I
= MF
.begin(), E
= MF
.end();
395 for (MachineBasicBlock::const_iterator BBI
= I
->begin(), BBE
= I
->end();
396 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
)
397 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2)
398 ++VRegPHIUseCount
[BBVRegPair(BBI
->getOperand(i
+1).getMBB()->getNumber(),
399 BBI
->getOperand(i
).getReg())];
402 bool PHIElimination::SplitPHIEdges(MachineFunction
&MF
,
403 MachineBasicBlock
&MBB
,
405 MachineLoopInfo
*MLI
) {
406 if (MBB
.empty() || !MBB
.front().isPHI() || MBB
.isLandingPad())
407 return false; // Quick exit for basic blocks without PHIs.
409 bool Changed
= false;
410 for (MachineBasicBlock::const_iterator BBI
= MBB
.begin(), BBE
= MBB
.end();
411 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
412 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2) {
413 unsigned Reg
= BBI
->getOperand(i
).getReg();
414 MachineBasicBlock
*PreMBB
= BBI
->getOperand(i
+1).getMBB();
415 // We break edges when registers are live out from the predecessor block
416 // (not considering PHI nodes). If the register is live in to this block
417 // anyway, we would gain nothing from splitting.
418 // Avoid splitting backedges of loops. It would introduce small
419 // out-of-line blocks into the loop which is very bad for code placement.
420 if (PreMBB
!= &MBB
&&
421 !LV
.isLiveIn(Reg
, MBB
) && LV
.isLiveOut(Reg
, *PreMBB
)) {
423 !(MLI
->getLoopFor(PreMBB
) == MLI
->getLoopFor(&MBB
) &&
424 MLI
->isLoopHeader(&MBB
))) {
425 if (PreMBB
->SplitCriticalEdge(&MBB
, this)) {
427 ++NumCriticalEdgesSplit
;