1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "post-RA-sched"
22 #include "AntiDepBreaker.h"
23 #include "AggressiveAntiDepBreaker.h"
24 #include "CriticalAntiDepBreaker.h"
25 #include "RegisterClassInfo.h"
26 #include "ScheduleDAGInstrs.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
29 #include "llvm/CodeGen/SchedulerRegistry.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Target/TargetLowering.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/ADT/BitVector.h"
47 #include "llvm/ADT/Statistic.h"
51 STATISTIC(NumNoops
, "Number of noops inserted");
52 STATISTIC(NumStalls
, "Number of pipeline stalls");
53 STATISTIC(NumFixedAnti
, "Number of fixed anti-dependencies");
55 // Post-RA scheduling is enabled with
56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
57 // override the target.
59 EnablePostRAScheduler("post-RA-scheduler",
60 cl::desc("Enable scheduling after register allocation"),
61 cl::init(false), cl::Hidden
);
62 static cl::opt
<std::string
>
63 EnableAntiDepBreaking("break-anti-dependencies",
64 cl::desc("Break post-RA scheduling anti-dependencies: "
65 "\"critical\", \"all\", or \"none\""),
66 cl::init("none"), cl::Hidden
);
68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
70 DebugDiv("postra-sched-debugdiv",
71 cl::desc("Debug control MBBs that are scheduled"),
72 cl::init(0), cl::Hidden
);
74 DebugMod("postra-sched-debugmod",
75 cl::desc("Debug control MBBs that are scheduled"),
76 cl::init(0), cl::Hidden
);
78 AntiDepBreaker::~AntiDepBreaker() { }
81 class PostRAScheduler
: public MachineFunctionPass
{
83 const TargetInstrInfo
*TII
;
84 RegisterClassInfo RegClassInfo
;
85 CodeGenOpt::Level OptLevel
;
89 PostRAScheduler(CodeGenOpt::Level ol
) :
90 MachineFunctionPass(ID
), OptLevel(ol
) {}
92 void getAnalysisUsage(AnalysisUsage
&AU
) const {
94 AU
.addRequired
<AliasAnalysis
>();
95 AU
.addRequired
<MachineDominatorTree
>();
96 AU
.addPreserved
<MachineDominatorTree
>();
97 AU
.addRequired
<MachineLoopInfo
>();
98 AU
.addPreserved
<MachineLoopInfo
>();
99 MachineFunctionPass::getAnalysisUsage(AU
);
102 const char *getPassName() const {
103 return "Post RA top-down list latency scheduler";
106 bool runOnMachineFunction(MachineFunction
&Fn
);
108 char PostRAScheduler::ID
= 0;
110 class SchedulePostRATDList
: public ScheduleDAGInstrs
{
111 /// AvailableQueue - The priority queue to use for the available SUnits.
113 LatencyPriorityQueue AvailableQueue
;
115 /// PendingQueue - This contains all of the instructions whose operands have
116 /// been issued, but their results are not ready yet (due to the latency of
117 /// the operation). Once the operands becomes available, the instruction is
118 /// added to the AvailableQueue.
119 std::vector
<SUnit
*> PendingQueue
;
121 /// Topo - A topological ordering for SUnits.
122 ScheduleDAGTopologicalSort Topo
;
124 /// HazardRec - The hazard recognizer to use.
125 ScheduleHazardRecognizer
*HazardRec
;
127 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
128 AntiDepBreaker
*AntiDepBreak
;
130 /// AA - AliasAnalysis for making memory reference queries.
133 /// KillIndices - The index of the most recent kill (proceding bottom-up),
134 /// or ~0u if the register is not live.
135 std::vector
<unsigned> KillIndices
;
138 SchedulePostRATDList(
139 MachineFunction
&MF
, MachineLoopInfo
&MLI
, MachineDominatorTree
&MDT
,
140 AliasAnalysis
*AA
, const RegisterClassInfo
&,
141 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode
,
142 SmallVectorImpl
<TargetRegisterClass
*> &CriticalPathRCs
);
144 ~SchedulePostRATDList();
146 /// StartBlock - Initialize register live-range state for scheduling in
149 void StartBlock(MachineBasicBlock
*BB
);
151 /// Schedule - Schedule the instruction range using list scheduling.
155 /// Observe - Update liveness information to account for the current
156 /// instruction, which will not be scheduled.
158 void Observe(MachineInstr
*MI
, unsigned Count
);
160 /// FinishBlock - Clean up register live-range state.
164 /// FixupKills - Fix register kill flags that have been made
165 /// invalid due to scheduling
167 void FixupKills(MachineBasicBlock
*MBB
);
170 void ReleaseSucc(SUnit
*SU
, SDep
*SuccEdge
);
171 void ReleaseSuccessors(SUnit
*SU
);
172 void ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
);
173 void ListScheduleTopDown();
174 void StartBlockForKills(MachineBasicBlock
*BB
);
176 // ToggleKillFlag - Toggle a register operand kill flag. Other
177 // adjustments may be made to the instruction if necessary. Return
178 // true if the operand has been deleted, false if not.
179 bool ToggleKillFlag(MachineInstr
*MI
, MachineOperand
&MO
);
183 SchedulePostRATDList::SchedulePostRATDList(
184 MachineFunction
&MF
, MachineLoopInfo
&MLI
, MachineDominatorTree
&MDT
,
185 AliasAnalysis
*AA
, const RegisterClassInfo
&RCI
,
186 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode
,
187 SmallVectorImpl
<TargetRegisterClass
*> &CriticalPathRCs
)
188 : ScheduleDAGInstrs(MF
, MLI
, MDT
), Topo(SUnits
), AA(AA
),
189 KillIndices(TRI
->getNumRegs())
191 const TargetMachine
&TM
= MF
.getTarget();
192 const InstrItineraryData
*InstrItins
= TM
.getInstrItineraryData();
194 TM
.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins
, this);
196 ((AntiDepMode
== TargetSubtargetInfo::ANTIDEP_ALL
) ?
197 (AntiDepBreaker
*)new AggressiveAntiDepBreaker(MF
, RCI
, CriticalPathRCs
) :
198 ((AntiDepMode
== TargetSubtargetInfo::ANTIDEP_CRITICAL
) ?
199 (AntiDepBreaker
*)new CriticalAntiDepBreaker(MF
, RCI
) : NULL
));
202 SchedulePostRATDList::~SchedulePostRATDList() {
207 bool PostRAScheduler::runOnMachineFunction(MachineFunction
&Fn
) {
208 TII
= Fn
.getTarget().getInstrInfo();
209 MachineLoopInfo
&MLI
= getAnalysis
<MachineLoopInfo
>();
210 MachineDominatorTree
&MDT
= getAnalysis
<MachineDominatorTree
>();
211 AliasAnalysis
*AA
= &getAnalysis
<AliasAnalysis
>();
212 RegClassInfo
.runOnMachineFunction(Fn
);
214 // Check for explicit enable/disable of post-ra scheduling.
215 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode
= TargetSubtargetInfo::ANTIDEP_NONE
;
216 SmallVector
<TargetRegisterClass
*, 4> CriticalPathRCs
;
217 if (EnablePostRAScheduler
.getPosition() > 0) {
218 if (!EnablePostRAScheduler
)
221 // Check that post-RA scheduling is enabled for this target.
222 // This may upgrade the AntiDepMode.
223 const TargetSubtargetInfo
&ST
= Fn
.getTarget().getSubtarget
<TargetSubtargetInfo
>();
224 if (!ST
.enablePostRAScheduler(OptLevel
, AntiDepMode
, CriticalPathRCs
))
228 // Check for antidep breaking override...
229 if (EnableAntiDepBreaking
.getPosition() > 0) {
230 AntiDepMode
= (EnableAntiDepBreaking
== "all")
231 ? TargetSubtargetInfo::ANTIDEP_ALL
232 : ((EnableAntiDepBreaking
== "critical")
233 ? TargetSubtargetInfo::ANTIDEP_CRITICAL
234 : TargetSubtargetInfo::ANTIDEP_NONE
);
237 DEBUG(dbgs() << "PostRAScheduler\n");
239 SchedulePostRATDList
Scheduler(Fn
, MLI
, MDT
, AA
, RegClassInfo
, AntiDepMode
,
242 // Loop over all of the basic blocks
243 for (MachineFunction::iterator MBB
= Fn
.begin(), MBBe
= Fn
.end();
244 MBB
!= MBBe
; ++MBB
) {
246 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
248 static int bbcnt
= 0;
249 if (bbcnt
++ % DebugDiv
!= DebugMod
)
251 dbgs() << "*** DEBUG scheduling " << Fn
.getFunction()->getNameStr() <<
252 ":BB#" << MBB
->getNumber() << " ***\n";
256 // Initialize register live-range state for scheduling in this block.
257 Scheduler
.StartBlock(MBB
);
259 // Schedule each sequence of instructions not interrupted by a label
260 // or anything else that effectively needs to shut down scheduling.
261 MachineBasicBlock::iterator Current
= MBB
->end();
262 unsigned Count
= MBB
->size(), CurrentCount
= Count
;
263 for (MachineBasicBlock::iterator I
= Current
; I
!= MBB
->begin(); ) {
264 MachineInstr
*MI
= llvm::prior(I
);
265 if (TII
->isSchedulingBoundary(MI
, MBB
, Fn
)) {
266 Scheduler
.Run(MBB
, I
, Current
, CurrentCount
);
267 Scheduler
.EmitSchedule();
269 CurrentCount
= Count
- 1;
270 Scheduler
.Observe(MI
, CurrentCount
);
275 assert(Count
== 0 && "Instruction count mismatch!");
276 assert((MBB
->begin() == Current
|| CurrentCount
!= 0) &&
277 "Instruction count mismatch!");
278 Scheduler
.Run(MBB
, MBB
->begin(), Current
, CurrentCount
);
279 Scheduler
.EmitSchedule();
281 // Clean up register live-range state.
282 Scheduler
.FinishBlock();
284 // Update register kills
285 Scheduler
.FixupKills(MBB
);
291 /// StartBlock - Initialize register live-range state for scheduling in
294 void SchedulePostRATDList::StartBlock(MachineBasicBlock
*BB
) {
295 // Call the superclass.
296 ScheduleDAGInstrs::StartBlock(BB
);
298 // Reset the hazard recognizer and anti-dep breaker.
300 if (AntiDepBreak
!= NULL
)
301 AntiDepBreak
->StartBlock(BB
);
304 /// Schedule - Schedule the instruction range using list scheduling.
306 void SchedulePostRATDList::Schedule() {
307 // Build the scheduling graph.
310 if (AntiDepBreak
!= NULL
) {
312 AntiDepBreak
->BreakAntiDependencies(SUnits
, Begin
, InsertPos
,
313 InsertPosIndex
, DbgValues
);
316 // We made changes. Update the dependency graph.
317 // Theoretically we could update the graph in place:
318 // When a live range is changed to use a different register, remove
319 // the def's anti-dependence *and* output-dependence edges due to
320 // that register, and add new anti-dependence and output-dependence
321 // edges based on the next live range of the register.
328 NumFixedAnti
+= Broken
;
332 DEBUG(dbgs() << "********** List Scheduling **********\n");
333 DEBUG(for (unsigned su
= 0, e
= SUnits
.size(); su
!= e
; ++su
)
334 SUnits
[su
].dumpAll(this));
336 AvailableQueue
.initNodes(SUnits
);
337 ListScheduleTopDown();
338 AvailableQueue
.releaseState();
341 /// Observe - Update liveness information to account for the current
342 /// instruction, which will not be scheduled.
344 void SchedulePostRATDList::Observe(MachineInstr
*MI
, unsigned Count
) {
345 if (AntiDepBreak
!= NULL
)
346 AntiDepBreak
->Observe(MI
, Count
, InsertPosIndex
);
349 /// FinishBlock - Clean up register live-range state.
351 void SchedulePostRATDList::FinishBlock() {
352 if (AntiDepBreak
!= NULL
)
353 AntiDepBreak
->FinishBlock();
355 // Call the superclass.
356 ScheduleDAGInstrs::FinishBlock();
359 /// StartBlockForKills - Initialize register live-range state for updating kills
361 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock
*BB
) {
362 // Initialize the indices to indicate that no registers are live.
363 for (unsigned i
= 0; i
< TRI
->getNumRegs(); ++i
)
364 KillIndices
[i
] = ~0u;
366 // Determine the live-out physregs for this block.
367 if (!BB
->empty() && BB
->back().getDesc().isReturn()) {
368 // In a return block, examine the function live-out regs.
369 for (MachineRegisterInfo::liveout_iterator I
= MRI
.liveout_begin(),
370 E
= MRI
.liveout_end(); I
!= E
; ++I
) {
372 KillIndices
[Reg
] = BB
->size();
373 // Repeat, for all subregs.
374 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
376 KillIndices
[*Subreg
] = BB
->size();
381 // In a non-return block, examine the live-in regs of all successors.
382 for (MachineBasicBlock::succ_iterator SI
= BB
->succ_begin(),
383 SE
= BB
->succ_end(); SI
!= SE
; ++SI
) {
384 for (MachineBasicBlock::livein_iterator I
= (*SI
)->livein_begin(),
385 E
= (*SI
)->livein_end(); I
!= E
; ++I
) {
387 KillIndices
[Reg
] = BB
->size();
388 // Repeat, for all subregs.
389 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
391 KillIndices
[*Subreg
] = BB
->size();
398 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr
*MI
,
399 MachineOperand
&MO
) {
400 // Setting kill flag...
406 // If MO itself is live, clear the kill flag...
407 if (KillIndices
[MO
.getReg()] != ~0u) {
412 // If any subreg of MO is live, then create an imp-def for that
413 // subreg and keep MO marked as killed.
416 const unsigned SuperReg
= MO
.getReg();
417 for (const unsigned *Subreg
= TRI
->getSubRegisters(SuperReg
);
419 if (KillIndices
[*Subreg
] != ~0u) {
420 MI
->addOperand(MachineOperand::CreateReg(*Subreg
,
434 /// FixupKills - Fix the register kill flags, they may have been made
435 /// incorrect by instruction reordering.
437 void SchedulePostRATDList::FixupKills(MachineBasicBlock
*MBB
) {
438 DEBUG(dbgs() << "Fixup kills for BB#" << MBB
->getNumber() << '\n');
440 std::set
<unsigned> killedRegs
;
441 BitVector ReservedRegs
= TRI
->getReservedRegs(MF
);
443 StartBlockForKills(MBB
);
445 // Examine block from end to start...
446 unsigned Count
= MBB
->size();
447 for (MachineBasicBlock::iterator I
= MBB
->end(), E
= MBB
->begin();
449 MachineInstr
*MI
= --I
;
450 if (MI
->isDebugValue())
453 // Update liveness. Registers that are defed but not used in this
454 // instruction are now dead. Mark register and all subregs as they
455 // are completely defined.
456 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
457 MachineOperand
&MO
= MI
->getOperand(i
);
458 if (!MO
.isReg()) continue;
459 unsigned Reg
= MO
.getReg();
460 if (Reg
== 0) continue;
461 if (!MO
.isDef()) continue;
462 // Ignore two-addr defs.
463 if (MI
->isRegTiedToUseOperand(i
)) continue;
465 KillIndices
[Reg
] = ~0u;
467 // Repeat for all subregs.
468 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
470 KillIndices
[*Subreg
] = ~0u;
474 // Examine all used registers and set/clear kill flag. When a
475 // register is used multiple times we only set the kill flag on
478 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
479 MachineOperand
&MO
= MI
->getOperand(i
);
480 if (!MO
.isReg() || !MO
.isUse()) continue;
481 unsigned Reg
= MO
.getReg();
482 if ((Reg
== 0) || ReservedRegs
.test(Reg
)) continue;
485 if (killedRegs
.find(Reg
) == killedRegs
.end()) {
487 // A register is not killed if any subregs are live...
488 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
490 if (KillIndices
[*Subreg
] != ~0u) {
496 // If subreg is not live, then register is killed if it became
497 // live in this instruction
499 kill
= (KillIndices
[Reg
] == ~0u);
502 if (MO
.isKill() != kill
) {
503 DEBUG(dbgs() << "Fixing " << MO
<< " in ");
504 // Warning: ToggleKillFlag may invalidate MO.
505 ToggleKillFlag(MI
, MO
);
509 killedRegs
.insert(Reg
);
512 // Mark any used register (that is not using undef) and subregs as
514 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
515 MachineOperand
&MO
= MI
->getOperand(i
);
516 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef()) continue;
517 unsigned Reg
= MO
.getReg();
518 if ((Reg
== 0) || ReservedRegs
.test(Reg
)) continue;
520 KillIndices
[Reg
] = Count
;
522 for (const unsigned *Subreg
= TRI
->getSubRegisters(Reg
);
524 KillIndices
[*Subreg
] = Count
;
530 //===----------------------------------------------------------------------===//
531 // Top-Down Scheduling
532 //===----------------------------------------------------------------------===//
534 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
535 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
536 void SchedulePostRATDList::ReleaseSucc(SUnit
*SU
, SDep
*SuccEdge
) {
537 SUnit
*SuccSU
= SuccEdge
->getSUnit();
540 if (SuccSU
->NumPredsLeft
== 0) {
541 dbgs() << "*** Scheduling failed! ***\n";
543 dbgs() << " has been released too many times!\n";
547 --SuccSU
->NumPredsLeft
;
549 // Standard scheduler algorithms will recompute the depth of the successor
551 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
553 // However, we lazily compute node depth instead. Note that
554 // ScheduleNodeTopDown has already updated the depth of this node which causes
555 // all descendents to be marked dirty. Setting the successor depth explicitly
556 // here would cause depth to be recomputed for all its ancestors. If the
557 // successor is not yet ready (because of a transitively redundant edge) then
558 // this causes depth computation to be quadratic in the size of the DAG.
560 // If all the node's predecessors are scheduled, this node is ready
561 // to be scheduled. Ignore the special ExitSU node.
562 if (SuccSU
->NumPredsLeft
== 0 && SuccSU
!= &ExitSU
)
563 PendingQueue
.push_back(SuccSU
);
566 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
567 void SchedulePostRATDList::ReleaseSuccessors(SUnit
*SU
) {
568 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
570 ReleaseSucc(SU
, &*I
);
574 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
575 /// count of its successors. If a successor pending count is zero, add it to
576 /// the Available queue.
577 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
) {
578 DEBUG(dbgs() << "*** Scheduling [" << CurCycle
<< "]: ");
579 DEBUG(SU
->dump(this));
581 Sequence
.push_back(SU
);
582 assert(CurCycle
>= SU
->getDepth() &&
583 "Node scheduled above its depth!");
584 SU
->setDepthToAtLeast(CurCycle
);
586 ReleaseSuccessors(SU
);
587 SU
->isScheduled
= true;
588 AvailableQueue
.ScheduledNode(SU
);
591 /// ListScheduleTopDown - The main loop of list scheduling for top-down
593 void SchedulePostRATDList::ListScheduleTopDown() {
594 unsigned CurCycle
= 0;
596 // We're scheduling top-down but we're visiting the regions in
597 // bottom-up order, so we don't know the hazards at the start of a
598 // region. So assume no hazards (this should usually be ok as most
599 // blocks are a single region).
602 // Release any successors of the special Entry node.
603 ReleaseSuccessors(&EntrySU
);
605 // Add all leaves to Available queue.
606 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
607 // It is available if it has no predecessors.
608 bool available
= SUnits
[i
].Preds
.empty();
610 AvailableQueue
.push(&SUnits
[i
]);
611 SUnits
[i
].isAvailable
= true;
615 // In any cycle where we can't schedule any instructions, we must
616 // stall or emit a noop, depending on the target.
617 bool CycleHasInsts
= false;
619 // While Available queue is not empty, grab the node with the highest
620 // priority. If it is not ready put it back. Schedule the node.
621 std::vector
<SUnit
*> NotReady
;
622 Sequence
.reserve(SUnits
.size());
623 while (!AvailableQueue
.empty() || !PendingQueue
.empty()) {
624 // Check to see if any of the pending instructions are ready to issue. If
625 // so, add them to the available queue.
626 unsigned MinDepth
= ~0u;
627 for (unsigned i
= 0, e
= PendingQueue
.size(); i
!= e
; ++i
) {
628 if (PendingQueue
[i
]->getDepth() <= CurCycle
) {
629 AvailableQueue
.push(PendingQueue
[i
]);
630 PendingQueue
[i
]->isAvailable
= true;
631 PendingQueue
[i
] = PendingQueue
.back();
632 PendingQueue
.pop_back();
634 } else if (PendingQueue
[i
]->getDepth() < MinDepth
)
635 MinDepth
= PendingQueue
[i
]->getDepth();
638 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue
.dump(this));
640 SUnit
*FoundSUnit
= 0;
641 bool HasNoopHazards
= false;
642 while (!AvailableQueue
.empty()) {
643 SUnit
*CurSUnit
= AvailableQueue
.pop();
645 ScheduleHazardRecognizer::HazardType HT
=
646 HazardRec
->getHazardType(CurSUnit
, 0/*no stalls*/);
647 if (HT
== ScheduleHazardRecognizer::NoHazard
) {
648 FoundSUnit
= CurSUnit
;
652 // Remember if this is a noop hazard.
653 HasNoopHazards
|= HT
== ScheduleHazardRecognizer::NoopHazard
;
655 NotReady
.push_back(CurSUnit
);
658 // Add the nodes that aren't ready back onto the available list.
659 if (!NotReady
.empty()) {
660 AvailableQueue
.push_all(NotReady
);
664 // If we found a node to schedule...
666 // ... schedule the node...
667 ScheduleNodeTopDown(FoundSUnit
, CurCycle
);
668 HazardRec
->EmitInstruction(FoundSUnit
);
669 CycleHasInsts
= true;
670 if (HazardRec
->atIssueLimit()) {
671 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
<< '\n');
672 HazardRec
->AdvanceCycle();
674 CycleHasInsts
= false;
678 DEBUG(dbgs() << "*** Finished cycle " << CurCycle
<< '\n');
679 HazardRec
->AdvanceCycle();
680 } else if (!HasNoopHazards
) {
681 // Otherwise, we have a pipeline stall, but no other problem,
682 // just advance the current cycle and try again.
683 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle
<< '\n');
684 HazardRec
->AdvanceCycle();
687 // Otherwise, we have no instructions to issue and we have instructions
688 // that will fault if we don't do this right. This is the case for
689 // processors without pipeline interlocks and other cases.
690 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle
<< '\n');
691 HazardRec
->EmitNoop();
692 Sequence
.push_back(0); // NULL here means noop
697 CycleHasInsts
= false;
702 VerifySchedule(/*isBottomUp=*/false);
706 //===----------------------------------------------------------------------===//
707 // Public Constructor Functions
708 //===----------------------------------------------------------------------===//
710 FunctionPass
*llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel
) {
711 return new PostRAScheduler(OptLevel
);