1 //===-- llvm/CodeGen/VirtRegMap.h - Virtual Register Map -*- C++ -*--------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a virtual register map. This maps virtual registers to
11 // physical registers and virtual registers to stack slots. It is created and
12 // updated by a register allocator and then used by a machine code rewriter that
13 // adds spill code and rewrites virtual into physical register references.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_CODEGEN_VIRTREGMAP_H
18 #define LLVM_CODEGEN_VIRTREGMAP_H
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
33 class MachineFunction
;
34 class MachineRegisterInfo
;
35 class TargetInstrInfo
;
36 class TargetRegisterInfo
;
40 class VirtRegMap
: public MachineFunctionPass
{
44 NO_STACK_SLOT
= (1L << 30)-1,
45 MAX_STACK_SLOT
= (1L << 18)-1
48 enum ModRef
{ isRef
= 1, isMod
= 2, isModRef
= 3 };
49 typedef std::multimap
<MachineInstr
*,
50 std::pair
<unsigned, ModRef
> > MI2VirtMapTy
;
53 MachineRegisterInfo
*MRI
;
54 const TargetInstrInfo
*TII
;
55 const TargetRegisterInfo
*TRI
;
58 DenseMap
<const TargetRegisterClass
*, BitVector
> allocatableRCRegs
;
60 /// Virt2PhysMap - This is a virtual to physical register
61 /// mapping. Each virtual register is required to have an entry in
62 /// it; even spilled virtual registers (the register mapped to a
63 /// spilled register is the temporary used to load it from the
65 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysMap
;
67 /// Virt2StackSlotMap - This is virtual register to stack slot
68 /// mapping. Each spilled virtual register has an entry in it
69 /// which corresponds to the stack slot this register is spilled
71 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2StackSlotMap
;
73 /// Virt2ReMatIdMap - This is virtual register to rematerialization id
74 /// mapping. Each spilled virtual register that should be remat'd has an
75 /// entry in it which corresponds to the remat id.
76 IndexedMap
<int, VirtReg2IndexFunctor
> Virt2ReMatIdMap
;
78 /// Virt2SplitMap - This is virtual register to splitted virtual register
80 IndexedMap
<unsigned, VirtReg2IndexFunctor
> Virt2SplitMap
;
82 /// Virt2SplitKillMap - This is splitted virtual register to its last use
83 /// (kill) index mapping.
84 IndexedMap
<SlotIndex
, VirtReg2IndexFunctor
> Virt2SplitKillMap
;
86 /// ReMatMap - This is virtual register to re-materialized instruction
87 /// mapping. Each virtual register whose definition is going to be
88 /// re-materialized has an entry in it.
89 IndexedMap
<MachineInstr
*, VirtReg2IndexFunctor
> ReMatMap
;
91 /// MI2VirtMap - This is MachineInstr to virtual register
92 /// mapping. In the case of memory spill code being folded into
93 /// instructions, we need to know which virtual register was
94 /// read/written by this instruction.
95 MI2VirtMapTy MI2VirtMap
;
97 /// SpillPt2VirtMap - This records the virtual registers which should
98 /// be spilled right after the MachineInstr due to live interval
100 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >
103 /// RestorePt2VirtMap - This records the virtual registers which should
104 /// be restored right before the MachineInstr due to live interval
106 std::map
<MachineInstr
*, std::vector
<unsigned> > RestorePt2VirtMap
;
108 /// EmergencySpillMap - This records the physical registers that should
109 /// be spilled / restored around the MachineInstr since the register
110 /// allocator has run out of registers.
111 std::map
<MachineInstr
*, std::vector
<unsigned> > EmergencySpillMap
;
113 /// EmergencySpillSlots - This records emergency spill slots used to
114 /// spill physical registers when the register allocator runs out of
115 /// registers. Ideally only one stack slot is used per function per
117 std::map
<const TargetRegisterClass
*, int> EmergencySpillSlots
;
119 /// ReMatId - Instead of assigning a stack slot to a to be rematerialized
120 /// virtual register, an unique id is being assigned. This keeps track of
121 /// the highest id used so far. Note, this starts at (1<<18) to avoid
122 /// conflicts with stack slot numbers.
125 /// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
126 int LowSpillSlot
, HighSpillSlot
;
128 /// SpillSlotToUsesMap - Records uses for each register spill slot.
129 SmallVector
<SmallPtrSet
<MachineInstr
*, 4>, 8> SpillSlotToUsesMap
;
131 /// ImplicitDefed - One bit for each virtual register. If set it indicates
132 /// the register is implicitly defined.
133 BitVector ImplicitDefed
;
135 /// UnusedRegs - A list of physical registers that have not been used.
136 BitVector UnusedRegs
;
138 /// createSpillSlot - Allocate a spill slot for RC from MFI.
139 unsigned createSpillSlot(const TargetRegisterClass
*RC
);
141 VirtRegMap(const VirtRegMap
&); // DO NOT IMPLEMENT
142 void operator=(const VirtRegMap
&); // DO NOT IMPLEMENT
146 VirtRegMap() : MachineFunctionPass(ID
), Virt2PhysMap(NO_PHYS_REG
),
147 Virt2StackSlotMap(NO_STACK_SLOT
),
148 Virt2ReMatIdMap(NO_STACK_SLOT
), Virt2SplitMap(0),
149 Virt2SplitKillMap(SlotIndex()), ReMatMap(NULL
),
150 ReMatId(MAX_STACK_SLOT
+1),
151 LowSpillSlot(NO_STACK_SLOT
), HighSpillSlot(NO_STACK_SLOT
) { }
152 virtual bool runOnMachineFunction(MachineFunction
&MF
);
154 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
155 AU
.setPreservesAll();
156 MachineFunctionPass::getAnalysisUsage(AU
);
159 MachineFunction
&getMachineFunction() const {
160 assert(MF
&& "getMachineFunction called before runOnMachineFunction");
164 MachineRegisterInfo
&getRegInfo() const { return *MRI
; }
165 const TargetRegisterInfo
&getTargetRegInfo() const { return *TRI
; }
169 /// @brief returns true if the specified virtual register is
170 /// mapped to a physical register
171 bool hasPhys(unsigned virtReg
) const {
172 return getPhys(virtReg
) != NO_PHYS_REG
;
175 /// @brief returns the physical register mapped to the specified
177 unsigned getPhys(unsigned virtReg
) const {
178 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
179 return Virt2PhysMap
[virtReg
];
182 /// @brief creates a mapping for the specified virtual register to
183 /// the specified physical register
184 void assignVirt2Phys(unsigned virtReg
, unsigned physReg
) {
185 assert(TargetRegisterInfo::isVirtualRegister(virtReg
) &&
186 TargetRegisterInfo::isPhysicalRegister(physReg
));
187 assert(Virt2PhysMap
[virtReg
] == NO_PHYS_REG
&&
188 "attempt to assign physical register to already mapped "
190 Virt2PhysMap
[virtReg
] = physReg
;
193 /// @brief clears the specified virtual register's, physical
195 void clearVirt(unsigned virtReg
) {
196 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
197 assert(Virt2PhysMap
[virtReg
] != NO_PHYS_REG
&&
198 "attempt to clear a not assigned virtual register");
199 Virt2PhysMap
[virtReg
] = NO_PHYS_REG
;
202 /// @brief clears all virtual to physical register mappings
203 void clearAllVirt() {
204 Virt2PhysMap
.clear();
208 /// @brief returns the register allocation preference.
209 unsigned getRegAllocPref(unsigned virtReg
);
211 /// @brief returns true if VirtReg is assigned to its preferred physreg.
212 bool hasPreferredPhys(unsigned VirtReg
) {
213 return getPhys(VirtReg
) == getRegAllocPref(VirtReg
);
216 /// @brief records virtReg is a split live interval from SReg.
217 void setIsSplitFromReg(unsigned virtReg
, unsigned SReg
) {
218 Virt2SplitMap
[virtReg
] = SReg
;
221 /// @brief returns the live interval virtReg is split from.
222 unsigned getPreSplitReg(unsigned virtReg
) const {
223 return Virt2SplitMap
[virtReg
];
226 /// getOriginal - Return the original virtual register that VirtReg descends
227 /// from through splitting.
228 /// A register that was not created by splitting is its own original.
229 /// This operation is idempotent.
230 unsigned getOriginal(unsigned VirtReg
) const {
231 unsigned Orig
= getPreSplitReg(VirtReg
);
232 return Orig
? Orig
: VirtReg
;
235 /// @brief returns true if the specified virtual register is not
236 /// mapped to a stack slot or rematerialized.
237 bool isAssignedReg(unsigned virtReg
) const {
238 if (getStackSlot(virtReg
) == NO_STACK_SLOT
&&
239 getReMatId(virtReg
) == NO_STACK_SLOT
)
241 // Split register can be assigned a physical register as well as a
242 // stack slot or remat id.
243 return (Virt2SplitMap
[virtReg
] && Virt2PhysMap
[virtReg
] != NO_PHYS_REG
);
246 /// @brief returns the stack slot mapped to the specified virtual
248 int getStackSlot(unsigned virtReg
) const {
249 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
250 return Virt2StackSlotMap
[virtReg
];
253 /// @brief returns the rematerialization id mapped to the specified virtual
255 int getReMatId(unsigned virtReg
) const {
256 assert(TargetRegisterInfo::isVirtualRegister(virtReg
));
257 return Virt2ReMatIdMap
[virtReg
];
260 /// @brief create a mapping for the specifed virtual register to
261 /// the next available stack slot
262 int assignVirt2StackSlot(unsigned virtReg
);
263 /// @brief create a mapping for the specified virtual register to
264 /// the specified stack slot
265 void assignVirt2StackSlot(unsigned virtReg
, int frameIndex
);
267 /// @brief assign an unique re-materialization id to the specified
268 /// virtual register.
269 int assignVirtReMatId(unsigned virtReg
);
270 /// @brief assign an unique re-materialization id to the specified
271 /// virtual register.
272 void assignVirtReMatId(unsigned virtReg
, int id
);
274 /// @brief returns true if the specified virtual register is being
276 bool isReMaterialized(unsigned virtReg
) const {
277 return ReMatMap
[virtReg
] != NULL
;
280 /// @brief returns the original machine instruction being re-issued
281 /// to re-materialize the specified virtual register.
282 MachineInstr
*getReMaterializedMI(unsigned virtReg
) const {
283 return ReMatMap
[virtReg
];
286 /// @brief records the specified virtual register will be
287 /// re-materialized and the original instruction which will be re-issed
288 /// for this purpose. If parameter all is true, then all uses of the
289 /// registers are rematerialized and it's safe to delete the definition.
290 void setVirtIsReMaterialized(unsigned virtReg
, MachineInstr
*def
) {
291 ReMatMap
[virtReg
] = def
;
294 /// @brief record the last use (kill) of a split virtual register.
295 void addKillPoint(unsigned virtReg
, SlotIndex index
) {
296 Virt2SplitKillMap
[virtReg
] = index
;
299 SlotIndex
getKillPoint(unsigned virtReg
) const {
300 return Virt2SplitKillMap
[virtReg
];
303 /// @brief remove the last use (kill) of a split virtual register.
304 void removeKillPoint(unsigned virtReg
) {
305 Virt2SplitKillMap
[virtReg
] = SlotIndex();
308 /// @brief returns true if the specified MachineInstr is a spill point.
309 bool isSpillPt(MachineInstr
*Pt
) const {
310 return SpillPt2VirtMap
.find(Pt
) != SpillPt2VirtMap
.end();
313 /// @brief returns the virtual registers that should be spilled due to
314 /// splitting right after the specified MachineInstr.
315 std::vector
<std::pair
<unsigned,bool> > &getSpillPtSpills(MachineInstr
*Pt
) {
316 return SpillPt2VirtMap
[Pt
];
319 /// @brief records the specified MachineInstr as a spill point for virtReg.
320 void addSpillPoint(unsigned virtReg
, bool isKill
, MachineInstr
*Pt
) {
321 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
322 I
= SpillPt2VirtMap
.find(Pt
);
323 if (I
!= SpillPt2VirtMap
.end())
324 I
->second
.push_back(std::make_pair(virtReg
, isKill
));
326 std::vector
<std::pair
<unsigned,bool> > Virts
;
327 Virts
.push_back(std::make_pair(virtReg
, isKill
));
328 SpillPt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
332 /// @brief - transfer spill point information from one instruction to
334 void transferSpillPts(MachineInstr
*Old
, MachineInstr
*New
) {
335 std::map
<MachineInstr
*, std::vector
<std::pair
<unsigned,bool> > >::iterator
336 I
= SpillPt2VirtMap
.find(Old
);
337 if (I
== SpillPt2VirtMap
.end())
339 while (!I
->second
.empty()) {
340 unsigned virtReg
= I
->second
.back().first
;
341 bool isKill
= I
->second
.back().second
;
342 I
->second
.pop_back();
343 addSpillPoint(virtReg
, isKill
, New
);
345 SpillPt2VirtMap
.erase(I
);
348 /// @brief returns true if the specified MachineInstr is a restore point.
349 bool isRestorePt(MachineInstr
*Pt
) const {
350 return RestorePt2VirtMap
.find(Pt
) != RestorePt2VirtMap
.end();
353 /// @brief returns the virtual registers that should be restoreed due to
354 /// splitting right after the specified MachineInstr.
355 std::vector
<unsigned> &getRestorePtRestores(MachineInstr
*Pt
) {
356 return RestorePt2VirtMap
[Pt
];
359 /// @brief records the specified MachineInstr as a restore point for virtReg.
360 void addRestorePoint(unsigned virtReg
, MachineInstr
*Pt
) {
361 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
362 RestorePt2VirtMap
.find(Pt
);
363 if (I
!= RestorePt2VirtMap
.end())
364 I
->second
.push_back(virtReg
);
366 std::vector
<unsigned> Virts
;
367 Virts
.push_back(virtReg
);
368 RestorePt2VirtMap
.insert(std::make_pair(Pt
, Virts
));
372 /// @brief - transfer restore point information from one instruction to
374 void transferRestorePts(MachineInstr
*Old
, MachineInstr
*New
) {
375 std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator I
=
376 RestorePt2VirtMap
.find(Old
);
377 if (I
== RestorePt2VirtMap
.end())
379 while (!I
->second
.empty()) {
380 unsigned virtReg
= I
->second
.back();
381 I
->second
.pop_back();
382 addRestorePoint(virtReg
, New
);
384 RestorePt2VirtMap
.erase(I
);
387 /// @brief records that the specified physical register must be spilled
388 /// around the specified machine instr.
389 void addEmergencySpill(unsigned PhysReg
, MachineInstr
*MI
) {
390 if (EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end())
391 EmergencySpillMap
[MI
].push_back(PhysReg
);
393 std::vector
<unsigned> PhysRegs
;
394 PhysRegs
.push_back(PhysReg
);
395 EmergencySpillMap
.insert(std::make_pair(MI
, PhysRegs
));
399 /// @brief returns true if one or more physical registers must be spilled
400 /// around the specified instruction.
401 bool hasEmergencySpills(MachineInstr
*MI
) const {
402 return EmergencySpillMap
.find(MI
) != EmergencySpillMap
.end();
405 /// @brief returns the physical registers to be spilled and restored around
407 std::vector
<unsigned> &getEmergencySpills(MachineInstr
*MI
) {
408 return EmergencySpillMap
[MI
];
411 /// @brief - transfer emergency spill information from one instruction to
413 void transferEmergencySpills(MachineInstr
*Old
, MachineInstr
*New
) {
414 std::map
<MachineInstr
*,std::vector
<unsigned> >::iterator I
=
415 EmergencySpillMap
.find(Old
);
416 if (I
== EmergencySpillMap
.end())
418 while (!I
->second
.empty()) {
419 unsigned virtReg
= I
->second
.back();
420 I
->second
.pop_back();
421 addEmergencySpill(virtReg
, New
);
423 EmergencySpillMap
.erase(I
);
426 /// @brief return or get a emergency spill slot for the register class.
427 int getEmergencySpillSlot(const TargetRegisterClass
*RC
);
429 /// @brief Return lowest spill slot index.
430 int getLowSpillSlot() const {
434 /// @brief Return highest spill slot index.
435 int getHighSpillSlot() const {
436 return HighSpillSlot
;
439 /// @brief Records a spill slot use.
440 void addSpillSlotUse(int FrameIndex
, MachineInstr
*MI
);
442 /// @brief Returns true if spill slot has been used.
443 bool isSpillSlotUsed(int FrameIndex
) const {
444 assert(FrameIndex
>= 0 && "Spill slot index should not be negative!");
445 return !SpillSlotToUsesMap
[FrameIndex
-LowSpillSlot
].empty();
448 /// @brief Mark the specified register as being implicitly defined.
449 void setIsImplicitlyDefined(unsigned VirtReg
) {
450 ImplicitDefed
.set(TargetRegisterInfo::virtReg2Index(VirtReg
));
453 /// @brief Returns true if the virtual register is implicitly defined.
454 bool isImplicitlyDefined(unsigned VirtReg
) const {
455 return ImplicitDefed
[TargetRegisterInfo::virtReg2Index(VirtReg
)];
458 /// @brief Updates information about the specified virtual register's value
459 /// folded into newMI machine instruction.
460 void virtFolded(unsigned VirtReg
, MachineInstr
*OldMI
, MachineInstr
*NewMI
,
463 /// @brief Updates information about the specified virtual register's value
464 /// folded into the specified machine instruction.
465 void virtFolded(unsigned VirtReg
, MachineInstr
*MI
, ModRef MRInfo
);
467 /// @brief returns the virtual registers' values folded in memory
468 /// operands of this instruction
469 std::pair
<MI2VirtMapTy::const_iterator
, MI2VirtMapTy::const_iterator
>
470 getFoldedVirts(MachineInstr
* MI
) const {
471 return MI2VirtMap
.equal_range(MI
);
474 /// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
475 /// the folded instruction map and spill point map.
476 void RemoveMachineInstrFromMaps(MachineInstr
*MI
);
478 /// FindUnusedRegisters - Gather a list of allocatable registers that
479 /// have not been allocated to any virtual register.
480 bool FindUnusedRegisters(LiveIntervals
* LIs
);
482 /// HasUnusedRegisters - Return true if there are any allocatable registers
483 /// that have not been allocated to any virtual register.
484 bool HasUnusedRegisters() const {
485 return !UnusedRegs
.none();
488 /// setRegisterUsed - Remember the physical register is now used.
489 void setRegisterUsed(unsigned Reg
) {
490 UnusedRegs
.reset(Reg
);
493 /// isRegisterUnused - Return true if the physical register has not been
495 bool isRegisterUnused(unsigned Reg
) const {
496 return UnusedRegs
[Reg
];
499 /// getFirstUnusedRegister - Return the first physical register that has not
501 unsigned getFirstUnusedRegister(const TargetRegisterClass
*RC
) {
502 int Reg
= UnusedRegs
.find_first();
504 if (allocatableRCRegs
[RC
][Reg
])
505 return (unsigned)Reg
;
506 Reg
= UnusedRegs
.find_next(Reg
);
511 /// rewrite - Rewrite all instructions in MF to use only physical registers
512 /// by mapping all virtual register operands to their assigned physical
515 /// @param Indexes Optionally remove deleted instructions from indexes.
516 void rewrite(SlotIndexes
*Indexes
);
518 void print(raw_ostream
&OS
, const Module
* M
= 0) const;
522 inline raw_ostream
&operator<<(raw_ostream
&OS
, const VirtRegMap
&VRM
) {
526 } // End llvm namespace