1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Linker.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Module.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include "llvm/Support/Path.h"
20 #include "llvm/Transforms/Utils/ValueMapper.h"
23 //===----------------------------------------------------------------------===//
24 // TypeMap implementation.
25 //===----------------------------------------------------------------------===//
28 class TypeMapTy
: public ValueMapTypeRemapper
{
29 /// MappedTypes - This is a mapping from a source type to a destination type
31 DenseMap
<Type
*, Type
*> MappedTypes
;
33 /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
34 /// we speculatively add types to MappedTypes, but keep track of them here in
35 /// case we need to roll back.
36 SmallVector
<Type
*, 16> SpeculativeTypes
;
38 /// DefinitionsToResolve - This is a list of non-opaque structs in the source
39 /// module that are mapped to an opaque struct in the destination module.
40 SmallVector
<StructType
*, 16> DefinitionsToResolve
;
43 /// addTypeMapping - Indicate that the specified type in the destination
44 /// module is conceptually equivalent to the specified type in the source
46 void addTypeMapping(Type
*DstTy
, Type
*SrcTy
);
48 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
49 /// module from a type definition in the source module.
50 void linkDefinedTypeBodies();
52 /// get - Return the mapped type to use for the specified input type from the
54 Type
*get(Type
*SrcTy
);
56 FunctionType
*get(FunctionType
*T
) {return cast
<FunctionType
>(get((Type
*)T
));}
59 Type
*getImpl(Type
*T
);
60 /// remapType - Implement the ValueMapTypeRemapper interface.
61 Type
*remapType(Type
*SrcTy
) {
65 bool areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
);
69 void TypeMapTy::addTypeMapping(Type
*DstTy
, Type
*SrcTy
) {
70 Type
*&Entry
= MappedTypes
[SrcTy
];
78 // Check to see if these types are recursively isomorphic and establish a
79 // mapping between them if so.
80 if (!areTypesIsomorphic(DstTy
, SrcTy
)) {
81 // Oops, they aren't isomorphic. Just discard this request by rolling out
82 // any speculative mappings we've established.
83 for (unsigned i
= 0, e
= SpeculativeTypes
.size(); i
!= e
; ++i
)
84 MappedTypes
.erase(SpeculativeTypes
[i
]);
86 SpeculativeTypes
.clear();
89 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
90 /// if they are isomorphic, false if they are not.
91 bool TypeMapTy::areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
) {
92 // Two types with differing kinds are clearly not isomorphic.
93 if (DstTy
->getTypeID() != SrcTy
->getTypeID()) return false;
95 // If we have an entry in the MappedTypes table, then we have our answer.
96 Type
*&Entry
= MappedTypes
[SrcTy
];
98 return Entry
== DstTy
;
100 // Two identical types are clearly isomorphic. Remember this
101 // non-speculatively.
102 if (DstTy
== SrcTy
) {
107 // Okay, we have two types with identical kinds that we haven't seen before.
109 // If this is an opaque struct type, special case it.
110 if (StructType
*SSTy
= dyn_cast
<StructType
>(SrcTy
)) {
111 // Mapping an opaque type to any struct, just keep the dest struct.
112 if (SSTy
->isOpaque()) {
114 SpeculativeTypes
.push_back(SrcTy
);
118 // Mapping a non-opaque source type to an opaque dest. Keep the dest, but
119 // fill it in later. This doesn't need to be speculative.
120 if (cast
<StructType
>(DstTy
)->isOpaque()) {
122 DefinitionsToResolve
.push_back(SSTy
);
127 // If the number of subtypes disagree between the two types, then we fail.
128 if (SrcTy
->getNumContainedTypes() != DstTy
->getNumContainedTypes())
131 // Fail if any of the extra properties (e.g. array size) of the type disagree.
132 if (isa
<IntegerType
>(DstTy
))
133 return false; // bitwidth disagrees.
134 if (PointerType
*PT
= dyn_cast
<PointerType
>(DstTy
)) {
135 if (PT
->getAddressSpace() != cast
<PointerType
>(SrcTy
)->getAddressSpace())
137 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(DstTy
)) {
138 if (FT
->isVarArg() != cast
<FunctionType
>(SrcTy
)->isVarArg())
140 } else if (StructType
*DSTy
= dyn_cast
<StructType
>(DstTy
)) {
141 StructType
*SSTy
= cast
<StructType
>(SrcTy
);
142 if (DSTy
->isAnonymous() != SSTy
->isAnonymous() ||
143 DSTy
->isPacked() != SSTy
->isPacked())
145 } else if (ArrayType
*DATy
= dyn_cast
<ArrayType
>(DstTy
)) {
146 if (DATy
->getNumElements() != cast
<ArrayType
>(SrcTy
)->getNumElements())
148 } else if (VectorType
*DVTy
= dyn_cast
<VectorType
>(DstTy
)) {
149 if (DVTy
->getNumElements() != cast
<ArrayType
>(SrcTy
)->getNumElements())
153 // Otherwise, we speculate that these two types will line up and recursively
154 // check the subelements.
156 SpeculativeTypes
.push_back(SrcTy
);
158 for (unsigned i
= 0, e
= SrcTy
->getNumContainedTypes(); i
!= e
; ++i
)
159 if (!areTypesIsomorphic(DstTy
->getContainedType(i
),
160 SrcTy
->getContainedType(i
)))
163 // If everything seems to have lined up, then everything is great.
167 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
168 /// module from a type definition in the source module.
169 void TypeMapTy::linkDefinedTypeBodies() {
170 SmallVector
<Type
*, 16> Elements
;
171 SmallString
<16> TmpName
;
173 // Note that processing entries in this loop (calling 'get') can add new
174 // entries to the DefinitionsToResolve vector.
175 while (!DefinitionsToResolve
.empty()) {
176 StructType
*SrcSTy
= DefinitionsToResolve
.pop_back_val();
177 StructType
*DstSTy
= cast
<StructType
>(MappedTypes
[SrcSTy
]);
179 // TypeMap is a many-to-one mapping, if there were multiple types that
180 // provide a body for DstSTy then previous iterations of this loop may have
181 // already handled it. Just ignore this case.
182 if (!DstSTy
->isOpaque()) continue;
183 assert(!SrcSTy
->isOpaque() && "Not resolving a definition?");
185 // Map the body of the source type over to a new body for the dest type.
186 Elements
.resize(SrcSTy
->getNumElements());
187 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
)
188 Elements
[i
] = getImpl(SrcSTy
->getElementType(i
));
190 DstSTy
->setBody(Elements
, SrcSTy
->isPacked());
192 // If DstSTy has no name or has a longer name than STy, then viciously steal
194 if (!SrcSTy
->hasName()) continue;
195 StringRef SrcName
= SrcSTy
->getName();
197 if (!DstSTy
->hasName() || DstSTy
->getName().size() > SrcName
.size()) {
198 TmpName
.insert(TmpName
.end(), SrcName
.begin(), SrcName
.end());
200 DstSTy
->setName(TmpName
.str());
207 /// get - Return the mapped type to use for the specified input type from the
209 Type
*TypeMapTy::get(Type
*Ty
) {
210 Type
*Result
= getImpl(Ty
);
212 // If this caused a reference to any struct type, resolve it before returning.
213 if (!DefinitionsToResolve
.empty())
214 linkDefinedTypeBodies();
218 /// getImpl - This is the recursive version of get().
219 Type
*TypeMapTy::getImpl(Type
*Ty
) {
220 // If we already have an entry for this type, return it.
221 Type
**Entry
= &MappedTypes
[Ty
];
222 if (*Entry
) return *Entry
;
224 // If this is not a named struct type, then just map all of the elements and
225 // then rebuild the type from inside out.
226 if (!isa
<StructType
>(Ty
) || cast
<StructType
>(Ty
)->isAnonymous()) {
227 // If there are no element types to map, then the type is itself. This is
228 // true for the anonymous {} struct, things like 'float', integers, etc.
229 if (Ty
->getNumContainedTypes() == 0)
232 // Remap all of the elements, keeping track of whether any of them change.
233 bool AnyChange
= false;
234 SmallVector
<Type
*, 4> ElementTypes
;
235 ElementTypes
.resize(Ty
->getNumContainedTypes());
236 for (unsigned i
= 0, e
= Ty
->getNumContainedTypes(); i
!= e
; ++i
) {
237 ElementTypes
[i
] = getImpl(Ty
->getContainedType(i
));
238 AnyChange
|= ElementTypes
[i
] != Ty
->getContainedType(i
);
241 // If we found our type while recursively processing stuff, just use it.
242 Entry
= &MappedTypes
[Ty
];
243 if (*Entry
) return *Entry
;
245 // If all of the element types mapped directly over, then the type is usable
250 // Otherwise, rebuild a modified type.
251 switch (Ty
->getTypeID()) {
252 default: assert(0 && "unknown derived type to remap");
253 case Type::ArrayTyID
:
254 return *Entry
= ArrayType::get(ElementTypes
[0],
255 cast
<ArrayType
>(Ty
)->getNumElements());
256 case Type::VectorTyID
:
257 return *Entry
= VectorType::get(ElementTypes
[0],
258 cast
<VectorType
>(Ty
)->getNumElements());
259 case Type::PointerTyID
:
260 return *Entry
= PointerType::get(ElementTypes
[0],
261 cast
<PointerType
>(Ty
)->getAddressSpace());
262 case Type::FunctionTyID
:
263 return *Entry
= FunctionType::get(ElementTypes
[0],
264 ArrayRef
<Type
*>(ElementTypes
).slice(1),
265 cast
<FunctionType
>(Ty
)->isVarArg());
266 case Type::StructTyID
:
267 // Note that this is only reached for anonymous structs.
268 return *Entry
= StructType::get(Ty
->getContext(), ElementTypes
,
269 cast
<StructType
>(Ty
)->isPacked());
273 // Otherwise, this is an unmapped named struct. If the struct can be directly
274 // mapped over, just use it as-is. This happens in a case when the linked-in
275 // module has something like:
276 // %T = type {%T*, i32}
277 // @GV = global %T* null
278 // where T does not exist at all in the destination module.
280 // The other case we watch for is when the type is not in the destination
281 // module, but that it has to be rebuilt because it refers to something that
282 // is already mapped. For example, if the destination module has:
284 // and the source module has something like
285 // %A' = type { i32 }
286 // %B = type { %A'* }
287 // @GV = global %B* null
288 // then we want to create a new type: "%B = type { %A*}" and have it take the
289 // pristine "%B" name from the source module.
291 // To determine which case this is, we have to recursively walk the type graph
292 // speculating that we'll be able to reuse it unmodified. Only if this is
293 // safe would we map the entire thing over. Because this is an optimization,
294 // and is not required for the prettiness of the linked module, we just skip
295 // it and always rebuild a type here.
296 StructType
*STy
= cast
<StructType
>(Ty
);
298 // If the type is opaque, we can just use it directly.
302 // Otherwise we create a new type and resolve its body later. This will be
303 // resolved by the top level of get().
304 DefinitionsToResolve
.push_back(STy
);
305 return *Entry
= StructType::createNamed(STy
->getContext(), "");
310 //===----------------------------------------------------------------------===//
311 // ModuleLinker implementation.
312 //===----------------------------------------------------------------------===//
315 /// ModuleLinker - This is an implementation class for the LinkModules
316 /// function, which is the entrypoint for this file.
322 /// ValueMap - Mapping of values from what they used to be in Src, to what
323 /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
324 /// some overhead due to the use of Value handles which the Linker doesn't
325 /// actually need, but this allows us to reuse the ValueMapper code.
326 ValueToValueMapTy ValueMap
;
328 struct AppendingVarInfo
{
329 GlobalVariable
*NewGV
; // New aggregate global in dest module.
330 Constant
*DstInit
; // Old initializer from dest module.
331 Constant
*SrcInit
; // Old initializer from src module.
334 std::vector
<AppendingVarInfo
> AppendingVars
;
337 std::string ErrorMsg
;
339 ModuleLinker(Module
*dstM
, Module
*srcM
) : DstM(dstM
), SrcM(srcM
) { }
344 /// emitError - Helper method for setting a message and returning an error
346 bool emitError(const Twine
&Message
) {
347 ErrorMsg
= Message
.str();
351 /// getLinkageResult - This analyzes the two global values and determines
352 /// what the result will look like in the destination module.
353 bool getLinkageResult(GlobalValue
*Dest
, const GlobalValue
*Src
,
354 GlobalValue::LinkageTypes
<
, bool &LinkFromSrc
);
356 /// getLinkedToGlobal - Given a global in the source module, return the
357 /// global in the destination module that is being linked to, if any.
358 GlobalValue
*getLinkedToGlobal(GlobalValue
*SrcGV
) {
359 // If the source has no name it can't link. If it has local linkage,
360 // there is no name match-up going on.
361 if (!SrcGV
->hasName() || SrcGV
->hasLocalLinkage())
364 // Otherwise see if we have a match in the destination module's symtab.
365 GlobalValue
*DGV
= DstM
->getNamedValue(SrcGV
->getName());
366 if (DGV
== 0) return 0;
368 // If we found a global with the same name in the dest module, but it has
369 // internal linkage, we are really not doing any linkage here.
370 if (DGV
->hasLocalLinkage())
373 // Otherwise, we do in fact link to the destination global.
377 void computeTypeMapping();
379 bool linkAppendingVarProto(GlobalVariable
*DstGV
, GlobalVariable
*SrcGV
);
380 bool linkGlobalProto(GlobalVariable
*SrcGV
);
381 bool linkFunctionProto(Function
*SrcF
);
382 bool linkAliasProto(GlobalAlias
*SrcA
);
384 void linkAppendingVarInit(const AppendingVarInfo
&AVI
);
385 void linkGlobalInits();
386 void linkFunctionBody(Function
*Dst
, Function
*Src
);
387 void linkAliasBodies();
388 void linkNamedMDNodes();
394 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
395 /// in the symbol table. This is good for all clients except for us. Go
396 /// through the trouble to force this back.
397 static void forceRenaming(GlobalValue
*GV
, StringRef Name
) {
398 // If the global doesn't force its name or if it already has the right name,
399 // there is nothing for us to do.
400 if (GV
->hasLocalLinkage() || GV
->getName() == Name
)
403 Module
*M
= GV
->getParent();
405 // If there is a conflict, rename the conflict.
406 if (GlobalValue
*ConflictGV
= M
->getNamedValue(Name
)) {
407 GV
->takeName(ConflictGV
);
408 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
409 assert(ConflictGV
->getName() != Name
&& "forceRenaming didn't work");
411 GV
->setName(Name
); // Force the name back
415 /// CopyGVAttributes - copy additional attributes (those not needed to construct
416 /// a GlobalValue) from the SrcGV to the DestGV.
417 static void CopyGVAttributes(GlobalValue
*DestGV
, const GlobalValue
*SrcGV
) {
418 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
419 unsigned Alignment
= std::max(DestGV
->getAlignment(), SrcGV
->getAlignment());
420 DestGV
->copyAttributesFrom(SrcGV
);
421 DestGV
->setAlignment(Alignment
);
423 forceRenaming(DestGV
, SrcGV
->getName());
426 /// getLinkageResult - This analyzes the two global values and determines what
427 /// the result will look like in the destination module. In particular, it
428 /// computes the resultant linkage type, computes whether the global in the
429 /// source should be copied over to the destination (replacing the existing
430 /// one), and computes whether this linkage is an error or not. It also performs
431 /// visibility checks: we cannot link together two symbols with different
433 bool ModuleLinker::getLinkageResult(GlobalValue
*Dest
, const GlobalValue
*Src
,
434 GlobalValue::LinkageTypes
<
,
436 assert(Dest
&& "Must have two globals being queried");
437 assert(!Src
->hasLocalLinkage() &&
438 "If Src has internal linkage, Dest shouldn't be set!");
440 // FIXME: GlobalAlias::isDeclaration is broken, should always be
442 bool SrcIsDeclaration
= Src
->isDeclaration() && !isa
<GlobalAlias
>(Src
);
443 bool DestIsDeclaration
= Dest
->isDeclaration() && !isa
<GlobalAlias
>(Dest
);
445 if (SrcIsDeclaration
) {
446 // If Src is external or if both Src & Dest are external.. Just link the
447 // external globals, we aren't adding anything.
448 if (Src
->hasDLLImportLinkage()) {
449 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
450 if (DestIsDeclaration
) {
452 LT
= Src
->getLinkage();
454 } else if (Dest
->hasExternalWeakLinkage()) {
455 // If the Dest is weak, use the source linkage.
457 LT
= Src
->getLinkage();
460 LT
= Dest
->getLinkage();
462 } else if (DestIsDeclaration
&& !Dest
->hasDLLImportLinkage()) {
463 // If Dest is external but Src is not:
465 LT
= Src
->getLinkage();
466 } else if (Src
->isWeakForLinker()) {
467 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
469 if (Dest
->hasExternalWeakLinkage() ||
470 Dest
->hasAvailableExternallyLinkage() ||
471 (Dest
->hasLinkOnceLinkage() &&
472 (Src
->hasWeakLinkage() || Src
->hasCommonLinkage()))) {
474 LT
= Src
->getLinkage();
477 LT
= Dest
->getLinkage();
479 } else if (Dest
->isWeakForLinker()) {
480 // At this point we know that Src has External* or DLL* linkage.
481 if (Src
->hasExternalWeakLinkage()) {
483 LT
= Dest
->getLinkage();
486 LT
= GlobalValue::ExternalLinkage
;
489 assert((Dest
->hasExternalLinkage() || Dest
->hasDLLImportLinkage() ||
490 Dest
->hasDLLExportLinkage() || Dest
->hasExternalWeakLinkage()) &&
491 (Src
->hasExternalLinkage() || Src
->hasDLLImportLinkage() ||
492 Src
->hasDLLExportLinkage() || Src
->hasExternalWeakLinkage()) &&
493 "Unexpected linkage type!");
494 return emitError("Linking globals named '" + Src
->getName() +
495 "': symbol multiply defined!");
499 if (Src
->getVisibility() != Dest
->getVisibility() &&
500 !SrcIsDeclaration
&& !DestIsDeclaration
&&
501 !Src
->hasAvailableExternallyLinkage() &&
502 !Dest
->hasAvailableExternallyLinkage())
503 return emitError("Linking globals named '" + Src
->getName() +
504 "': symbols have different visibilities!");
508 /// computeTypeMapping - Loop over all of the linked values to compute type
509 /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
510 /// we have two struct types 'Foo' but one got renamed when the module was
511 /// loaded into the same LLVMContext.
512 void ModuleLinker::computeTypeMapping() {
513 // Incorporate globals.
514 for (Module::global_iterator I
= SrcM
->global_begin(),
515 E
= SrcM
->global_end(); I
!= E
; ++I
) {
516 GlobalValue
*DGV
= getLinkedToGlobal(I
);
517 if (DGV
== 0) continue;
519 if (!DGV
->hasAppendingLinkage() || !I
->hasAppendingLinkage()) {
520 TypeMap
.addTypeMapping(DGV
->getType(), I
->getType());
524 // Unify the element type of appending arrays.
525 ArrayType
*DAT
= cast
<ArrayType
>(DGV
->getType()->getElementType());
526 ArrayType
*SAT
= cast
<ArrayType
>(I
->getType()->getElementType());
527 TypeMap
.addTypeMapping(DAT
->getElementType(), SAT
->getElementType());
530 // Incorporate functions.
531 for (Module::iterator I
= SrcM
->begin(), E
= SrcM
->end(); I
!= E
; ++I
) {
532 if (GlobalValue
*DGV
= getLinkedToGlobal(I
))
533 TypeMap
.addTypeMapping(DGV
->getType(), I
->getType());
536 // Don't bother incorporating aliases, they aren't generally typed well.
538 // Now that we have discovered all of the type equivalences, get a body for
539 // any 'opaque' types in the dest module that are now resolved.
540 TypeMap
.linkDefinedTypeBodies();
543 /// linkAppendingVarProto - If there were any appending global variables, link
544 /// them together now. Return true on error.
545 bool ModuleLinker::linkAppendingVarProto(GlobalVariable
*DstGV
,
546 GlobalVariable
*SrcGV
) {
548 if (!SrcGV
->hasAppendingLinkage() || !DstGV
->hasAppendingLinkage())
549 return emitError("Linking globals named '" + SrcGV
->getName() +
550 "': can only link appending global with another appending global!");
552 ArrayType
*DstTy
= cast
<ArrayType
>(DstGV
->getType()->getElementType());
554 cast
<ArrayType
>(TypeMap
.get(SrcGV
->getType()->getElementType()));
555 Type
*EltTy
= DstTy
->getElementType();
557 // Check to see that they two arrays agree on type.
558 if (EltTy
!= SrcTy
->getElementType())
559 return emitError("Appending variables with different element types!");
560 if (DstGV
->isConstant() != SrcGV
->isConstant())
561 return emitError("Appending variables linked with different const'ness!");
563 if (DstGV
->getAlignment() != SrcGV
->getAlignment())
565 "Appending variables with different alignment need to be linked!");
567 if (DstGV
->getVisibility() != SrcGV
->getVisibility())
569 "Appending variables with different visibility need to be linked!");
571 if (DstGV
->getSection() != SrcGV
->getSection())
573 "Appending variables with different section name need to be linked!");
575 uint64_t NewSize
= DstTy
->getNumElements() + SrcTy
->getNumElements();
576 ArrayType
*NewType
= ArrayType::get(EltTy
, NewSize
);
578 // Create the new global variable.
580 new GlobalVariable(*DstGV
->getParent(), NewType
, SrcGV
->isConstant(),
581 DstGV
->getLinkage(), /*init*/0, /*name*/"", DstGV
,
582 DstGV
->isThreadLocal(),
583 DstGV
->getType()->getAddressSpace());
585 // Propagate alignment, visibility and section info.
586 CopyGVAttributes(NG
, DstGV
);
588 AppendingVarInfo AVI
;
590 AVI
.DstInit
= DstGV
->getInitializer();
591 AVI
.SrcInit
= SrcGV
->getInitializer();
592 AppendingVars
.push_back(AVI
);
594 // Replace any uses of the two global variables with uses of the new
596 ValueMap
[SrcGV
] = ConstantExpr::getBitCast(NG
, TypeMap
.get(SrcGV
->getType()));
598 DstGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
, DstGV
->getType()));
599 DstGV
->eraseFromParent();
601 // Zap the initializer in the source variable so we don't try to link it.
602 SrcGV
->setInitializer(0);
603 SrcGV
->setLinkage(GlobalValue::ExternalLinkage
);
607 /// linkGlobalProto - Loop through the global variables in the src module and
608 /// merge them into the dest module.
609 bool ModuleLinker::linkGlobalProto(GlobalVariable
*SGV
) {
610 GlobalValue
*DGV
= getLinkedToGlobal(SGV
);
613 // Concatenation of appending linkage variables is magic and handled later.
614 if (DGV
->hasAppendingLinkage() || SGV
->hasAppendingLinkage())
615 return linkAppendingVarProto(cast
<GlobalVariable
>(DGV
), SGV
);
617 // Determine whether linkage of these two globals follows the source
618 // module's definition or the destination module's definition.
619 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
620 bool LinkFromSrc
= false;
621 if (getLinkageResult(DGV
, SGV
, NewLinkage
, LinkFromSrc
))
624 // If we're not linking from the source, then keep the definition that we
627 // Special case for const propagation.
628 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
))
629 if (DGVar
->isDeclaration() && SGV
->isConstant() && !DGVar
->isConstant())
630 DGVar
->setConstant(true);
632 // Set calculated linkage.
633 DGV
->setLinkage(NewLinkage
);
635 // Make sure to remember this mapping.
636 ValueMap
[SGV
] = ConstantExpr::getBitCast(DGV
,TypeMap
.get(SGV
->getType()));
638 // Destroy the source global's initializer (and convert it to a prototype)
639 // so that we don't attempt to copy it over when processing global
641 SGV
->setInitializer(0);
642 SGV
->setLinkage(GlobalValue::ExternalLinkage
);
647 // No linking to be performed or linking from the source: simply create an
648 // identical version of the symbol over in the dest module... the
649 // initializer will be filled in later by LinkGlobalInits.
650 GlobalVariable
*NewDGV
=
651 new GlobalVariable(*DstM
, TypeMap
.get(SGV
->getType()->getElementType()),
652 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
653 SGV
->getName(), /*insertbefore*/0,
654 SGV
->isThreadLocal(),
655 SGV
->getType()->getAddressSpace());
656 // Propagate alignment, visibility and section info.
657 CopyGVAttributes(NewDGV
, SGV
);
660 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV
, DGV
->getType()));
661 DGV
->eraseFromParent();
664 // Make sure to remember this mapping.
665 ValueMap
[SGV
] = NewDGV
;
669 /// linkFunctionProto - Link the function in the source module into the
670 /// destination module if needed, setting up mapping information.
671 bool ModuleLinker::linkFunctionProto(Function
*SF
) {
672 GlobalValue
*DGV
= getLinkedToGlobal(SF
);
675 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
676 bool LinkFromSrc
= false;
677 if (getLinkageResult(DGV
, SF
, NewLinkage
, LinkFromSrc
))
681 // Set calculated linkage
682 DGV
->setLinkage(NewLinkage
);
684 // Make sure to remember this mapping.
685 ValueMap
[SF
] = ConstantExpr::getBitCast(DGV
, TypeMap
.get(SF
->getType()));
687 // Remove the body from the source module so we don't attempt to remap it.
693 // If there is no linkage to be performed or we are linking from the source,
695 Function
*NewDF
= Function::Create(TypeMap
.get(SF
->getFunctionType()),
696 SF
->getLinkage(), SF
->getName(), DstM
);
697 CopyGVAttributes(NewDF
, SF
);
700 // Any uses of DF need to change to NewDF, with cast.
701 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF
, DGV
->getType()));
702 DGV
->eraseFromParent();
705 ValueMap
[SF
] = NewDF
;
709 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
711 bool ModuleLinker::linkAliasProto(GlobalAlias
*SGA
) {
712 GlobalValue
*DGV
= getLinkedToGlobal(SGA
);
715 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
716 bool LinkFromSrc
= false;
717 if (getLinkageResult(DGV
, SGA
, NewLinkage
, LinkFromSrc
))
721 // Set calculated linkage.
722 DGV
->setLinkage(NewLinkage
);
724 // Make sure to remember this mapping.
725 ValueMap
[SGA
] = ConstantExpr::getBitCast(DGV
,TypeMap
.get(SGA
->getType()));
727 // Remove the body from the source module so we don't attempt to remap it.
733 // If there is no linkage to be performed or we're linking from the source,
735 GlobalAlias
*NewDA
= new GlobalAlias(TypeMap
.get(SGA
->getType()),
736 SGA
->getLinkage(), SGA
->getName(),
738 CopyGVAttributes(NewDA
, SGA
);
741 // Any uses of DGV need to change to NewDA, with cast.
742 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA
, DGV
->getType()));
743 DGV
->eraseFromParent();
746 ValueMap
[SGA
] = NewDA
;
750 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo
&AVI
) {
751 // Merge the initializer.
752 SmallVector
<Constant
*, 16> Elements
;
753 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(AVI
.DstInit
)) {
754 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
755 Elements
.push_back(I
->getOperand(i
));
757 assert(isa
<ConstantAggregateZero
>(AVI
.DstInit
));
758 ArrayType
*DstAT
= cast
<ArrayType
>(AVI
.DstInit
->getType());
759 Type
*EltTy
= DstAT
->getElementType();
760 Elements
.append(DstAT
->getNumElements(), Constant::getNullValue(EltTy
));
763 Constant
*SrcInit
= MapValue(AVI
.SrcInit
, ValueMap
, RF_None
, &TypeMap
);
764 if (const ConstantArray
*I
= dyn_cast
<ConstantArray
>(SrcInit
)) {
765 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
766 Elements
.push_back(I
->getOperand(i
));
768 assert(isa
<ConstantAggregateZero
>(SrcInit
));
769 ArrayType
*SrcAT
= cast
<ArrayType
>(SrcInit
->getType());
770 Type
*EltTy
= SrcAT
->getElementType();
771 Elements
.append(SrcAT
->getNumElements(), Constant::getNullValue(EltTy
));
773 ArrayType
*NewType
= cast
<ArrayType
>(AVI
.NewGV
->getType()->getElementType());
774 AVI
.NewGV
->setInitializer(ConstantArray::get(NewType
, Elements
));
778 // linkGlobalInits - Update the initializers in the Dest module now that all
779 // globals that may be referenced are in Dest.
780 void ModuleLinker::linkGlobalInits() {
781 // Loop over all of the globals in the src module, mapping them over as we go
782 for (Module::const_global_iterator I
= SrcM
->global_begin(),
783 E
= SrcM
->global_end(); I
!= E
; ++I
) {
784 if (!I
->hasInitializer()) continue; // Only process initialized GV's.
786 // Grab destination global variable.
787 GlobalVariable
*DGV
= cast
<GlobalVariable
>(ValueMap
[I
]);
788 // Figure out what the initializer looks like in the dest module.
789 DGV
->setInitializer(MapValue(I
->getInitializer(), ValueMap
,
794 // linkFunctionBody - Copy the source function over into the dest function and
795 // fix up references to values. At this point we know that Dest is an external
796 // function, and that Src is not.
797 void ModuleLinker::linkFunctionBody(Function
*Dst
, Function
*Src
) {
798 assert(Src
&& Dst
&& Dst
->isDeclaration() && !Src
->isDeclaration());
800 // Go through and convert function arguments over, remembering the mapping.
801 Function::arg_iterator DI
= Dst
->arg_begin();
802 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
804 DI
->setName(I
->getName()); // Copy the name over.
806 // Add a mapping to our mapping.
810 // Splice the body of the source function into the dest function.
811 Dst
->getBasicBlockList().splice(Dst
->end(), Src
->getBasicBlockList());
813 // At this point, all of the instructions and values of the function are now
814 // copied over. The only problem is that they are still referencing values in
815 // the Source function as operands. Loop through all of the operands of the
816 // functions and patch them up to point to the local versions.
817 for (Function::iterator BB
= Dst
->begin(), BE
= Dst
->end(); BB
!= BE
; ++BB
)
818 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
819 RemapInstruction(I
, ValueMap
, RF_IgnoreMissingEntries
, &TypeMap
);
821 // There is no need to map the arguments anymore.
822 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
828 void ModuleLinker::linkAliasBodies() {
829 for (Module::alias_iterator I
= SrcM
->alias_begin(), E
= SrcM
->alias_end();
831 if (Constant
*Aliasee
= I
->getAliasee()) {
832 GlobalAlias
*DA
= cast
<GlobalAlias
>(ValueMap
[I
]);
833 DA
->setAliasee(MapValue(Aliasee
, ValueMap
, RF_None
, &TypeMap
));
837 /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
839 void ModuleLinker::linkNamedMDNodes() {
840 for (Module::const_named_metadata_iterator I
= SrcM
->named_metadata_begin(),
841 E
= SrcM
->named_metadata_end(); I
!= E
; ++I
) {
842 NamedMDNode
*DestNMD
= DstM
->getOrInsertNamedMetadata(I
->getName());
843 // Add Src elements into Dest node.
844 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
845 DestNMD
->addOperand(MapValue(I
->getOperand(i
), ValueMap
,
850 bool ModuleLinker::run() {
851 assert(DstM
&& "Null Destination module");
852 assert(SrcM
&& "Null Source Module");
854 // Inherit the target data from the source module if the destination module
855 // doesn't have one already.
856 if (DstM
->getDataLayout().empty() && !SrcM
->getDataLayout().empty())
857 DstM
->setDataLayout(SrcM
->getDataLayout());
859 // Copy the target triple from the source to dest if the dest's is empty.
860 if (DstM
->getTargetTriple().empty() && !SrcM
->getTargetTriple().empty())
861 DstM
->setTargetTriple(SrcM
->getTargetTriple());
863 if (!SrcM
->getDataLayout().empty() && !DstM
->getDataLayout().empty() &&
864 SrcM
->getDataLayout() != DstM
->getDataLayout())
865 errs() << "WARNING: Linking two modules of different data layouts!\n";
866 if (!SrcM
->getTargetTriple().empty() &&
867 DstM
->getTargetTriple() != SrcM
->getTargetTriple()) {
868 errs() << "WARNING: Linking two modules of different target triples: ";
869 if (!SrcM
->getModuleIdentifier().empty())
870 errs() << SrcM
->getModuleIdentifier() << ": ";
871 errs() << "'" << SrcM
->getTargetTriple() << "' and '"
872 << DstM
->getTargetTriple() << "'\n";
875 // Append the module inline asm string.
876 if (!SrcM
->getModuleInlineAsm().empty()) {
877 if (DstM
->getModuleInlineAsm().empty())
878 DstM
->setModuleInlineAsm(SrcM
->getModuleInlineAsm());
880 DstM
->setModuleInlineAsm(DstM
->getModuleInlineAsm()+"\n"+
881 SrcM
->getModuleInlineAsm());
884 // Update the destination module's dependent libraries list with the libraries
885 // from the source module. There's no opportunity for duplicates here as the
886 // Module ensures that duplicate insertions are discarded.
887 for (Module::lib_iterator SI
= SrcM
->lib_begin(), SE
= SrcM
->lib_end();
889 DstM
->addLibrary(*SI
);
891 // If the source library's module id is in the dependent library list of the
892 // destination library, remove it since that module is now linked in.
893 StringRef ModuleId
= SrcM
->getModuleIdentifier();
894 if (!ModuleId
.empty())
895 DstM
->removeLibrary(sys::path::stem(ModuleId
));
898 // Loop over all of the linked values to compute type mappings.
899 computeTypeMapping();
901 // Insert all of the globals in src into the DstM module... without linking
902 // initializers (which could refer to functions not yet mapped over).
903 for (Module::global_iterator I
= SrcM
->global_begin(),
904 E
= SrcM
->global_end(); I
!= E
; ++I
)
905 if (linkGlobalProto(I
))
908 // Link the functions together between the two modules, without doing function
909 // bodies... this just adds external function prototypes to the DstM
910 // function... We do this so that when we begin processing function bodies,
911 // all of the global values that may be referenced are available in our
913 for (Module::iterator I
= SrcM
->begin(), E
= SrcM
->end(); I
!= E
; ++I
)
914 if (linkFunctionProto(I
))
917 // If there were any aliases, link them now.
918 for (Module::alias_iterator I
= SrcM
->alias_begin(),
919 E
= SrcM
->alias_end(); I
!= E
; ++I
)
920 if (linkAliasProto(I
))
923 for (unsigned i
= 0, e
= AppendingVars
.size(); i
!= e
; ++i
)
924 linkAppendingVarInit(AppendingVars
[i
]);
926 // Update the initializers in the DstM module now that all globals that may
927 // be referenced are in DstM.
930 // Link in the function bodies that are defined in the source module into
932 for (Module::iterator SF
= SrcM
->begin(), E
= SrcM
->end(); SF
!= E
; ++SF
) {
933 if (SF
->isDeclaration()) continue; // No body if function is external.
935 linkFunctionBody(cast
<Function
>(ValueMap
[SF
]), SF
);
938 // Resolve all uses of aliases with aliasees.
941 // Remap all of the named mdnoes in Src into the DstM module. We do this
942 // after linking GlobalValues so that MDNodes that reference GlobalValues
943 // are properly remapped.
946 // Now that all of the types from the source are used, resolve any structs
947 // copied over to the dest that didn't exist there.
948 TypeMap
.linkDefinedTypeBodies();
953 //===----------------------------------------------------------------------===//
954 // LinkModules entrypoint.
955 //===----------------------------------------------------------------------===//
957 // LinkModules - This function links two modules together, with the resulting
958 // left module modified to be the composite of the two input modules. If an
959 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
960 // the problem. Upon failure, the Dest module could be in a modified state, and
961 // shouldn't be relied on to be consistent.
962 bool Linker::LinkModules(Module
*Dest
, Module
*Src
, std::string
*ErrorMsg
) {
963 ModuleLinker
TheLinker(Dest
, Src
);
964 if (TheLinker
.run()) {
965 if (ErrorMsg
) *ErrorMsg
= TheLinker
.ErrorMsg
;