1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Target/TargetAsmBackend.h"
12 #include "X86FixupKinds.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAssembler.h"
15 #include "llvm/MC/MCELFObjectWriter.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCMachObjectWriter.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionCOFF.h"
21 #include "llvm/MC/MCSectionELF.h"
22 #include "llvm/MC/MCSectionMachO.h"
23 #include "llvm/Object/MachOFormat.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/ELF.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetRegistry.h"
29 #include "llvm/Target/TargetAsmBackend.h"
32 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
33 // is useful when running bitwise comparison experiments on Darwin. We should be
34 // able to remove this once PR9807 is resolved.
36 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
37 cl::desc("Disable relaxation of arithmetic instruction for X86"));
39 static unsigned getFixupKindLog2Size(unsigned Kind
) {
41 default: assert(0 && "invalid fixup kind!");
43 case FK_Data_1
: return 0;
45 case FK_Data_2
: return 1;
47 case X86::reloc_riprel_4byte
:
48 case X86::reloc_riprel_4byte_movq_load
:
49 case X86::reloc_signed_4byte
:
50 case X86::reloc_global_offset_table
:
51 case FK_Data_4
: return 2;
53 case FK_Data_8
: return 3;
59 class X86ELFObjectWriter
: public MCELFObjectTargetWriter
{
61 X86ELFObjectWriter(bool is64Bit
, Triple::OSType OSType
, uint16_t EMachine
,
62 bool HasRelocationAddend
)
63 : MCELFObjectTargetWriter(is64Bit
, OSType
, EMachine
, HasRelocationAddend
) {}
66 class X86AsmBackend
: public TargetAsmBackend
{
68 X86AsmBackend(const Target
&T
)
69 : TargetAsmBackend() {}
71 unsigned getNumFixupKinds() const {
72 return X86::NumTargetFixupKinds
;
75 const MCFixupKindInfo
&getFixupKindInfo(MCFixupKind Kind
) const {
76 const static MCFixupKindInfo Infos
[X86::NumTargetFixupKinds
] = {
77 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel
},
78 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel
},
79 { "reloc_signed_4byte", 0, 4 * 8, 0},
80 { "reloc_global_offset_table", 0, 4 * 8, 0}
83 if (Kind
< FirstTargetFixupKind
)
84 return TargetAsmBackend::getFixupKindInfo(Kind
);
86 assert(unsigned(Kind
- FirstTargetFixupKind
) < getNumFixupKinds() &&
88 return Infos
[Kind
- FirstTargetFixupKind
];
91 void ApplyFixup(const MCFixup
&Fixup
, char *Data
, unsigned DataSize
,
92 uint64_t Value
) const {
93 unsigned Size
= 1 << getFixupKindLog2Size(Fixup
.getKind());
95 assert(Fixup
.getOffset() + Size
<= DataSize
&&
96 "Invalid fixup offset!");
97 for (unsigned i
= 0; i
!= Size
; ++i
)
98 Data
[Fixup
.getOffset() + i
] = uint8_t(Value
>> (i
* 8));
101 bool MayNeedRelaxation(const MCInst
&Inst
) const;
103 void RelaxInstruction(const MCInst
&Inst
, MCInst
&Res
) const;
105 bool WriteNopData(uint64_t Count
, MCObjectWriter
*OW
) const;
107 } // end anonymous namespace
109 static unsigned getRelaxedOpcodeBranch(unsigned Op
) {
114 case X86::JAE_1
: return X86::JAE_4
;
115 case X86::JA_1
: return X86::JA_4
;
116 case X86::JBE_1
: return X86::JBE_4
;
117 case X86::JB_1
: return X86::JB_4
;
118 case X86::JE_1
: return X86::JE_4
;
119 case X86::JGE_1
: return X86::JGE_4
;
120 case X86::JG_1
: return X86::JG_4
;
121 case X86::JLE_1
: return X86::JLE_4
;
122 case X86::JL_1
: return X86::JL_4
;
123 case X86::JMP_1
: return X86::JMP_4
;
124 case X86::JNE_1
: return X86::JNE_4
;
125 case X86::JNO_1
: return X86::JNO_4
;
126 case X86::JNP_1
: return X86::JNP_4
;
127 case X86::JNS_1
: return X86::JNS_4
;
128 case X86::JO_1
: return X86::JO_4
;
129 case X86::JP_1
: return X86::JP_4
;
130 case X86::JS_1
: return X86::JS_4
;
134 static unsigned getRelaxedOpcodeArith(unsigned Op
) {
140 case X86::IMUL16rri8
: return X86::IMUL16rri
;
141 case X86::IMUL16rmi8
: return X86::IMUL16rmi
;
142 case X86::IMUL32rri8
: return X86::IMUL32rri
;
143 case X86::IMUL32rmi8
: return X86::IMUL32rmi
;
144 case X86::IMUL64rri8
: return X86::IMUL64rri32
;
145 case X86::IMUL64rmi8
: return X86::IMUL64rmi32
;
148 case X86::AND16ri8
: return X86::AND16ri
;
149 case X86::AND16mi8
: return X86::AND16mi
;
150 case X86::AND32ri8
: return X86::AND32ri
;
151 case X86::AND32mi8
: return X86::AND32mi
;
152 case X86::AND64ri8
: return X86::AND64ri32
;
153 case X86::AND64mi8
: return X86::AND64mi32
;
156 case X86::OR16ri8
: return X86::OR16ri
;
157 case X86::OR16mi8
: return X86::OR16mi
;
158 case X86::OR32ri8
: return X86::OR32ri
;
159 case X86::OR32mi8
: return X86::OR32mi
;
160 case X86::OR64ri8
: return X86::OR64ri32
;
161 case X86::OR64mi8
: return X86::OR64mi32
;
164 case X86::XOR16ri8
: return X86::XOR16ri
;
165 case X86::XOR16mi8
: return X86::XOR16mi
;
166 case X86::XOR32ri8
: return X86::XOR32ri
;
167 case X86::XOR32mi8
: return X86::XOR32mi
;
168 case X86::XOR64ri8
: return X86::XOR64ri32
;
169 case X86::XOR64mi8
: return X86::XOR64mi32
;
172 case X86::ADD16ri8
: return X86::ADD16ri
;
173 case X86::ADD16mi8
: return X86::ADD16mi
;
174 case X86::ADD32ri8
: return X86::ADD32ri
;
175 case X86::ADD32mi8
: return X86::ADD32mi
;
176 case X86::ADD64ri8
: return X86::ADD64ri32
;
177 case X86::ADD64mi8
: return X86::ADD64mi32
;
180 case X86::SUB16ri8
: return X86::SUB16ri
;
181 case X86::SUB16mi8
: return X86::SUB16mi
;
182 case X86::SUB32ri8
: return X86::SUB32ri
;
183 case X86::SUB32mi8
: return X86::SUB32mi
;
184 case X86::SUB64ri8
: return X86::SUB64ri32
;
185 case X86::SUB64mi8
: return X86::SUB64mi32
;
188 case X86::CMP16ri8
: return X86::CMP16ri
;
189 case X86::CMP16mi8
: return X86::CMP16mi
;
190 case X86::CMP32ri8
: return X86::CMP32ri
;
191 case X86::CMP32mi8
: return X86::CMP32mi
;
192 case X86::CMP64ri8
: return X86::CMP64ri32
;
193 case X86::CMP64mi8
: return X86::CMP64mi32
;
196 case X86::PUSHi8
: return X86::PUSHi32
;
200 static unsigned getRelaxedOpcode(unsigned Op
) {
201 unsigned R
= getRelaxedOpcodeArith(Op
);
204 return getRelaxedOpcodeBranch(Op
);
207 bool X86AsmBackend::MayNeedRelaxation(const MCInst
&Inst
) const {
208 // Branches can always be relaxed.
209 if (getRelaxedOpcodeBranch(Inst
.getOpcode()) != Inst
.getOpcode())
212 if (MCDisableArithRelaxation
)
215 // Check if this instruction is ever relaxable.
216 if (getRelaxedOpcodeArith(Inst
.getOpcode()) == Inst
.getOpcode())
220 // Check if it has an expression and is not RIP relative.
223 for (unsigned i
= 0; i
< Inst
.getNumOperands(); ++i
) {
224 const MCOperand
&Op
= Inst
.getOperand(i
);
228 if (Op
.isReg() && Op
.getReg() == X86::RIP
)
232 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
233 // how we do relaxations?
234 return hasExp
&& !hasRIP
;
237 // FIXME: Can tblgen help at all here to verify there aren't other instructions
239 void X86AsmBackend::RelaxInstruction(const MCInst
&Inst
, MCInst
&Res
) const {
240 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
241 unsigned RelaxedOp
= getRelaxedOpcode(Inst
.getOpcode());
243 if (RelaxedOp
== Inst
.getOpcode()) {
244 SmallString
<256> Tmp
;
245 raw_svector_ostream
OS(Tmp
);
246 Inst
.dump_pretty(OS
);
248 report_fatal_error("unexpected instruction to relax: " + OS
.str());
252 Res
.setOpcode(RelaxedOp
);
255 /// WriteNopData - Write optimal nops to the output file for the \arg Count
256 /// bytes. This returns the number of bytes written. It may return 0 if
257 /// the \arg Count is more than the maximum optimal nops.
258 bool X86AsmBackend::WriteNopData(uint64_t Count
, MCObjectWriter
*OW
) const {
259 static const uint8_t Nops
[10][10] = {
267 {0x0f, 0x1f, 0x40, 0x00},
268 // nopl 0(%[re]ax,%[re]ax,1)
269 {0x0f, 0x1f, 0x44, 0x00, 0x00},
270 // nopw 0(%[re]ax,%[re]ax,1)
271 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
273 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
274 // nopl 0L(%[re]ax,%[re]ax,1)
275 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
276 // nopw 0L(%[re]ax,%[re]ax,1)
277 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
278 // nopw %cs:0L(%[re]ax,%[re]ax,1)
279 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
282 // Write an optimal sequence for the first 15 bytes.
283 const uint64_t OptimalCount
= (Count
< 16) ? Count
: 15;
284 const uint64_t Prefixes
= OptimalCount
<= 10 ? 0 : OptimalCount
- 10;
285 for (uint64_t i
= 0, e
= Prefixes
; i
!= e
; i
++)
287 const uint64_t Rest
= OptimalCount
- Prefixes
;
288 for (uint64_t i
= 0, e
= Rest
; i
!= e
; i
++)
289 OW
->Write8(Nops
[Rest
- 1][i
]);
291 // Finish with single byte nops.
292 for (uint64_t i
= OptimalCount
, e
= Count
; i
!= e
; ++i
)
301 class ELFX86AsmBackend
: public X86AsmBackend
{
303 Triple::OSType OSType
;
304 ELFX86AsmBackend(const Target
&T
, Triple::OSType _OSType
)
305 : X86AsmBackend(T
), OSType(_OSType
) {
306 HasReliableSymbolDifference
= true;
309 virtual bool doesSectionRequireSymbols(const MCSection
&Section
) const {
310 const MCSectionELF
&ES
= static_cast<const MCSectionELF
&>(Section
);
311 return ES
.getFlags() & ELF::SHF_MERGE
;
315 class ELFX86_32AsmBackend
: public ELFX86AsmBackend
{
317 ELFX86_32AsmBackend(const Target
&T
, Triple::OSType OSType
)
318 : ELFX86AsmBackend(T
, OSType
) {}
320 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
321 return createELFObjectWriter(createELFObjectTargetWriter(),
322 OS
, /*IsLittleEndian*/ true);
325 MCELFObjectTargetWriter
*createELFObjectTargetWriter() const {
326 return new X86ELFObjectWriter(false, OSType
, ELF::EM_386
, false);
330 class ELFX86_64AsmBackend
: public ELFX86AsmBackend
{
332 ELFX86_64AsmBackend(const Target
&T
, Triple::OSType OSType
)
333 : ELFX86AsmBackend(T
, OSType
) {}
335 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
336 return createELFObjectWriter(createELFObjectTargetWriter(),
337 OS
, /*IsLittleEndian*/ true);
340 MCELFObjectTargetWriter
*createELFObjectTargetWriter() const {
341 return new X86ELFObjectWriter(true, OSType
, ELF::EM_X86_64
, true);
345 class WindowsX86AsmBackend
: public X86AsmBackend
{
349 WindowsX86AsmBackend(const Target
&T
, bool is64Bit
)
354 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
355 return createWinCOFFObjectWriter(OS
, Is64Bit
);
359 class DarwinX86AsmBackend
: public X86AsmBackend
{
361 DarwinX86AsmBackend(const Target
&T
)
362 : X86AsmBackend(T
) { }
365 class DarwinX86_32AsmBackend
: public DarwinX86AsmBackend
{
367 DarwinX86_32AsmBackend(const Target
&T
)
368 : DarwinX86AsmBackend(T
) {}
370 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
371 return createX86MachObjectWriter(OS
, /*Is64Bit=*/false,
372 object::mach::CTM_i386
,
373 object::mach::CSX86_ALL
);
377 class DarwinX86_64AsmBackend
: public DarwinX86AsmBackend
{
379 DarwinX86_64AsmBackend(const Target
&T
)
380 : DarwinX86AsmBackend(T
) {
381 HasReliableSymbolDifference
= true;
384 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
385 return createX86MachObjectWriter(OS
, /*Is64Bit=*/true,
386 object::mach::CTM_x86_64
,
387 object::mach::CSX86_ALL
);
390 virtual bool doesSectionRequireSymbols(const MCSection
&Section
) const {
391 // Temporary labels in the string literals sections require symbols. The
392 // issue is that the x86_64 relocation format does not allow symbol +
393 // offset, and so the linker does not have enough information to resolve the
394 // access to the appropriate atom unless an external relocation is used. For
395 // non-cstring sections, we expect the compiler to use a non-temporary label
396 // for anything that could have an addend pointing outside the symbol.
398 // See <rdar://problem/4765733>.
399 const MCSectionMachO
&SMO
= static_cast<const MCSectionMachO
&>(Section
);
400 return SMO
.getType() == MCSectionMachO::S_CSTRING_LITERALS
;
403 virtual bool isSectionAtomizable(const MCSection
&Section
) const {
404 const MCSectionMachO
&SMO
= static_cast<const MCSectionMachO
&>(Section
);
405 // Fixed sized data sections are uniqued, they cannot be diced into atoms.
406 switch (SMO
.getType()) {
410 case MCSectionMachO::S_4BYTE_LITERALS
:
411 case MCSectionMachO::S_8BYTE_LITERALS
:
412 case MCSectionMachO::S_16BYTE_LITERALS
:
413 case MCSectionMachO::S_LITERAL_POINTERS
:
414 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS
:
415 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS
:
416 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS
:
417 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS
:
418 case MCSectionMachO::S_INTERPOSING
:
424 } // end anonymous namespace
426 TargetAsmBackend
*llvm::createX86_32AsmBackend(const Target
&T
,
427 const std::string
&TT
) {
428 Triple
TheTriple(TT
);
430 if (TheTriple
.isOSDarwin() || TheTriple
.getEnvironment() == Triple::MachO
)
431 return new DarwinX86_32AsmBackend(T
);
433 if (TheTriple
.isOSWindows())
434 return new WindowsX86AsmBackend(T
, false);
436 return new ELFX86_32AsmBackend(T
, TheTriple
.getOS());
439 TargetAsmBackend
*llvm::createX86_64AsmBackend(const Target
&T
,
440 const std::string
&TT
) {
441 Triple
TheTriple(TT
);
443 if (TheTriple
.isOSDarwin() || TheTriple
.getEnvironment() == Triple::MachO
)
444 return new DarwinX86_64AsmBackend(T
);
446 if (TheTriple
.isOSWindows())
447 return new WindowsX86AsmBackend(T
, true);
449 return new ELFX86_64AsmBackend(T
, TheTriple
.getOS());