the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / lib / Target / X86 / X86AsmBackend.cpp
blob4d7d96dcb36bd9150ceae86304626bab8a6bd936
1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Target/TargetAsmBackend.h"
11 #include "X86.h"
12 #include "X86FixupKinds.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAssembler.h"
15 #include "llvm/MC/MCELFObjectWriter.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCMachObjectWriter.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionCOFF.h"
21 #include "llvm/MC/MCSectionELF.h"
22 #include "llvm/MC/MCSectionMachO.h"
23 #include "llvm/Object/MachOFormat.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/ELF.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetRegistry.h"
29 #include "llvm/Target/TargetAsmBackend.h"
30 using namespace llvm;
32 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
33 // is useful when running bitwise comparison experiments on Darwin. We should be
34 // able to remove this once PR9807 is resolved.
35 static cl::opt<bool>
36 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
37 cl::desc("Disable relaxation of arithmetic instruction for X86"));
39 static unsigned getFixupKindLog2Size(unsigned Kind) {
40 switch (Kind) {
41 default: assert(0 && "invalid fixup kind!");
42 case FK_PCRel_1:
43 case FK_Data_1: return 0;
44 case FK_PCRel_2:
45 case FK_Data_2: return 1;
46 case FK_PCRel_4:
47 case X86::reloc_riprel_4byte:
48 case X86::reloc_riprel_4byte_movq_load:
49 case X86::reloc_signed_4byte:
50 case X86::reloc_global_offset_table:
51 case FK_Data_4: return 2;
52 case FK_PCRel_8:
53 case FK_Data_8: return 3;
57 namespace {
59 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
60 public:
61 X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine,
62 bool HasRelocationAddend)
63 : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {}
66 class X86AsmBackend : public TargetAsmBackend {
67 public:
68 X86AsmBackend(const Target &T)
69 : TargetAsmBackend() {}
71 unsigned getNumFixupKinds() const {
72 return X86::NumTargetFixupKinds;
75 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
76 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
77 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
78 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
79 { "reloc_signed_4byte", 0, 4 * 8, 0},
80 { "reloc_global_offset_table", 0, 4 * 8, 0}
83 if (Kind < FirstTargetFixupKind)
84 return TargetAsmBackend::getFixupKindInfo(Kind);
86 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
87 "Invalid kind!");
88 return Infos[Kind - FirstTargetFixupKind];
91 void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
92 uint64_t Value) const {
93 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
95 assert(Fixup.getOffset() + Size <= DataSize &&
96 "Invalid fixup offset!");
97 for (unsigned i = 0; i != Size; ++i)
98 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
101 bool MayNeedRelaxation(const MCInst &Inst) const;
103 void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
105 bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
107 } // end anonymous namespace
109 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
110 switch (Op) {
111 default:
112 return Op;
114 case X86::JAE_1: return X86::JAE_4;
115 case X86::JA_1: return X86::JA_4;
116 case X86::JBE_1: return X86::JBE_4;
117 case X86::JB_1: return X86::JB_4;
118 case X86::JE_1: return X86::JE_4;
119 case X86::JGE_1: return X86::JGE_4;
120 case X86::JG_1: return X86::JG_4;
121 case X86::JLE_1: return X86::JLE_4;
122 case X86::JL_1: return X86::JL_4;
123 case X86::JMP_1: return X86::JMP_4;
124 case X86::JNE_1: return X86::JNE_4;
125 case X86::JNO_1: return X86::JNO_4;
126 case X86::JNP_1: return X86::JNP_4;
127 case X86::JNS_1: return X86::JNS_4;
128 case X86::JO_1: return X86::JO_4;
129 case X86::JP_1: return X86::JP_4;
130 case X86::JS_1: return X86::JS_4;
134 static unsigned getRelaxedOpcodeArith(unsigned Op) {
135 switch (Op) {
136 default:
137 return Op;
139 // IMUL
140 case X86::IMUL16rri8: return X86::IMUL16rri;
141 case X86::IMUL16rmi8: return X86::IMUL16rmi;
142 case X86::IMUL32rri8: return X86::IMUL32rri;
143 case X86::IMUL32rmi8: return X86::IMUL32rmi;
144 case X86::IMUL64rri8: return X86::IMUL64rri32;
145 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
147 // AND
148 case X86::AND16ri8: return X86::AND16ri;
149 case X86::AND16mi8: return X86::AND16mi;
150 case X86::AND32ri8: return X86::AND32ri;
151 case X86::AND32mi8: return X86::AND32mi;
152 case X86::AND64ri8: return X86::AND64ri32;
153 case X86::AND64mi8: return X86::AND64mi32;
155 // OR
156 case X86::OR16ri8: return X86::OR16ri;
157 case X86::OR16mi8: return X86::OR16mi;
158 case X86::OR32ri8: return X86::OR32ri;
159 case X86::OR32mi8: return X86::OR32mi;
160 case X86::OR64ri8: return X86::OR64ri32;
161 case X86::OR64mi8: return X86::OR64mi32;
163 // XOR
164 case X86::XOR16ri8: return X86::XOR16ri;
165 case X86::XOR16mi8: return X86::XOR16mi;
166 case X86::XOR32ri8: return X86::XOR32ri;
167 case X86::XOR32mi8: return X86::XOR32mi;
168 case X86::XOR64ri8: return X86::XOR64ri32;
169 case X86::XOR64mi8: return X86::XOR64mi32;
171 // ADD
172 case X86::ADD16ri8: return X86::ADD16ri;
173 case X86::ADD16mi8: return X86::ADD16mi;
174 case X86::ADD32ri8: return X86::ADD32ri;
175 case X86::ADD32mi8: return X86::ADD32mi;
176 case X86::ADD64ri8: return X86::ADD64ri32;
177 case X86::ADD64mi8: return X86::ADD64mi32;
179 // SUB
180 case X86::SUB16ri8: return X86::SUB16ri;
181 case X86::SUB16mi8: return X86::SUB16mi;
182 case X86::SUB32ri8: return X86::SUB32ri;
183 case X86::SUB32mi8: return X86::SUB32mi;
184 case X86::SUB64ri8: return X86::SUB64ri32;
185 case X86::SUB64mi8: return X86::SUB64mi32;
187 // CMP
188 case X86::CMP16ri8: return X86::CMP16ri;
189 case X86::CMP16mi8: return X86::CMP16mi;
190 case X86::CMP32ri8: return X86::CMP32ri;
191 case X86::CMP32mi8: return X86::CMP32mi;
192 case X86::CMP64ri8: return X86::CMP64ri32;
193 case X86::CMP64mi8: return X86::CMP64mi32;
195 // PUSH
196 case X86::PUSHi8: return X86::PUSHi32;
200 static unsigned getRelaxedOpcode(unsigned Op) {
201 unsigned R = getRelaxedOpcodeArith(Op);
202 if (R != Op)
203 return R;
204 return getRelaxedOpcodeBranch(Op);
207 bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
208 // Branches can always be relaxed.
209 if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
210 return true;
212 if (MCDisableArithRelaxation)
213 return false;
215 // Check if this instruction is ever relaxable.
216 if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
217 return false;
220 // Check if it has an expression and is not RIP relative.
221 bool hasExp = false;
222 bool hasRIP = false;
223 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
224 const MCOperand &Op = Inst.getOperand(i);
225 if (Op.isExpr())
226 hasExp = true;
228 if (Op.isReg() && Op.getReg() == X86::RIP)
229 hasRIP = true;
232 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
233 // how we do relaxations?
234 return hasExp && !hasRIP;
237 // FIXME: Can tblgen help at all here to verify there aren't other instructions
238 // we can relax?
239 void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
240 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
241 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
243 if (RelaxedOp == Inst.getOpcode()) {
244 SmallString<256> Tmp;
245 raw_svector_ostream OS(Tmp);
246 Inst.dump_pretty(OS);
247 OS << "\n";
248 report_fatal_error("unexpected instruction to relax: " + OS.str());
251 Res = Inst;
252 Res.setOpcode(RelaxedOp);
255 /// WriteNopData - Write optimal nops to the output file for the \arg Count
256 /// bytes. This returns the number of bytes written. It may return 0 if
257 /// the \arg Count is more than the maximum optimal nops.
258 bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
259 static const uint8_t Nops[10][10] = {
260 // nop
261 {0x90},
262 // xchg %ax,%ax
263 {0x66, 0x90},
264 // nopl (%[re]ax)
265 {0x0f, 0x1f, 0x00},
266 // nopl 0(%[re]ax)
267 {0x0f, 0x1f, 0x40, 0x00},
268 // nopl 0(%[re]ax,%[re]ax,1)
269 {0x0f, 0x1f, 0x44, 0x00, 0x00},
270 // nopw 0(%[re]ax,%[re]ax,1)
271 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
272 // nopl 0L(%[re]ax)
273 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
274 // nopl 0L(%[re]ax,%[re]ax,1)
275 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
276 // nopw 0L(%[re]ax,%[re]ax,1)
277 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
278 // nopw %cs:0L(%[re]ax,%[re]ax,1)
279 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
282 // Write an optimal sequence for the first 15 bytes.
283 const uint64_t OptimalCount = (Count < 16) ? Count : 15;
284 const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
285 for (uint64_t i = 0, e = Prefixes; i != e; i++)
286 OW->Write8(0x66);
287 const uint64_t Rest = OptimalCount - Prefixes;
288 for (uint64_t i = 0, e = Rest; i != e; i++)
289 OW->Write8(Nops[Rest - 1][i]);
291 // Finish with single byte nops.
292 for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
293 OW->Write8(0x90);
295 return true;
298 /* *** */
300 namespace {
301 class ELFX86AsmBackend : public X86AsmBackend {
302 public:
303 Triple::OSType OSType;
304 ELFX86AsmBackend(const Target &T, Triple::OSType _OSType)
305 : X86AsmBackend(T), OSType(_OSType) {
306 HasReliableSymbolDifference = true;
309 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
310 const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
311 return ES.getFlags() & ELF::SHF_MERGE;
315 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
316 public:
317 ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType)
318 : ELFX86AsmBackend(T, OSType) {}
320 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
321 return createELFObjectWriter(createELFObjectTargetWriter(),
322 OS, /*IsLittleEndian*/ true);
325 MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
326 return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false);
330 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
331 public:
332 ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType)
333 : ELFX86AsmBackend(T, OSType) {}
335 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
336 return createELFObjectWriter(createELFObjectTargetWriter(),
337 OS, /*IsLittleEndian*/ true);
340 MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
341 return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true);
345 class WindowsX86AsmBackend : public X86AsmBackend {
346 bool Is64Bit;
348 public:
349 WindowsX86AsmBackend(const Target &T, bool is64Bit)
350 : X86AsmBackend(T)
351 , Is64Bit(is64Bit) {
354 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
355 return createWinCOFFObjectWriter(OS, Is64Bit);
359 class DarwinX86AsmBackend : public X86AsmBackend {
360 public:
361 DarwinX86AsmBackend(const Target &T)
362 : X86AsmBackend(T) { }
365 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
366 public:
367 DarwinX86_32AsmBackend(const Target &T)
368 : DarwinX86AsmBackend(T) {}
370 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
371 return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
372 object::mach::CTM_i386,
373 object::mach::CSX86_ALL);
377 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
378 public:
379 DarwinX86_64AsmBackend(const Target &T)
380 : DarwinX86AsmBackend(T) {
381 HasReliableSymbolDifference = true;
384 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
385 return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
386 object::mach::CTM_x86_64,
387 object::mach::CSX86_ALL);
390 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
391 // Temporary labels in the string literals sections require symbols. The
392 // issue is that the x86_64 relocation format does not allow symbol +
393 // offset, and so the linker does not have enough information to resolve the
394 // access to the appropriate atom unless an external relocation is used. For
395 // non-cstring sections, we expect the compiler to use a non-temporary label
396 // for anything that could have an addend pointing outside the symbol.
398 // See <rdar://problem/4765733>.
399 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
400 return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
403 virtual bool isSectionAtomizable(const MCSection &Section) const {
404 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
405 // Fixed sized data sections are uniqued, they cannot be diced into atoms.
406 switch (SMO.getType()) {
407 default:
408 return true;
410 case MCSectionMachO::S_4BYTE_LITERALS:
411 case MCSectionMachO::S_8BYTE_LITERALS:
412 case MCSectionMachO::S_16BYTE_LITERALS:
413 case MCSectionMachO::S_LITERAL_POINTERS:
414 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
415 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
416 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
417 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
418 case MCSectionMachO::S_INTERPOSING:
419 return false;
424 } // end anonymous namespace
426 TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
427 const std::string &TT) {
428 Triple TheTriple(TT);
430 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
431 return new DarwinX86_32AsmBackend(T);
433 if (TheTriple.isOSWindows())
434 return new WindowsX86AsmBackend(T, false);
436 return new ELFX86_32AsmBackend(T, TheTriple.getOS());
439 TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
440 const std::string &TT) {
441 Triple TheTriple(TT);
443 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
444 return new DarwinX86_64AsmBackend(T);
446 if (TheTriple.isOSWindows())
447 return new WindowsX86AsmBackend(T, true);
449 return new ELFX86_64AsmBackend(T, TheTriple.getOS());