the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / lib / Target / X86 / X86FloatingPoint.cpp
blob6eed6abd43e25d5bae30f24ce0c375070259b0ea
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
24 //===----------------------------------------------------------------------===//
26 #define DEBUG_TYPE "x86-codegen"
27 #include "X86.h"
28 #include "X86InstrInfo.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/InlineAsm.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include <algorithm>
47 using namespace llvm;
49 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
50 STATISTIC(NumFP , "Number of floating point instructions");
52 namespace {
53 struct FPS : public MachineFunctionPass {
54 static char ID;
55 FPS() : MachineFunctionPass(ID) {
56 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
57 // This is really only to keep valgrind quiet.
58 // The logic in isLive() is too much for it.
59 memset(Stack, 0, sizeof(Stack));
60 memset(RegMap, 0, sizeof(RegMap));
63 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.setPreservesCFG();
65 AU.addRequired<EdgeBundles>();
66 AU.addPreservedID(MachineLoopInfoID);
67 AU.addPreservedID(MachineDominatorsID);
68 MachineFunctionPass::getAnalysisUsage(AU);
71 virtual bool runOnMachineFunction(MachineFunction &MF);
73 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
75 private:
76 const TargetInstrInfo *TII; // Machine instruction info.
78 // Two CFG edges are related if they leave the same block, or enter the same
79 // block. The transitive closure of an edge under this relation is a
80 // LiveBundle. It represents a set of CFG edges where the live FP stack
81 // registers must be allocated identically in the x87 stack.
83 // A LiveBundle is usually all the edges leaving a block, or all the edges
84 // entering a block, but it can contain more edges if critical edges are
85 // present.
87 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
88 // but the exact mapping of FP registers to stack slots is fixed later.
89 struct LiveBundle {
90 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
91 unsigned Mask;
93 // Number of pre-assigned live registers in FixStack. This is 0 when the
94 // stack order has not yet been fixed.
95 unsigned FixCount;
97 // Assigned stack order for live-in registers.
98 // FixStack[i] == getStackEntry(i) for all i < FixCount.
99 unsigned char FixStack[8];
101 LiveBundle() : Mask(0), FixCount(0) {}
103 // Have the live registers been assigned a stack order yet?
104 bool isFixed() const { return !Mask || FixCount; }
107 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
108 // with no live FP registers.
109 SmallVector<LiveBundle, 8> LiveBundles;
111 // The edge bundle analysis provides indices into the LiveBundles vector.
112 EdgeBundles *Bundles;
114 // Return a bitmask of FP registers in block's live-in list.
115 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
116 unsigned Mask = 0;
117 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
118 E = MBB->livein_end(); I != E; ++I) {
119 unsigned Reg = *I - X86::FP0;
120 if (Reg < 8)
121 Mask |= 1 << Reg;
123 return Mask;
126 // Partition all the CFG edges into LiveBundles.
127 void bundleCFG(MachineFunction &MF);
129 MachineBasicBlock *MBB; // Current basic block
131 // The hardware keeps track of how many FP registers are live, so we have
132 // to model that exactly. Usually, each live register corresponds to an
133 // FP<n> register, but when dealing with calls, returns, and inline
134 // assembly, it is sometimes neccesary to have live scratch registers.
135 unsigned Stack[8]; // FP<n> Registers in each stack slot...
136 unsigned StackTop; // The current top of the FP stack.
138 enum {
139 NumFPRegs = 16 // Including scratch pseudo-registers.
142 // For each live FP<n> register, point to its Stack[] entry.
143 // The first entries correspond to FP0-FP6, the rest are scratch registers
144 // used when we need slightly different live registers than what the
145 // register allocator thinks.
146 unsigned RegMap[NumFPRegs];
148 // Pending fixed registers - Inline assembly needs FP registers to appear
149 // in fixed stack slot positions. This is handled by copying FP registers
150 // to ST registers before the instruction, and copying back after the
151 // instruction.
153 // This is modeled with pending ST registers. NumPendingSTs is the number
154 // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
155 // register that holds the ST value. The ST registers are not moved into
156 // place until immediately before the instruction that needs them.
158 // It can happen that we need an ST register to be live when no FP register
159 // holds the value:
161 // %ST0 = COPY %FP4<kill>
163 // When that happens, we allocate a scratch FP register to hold the ST
164 // value. That means every register in PendingST must be live.
166 unsigned NumPendingSTs;
167 unsigned char PendingST[8];
169 // Set up our stack model to match the incoming registers to MBB.
170 void setupBlockStack();
172 // Shuffle live registers to match the expectations of successor blocks.
173 void finishBlockStack();
175 void dumpStack() const {
176 dbgs() << "Stack contents:";
177 for (unsigned i = 0; i != StackTop; ++i) {
178 dbgs() << " FP" << Stack[i];
179 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
181 for (unsigned i = 0; i != NumPendingSTs; ++i)
182 dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
183 dbgs() << "\n";
186 /// getSlot - Return the stack slot number a particular register number is
187 /// in.
188 unsigned getSlot(unsigned RegNo) const {
189 assert(RegNo < NumFPRegs && "Regno out of range!");
190 return RegMap[RegNo];
193 /// isLive - Is RegNo currently live in the stack?
194 bool isLive(unsigned RegNo) const {
195 unsigned Slot = getSlot(RegNo);
196 return Slot < StackTop && Stack[Slot] == RegNo;
199 /// getScratchReg - Return an FP register that is not currently in use.
200 unsigned getScratchReg() {
201 for (int i = NumFPRegs - 1; i >= 8; --i)
202 if (!isLive(i))
203 return i;
204 llvm_unreachable("Ran out of scratch FP registers");
207 /// isScratchReg - Returns trus if RegNo is a scratch FP register.
208 bool isScratchReg(unsigned RegNo) {
209 return RegNo > 8 && RegNo < NumFPRegs;
212 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
213 unsigned getStackEntry(unsigned STi) const {
214 if (STi >= StackTop)
215 report_fatal_error("Access past stack top!");
216 return Stack[StackTop-1-STi];
219 /// getSTReg - Return the X86::ST(i) register which contains the specified
220 /// FP<RegNo> register.
221 unsigned getSTReg(unsigned RegNo) const {
222 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
225 // pushReg - Push the specified FP<n> register onto the stack.
226 void pushReg(unsigned Reg) {
227 assert(Reg < NumFPRegs && "Register number out of range!");
228 if (StackTop >= 8)
229 report_fatal_error("Stack overflow!");
230 Stack[StackTop] = Reg;
231 RegMap[Reg] = StackTop++;
234 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
235 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
236 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
237 if (isAtTop(RegNo)) return;
239 unsigned STReg = getSTReg(RegNo);
240 unsigned RegOnTop = getStackEntry(0);
242 // Swap the slots the regs are in.
243 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
245 // Swap stack slot contents.
246 if (RegMap[RegOnTop] >= StackTop)
247 report_fatal_error("Access past stack top!");
248 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
250 // Emit an fxch to update the runtime processors version of the state.
251 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
252 ++NumFXCH;
255 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
256 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
257 unsigned STReg = getSTReg(RegNo);
258 pushReg(AsReg); // New register on top of stack
260 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
263 /// popStackAfter - Pop the current value off of the top of the FP stack
264 /// after the specified instruction.
265 void popStackAfter(MachineBasicBlock::iterator &I);
267 /// freeStackSlotAfter - Free the specified register from the register
268 /// stack, so that it is no longer in a register. If the register is
269 /// currently at the top of the stack, we just pop the current instruction,
270 /// otherwise we store the current top-of-stack into the specified slot,
271 /// then pop the top of stack.
272 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
274 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
275 /// instruction.
276 MachineBasicBlock::iterator
277 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
279 /// Adjust the live registers to be the set in Mask.
280 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
282 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
283 /// st(0), FP reg FixStack[1] is st(1) etc.
284 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
285 MachineBasicBlock::iterator I);
287 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
289 void handleZeroArgFP(MachineBasicBlock::iterator &I);
290 void handleOneArgFP(MachineBasicBlock::iterator &I);
291 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
292 void handleTwoArgFP(MachineBasicBlock::iterator &I);
293 void handleCompareFP(MachineBasicBlock::iterator &I);
294 void handleCondMovFP(MachineBasicBlock::iterator &I);
295 void handleSpecialFP(MachineBasicBlock::iterator &I);
297 // Check if a COPY instruction is using FP registers.
298 bool isFPCopy(MachineInstr *MI) {
299 unsigned DstReg = MI->getOperand(0).getReg();
300 unsigned SrcReg = MI->getOperand(1).getReg();
302 return X86::RFP80RegClass.contains(DstReg) ||
303 X86::RFP80RegClass.contains(SrcReg);
306 char FPS::ID = 0;
309 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
311 /// getFPReg - Return the X86::FPx register number for the specified operand.
312 /// For example, this returns 3 for X86::FP3.
313 static unsigned getFPReg(const MachineOperand &MO) {
314 assert(MO.isReg() && "Expected an FP register!");
315 unsigned Reg = MO.getReg();
316 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
317 return Reg - X86::FP0;
320 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
321 /// register references into FP stack references.
323 bool FPS::runOnMachineFunction(MachineFunction &MF) {
324 // We only need to run this pass if there are any FP registers used in this
325 // function. If it is all integer, there is nothing for us to do!
326 bool FPIsUsed = false;
328 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
329 for (unsigned i = 0; i <= 6; ++i)
330 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
331 FPIsUsed = true;
332 break;
335 // Early exit.
336 if (!FPIsUsed) return false;
338 Bundles = &getAnalysis<EdgeBundles>();
339 TII = MF.getTarget().getInstrInfo();
341 // Prepare cross-MBB liveness.
342 bundleCFG(MF);
344 StackTop = 0;
346 // Process the function in depth first order so that we process at least one
347 // of the predecessors for every reachable block in the function.
348 SmallPtrSet<MachineBasicBlock*, 8> Processed;
349 MachineBasicBlock *Entry = MF.begin();
351 bool Changed = false;
352 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
353 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
354 I != E; ++I)
355 Changed |= processBasicBlock(MF, **I);
357 // Process any unreachable blocks in arbitrary order now.
358 if (MF.size() != Processed.size())
359 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
360 if (Processed.insert(BB))
361 Changed |= processBasicBlock(MF, *BB);
363 LiveBundles.clear();
365 return Changed;
368 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
369 /// live-out sets for the FP registers. Consistent means that the set of
370 /// registers live-out from a block is identical to the live-in set of all
371 /// successors. This is not enforced by the normal live-in lists since
372 /// registers may be implicitly defined, or not used by all successors.
373 void FPS::bundleCFG(MachineFunction &MF) {
374 assert(LiveBundles.empty() && "Stale data in LiveBundles");
375 LiveBundles.resize(Bundles->getNumBundles());
377 // Gather the actual live-in masks for all MBBs.
378 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
379 MachineBasicBlock *MBB = I;
380 const unsigned Mask = calcLiveInMask(MBB);
381 if (!Mask)
382 continue;
383 // Update MBB ingoing bundle mask.
384 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
388 /// processBasicBlock - Loop over all of the instructions in the basic block,
389 /// transforming FP instructions into their stack form.
391 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
392 bool Changed = false;
393 MBB = &BB;
394 NumPendingSTs = 0;
396 setupBlockStack();
398 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
399 MachineInstr *MI = I;
400 uint64_t Flags = MI->getDesc().TSFlags;
402 unsigned FPInstClass = Flags & X86II::FPTypeMask;
403 if (MI->isInlineAsm())
404 FPInstClass = X86II::SpecialFP;
406 if (MI->isCopy() && isFPCopy(MI))
407 FPInstClass = X86II::SpecialFP;
409 if (FPInstClass == X86II::NotFP)
410 continue; // Efficiently ignore non-fp insts!
412 MachineInstr *PrevMI = 0;
413 if (I != BB.begin())
414 PrevMI = prior(I);
416 ++NumFP; // Keep track of # of pseudo instrs
417 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
419 // Get dead variables list now because the MI pointer may be deleted as part
420 // of processing!
421 SmallVector<unsigned, 8> DeadRegs;
422 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
423 const MachineOperand &MO = MI->getOperand(i);
424 if (MO.isReg() && MO.isDead())
425 DeadRegs.push_back(MO.getReg());
428 switch (FPInstClass) {
429 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
430 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
431 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
432 case X86II::TwoArgFP: handleTwoArgFP(I); break;
433 case X86II::CompareFP: handleCompareFP(I); break;
434 case X86II::CondMovFP: handleCondMovFP(I); break;
435 case X86II::SpecialFP: handleSpecialFP(I); break;
436 default: llvm_unreachable("Unknown FP Type!");
439 // Check to see if any of the values defined by this instruction are dead
440 // after definition. If so, pop them.
441 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
442 unsigned Reg = DeadRegs[i];
443 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
444 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
445 freeStackSlotAfter(I, Reg-X86::FP0);
449 // Print out all of the instructions expanded to if -debug
450 DEBUG(
451 MachineBasicBlock::iterator PrevI(PrevMI);
452 if (I == PrevI) {
453 dbgs() << "Just deleted pseudo instruction\n";
454 } else {
455 MachineBasicBlock::iterator Start = I;
456 // Rewind to first instruction newly inserted.
457 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
458 dbgs() << "Inserted instructions:\n\t";
459 Start->print(dbgs(), &MF.getTarget());
460 while (++Start != llvm::next(I)) {}
462 dumpStack();
465 Changed = true;
468 finishBlockStack();
470 return Changed;
473 /// setupBlockStack - Use the live bundles to set up our model of the stack
474 /// to match predecessors' live out stack.
475 void FPS::setupBlockStack() {
476 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
477 << " derived from " << MBB->getName() << ".\n");
478 StackTop = 0;
479 // Get the live-in bundle for MBB.
480 const LiveBundle &Bundle =
481 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
483 if (!Bundle.Mask) {
484 DEBUG(dbgs() << "Block has no FP live-ins.\n");
485 return;
488 // Depth-first iteration should ensure that we always have an assigned stack.
489 assert(Bundle.isFixed() && "Reached block before any predecessors");
491 // Push the fixed live-in registers.
492 for (unsigned i = Bundle.FixCount; i > 0; --i) {
493 MBB->addLiveIn(X86::ST0+i-1);
494 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
495 << unsigned(Bundle.FixStack[i-1]) << '\n');
496 pushReg(Bundle.FixStack[i-1]);
499 // Kill off unwanted live-ins. This can happen with a critical edge.
500 // FIXME: We could keep these live registers around as zombies. They may need
501 // to be revived at the end of a short block. It might save a few instrs.
502 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
503 DEBUG(MBB->dump());
506 /// finishBlockStack - Revive live-outs that are implicitly defined out of
507 /// MBB. Shuffle live registers to match the expected fixed stack of any
508 /// predecessors, and ensure that all predecessors are expecting the same
509 /// stack.
510 void FPS::finishBlockStack() {
511 // The RET handling below takes care of return blocks for us.
512 if (MBB->succ_empty())
513 return;
515 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
516 << " derived from " << MBB->getName() << ".\n");
518 // Get MBB's live-out bundle.
519 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
520 LiveBundle &Bundle = LiveBundles[BundleIdx];
522 // We may need to kill and define some registers to match successors.
523 // FIXME: This can probably be combined with the shuffle below.
524 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
525 adjustLiveRegs(Bundle.Mask, Term);
527 if (!Bundle.Mask) {
528 DEBUG(dbgs() << "No live-outs.\n");
529 return;
532 // Has the stack order been fixed yet?
533 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
534 if (Bundle.isFixed()) {
535 DEBUG(dbgs() << "Shuffling stack to match.\n");
536 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
537 } else {
538 // Not fixed yet, we get to choose.
539 DEBUG(dbgs() << "Fixing stack order now.\n");
540 Bundle.FixCount = StackTop;
541 for (unsigned i = 0; i < StackTop; ++i)
542 Bundle.FixStack[i] = getStackEntry(i);
547 //===----------------------------------------------------------------------===//
548 // Efficient Lookup Table Support
549 //===----------------------------------------------------------------------===//
551 namespace {
552 struct TableEntry {
553 unsigned from;
554 unsigned to;
555 bool operator<(const TableEntry &TE) const { return from < TE.from; }
556 friend bool operator<(const TableEntry &TE, unsigned V) {
557 return TE.from < V;
559 friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
560 const TableEntry &TE) {
561 return V < TE.from;
566 #ifndef NDEBUG
567 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
568 for (unsigned i = 0; i != NumEntries-1; ++i)
569 if (!(Table[i] < Table[i+1])) return false;
570 return true;
572 #endif
574 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
575 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
576 if (I != Table+N && I->from == Opcode)
577 return I->to;
578 return -1;
581 #ifdef NDEBUG
582 #define ASSERT_SORTED(TABLE)
583 #else
584 #define ASSERT_SORTED(TABLE) \
585 { static bool TABLE##Checked = false; \
586 if (!TABLE##Checked) { \
587 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
588 "All lookup tables must be sorted for efficient access!"); \
589 TABLE##Checked = true; \
592 #endif
594 //===----------------------------------------------------------------------===//
595 // Register File -> Register Stack Mapping Methods
596 //===----------------------------------------------------------------------===//
598 // OpcodeTable - Sorted map of register instructions to their stack version.
599 // The first element is an register file pseudo instruction, the second is the
600 // concrete X86 instruction which uses the register stack.
602 static const TableEntry OpcodeTable[] = {
603 { X86::ABS_Fp32 , X86::ABS_F },
604 { X86::ABS_Fp64 , X86::ABS_F },
605 { X86::ABS_Fp80 , X86::ABS_F },
606 { X86::ADD_Fp32m , X86::ADD_F32m },
607 { X86::ADD_Fp64m , X86::ADD_F64m },
608 { X86::ADD_Fp64m32 , X86::ADD_F32m },
609 { X86::ADD_Fp80m32 , X86::ADD_F32m },
610 { X86::ADD_Fp80m64 , X86::ADD_F64m },
611 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
612 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
613 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
614 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
615 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
616 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
617 { X86::CHS_Fp32 , X86::CHS_F },
618 { X86::CHS_Fp64 , X86::CHS_F },
619 { X86::CHS_Fp80 , X86::CHS_F },
620 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
621 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
622 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
623 { X86::CMOVB_Fp32 , X86::CMOVB_F },
624 { X86::CMOVB_Fp64 , X86::CMOVB_F },
625 { X86::CMOVB_Fp80 , X86::CMOVB_F },
626 { X86::CMOVE_Fp32 , X86::CMOVE_F },
627 { X86::CMOVE_Fp64 , X86::CMOVE_F },
628 { X86::CMOVE_Fp80 , X86::CMOVE_F },
629 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
630 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
631 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
632 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
633 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
634 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
635 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
636 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
637 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
638 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
639 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
640 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
641 { X86::CMOVP_Fp32 , X86::CMOVP_F },
642 { X86::CMOVP_Fp64 , X86::CMOVP_F },
643 { X86::CMOVP_Fp80 , X86::CMOVP_F },
644 { X86::COS_Fp32 , X86::COS_F },
645 { X86::COS_Fp64 , X86::COS_F },
646 { X86::COS_Fp80 , X86::COS_F },
647 { X86::DIVR_Fp32m , X86::DIVR_F32m },
648 { X86::DIVR_Fp64m , X86::DIVR_F64m },
649 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
650 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
651 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
652 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
653 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
654 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
655 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
656 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
657 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
658 { X86::DIV_Fp32m , X86::DIV_F32m },
659 { X86::DIV_Fp64m , X86::DIV_F64m },
660 { X86::DIV_Fp64m32 , X86::DIV_F32m },
661 { X86::DIV_Fp80m32 , X86::DIV_F32m },
662 { X86::DIV_Fp80m64 , X86::DIV_F64m },
663 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
664 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
665 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
666 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
667 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
668 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
669 { X86::ILD_Fp16m32 , X86::ILD_F16m },
670 { X86::ILD_Fp16m64 , X86::ILD_F16m },
671 { X86::ILD_Fp16m80 , X86::ILD_F16m },
672 { X86::ILD_Fp32m32 , X86::ILD_F32m },
673 { X86::ILD_Fp32m64 , X86::ILD_F32m },
674 { X86::ILD_Fp32m80 , X86::ILD_F32m },
675 { X86::ILD_Fp64m32 , X86::ILD_F64m },
676 { X86::ILD_Fp64m64 , X86::ILD_F64m },
677 { X86::ILD_Fp64m80 , X86::ILD_F64m },
678 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
679 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
680 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
681 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
682 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
683 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
684 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
685 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
686 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
687 { X86::IST_Fp16m32 , X86::IST_F16m },
688 { X86::IST_Fp16m64 , X86::IST_F16m },
689 { X86::IST_Fp16m80 , X86::IST_F16m },
690 { X86::IST_Fp32m32 , X86::IST_F32m },
691 { X86::IST_Fp32m64 , X86::IST_F32m },
692 { X86::IST_Fp32m80 , X86::IST_F32m },
693 { X86::IST_Fp64m32 , X86::IST_FP64m },
694 { X86::IST_Fp64m64 , X86::IST_FP64m },
695 { X86::IST_Fp64m80 , X86::IST_FP64m },
696 { X86::LD_Fp032 , X86::LD_F0 },
697 { X86::LD_Fp064 , X86::LD_F0 },
698 { X86::LD_Fp080 , X86::LD_F0 },
699 { X86::LD_Fp132 , X86::LD_F1 },
700 { X86::LD_Fp164 , X86::LD_F1 },
701 { X86::LD_Fp180 , X86::LD_F1 },
702 { X86::LD_Fp32m , X86::LD_F32m },
703 { X86::LD_Fp32m64 , X86::LD_F32m },
704 { X86::LD_Fp32m80 , X86::LD_F32m },
705 { X86::LD_Fp64m , X86::LD_F64m },
706 { X86::LD_Fp64m80 , X86::LD_F64m },
707 { X86::LD_Fp80m , X86::LD_F80m },
708 { X86::MUL_Fp32m , X86::MUL_F32m },
709 { X86::MUL_Fp64m , X86::MUL_F64m },
710 { X86::MUL_Fp64m32 , X86::MUL_F32m },
711 { X86::MUL_Fp80m32 , X86::MUL_F32m },
712 { X86::MUL_Fp80m64 , X86::MUL_F64m },
713 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
714 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
715 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
716 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
717 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
718 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
719 { X86::SIN_Fp32 , X86::SIN_F },
720 { X86::SIN_Fp64 , X86::SIN_F },
721 { X86::SIN_Fp80 , X86::SIN_F },
722 { X86::SQRT_Fp32 , X86::SQRT_F },
723 { X86::SQRT_Fp64 , X86::SQRT_F },
724 { X86::SQRT_Fp80 , X86::SQRT_F },
725 { X86::ST_Fp32m , X86::ST_F32m },
726 { X86::ST_Fp64m , X86::ST_F64m },
727 { X86::ST_Fp64m32 , X86::ST_F32m },
728 { X86::ST_Fp80m32 , X86::ST_F32m },
729 { X86::ST_Fp80m64 , X86::ST_F64m },
730 { X86::ST_FpP80m , X86::ST_FP80m },
731 { X86::SUBR_Fp32m , X86::SUBR_F32m },
732 { X86::SUBR_Fp64m , X86::SUBR_F64m },
733 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
734 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
735 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
736 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
737 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
738 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
739 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
740 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
741 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
742 { X86::SUB_Fp32m , X86::SUB_F32m },
743 { X86::SUB_Fp64m , X86::SUB_F64m },
744 { X86::SUB_Fp64m32 , X86::SUB_F32m },
745 { X86::SUB_Fp80m32 , X86::SUB_F32m },
746 { X86::SUB_Fp80m64 , X86::SUB_F64m },
747 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
748 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
749 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
750 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
751 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
752 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
753 { X86::TST_Fp32 , X86::TST_F },
754 { X86::TST_Fp64 , X86::TST_F },
755 { X86::TST_Fp80 , X86::TST_F },
756 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
757 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
758 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
759 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
760 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
761 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
764 static unsigned getConcreteOpcode(unsigned Opcode) {
765 ASSERT_SORTED(OpcodeTable);
766 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
767 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
768 return Opc;
771 //===----------------------------------------------------------------------===//
772 // Helper Methods
773 //===----------------------------------------------------------------------===//
775 // PopTable - Sorted map of instructions to their popping version. The first
776 // element is an instruction, the second is the version which pops.
778 static const TableEntry PopTable[] = {
779 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
781 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
782 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
784 { X86::IST_F16m , X86::IST_FP16m },
785 { X86::IST_F32m , X86::IST_FP32m },
787 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
789 { X86::ST_F32m , X86::ST_FP32m },
790 { X86::ST_F64m , X86::ST_FP64m },
791 { X86::ST_Frr , X86::ST_FPrr },
793 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
794 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
796 { X86::UCOM_FIr , X86::UCOM_FIPr },
798 { X86::UCOM_FPr , X86::UCOM_FPPr },
799 { X86::UCOM_Fr , X86::UCOM_FPr },
802 /// popStackAfter - Pop the current value off of the top of the FP stack after
803 /// the specified instruction. This attempts to be sneaky and combine the pop
804 /// into the instruction itself if possible. The iterator is left pointing to
805 /// the last instruction, be it a new pop instruction inserted, or the old
806 /// instruction if it was modified in place.
808 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
809 MachineInstr* MI = I;
810 DebugLoc dl = MI->getDebugLoc();
811 ASSERT_SORTED(PopTable);
812 if (StackTop == 0)
813 report_fatal_error("Cannot pop empty stack!");
814 RegMap[Stack[--StackTop]] = ~0; // Update state
816 // Check to see if there is a popping version of this instruction...
817 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
818 if (Opcode != -1) {
819 I->setDesc(TII->get(Opcode));
820 if (Opcode == X86::UCOM_FPPr)
821 I->RemoveOperand(0);
822 } else { // Insert an explicit pop
823 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
827 /// freeStackSlotAfter - Free the specified register from the register stack, so
828 /// that it is no longer in a register. If the register is currently at the top
829 /// of the stack, we just pop the current instruction, otherwise we store the
830 /// current top-of-stack into the specified slot, then pop the top of stack.
831 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
832 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
833 popStackAfter(I);
834 return;
837 // Otherwise, store the top of stack into the dead slot, killing the operand
838 // without having to add in an explicit xchg then pop.
840 I = freeStackSlotBefore(++I, FPRegNo);
843 /// freeStackSlotBefore - Free the specified register without trying any
844 /// folding.
845 MachineBasicBlock::iterator
846 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
847 unsigned STReg = getSTReg(FPRegNo);
848 unsigned OldSlot = getSlot(FPRegNo);
849 unsigned TopReg = Stack[StackTop-1];
850 Stack[OldSlot] = TopReg;
851 RegMap[TopReg] = OldSlot;
852 RegMap[FPRegNo] = ~0;
853 Stack[--StackTop] = ~0;
854 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
857 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
858 /// registers with a bit in Mask are live.
859 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
860 unsigned Defs = Mask;
861 unsigned Kills = 0;
862 for (unsigned i = 0; i < StackTop; ++i) {
863 unsigned RegNo = Stack[i];
864 if (!(Defs & (1 << RegNo)))
865 // This register is live, but we don't want it.
866 Kills |= (1 << RegNo);
867 else
868 // We don't need to imp-def this live register.
869 Defs &= ~(1 << RegNo);
871 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
873 // Produce implicit-defs for free by using killed registers.
874 while (Kills && Defs) {
875 unsigned KReg = CountTrailingZeros_32(Kills);
876 unsigned DReg = CountTrailingZeros_32(Defs);
877 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
878 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
879 std::swap(RegMap[KReg], RegMap[DReg]);
880 Kills &= ~(1 << KReg);
881 Defs &= ~(1 << DReg);
884 // Kill registers by popping.
885 if (Kills && I != MBB->begin()) {
886 MachineBasicBlock::iterator I2 = llvm::prior(I);
887 while (StackTop) {
888 unsigned KReg = getStackEntry(0);
889 if (!(Kills & (1 << KReg)))
890 break;
891 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
892 popStackAfter(I2);
893 Kills &= ~(1 << KReg);
897 // Manually kill the rest.
898 while (Kills) {
899 unsigned KReg = CountTrailingZeros_32(Kills);
900 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
901 freeStackSlotBefore(I, KReg);
902 Kills &= ~(1 << KReg);
905 // Load zeros for all the imp-defs.
906 while(Defs) {
907 unsigned DReg = CountTrailingZeros_32(Defs);
908 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
909 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
910 pushReg(DReg);
911 Defs &= ~(1 << DReg);
914 // Now we should have the correct registers live.
915 DEBUG(dumpStack());
916 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
919 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
920 /// FixCount entries into the order given by FixStack.
921 /// FIXME: Is there a better algorithm than insertion sort?
922 void FPS::shuffleStackTop(const unsigned char *FixStack,
923 unsigned FixCount,
924 MachineBasicBlock::iterator I) {
925 // Move items into place, starting from the desired stack bottom.
926 while (FixCount--) {
927 // Old register at position FixCount.
928 unsigned OldReg = getStackEntry(FixCount);
929 // Desired register at position FixCount.
930 unsigned Reg = FixStack[FixCount];
931 if (Reg == OldReg)
932 continue;
933 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
934 moveToTop(Reg, I);
935 if (FixCount > 0)
936 moveToTop(OldReg, I);
938 DEBUG(dumpStack());
942 //===----------------------------------------------------------------------===//
943 // Instruction transformation implementation
944 //===----------------------------------------------------------------------===//
946 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
948 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
949 MachineInstr *MI = I;
950 unsigned DestReg = getFPReg(MI->getOperand(0));
952 // Change from the pseudo instruction to the concrete instruction.
953 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
954 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
956 // Result gets pushed on the stack.
957 pushReg(DestReg);
960 /// handleOneArgFP - fst <mem>, ST(0)
962 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
963 MachineInstr *MI = I;
964 unsigned NumOps = MI->getDesc().getNumOperands();
965 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
966 "Can only handle fst* & ftst instructions!");
968 // Is this the last use of the source register?
969 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
970 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
972 // FISTP64m is strange because there isn't a non-popping versions.
973 // If we have one _and_ we don't want to pop the operand, duplicate the value
974 // on the stack instead of moving it. This ensure that popping the value is
975 // always ok.
976 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
978 if (!KillsSrc &&
979 (MI->getOpcode() == X86::IST_Fp64m32 ||
980 MI->getOpcode() == X86::ISTT_Fp16m32 ||
981 MI->getOpcode() == X86::ISTT_Fp32m32 ||
982 MI->getOpcode() == X86::ISTT_Fp64m32 ||
983 MI->getOpcode() == X86::IST_Fp64m64 ||
984 MI->getOpcode() == X86::ISTT_Fp16m64 ||
985 MI->getOpcode() == X86::ISTT_Fp32m64 ||
986 MI->getOpcode() == X86::ISTT_Fp64m64 ||
987 MI->getOpcode() == X86::IST_Fp64m80 ||
988 MI->getOpcode() == X86::ISTT_Fp16m80 ||
989 MI->getOpcode() == X86::ISTT_Fp32m80 ||
990 MI->getOpcode() == X86::ISTT_Fp64m80 ||
991 MI->getOpcode() == X86::ST_FpP80m)) {
992 duplicateToTop(Reg, getScratchReg(), I);
993 } else {
994 moveToTop(Reg, I); // Move to the top of the stack...
997 // Convert from the pseudo instruction to the concrete instruction.
998 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
999 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1001 if (MI->getOpcode() == X86::IST_FP64m ||
1002 MI->getOpcode() == X86::ISTT_FP16m ||
1003 MI->getOpcode() == X86::ISTT_FP32m ||
1004 MI->getOpcode() == X86::ISTT_FP64m ||
1005 MI->getOpcode() == X86::ST_FP80m) {
1006 if (StackTop == 0)
1007 report_fatal_error("Stack empty??");
1008 --StackTop;
1009 } else if (KillsSrc) { // Last use of operand?
1010 popStackAfter(I);
1015 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1016 /// replace the value with a newly computed value. These instructions may have
1017 /// non-fp operands after their FP operands.
1019 /// Examples:
1020 /// R1 = fchs R2
1021 /// R1 = fadd R2, [mem]
1023 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1024 MachineInstr *MI = I;
1025 #ifndef NDEBUG
1026 unsigned NumOps = MI->getDesc().getNumOperands();
1027 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1028 #endif
1030 // Is this the last use of the source register?
1031 unsigned Reg = getFPReg(MI->getOperand(1));
1032 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1034 if (KillsSrc) {
1035 // If this is the last use of the source register, just make sure it's on
1036 // the top of the stack.
1037 moveToTop(Reg, I);
1038 if (StackTop == 0)
1039 report_fatal_error("Stack cannot be empty!");
1040 --StackTop;
1041 pushReg(getFPReg(MI->getOperand(0)));
1042 } else {
1043 // If this is not the last use of the source register, _copy_ it to the top
1044 // of the stack.
1045 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1048 // Change from the pseudo instruction to the concrete instruction.
1049 MI->RemoveOperand(1); // Drop the source operand.
1050 MI->RemoveOperand(0); // Drop the destination operand.
1051 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1055 //===----------------------------------------------------------------------===//
1056 // Define tables of various ways to map pseudo instructions
1059 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1060 static const TableEntry ForwardST0Table[] = {
1061 { X86::ADD_Fp32 , X86::ADD_FST0r },
1062 { X86::ADD_Fp64 , X86::ADD_FST0r },
1063 { X86::ADD_Fp80 , X86::ADD_FST0r },
1064 { X86::DIV_Fp32 , X86::DIV_FST0r },
1065 { X86::DIV_Fp64 , X86::DIV_FST0r },
1066 { X86::DIV_Fp80 , X86::DIV_FST0r },
1067 { X86::MUL_Fp32 , X86::MUL_FST0r },
1068 { X86::MUL_Fp64 , X86::MUL_FST0r },
1069 { X86::MUL_Fp80 , X86::MUL_FST0r },
1070 { X86::SUB_Fp32 , X86::SUB_FST0r },
1071 { X86::SUB_Fp64 , X86::SUB_FST0r },
1072 { X86::SUB_Fp80 , X86::SUB_FST0r },
1075 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1076 static const TableEntry ReverseST0Table[] = {
1077 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1078 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1079 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1080 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1081 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1082 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1083 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1084 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1085 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1086 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1087 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1088 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1091 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1092 static const TableEntry ForwardSTiTable[] = {
1093 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1094 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1095 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1096 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1097 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1098 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1099 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1100 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1101 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1102 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1103 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1104 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1107 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1108 static const TableEntry ReverseSTiTable[] = {
1109 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1110 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1111 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1112 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1113 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1114 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1115 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1116 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1117 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1118 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1119 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1120 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1124 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1125 /// instructions which need to be simplified and possibly transformed.
1127 /// Result: ST(0) = fsub ST(0), ST(i)
1128 /// ST(i) = fsub ST(0), ST(i)
1129 /// ST(0) = fsubr ST(0), ST(i)
1130 /// ST(i) = fsubr ST(0), ST(i)
1132 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1133 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1134 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1135 MachineInstr *MI = I;
1137 unsigned NumOperands = MI->getDesc().getNumOperands();
1138 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1139 unsigned Dest = getFPReg(MI->getOperand(0));
1140 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1141 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1142 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1143 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1144 DebugLoc dl = MI->getDebugLoc();
1146 unsigned TOS = getStackEntry(0);
1148 // One of our operands must be on the top of the stack. If neither is yet, we
1149 // need to move one.
1150 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1151 // We can choose to move either operand to the top of the stack. If one of
1152 // the operands is killed by this instruction, we want that one so that we
1153 // can update right on top of the old version.
1154 if (KillsOp0) {
1155 moveToTop(Op0, I); // Move dead operand to TOS.
1156 TOS = Op0;
1157 } else if (KillsOp1) {
1158 moveToTop(Op1, I);
1159 TOS = Op1;
1160 } else {
1161 // All of the operands are live after this instruction executes, so we
1162 // cannot update on top of any operand. Because of this, we must
1163 // duplicate one of the stack elements to the top. It doesn't matter
1164 // which one we pick.
1166 duplicateToTop(Op0, Dest, I);
1167 Op0 = TOS = Dest;
1168 KillsOp0 = true;
1170 } else if (!KillsOp0 && !KillsOp1) {
1171 // If we DO have one of our operands at the top of the stack, but we don't
1172 // have a dead operand, we must duplicate one of the operands to a new slot
1173 // on the stack.
1174 duplicateToTop(Op0, Dest, I);
1175 Op0 = TOS = Dest;
1176 KillsOp0 = true;
1179 // Now we know that one of our operands is on the top of the stack, and at
1180 // least one of our operands is killed by this instruction.
1181 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1182 "Stack conditions not set up right!");
1184 // We decide which form to use based on what is on the top of the stack, and
1185 // which operand is killed by this instruction.
1186 const TableEntry *InstTable;
1187 bool isForward = TOS == Op0;
1188 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1189 if (updateST0) {
1190 if (isForward)
1191 InstTable = ForwardST0Table;
1192 else
1193 InstTable = ReverseST0Table;
1194 } else {
1195 if (isForward)
1196 InstTable = ForwardSTiTable;
1197 else
1198 InstTable = ReverseSTiTable;
1201 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1202 MI->getOpcode());
1203 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1205 // NotTOS - The register which is not on the top of stack...
1206 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1208 // Replace the old instruction with a new instruction
1209 MBB->remove(I++);
1210 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1212 // If both operands are killed, pop one off of the stack in addition to
1213 // overwriting the other one.
1214 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1215 assert(!updateST0 && "Should have updated other operand!");
1216 popStackAfter(I); // Pop the top of stack
1219 // Update stack information so that we know the destination register is now on
1220 // the stack.
1221 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1222 assert(UpdatedSlot < StackTop && Dest < 7);
1223 Stack[UpdatedSlot] = Dest;
1224 RegMap[Dest] = UpdatedSlot;
1225 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1228 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1229 /// register arguments and no explicit destinations.
1231 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1232 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1233 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1234 MachineInstr *MI = I;
1236 unsigned NumOperands = MI->getDesc().getNumOperands();
1237 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1238 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1239 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1240 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1241 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1243 // Make sure the first operand is on the top of stack, the other one can be
1244 // anywhere.
1245 moveToTop(Op0, I);
1247 // Change from the pseudo instruction to the concrete instruction.
1248 MI->getOperand(0).setReg(getSTReg(Op1));
1249 MI->RemoveOperand(1);
1250 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1252 // If any of the operands are killed by this instruction, free them.
1253 if (KillsOp0) freeStackSlotAfter(I, Op0);
1254 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1257 /// handleCondMovFP - Handle two address conditional move instructions. These
1258 /// instructions move a st(i) register to st(0) iff a condition is true. These
1259 /// instructions require that the first operand is at the top of the stack, but
1260 /// otherwise don't modify the stack at all.
1261 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1262 MachineInstr *MI = I;
1264 unsigned Op0 = getFPReg(MI->getOperand(0));
1265 unsigned Op1 = getFPReg(MI->getOperand(2));
1266 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1268 // The first operand *must* be on the top of the stack.
1269 moveToTop(Op0, I);
1271 // Change the second operand to the stack register that the operand is in.
1272 // Change from the pseudo instruction to the concrete instruction.
1273 MI->RemoveOperand(0);
1274 MI->RemoveOperand(1);
1275 MI->getOperand(0).setReg(getSTReg(Op1));
1276 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1278 // If we kill the second operand, make sure to pop it from the stack.
1279 if (Op0 != Op1 && KillsOp1) {
1280 // Get this value off of the register stack.
1281 freeStackSlotAfter(I, Op1);
1286 /// handleSpecialFP - Handle special instructions which behave unlike other
1287 /// floating point instructions. This is primarily intended for use by pseudo
1288 /// instructions.
1290 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1291 MachineInstr *MI = I;
1292 switch (MI->getOpcode()) {
1293 default: llvm_unreachable("Unknown SpecialFP instruction!");
1294 case TargetOpcode::COPY: {
1295 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1296 const MachineOperand &MO1 = MI->getOperand(1);
1297 const MachineOperand &MO0 = MI->getOperand(0);
1298 unsigned DstST = MO0.getReg() - X86::ST0;
1299 unsigned SrcST = MO1.getReg() - X86::ST0;
1300 bool KillsSrc = MI->killsRegister(MO1.getReg());
1302 // ST = COPY FP. Set up a pending ST register.
1303 if (DstST < 8) {
1304 unsigned SrcFP = getFPReg(MO1);
1305 assert(isLive(SrcFP) && "Cannot copy dead register");
1306 assert(!MO0.isDead() && "Cannot copy to dead ST register");
1308 // Unallocated STs are marked as the nonexistent FP255.
1309 while (NumPendingSTs <= DstST)
1310 PendingST[NumPendingSTs++] = NumFPRegs;
1312 // STi could still be live from a previous inline asm.
1313 if (isScratchReg(PendingST[DstST])) {
1314 DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1315 << '\n');
1316 freeStackSlotBefore(MI, PendingST[DstST]);
1319 // When the source is killed, allocate a scratch FP register.
1320 if (KillsSrc) {
1321 unsigned Slot = getSlot(SrcFP);
1322 unsigned SR = getScratchReg();
1323 PendingST[DstST] = SR;
1324 Stack[Slot] = SR;
1325 RegMap[SR] = Slot;
1326 } else
1327 PendingST[DstST] = SrcFP;
1328 break;
1331 // FP = COPY ST. Extract fixed stack value.
1332 // Any instruction defining ST registers must have assigned them to a
1333 // scratch register.
1334 if (SrcST < 8) {
1335 unsigned DstFP = getFPReg(MO0);
1336 assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1337 assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1338 unsigned SrcFP = PendingST[SrcST];
1339 assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1340 assert(isLive(SrcFP) && "Scratch holding ST is dead");
1342 // DstFP steals the stack slot from SrcFP.
1343 unsigned Slot = getSlot(SrcFP);
1344 Stack[Slot] = DstFP;
1345 RegMap[DstFP] = Slot;
1347 // Always treat the ST as killed.
1348 PendingST[SrcST] = NumFPRegs;
1349 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1350 --NumPendingSTs;
1351 break;
1354 // FP <- FP copy.
1355 unsigned DstFP = getFPReg(MO0);
1356 unsigned SrcFP = getFPReg(MO1);
1357 assert(isLive(SrcFP) && "Cannot copy dead register");
1358 if (KillsSrc) {
1359 // If the input operand is killed, we can just change the owner of the
1360 // incoming stack slot into the result.
1361 unsigned Slot = getSlot(SrcFP);
1362 Stack[Slot] = DstFP;
1363 RegMap[DstFP] = Slot;
1364 } else {
1365 // For COPY we just duplicate the specified value to a new stack slot.
1366 // This could be made better, but would require substantial changes.
1367 duplicateToTop(SrcFP, DstFP, I);
1369 break;
1372 case X86::FpPOP_RETVAL: {
1373 // The FpPOP_RETVAL instruction is used after calls that return a value on
1374 // the floating point stack. We cannot model this with ST defs since CALL
1375 // instructions have fixed clobber lists. This instruction is interpreted
1376 // to mean that there is one more live register on the stack than we
1377 // thought.
1379 // This means that StackTop does not match the hardware stack between a
1380 // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
1381 // between CALL and FpPOP_RETVAL as long as they don't overflow the
1382 // hardware stack.
1383 unsigned DstFP = getFPReg(MI->getOperand(0));
1385 // Move existing stack elements up to reflect reality.
1386 assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1387 if (StackTop) {
1388 std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1389 for (unsigned i = 0; i != NumFPRegs; ++i)
1390 ++RegMap[i];
1392 ++StackTop;
1394 // DstFP is the new bottom of the stack.
1395 Stack[0] = DstFP;
1396 RegMap[DstFP] = 0;
1398 // DstFP will be killed by processBasicBlock if this was a dead def.
1399 break;
1402 case TargetOpcode::INLINEASM: {
1403 // The inline asm MachineInstr currently only *uses* FP registers for the
1404 // 'f' constraint. These should be turned into the current ST(x) register
1405 // in the machine instr.
1407 // There are special rules for x87 inline assembly. The compiler must know
1408 // exactly how many registers are popped and pushed implicitly by the asm.
1409 // Otherwise it is not possible to restore the stack state after the inline
1410 // asm.
1412 // There are 3 kinds of input operands:
1414 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1415 // popped input operand must be in a fixed stack slot, and it is either
1416 // tied to an output operand, or in the clobber list. The MI has ST use
1417 // and def operands for these inputs.
1419 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1420 // preserved by the inline asm. The fixed stack slots must be STn-STm
1421 // following the popped inputs. A fixed input operand cannot be tied to
1422 // an output or appear in the clobber list. The MI has ST use operands
1423 // and no defs for these inputs.
1425 // 3. Preserved inputs. These inputs use the "f" constraint which is
1426 // represented as an FP register. The inline asm won't change these
1427 // stack slots.
1429 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1430 // registers do not count as output operands. The inline asm changes the
1431 // stack as if it popped all the popped inputs and then pushed all the
1432 // output operands.
1434 // Scan the assembly for ST registers used, defined and clobbered. We can
1435 // only tell clobbers from defs by looking at the asm descriptor.
1436 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1437 unsigned NumOps = 0;
1438 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1439 i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1440 unsigned Flags = MI->getOperand(i).getImm();
1441 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1442 if (NumOps != 1)
1443 continue;
1444 const MachineOperand &MO = MI->getOperand(i + 1);
1445 if (!MO.isReg())
1446 continue;
1447 unsigned STReg = MO.getReg() - X86::ST0;
1448 if (STReg >= 8)
1449 continue;
1451 switch (InlineAsm::getKind(Flags)) {
1452 case InlineAsm::Kind_RegUse:
1453 STUses |= (1u << STReg);
1454 break;
1455 case InlineAsm::Kind_RegDef:
1456 case InlineAsm::Kind_RegDefEarlyClobber:
1457 STDefs |= (1u << STReg);
1458 if (MO.isDead())
1459 STDeadDefs |= (1u << STReg);
1460 break;
1461 case InlineAsm::Kind_Clobber:
1462 STClobbers |= (1u << STReg);
1463 break;
1464 default:
1465 break;
1469 if (STUses && !isMask_32(STUses))
1470 MI->emitError("fixed input regs must be last on the x87 stack");
1471 unsigned NumSTUses = CountTrailingOnes_32(STUses);
1473 // Defs must be contiguous from the stack top. ST0-STn.
1474 if (STDefs && !isMask_32(STDefs)) {
1475 MI->emitError("output regs must be last on the x87 stack");
1476 STDefs = NextPowerOf2(STDefs) - 1;
1478 unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1480 // So must the clobbered stack slots. ST0-STm, m >= n.
1481 if (STClobbers && !isMask_32(STDefs | STClobbers))
1482 MI->emitError("clobbers must be last on the x87 stack");
1484 // Popped inputs are the ones that are also clobbered or defined.
1485 unsigned STPopped = STUses & (STDefs | STClobbers);
1486 if (STPopped && !isMask_32(STPopped))
1487 MI->emitError("implicitly popped regs must be last on the x87 stack");
1488 unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1490 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1491 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1493 // Scan the instruction for FP uses corresponding to "f" constraints.
1494 // Collect FP registers to kill afer the instruction.
1495 // Always kill all the scratch regs.
1496 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1497 unsigned FPUsed = 0;
1498 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1499 MachineOperand &Op = MI->getOperand(i);
1500 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1501 continue;
1502 if (!Op.isUse())
1503 MI->emitError("illegal \"f\" output constraint");
1504 unsigned FPReg = getFPReg(Op);
1505 FPUsed |= 1U << FPReg;
1507 // If we kill this operand, make sure to pop it from the stack after the
1508 // asm. We just remember it for now, and pop them all off at the end in
1509 // a batch.
1510 if (Op.isKill())
1511 FPKills |= 1U << FPReg;
1514 // The popped inputs will be killed by the instruction, so duplicate them
1515 // if the FP register needs to be live after the instruction, or if it is
1516 // used in the instruction itself. We effectively treat the popped inputs
1517 // as early clobbers.
1518 for (unsigned i = 0; i < NumSTPopped; ++i) {
1519 if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1520 continue;
1521 unsigned SR = getScratchReg();
1522 duplicateToTop(PendingST[i], SR, I);
1523 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1524 << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1525 PendingST[i] = SR;
1528 // Make sure we have a unique live register for every fixed use. Some of
1529 // them could be undef uses, and we need to emit LD_F0 instructions.
1530 for (unsigned i = 0; i < NumSTUses; ++i) {
1531 if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1532 // Check for shared assignments.
1533 for (unsigned j = 0; j < i; ++j) {
1534 if (PendingST[j] != PendingST[i])
1535 continue;
1536 // STi and STj are inn the same register, create a copy.
1537 unsigned SR = getScratchReg();
1538 duplicateToTop(PendingST[i], SR, I);
1539 DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1540 << unsigned(PendingST[i])
1541 << " to avoid collision with ST" << j << '\n');
1542 PendingST[i] = SR;
1544 continue;
1546 unsigned SR = getScratchReg();
1547 DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1548 BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1549 pushReg(SR);
1550 PendingST[i] = SR;
1551 if (NumPendingSTs == i)
1552 ++NumPendingSTs;
1554 assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1556 // Now we can rearrange the live registers to match what was requested.
1557 shuffleStackTop(PendingST, NumPendingSTs, I);
1558 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1560 // With the stack layout fixed, rewrite the FP registers.
1561 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1562 MachineOperand &Op = MI->getOperand(i);
1563 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1564 continue;
1565 unsigned FPReg = getFPReg(Op);
1566 Op.setReg(getSTReg(FPReg));
1569 // Simulate the inline asm popping its inputs and pushing its outputs.
1570 StackTop -= NumSTPopped;
1572 // Hold the fixed output registers in scratch FP registers. They will be
1573 // transferred to real FP registers by copies.
1574 NumPendingSTs = 0;
1575 for (unsigned i = 0; i < NumSTDefs; ++i) {
1576 unsigned SR = getScratchReg();
1577 pushReg(SR);
1578 FPKills &= ~(1u << SR);
1580 for (unsigned i = 0; i < NumSTDefs; ++i)
1581 PendingST[NumPendingSTs++] = getStackEntry(i);
1582 DEBUG({dbgs() << "After asm: "; dumpStack();});
1584 // If any of the ST defs were dead, pop them immediately. Our caller only
1585 // handles dead FP defs.
1586 MachineBasicBlock::iterator InsertPt = MI;
1587 for (unsigned i = 0; STDefs & (1u << i); ++i) {
1588 if (!(STDeadDefs & (1u << i)))
1589 continue;
1590 freeStackSlotAfter(InsertPt, PendingST[i]);
1591 PendingST[i] = NumFPRegs;
1593 while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1594 --NumPendingSTs;
1596 // If this asm kills any FP registers (is the last use of them) we must
1597 // explicitly emit pop instructions for them. Do this now after the asm has
1598 // executed so that the ST(x) numbers are not off (which would happen if we
1599 // did this inline with operand rewriting).
1601 // Note: this might be a non-optimal pop sequence. We might be able to do
1602 // better by trying to pop in stack order or something.
1603 while (FPKills) {
1604 unsigned FPReg = CountTrailingZeros_32(FPKills);
1605 if (isLive(FPReg))
1606 freeStackSlotAfter(InsertPt, FPReg);
1607 FPKills &= ~(1U << FPReg);
1609 // Don't delete the inline asm!
1610 return;
1613 case X86::RET:
1614 case X86::RETI:
1615 // If RET has an FP register use operand, pass the first one in ST(0) and
1616 // the second one in ST(1).
1618 // Find the register operands.
1619 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1620 unsigned LiveMask = 0;
1622 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1623 MachineOperand &Op = MI->getOperand(i);
1624 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1625 continue;
1626 // FP Register uses must be kills unless there are two uses of the same
1627 // register, in which case only one will be a kill.
1628 assert(Op.isUse() &&
1629 (Op.isKill() || // Marked kill.
1630 getFPReg(Op) == FirstFPRegOp || // Second instance.
1631 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1632 "Ret only defs operands, and values aren't live beyond it");
1634 if (FirstFPRegOp == ~0U)
1635 FirstFPRegOp = getFPReg(Op);
1636 else {
1637 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1638 SecondFPRegOp = getFPReg(Op);
1640 LiveMask |= (1 << getFPReg(Op));
1642 // Remove the operand so that later passes don't see it.
1643 MI->RemoveOperand(i);
1644 --i, --e;
1647 // We may have been carrying spurious live-ins, so make sure only the returned
1648 // registers are left live.
1649 adjustLiveRegs(LiveMask, MI);
1650 if (!LiveMask) return; // Quick check to see if any are possible.
1652 // There are only four possibilities here:
1653 // 1) we are returning a single FP value. In this case, it has to be in
1654 // ST(0) already, so just declare success by removing the value from the
1655 // FP Stack.
1656 if (SecondFPRegOp == ~0U) {
1657 // Assert that the top of stack contains the right FP register.
1658 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1659 "Top of stack not the right register for RET!");
1661 // Ok, everything is good, mark the value as not being on the stack
1662 // anymore so that our assertion about the stack being empty at end of
1663 // block doesn't fire.
1664 StackTop = 0;
1665 return;
1668 // Otherwise, we are returning two values:
1669 // 2) If returning the same value for both, we only have one thing in the FP
1670 // stack. Consider: RET FP1, FP1
1671 if (StackTop == 1) {
1672 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1673 "Stack misconfiguration for RET!");
1675 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1676 // register to hold it.
1677 unsigned NewReg = getScratchReg();
1678 duplicateToTop(FirstFPRegOp, NewReg, MI);
1679 FirstFPRegOp = NewReg;
1682 /// Okay we know we have two different FPx operands now:
1683 assert(StackTop == 2 && "Must have two values live!");
1685 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1686 /// in ST(1). In this case, emit an fxch.
1687 if (getStackEntry(0) == SecondFPRegOp) {
1688 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1689 moveToTop(FirstFPRegOp, MI);
1692 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1693 /// ST(1). Just remove both from our understanding of the stack and return.
1694 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1695 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1696 StackTop = 0;
1697 return;
1700 I = MBB->erase(I); // Remove the pseudo instruction
1702 // We want to leave I pointing to the previous instruction, but what if we
1703 // just erased the first instruction?
1704 if (I == MBB->begin()) {
1705 DEBUG(dbgs() << "Inserting dummy KILL\n");
1706 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1707 } else
1708 --I;