the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blobcc8db35262fbc7faaa9a4327d4df80156045854b
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Support/CFG.h"
25 #include "llvm/Type.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SelectionDAGISel.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 using namespace llvm;
43 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
45 //===----------------------------------------------------------------------===//
46 // Pattern Matcher Implementation
47 //===----------------------------------------------------------------------===//
49 namespace {
50 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
51 /// SDValue's instead of register numbers for the leaves of the matched
52 /// tree.
53 struct X86ISelAddressMode {
54 enum {
55 RegBase,
56 FrameIndexBase
57 } BaseType;
59 // This is really a union, discriminated by BaseType!
60 SDValue Base_Reg;
61 int Base_FrameIndex;
63 unsigned Scale;
64 SDValue IndexReg;
65 int32_t Disp;
66 SDValue Segment;
67 const GlobalValue *GV;
68 const Constant *CP;
69 const BlockAddress *BlockAddr;
70 const char *ES;
71 int JT;
72 unsigned Align; // CP alignment.
73 unsigned char SymbolFlags; // X86II::MO_*
75 X86ISelAddressMode()
76 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
77 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
78 SymbolFlags(X86II::MO_NO_FLAG) {
81 bool hasSymbolicDisplacement() const {
82 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
85 bool hasBaseOrIndexReg() const {
86 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
89 /// isRIPRelative - Return true if this addressing mode is already RIP
90 /// relative.
91 bool isRIPRelative() const {
92 if (BaseType != RegBase) return false;
93 if (RegisterSDNode *RegNode =
94 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
95 return RegNode->getReg() == X86::RIP;
96 return false;
99 void setBaseReg(SDValue Reg) {
100 BaseType = RegBase;
101 Base_Reg = Reg;
104 void dump() {
105 dbgs() << "X86ISelAddressMode " << this << '\n';
106 dbgs() << "Base_Reg ";
107 if (Base_Reg.getNode() != 0)
108 Base_Reg.getNode()->dump();
109 else
110 dbgs() << "nul";
111 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112 << " Scale" << Scale << '\n'
113 << "IndexReg ";
114 if (IndexReg.getNode() != 0)
115 IndexReg.getNode()->dump();
116 else
117 dbgs() << "nul";
118 dbgs() << " Disp " << Disp << '\n'
119 << "GV ";
120 if (GV)
121 GV->dump();
122 else
123 dbgs() << "nul";
124 dbgs() << " CP ";
125 if (CP)
126 CP->dump();
127 else
128 dbgs() << "nul";
129 dbgs() << '\n'
130 << "ES ";
131 if (ES)
132 dbgs() << ES;
133 else
134 dbgs() << "nul";
135 dbgs() << " JT" << JT << " Align" << Align << '\n';
140 namespace {
141 //===--------------------------------------------------------------------===//
142 /// ISel - X86 specific code to select X86 machine instructions for
143 /// SelectionDAG operations.
145 class X86DAGToDAGISel : public SelectionDAGISel {
146 /// X86Lowering - This object fully describes how to lower LLVM code to an
147 /// X86-specific SelectionDAG.
148 const X86TargetLowering &X86Lowering;
150 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
151 /// make the right decision when generating code for different targets.
152 const X86Subtarget *Subtarget;
154 /// OptForSize - If true, selector should try to optimize for code size
155 /// instead of performance.
156 bool OptForSize;
158 public:
159 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
160 : SelectionDAGISel(tm, OptLevel),
161 X86Lowering(*tm.getTargetLowering()),
162 Subtarget(&tm.getSubtarget<X86Subtarget>()),
163 OptForSize(false) {}
165 virtual const char *getPassName() const {
166 return "X86 DAG->DAG Instruction Selection";
169 virtual void EmitFunctionEntryCode();
171 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
173 virtual void PreprocessISelDAG();
175 inline bool immSext8(SDNode *N) const {
176 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
179 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
180 // sign extended field.
181 inline bool i64immSExt32(SDNode *N) const {
182 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
183 return (int64_t)v == (int32_t)v;
186 // Include the pieces autogenerated from the target description.
187 #include "X86GenDAGISel.inc"
189 private:
190 SDNode *Select(SDNode *N);
191 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
192 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193 SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
195 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
196 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
197 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
198 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
199 unsigned Depth);
200 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
201 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
202 SDValue &Scale, SDValue &Index, SDValue &Disp,
203 SDValue &Segment);
204 bool SelectLEAAddr(SDValue N, SDValue &Base,
205 SDValue &Scale, SDValue &Index, SDValue &Disp,
206 SDValue &Segment);
207 bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
208 SDValue &Scale, SDValue &Index, SDValue &Disp,
209 SDValue &Segment);
210 bool SelectScalarSSELoad(SDNode *Root, SDValue N,
211 SDValue &Base, SDValue &Scale,
212 SDValue &Index, SDValue &Disp,
213 SDValue &Segment,
214 SDValue &NodeWithChain);
216 bool TryFoldLoad(SDNode *P, SDValue N,
217 SDValue &Base, SDValue &Scale,
218 SDValue &Index, SDValue &Disp,
219 SDValue &Segment);
221 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
222 /// inline asm expressions.
223 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
224 char ConstraintCode,
225 std::vector<SDValue> &OutOps);
227 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
229 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
230 SDValue &Scale, SDValue &Index,
231 SDValue &Disp, SDValue &Segment) {
232 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
233 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
234 AM.Base_Reg;
235 Scale = getI8Imm(AM.Scale);
236 Index = AM.IndexReg;
237 // These are 32-bit even in 64-bit mode since RIP relative offset
238 // is 32-bit.
239 if (AM.GV)
240 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
241 MVT::i32, AM.Disp,
242 AM.SymbolFlags);
243 else if (AM.CP)
244 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
245 AM.Align, AM.Disp, AM.SymbolFlags);
246 else if (AM.ES)
247 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
248 else if (AM.JT != -1)
249 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
250 else if (AM.BlockAddr)
251 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
252 true, AM.SymbolFlags);
253 else
254 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256 if (AM.Segment.getNode())
257 Segment = AM.Segment;
258 else
259 Segment = CurDAG->getRegister(0, MVT::i32);
262 /// getI8Imm - Return a target constant with the specified value, of type
263 /// i8.
264 inline SDValue getI8Imm(unsigned Imm) {
265 return CurDAG->getTargetConstant(Imm, MVT::i8);
268 /// getI32Imm - Return a target constant with the specified value, of type
269 /// i32.
270 inline SDValue getI32Imm(unsigned Imm) {
271 return CurDAG->getTargetConstant(Imm, MVT::i32);
274 /// getGlobalBaseReg - Return an SDNode that returns the value of
275 /// the global base register. Output instructions required to
276 /// initialize the global base register, if necessary.
278 SDNode *getGlobalBaseReg();
280 /// getTargetMachine - Return a reference to the TargetMachine, casted
281 /// to the target-specific type.
282 const X86TargetMachine &getTargetMachine() {
283 return static_cast<const X86TargetMachine &>(TM);
286 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
287 /// to the target-specific type.
288 const X86InstrInfo *getInstrInfo() {
289 return getTargetMachine().getInstrInfo();
295 bool
296 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
297 if (OptLevel == CodeGenOpt::None) return false;
299 if (!N.hasOneUse())
300 return false;
302 if (N.getOpcode() != ISD::LOAD)
303 return true;
305 // If N is a load, do additional profitability checks.
306 if (U == Root) {
307 switch (U->getOpcode()) {
308 default: break;
309 case X86ISD::ADD:
310 case X86ISD::SUB:
311 case X86ISD::AND:
312 case X86ISD::XOR:
313 case X86ISD::OR:
314 case ISD::ADD:
315 case ISD::ADDC:
316 case ISD::ADDE:
317 case ISD::AND:
318 case ISD::OR:
319 case ISD::XOR: {
320 SDValue Op1 = U->getOperand(1);
322 // If the other operand is a 8-bit immediate we should fold the immediate
323 // instead. This reduces code size.
324 // e.g.
325 // movl 4(%esp), %eax
326 // addl $4, %eax
327 // vs.
328 // movl $4, %eax
329 // addl 4(%esp), %eax
330 // The former is 2 bytes shorter. In case where the increment is 1, then
331 // the saving can be 4 bytes (by using incl %eax).
332 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
333 if (Imm->getAPIntValue().isSignedIntN(8))
334 return false;
336 // If the other operand is a TLS address, we should fold it instead.
337 // This produces
338 // movl %gs:0, %eax
339 // leal i@NTPOFF(%eax), %eax
340 // instead of
341 // movl $i@NTPOFF, %eax
342 // addl %gs:0, %eax
343 // if the block also has an access to a second TLS address this will save
344 // a load.
345 // FIXME: This is probably also true for non TLS addresses.
346 if (Op1.getOpcode() == X86ISD::Wrapper) {
347 SDValue Val = Op1.getOperand(0);
348 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
349 return false;
355 return true;
358 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
359 /// load's chain operand and move load below the call's chain operand.
360 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
361 SDValue Call, SDValue OrigChain) {
362 SmallVector<SDValue, 8> Ops;
363 SDValue Chain = OrigChain.getOperand(0);
364 if (Chain.getNode() == Load.getNode())
365 Ops.push_back(Load.getOperand(0));
366 else {
367 assert(Chain.getOpcode() == ISD::TokenFactor &&
368 "Unexpected chain operand");
369 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
370 if (Chain.getOperand(i).getNode() == Load.getNode())
371 Ops.push_back(Load.getOperand(0));
372 else
373 Ops.push_back(Chain.getOperand(i));
374 SDValue NewChain =
375 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
376 MVT::Other, &Ops[0], Ops.size());
377 Ops.clear();
378 Ops.push_back(NewChain);
380 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
381 Ops.push_back(OrigChain.getOperand(i));
382 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
383 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
384 Load.getOperand(1), Load.getOperand(2));
385 Ops.clear();
386 Ops.push_back(SDValue(Load.getNode(), 1));
387 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
388 Ops.push_back(Call.getOperand(i));
389 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
392 /// isCalleeLoad - Return true if call address is a load and it can be
393 /// moved below CALLSEQ_START and the chains leading up to the call.
394 /// Return the CALLSEQ_START by reference as a second output.
395 /// In the case of a tail call, there isn't a callseq node between the call
396 /// chain and the load.
397 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
398 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
399 return false;
400 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
401 if (!LD ||
402 LD->isVolatile() ||
403 LD->getAddressingMode() != ISD::UNINDEXED ||
404 LD->getExtensionType() != ISD::NON_EXTLOAD)
405 return false;
407 // Now let's find the callseq_start.
408 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
409 if (!Chain.hasOneUse())
410 return false;
411 Chain = Chain.getOperand(0);
414 if (!Chain.getNumOperands())
415 return false;
416 if (Chain.getOperand(0).getNode() == Callee.getNode())
417 return true;
418 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
419 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
420 Callee.getValue(1).hasOneUse())
421 return true;
422 return false;
425 void X86DAGToDAGISel::PreprocessISelDAG() {
426 // OptForSize is used in pattern predicates that isel is matching.
427 OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
429 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
430 E = CurDAG->allnodes_end(); I != E; ) {
431 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
433 if (OptLevel != CodeGenOpt::None &&
434 (N->getOpcode() == X86ISD::CALL ||
435 N->getOpcode() == X86ISD::TC_RETURN)) {
436 /// Also try moving call address load from outside callseq_start to just
437 /// before the call to allow it to be folded.
439 /// [Load chain]
440 /// ^
441 /// |
442 /// [Load]
443 /// ^ ^
444 /// | |
445 /// / \--
446 /// / |
447 ///[CALLSEQ_START] |
448 /// ^ |
449 /// | |
450 /// [LOAD/C2Reg] |
451 /// | |
452 /// \ /
453 /// \ /
454 /// [CALL]
455 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
456 SDValue Chain = N->getOperand(0);
457 SDValue Load = N->getOperand(1);
458 if (!isCalleeLoad(Load, Chain, HasCallSeq))
459 continue;
460 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
461 ++NumLoadMoved;
462 continue;
465 // Lower fpround and fpextend nodes that target the FP stack to be store and
466 // load to the stack. This is a gross hack. We would like to simply mark
467 // these as being illegal, but when we do that, legalize produces these when
468 // it expands calls, then expands these in the same legalize pass. We would
469 // like dag combine to be able to hack on these between the call expansion
470 // and the node legalization. As such this pass basically does "really
471 // late" legalization of these inline with the X86 isel pass.
472 // FIXME: This should only happen when not compiled with -O0.
473 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
474 continue;
476 // If the source and destination are SSE registers, then this is a legal
477 // conversion that should not be lowered.
478 EVT SrcVT = N->getOperand(0).getValueType();
479 EVT DstVT = N->getValueType(0);
480 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
481 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
482 if (SrcIsSSE && DstIsSSE)
483 continue;
485 if (!SrcIsSSE && !DstIsSSE) {
486 // If this is an FPStack extension, it is a noop.
487 if (N->getOpcode() == ISD::FP_EXTEND)
488 continue;
489 // If this is a value-preserving FPStack truncation, it is a noop.
490 if (N->getConstantOperandVal(1))
491 continue;
494 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
495 // FPStack has extload and truncstore. SSE can fold direct loads into other
496 // operations. Based on this, decide what we want to do.
497 EVT MemVT;
498 if (N->getOpcode() == ISD::FP_ROUND)
499 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
500 else
501 MemVT = SrcIsSSE ? SrcVT : DstVT;
503 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
504 DebugLoc dl = N->getDebugLoc();
506 // FIXME: optimize the case where the src/dest is a load or store?
507 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
508 N->getOperand(0),
509 MemTmp, MachinePointerInfo(), MemVT,
510 false, false, 0);
511 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
512 MachinePointerInfo(),
513 MemVT, false, false, 0);
515 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
516 // extload we created. This will cause general havok on the dag because
517 // anything below the conversion could be folded into other existing nodes.
518 // To avoid invalidating 'I', back it up to the convert node.
519 --I;
520 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
522 // Now that we did that, the node is dead. Increment the iterator to the
523 // next node to process, then delete N.
524 ++I;
525 CurDAG->DeleteNode(N);
530 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
531 /// the main function.
532 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
533 MachineFrameInfo *MFI) {
534 const TargetInstrInfo *TII = TM.getInstrInfo();
535 if (Subtarget->isTargetCygMing()) {
536 unsigned CallOp =
537 Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
538 BuildMI(BB, DebugLoc(),
539 TII->get(CallOp)).addExternalSymbol("__main");
543 void X86DAGToDAGISel::EmitFunctionEntryCode() {
544 // If this is main, emit special code for main.
545 if (const Function *Fn = MF->getFunction())
546 if (Fn->hasExternalLinkage() && Fn->getName() == "main")
547 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
551 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
552 SDValue Address = N->getOperand(1);
554 // load gs:0 -> GS segment register.
555 // load fs:0 -> FS segment register.
557 // This optimization is valid because the GNU TLS model defines that
558 // gs:0 (or fs:0 on X86-64) contains its own address.
559 // For more information see http://people.redhat.com/drepper/tls.pdf
560 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
561 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
562 Subtarget->isTargetELF())
563 switch (N->getPointerInfo().getAddrSpace()) {
564 case 256:
565 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
566 return false;
567 case 257:
568 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
569 return false;
572 return true;
575 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
576 /// into an addressing mode. These wrap things that will resolve down into a
577 /// symbol reference. If no match is possible, this returns true, otherwise it
578 /// returns false.
579 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
580 // If the addressing mode already has a symbol as the displacement, we can
581 // never match another symbol.
582 if (AM.hasSymbolicDisplacement())
583 return true;
585 SDValue N0 = N.getOperand(0);
586 CodeModel::Model M = TM.getCodeModel();
588 // Handle X86-64 rip-relative addresses. We check this before checking direct
589 // folding because RIP is preferable to non-RIP accesses.
590 if (Subtarget->is64Bit() &&
591 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
592 // they cannot be folded into immediate fields.
593 // FIXME: This can be improved for kernel and other models?
594 (M == CodeModel::Small || M == CodeModel::Kernel) &&
595 // Base and index reg must be 0 in order to use %rip as base and lowering
596 // must allow RIP.
597 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
598 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
599 int64_t Offset = AM.Disp + G->getOffset();
600 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
601 AM.GV = G->getGlobal();
602 AM.Disp = Offset;
603 AM.SymbolFlags = G->getTargetFlags();
604 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
605 int64_t Offset = AM.Disp + CP->getOffset();
606 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
607 AM.CP = CP->getConstVal();
608 AM.Align = CP->getAlignment();
609 AM.Disp = Offset;
610 AM.SymbolFlags = CP->getTargetFlags();
611 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
612 AM.ES = S->getSymbol();
613 AM.SymbolFlags = S->getTargetFlags();
614 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
615 AM.JT = J->getIndex();
616 AM.SymbolFlags = J->getTargetFlags();
617 } else {
618 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
619 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
622 if (N.getOpcode() == X86ISD::WrapperRIP)
623 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
624 return false;
627 // Handle the case when globals fit in our immediate field: This is true for
628 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
629 // mode, this results in a non-RIP-relative computation.
630 if (!Subtarget->is64Bit() ||
631 ((M == CodeModel::Small || M == CodeModel::Kernel) &&
632 TM.getRelocationModel() == Reloc::Static)) {
633 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
634 AM.GV = G->getGlobal();
635 AM.Disp += G->getOffset();
636 AM.SymbolFlags = G->getTargetFlags();
637 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
638 AM.CP = CP->getConstVal();
639 AM.Align = CP->getAlignment();
640 AM.Disp += CP->getOffset();
641 AM.SymbolFlags = CP->getTargetFlags();
642 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
643 AM.ES = S->getSymbol();
644 AM.SymbolFlags = S->getTargetFlags();
645 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
646 AM.JT = J->getIndex();
647 AM.SymbolFlags = J->getTargetFlags();
648 } else {
649 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
650 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
652 return false;
655 return true;
658 /// MatchAddress - Add the specified node to the specified addressing mode,
659 /// returning true if it cannot be done. This just pattern matches for the
660 /// addressing mode.
661 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
662 if (MatchAddressRecursively(N, AM, 0))
663 return true;
665 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
666 // a smaller encoding and avoids a scaled-index.
667 if (AM.Scale == 2 &&
668 AM.BaseType == X86ISelAddressMode::RegBase &&
669 AM.Base_Reg.getNode() == 0) {
670 AM.Base_Reg = AM.IndexReg;
671 AM.Scale = 1;
674 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
675 // because it has a smaller encoding.
676 // TODO: Which other code models can use this?
677 if (TM.getCodeModel() == CodeModel::Small &&
678 Subtarget->is64Bit() &&
679 AM.Scale == 1 &&
680 AM.BaseType == X86ISelAddressMode::RegBase &&
681 AM.Base_Reg.getNode() == 0 &&
682 AM.IndexReg.getNode() == 0 &&
683 AM.SymbolFlags == X86II::MO_NO_FLAG &&
684 AM.hasSymbolicDisplacement())
685 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
687 return false;
690 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
691 unsigned Depth) {
692 bool is64Bit = Subtarget->is64Bit();
693 DebugLoc dl = N.getDebugLoc();
694 DEBUG({
695 dbgs() << "MatchAddress: ";
696 AM.dump();
698 // Limit recursion.
699 if (Depth > 5)
700 return MatchAddressBase(N, AM);
702 CodeModel::Model M = TM.getCodeModel();
704 // If this is already a %rip relative address, we can only merge immediates
705 // into it. Instead of handling this in every case, we handle it here.
706 // RIP relative addressing: %rip + 32-bit displacement!
707 if (AM.isRIPRelative()) {
708 // FIXME: JumpTable and ExternalSymbol address currently don't like
709 // displacements. It isn't very important, but this should be fixed for
710 // consistency.
711 if (!AM.ES && AM.JT != -1) return true;
713 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
714 int64_t Val = AM.Disp + Cst->getSExtValue();
715 if (X86::isOffsetSuitableForCodeModel(Val, M,
716 AM.hasSymbolicDisplacement())) {
717 AM.Disp = Val;
718 return false;
721 return true;
724 switch (N.getOpcode()) {
725 default: break;
726 case ISD::Constant: {
727 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
728 if (!is64Bit ||
729 X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
730 AM.hasSymbolicDisplacement())) {
731 AM.Disp += Val;
732 return false;
734 break;
737 case X86ISD::Wrapper:
738 case X86ISD::WrapperRIP:
739 if (!MatchWrapper(N, AM))
740 return false;
741 break;
743 case ISD::LOAD:
744 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
745 return false;
746 break;
748 case ISD::FrameIndex:
749 if (AM.BaseType == X86ISelAddressMode::RegBase
750 && AM.Base_Reg.getNode() == 0) {
751 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
752 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
753 return false;
755 break;
757 case ISD::SHL:
758 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
759 break;
761 if (ConstantSDNode
762 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
763 unsigned Val = CN->getZExtValue();
764 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
765 // that the base operand remains free for further matching. If
766 // the base doesn't end up getting used, a post-processing step
767 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
768 if (Val == 1 || Val == 2 || Val == 3) {
769 AM.Scale = 1 << Val;
770 SDValue ShVal = N.getNode()->getOperand(0);
772 // Okay, we know that we have a scale by now. However, if the scaled
773 // value is an add of something and a constant, we can fold the
774 // constant into the disp field here.
775 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
776 AM.IndexReg = ShVal.getNode()->getOperand(0);
777 ConstantSDNode *AddVal =
778 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
779 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
780 if (!is64Bit ||
781 X86::isOffsetSuitableForCodeModel(Disp, M,
782 AM.hasSymbolicDisplacement()))
783 AM.Disp = Disp;
784 else
785 AM.IndexReg = ShVal;
786 } else {
787 AM.IndexReg = ShVal;
789 return false;
791 break;
794 case ISD::SMUL_LOHI:
795 case ISD::UMUL_LOHI:
796 // A mul_lohi where we need the low part can be folded as a plain multiply.
797 if (N.getResNo() != 0) break;
798 // FALL THROUGH
799 case ISD::MUL:
800 case X86ISD::MUL_IMM:
801 // X*[3,5,9] -> X+X*[2,4,8]
802 if (AM.BaseType == X86ISelAddressMode::RegBase &&
803 AM.Base_Reg.getNode() == 0 &&
804 AM.IndexReg.getNode() == 0) {
805 if (ConstantSDNode
806 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
807 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
808 CN->getZExtValue() == 9) {
809 AM.Scale = unsigned(CN->getZExtValue())-1;
811 SDValue MulVal = N.getNode()->getOperand(0);
812 SDValue Reg;
814 // Okay, we know that we have a scale by now. However, if the scaled
815 // value is an add of something and a constant, we can fold the
816 // constant into the disp field here.
817 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
818 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
819 Reg = MulVal.getNode()->getOperand(0);
820 ConstantSDNode *AddVal =
821 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
822 uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
823 CN->getZExtValue();
824 if (!is64Bit ||
825 X86::isOffsetSuitableForCodeModel(Disp, M,
826 AM.hasSymbolicDisplacement()))
827 AM.Disp = Disp;
828 else
829 Reg = N.getNode()->getOperand(0);
830 } else {
831 Reg = N.getNode()->getOperand(0);
834 AM.IndexReg = AM.Base_Reg = Reg;
835 return false;
838 break;
840 case ISD::SUB: {
841 // Given A-B, if A can be completely folded into the address and
842 // the index field with the index field unused, use -B as the index.
843 // This is a win if a has multiple parts that can be folded into
844 // the address. Also, this saves a mov if the base register has
845 // other uses, since it avoids a two-address sub instruction, however
846 // it costs an additional mov if the index register has other uses.
848 // Add an artificial use to this node so that we can keep track of
849 // it if it gets CSE'd with a different node.
850 HandleSDNode Handle(N);
852 // Test if the LHS of the sub can be folded.
853 X86ISelAddressMode Backup = AM;
854 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
855 AM = Backup;
856 break;
858 // Test if the index field is free for use.
859 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
860 AM = Backup;
861 break;
864 int Cost = 0;
865 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
866 // If the RHS involves a register with multiple uses, this
867 // transformation incurs an extra mov, due to the neg instruction
868 // clobbering its operand.
869 if (!RHS.getNode()->hasOneUse() ||
870 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
871 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
872 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
873 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
874 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
875 ++Cost;
876 // If the base is a register with multiple uses, this
877 // transformation may save a mov.
878 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
879 AM.Base_Reg.getNode() &&
880 !AM.Base_Reg.getNode()->hasOneUse()) ||
881 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
882 --Cost;
883 // If the folded LHS was interesting, this transformation saves
884 // address arithmetic.
885 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
886 ((AM.Disp != 0) && (Backup.Disp == 0)) +
887 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
888 --Cost;
889 // If it doesn't look like it may be an overall win, don't do it.
890 if (Cost >= 0) {
891 AM = Backup;
892 break;
895 // Ok, the transformation is legal and appears profitable. Go for it.
896 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
897 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
898 AM.IndexReg = Neg;
899 AM.Scale = 1;
901 // Insert the new nodes into the topological ordering.
902 if (Zero.getNode()->getNodeId() == -1 ||
903 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
904 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
905 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
907 if (Neg.getNode()->getNodeId() == -1 ||
908 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
909 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
910 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
912 return false;
915 case ISD::ADD: {
916 // Add an artificial use to this node so that we can keep track of
917 // it if it gets CSE'd with a different node.
918 HandleSDNode Handle(N);
920 X86ISelAddressMode Backup = AM;
921 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
922 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
923 return false;
924 AM = Backup;
926 // Try again after commuting the operands.
927 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
928 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
929 return false;
930 AM = Backup;
932 // If we couldn't fold both operands into the address at the same time,
933 // see if we can just put each operand into a register and fold at least
934 // the add.
935 if (AM.BaseType == X86ISelAddressMode::RegBase &&
936 !AM.Base_Reg.getNode() &&
937 !AM.IndexReg.getNode()) {
938 N = Handle.getValue();
939 AM.Base_Reg = N.getOperand(0);
940 AM.IndexReg = N.getOperand(1);
941 AM.Scale = 1;
942 return false;
944 N = Handle.getValue();
945 break;
948 case ISD::OR:
949 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
950 if (CurDAG->isBaseWithConstantOffset(N)) {
951 X86ISelAddressMode Backup = AM;
952 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
953 uint64_t Offset = CN->getSExtValue();
955 // Start with the LHS as an addr mode.
956 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
957 // Address could not have picked a GV address for the displacement.
958 AM.GV == NULL &&
959 // On x86-64, the resultant disp must fit in 32-bits.
960 (!is64Bit ||
961 X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
962 AM.hasSymbolicDisplacement()))) {
963 AM.Disp += Offset;
964 return false;
966 AM = Backup;
968 break;
970 case ISD::AND: {
971 // Perform some heroic transforms on an and of a constant-count shift
972 // with a constant to enable use of the scaled offset field.
974 SDValue Shift = N.getOperand(0);
975 if (Shift.getNumOperands() != 2) break;
977 // Scale must not be used already.
978 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
980 SDValue X = Shift.getOperand(0);
981 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
982 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
983 if (!C1 || !C2) break;
985 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
986 // allows us to convert the shift and and into an h-register extract and
987 // a scaled index.
988 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
989 unsigned ScaleLog = 8 - C1->getZExtValue();
990 if (ScaleLog > 0 && ScaleLog < 4 &&
991 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
992 SDValue Eight = CurDAG->getConstant(8, MVT::i8);
993 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
994 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
995 X, Eight);
996 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
997 Srl, Mask);
998 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
999 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1000 And, ShlCount);
1002 // Insert the new nodes into the topological ordering.
1003 if (Eight.getNode()->getNodeId() == -1 ||
1004 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1005 CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1006 Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1008 if (Mask.getNode()->getNodeId() == -1 ||
1009 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1010 CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1011 Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1013 if (Srl.getNode()->getNodeId() == -1 ||
1014 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1015 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1016 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1018 if (And.getNode()->getNodeId() == -1 ||
1019 And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1020 CurDAG->RepositionNode(N.getNode(), And.getNode());
1021 And.getNode()->setNodeId(N.getNode()->getNodeId());
1023 if (ShlCount.getNode()->getNodeId() == -1 ||
1024 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1025 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1026 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1028 if (Shl.getNode()->getNodeId() == -1 ||
1029 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1030 CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1031 Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1033 CurDAG->ReplaceAllUsesWith(N, Shl);
1034 AM.IndexReg = And;
1035 AM.Scale = (1 << ScaleLog);
1036 return false;
1040 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1041 // allows us to fold the shift into this addressing mode.
1042 if (Shift.getOpcode() != ISD::SHL) break;
1044 // Not likely to be profitable if either the AND or SHIFT node has more
1045 // than one use (unless all uses are for address computation). Besides,
1046 // isel mechanism requires their node ids to be reused.
1047 if (!N.hasOneUse() || !Shift.hasOneUse())
1048 break;
1050 // Verify that the shift amount is something we can fold.
1051 unsigned ShiftCst = C1->getZExtValue();
1052 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1053 break;
1055 // Get the new AND mask, this folds to a constant.
1056 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1057 SDValue(C2, 0), SDValue(C1, 0));
1058 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1059 NewANDMask);
1060 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1061 NewAND, SDValue(C1, 0));
1063 // Insert the new nodes into the topological ordering.
1064 if (C1->getNodeId() > X.getNode()->getNodeId()) {
1065 CurDAG->RepositionNode(X.getNode(), C1);
1066 C1->setNodeId(X.getNode()->getNodeId());
1068 if (NewANDMask.getNode()->getNodeId() == -1 ||
1069 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1070 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1071 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1073 if (NewAND.getNode()->getNodeId() == -1 ||
1074 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1075 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1076 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1078 if (NewSHIFT.getNode()->getNodeId() == -1 ||
1079 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1080 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1081 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1084 CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1086 AM.Scale = 1 << ShiftCst;
1087 AM.IndexReg = NewAND;
1088 return false;
1092 return MatchAddressBase(N, AM);
1095 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1096 /// specified addressing mode without any further recursion.
1097 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1098 // Is the base register already occupied?
1099 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1100 // If so, check to see if the scale index register is set.
1101 if (AM.IndexReg.getNode() == 0) {
1102 AM.IndexReg = N;
1103 AM.Scale = 1;
1104 return false;
1107 // Otherwise, we cannot select it.
1108 return true;
1111 // Default, generate it as a register.
1112 AM.BaseType = X86ISelAddressMode::RegBase;
1113 AM.Base_Reg = N;
1114 return false;
1117 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1118 /// It returns the operands which make up the maximal addressing mode it can
1119 /// match by reference.
1121 /// Parent is the parent node of the addr operand that is being matched. It
1122 /// is always a load, store, atomic node, or null. It is only null when
1123 /// checking memory operands for inline asm nodes.
1124 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1125 SDValue &Scale, SDValue &Index,
1126 SDValue &Disp, SDValue &Segment) {
1127 X86ISelAddressMode AM;
1129 if (Parent &&
1130 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1131 // that are not a MemSDNode, and thus don't have proper addrspace info.
1132 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1133 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1134 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1135 unsigned AddrSpace =
1136 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1137 // AddrSpace 256 -> GS, 257 -> FS.
1138 if (AddrSpace == 256)
1139 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1140 if (AddrSpace == 257)
1141 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1144 if (MatchAddress(N, AM))
1145 return false;
1147 EVT VT = N.getValueType();
1148 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1149 if (!AM.Base_Reg.getNode())
1150 AM.Base_Reg = CurDAG->getRegister(0, VT);
1153 if (!AM.IndexReg.getNode())
1154 AM.IndexReg = CurDAG->getRegister(0, VT);
1156 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1157 return true;
1160 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1161 /// match a load whose top elements are either undef or zeros. The load flavor
1162 /// is derived from the type of N, which is either v4f32 or v2f64.
1164 /// We also return:
1165 /// PatternChainNode: this is the matched node that has a chain input and
1166 /// output.
1167 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1168 SDValue N, SDValue &Base,
1169 SDValue &Scale, SDValue &Index,
1170 SDValue &Disp, SDValue &Segment,
1171 SDValue &PatternNodeWithChain) {
1172 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1173 PatternNodeWithChain = N.getOperand(0);
1174 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1175 PatternNodeWithChain.hasOneUse() &&
1176 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1177 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1178 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1179 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1180 return false;
1181 return true;
1185 // Also handle the case where we explicitly require zeros in the top
1186 // elements. This is a vector shuffle from the zero vector.
1187 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1188 // Check to see if the top elements are all zeros (or bitcast of zeros).
1189 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1190 N.getOperand(0).getNode()->hasOneUse() &&
1191 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1192 N.getOperand(0).getOperand(0).hasOneUse() &&
1193 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1194 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1195 // Okay, this is a zero extending load. Fold it.
1196 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1197 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1198 return false;
1199 PatternNodeWithChain = SDValue(LD, 0);
1200 return true;
1202 return false;
1206 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1207 /// mode it matches can be cost effectively emitted as an LEA instruction.
1208 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1209 SDValue &Base, SDValue &Scale,
1210 SDValue &Index, SDValue &Disp,
1211 SDValue &Segment) {
1212 X86ISelAddressMode AM;
1214 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1215 // segments.
1216 SDValue Copy = AM.Segment;
1217 SDValue T = CurDAG->getRegister(0, MVT::i32);
1218 AM.Segment = T;
1219 if (MatchAddress(N, AM))
1220 return false;
1221 assert (T == AM.Segment);
1222 AM.Segment = Copy;
1224 EVT VT = N.getValueType();
1225 unsigned Complexity = 0;
1226 if (AM.BaseType == X86ISelAddressMode::RegBase)
1227 if (AM.Base_Reg.getNode())
1228 Complexity = 1;
1229 else
1230 AM.Base_Reg = CurDAG->getRegister(0, VT);
1231 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1232 Complexity = 4;
1234 if (AM.IndexReg.getNode())
1235 Complexity++;
1236 else
1237 AM.IndexReg = CurDAG->getRegister(0, VT);
1239 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1240 // a simple shift.
1241 if (AM.Scale > 1)
1242 Complexity++;
1244 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1245 // to a LEA. This is determined with some expermentation but is by no means
1246 // optimal (especially for code size consideration). LEA is nice because of
1247 // its three-address nature. Tweak the cost function again when we can run
1248 // convertToThreeAddress() at register allocation time.
1249 if (AM.hasSymbolicDisplacement()) {
1250 // For X86-64, we should always use lea to materialize RIP relative
1251 // addresses.
1252 if (Subtarget->is64Bit())
1253 Complexity = 4;
1254 else
1255 Complexity += 2;
1258 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1259 Complexity++;
1261 // If it isn't worth using an LEA, reject it.
1262 if (Complexity <= 2)
1263 return false;
1265 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1266 return true;
1269 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1270 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1271 SDValue &Scale, SDValue &Index,
1272 SDValue &Disp, SDValue &Segment) {
1273 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1274 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1276 X86ISelAddressMode AM;
1277 AM.GV = GA->getGlobal();
1278 AM.Disp += GA->getOffset();
1279 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1280 AM.SymbolFlags = GA->getTargetFlags();
1282 if (N.getValueType() == MVT::i32) {
1283 AM.Scale = 1;
1284 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1285 } else {
1286 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1289 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1290 return true;
1294 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1295 SDValue &Base, SDValue &Scale,
1296 SDValue &Index, SDValue &Disp,
1297 SDValue &Segment) {
1298 if (!ISD::isNON_EXTLoad(N.getNode()) ||
1299 !IsProfitableToFold(N, P, P) ||
1300 !IsLegalToFold(N, P, P, OptLevel))
1301 return false;
1303 return SelectAddr(N.getNode(),
1304 N.getOperand(1), Base, Scale, Index, Disp, Segment);
1307 /// getGlobalBaseReg - Return an SDNode that returns the value of
1308 /// the global base register. Output instructions required to
1309 /// initialize the global base register, if necessary.
1311 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1312 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1313 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1316 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1317 SDValue Chain = Node->getOperand(0);
1318 SDValue In1 = Node->getOperand(1);
1319 SDValue In2L = Node->getOperand(2);
1320 SDValue In2H = Node->getOperand(3);
1321 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1322 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1323 return NULL;
1324 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1325 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1326 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1327 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1328 MVT::i32, MVT::i32, MVT::Other, Ops,
1329 array_lengthof(Ops));
1330 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1331 return ResNode;
1334 // FIXME: Figure out some way to unify this with the 'or' and other code
1335 // below.
1336 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1337 if (Node->hasAnyUseOfValue(0))
1338 return 0;
1340 // Optimize common patterns for __sync_add_and_fetch and
1341 // __sync_sub_and_fetch where the result is not used. This allows us
1342 // to use "lock" version of add, sub, inc, dec instructions.
1343 // FIXME: Do not use special instructions but instead add the "lock"
1344 // prefix to the target node somehow. The extra information will then be
1345 // transferred to machine instruction and it denotes the prefix.
1346 SDValue Chain = Node->getOperand(0);
1347 SDValue Ptr = Node->getOperand(1);
1348 SDValue Val = Node->getOperand(2);
1349 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1350 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1351 return 0;
1353 bool isInc = false, isDec = false, isSub = false, isCN = false;
1354 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1355 if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
1356 isCN = true;
1357 int64_t CNVal = CN->getSExtValue();
1358 if (CNVal == 1)
1359 isInc = true;
1360 else if (CNVal == -1)
1361 isDec = true;
1362 else if (CNVal >= 0)
1363 Val = CurDAG->getTargetConstant(CNVal, NVT);
1364 else {
1365 isSub = true;
1366 Val = CurDAG->getTargetConstant(-CNVal, NVT);
1368 } else if (Val.hasOneUse() &&
1369 Val.getOpcode() == ISD::SUB &&
1370 X86::isZeroNode(Val.getOperand(0))) {
1371 isSub = true;
1372 Val = Val.getOperand(1);
1375 DebugLoc dl = Node->getDebugLoc();
1376 unsigned Opc = 0;
1377 switch (NVT.getSimpleVT().SimpleTy) {
1378 default: return 0;
1379 case MVT::i8:
1380 if (isInc)
1381 Opc = X86::LOCK_INC8m;
1382 else if (isDec)
1383 Opc = X86::LOCK_DEC8m;
1384 else if (isSub) {
1385 if (isCN)
1386 Opc = X86::LOCK_SUB8mi;
1387 else
1388 Opc = X86::LOCK_SUB8mr;
1389 } else {
1390 if (isCN)
1391 Opc = X86::LOCK_ADD8mi;
1392 else
1393 Opc = X86::LOCK_ADD8mr;
1395 break;
1396 case MVT::i16:
1397 if (isInc)
1398 Opc = X86::LOCK_INC16m;
1399 else if (isDec)
1400 Opc = X86::LOCK_DEC16m;
1401 else if (isSub) {
1402 if (isCN) {
1403 if (immSext8(Val.getNode()))
1404 Opc = X86::LOCK_SUB16mi8;
1405 else
1406 Opc = X86::LOCK_SUB16mi;
1407 } else
1408 Opc = X86::LOCK_SUB16mr;
1409 } else {
1410 if (isCN) {
1411 if (immSext8(Val.getNode()))
1412 Opc = X86::LOCK_ADD16mi8;
1413 else
1414 Opc = X86::LOCK_ADD16mi;
1415 } else
1416 Opc = X86::LOCK_ADD16mr;
1418 break;
1419 case MVT::i32:
1420 if (isInc)
1421 Opc = X86::LOCK_INC32m;
1422 else if (isDec)
1423 Opc = X86::LOCK_DEC32m;
1424 else if (isSub) {
1425 if (isCN) {
1426 if (immSext8(Val.getNode()))
1427 Opc = X86::LOCK_SUB32mi8;
1428 else
1429 Opc = X86::LOCK_SUB32mi;
1430 } else
1431 Opc = X86::LOCK_SUB32mr;
1432 } else {
1433 if (isCN) {
1434 if (immSext8(Val.getNode()))
1435 Opc = X86::LOCK_ADD32mi8;
1436 else
1437 Opc = X86::LOCK_ADD32mi;
1438 } else
1439 Opc = X86::LOCK_ADD32mr;
1441 break;
1442 case MVT::i64:
1443 if (isInc)
1444 Opc = X86::LOCK_INC64m;
1445 else if (isDec)
1446 Opc = X86::LOCK_DEC64m;
1447 else if (isSub) {
1448 Opc = X86::LOCK_SUB64mr;
1449 if (isCN) {
1450 if (immSext8(Val.getNode()))
1451 Opc = X86::LOCK_SUB64mi8;
1452 else if (i64immSExt32(Val.getNode()))
1453 Opc = X86::LOCK_SUB64mi32;
1455 } else {
1456 Opc = X86::LOCK_ADD64mr;
1457 if (isCN) {
1458 if (immSext8(Val.getNode()))
1459 Opc = X86::LOCK_ADD64mi8;
1460 else if (i64immSExt32(Val.getNode()))
1461 Opc = X86::LOCK_ADD64mi32;
1464 break;
1467 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1468 dl, NVT), 0);
1469 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1470 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1471 if (isInc || isDec) {
1472 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1473 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1474 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1475 SDValue RetVals[] = { Undef, Ret };
1476 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1477 } else {
1478 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1479 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1480 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1481 SDValue RetVals[] = { Undef, Ret };
1482 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1486 enum AtomicOpc {
1488 AND,
1489 XOR,
1490 AtomicOpcEnd
1493 enum AtomicSz {
1494 ConstantI8,
1496 SextConstantI16,
1497 ConstantI16,
1498 I16,
1499 SextConstantI32,
1500 ConstantI32,
1501 I32,
1502 SextConstantI64,
1503 ConstantI64,
1504 I64,
1505 AtomicSzEnd
1508 static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1510 X86::LOCK_OR8mi,
1511 X86::LOCK_OR8mr,
1512 X86::LOCK_OR16mi8,
1513 X86::LOCK_OR16mi,
1514 X86::LOCK_OR16mr,
1515 X86::LOCK_OR32mi8,
1516 X86::LOCK_OR32mi,
1517 X86::LOCK_OR32mr,
1518 X86::LOCK_OR64mi8,
1519 X86::LOCK_OR64mi32,
1520 X86::LOCK_OR64mr
1523 X86::LOCK_AND8mi,
1524 X86::LOCK_AND8mr,
1525 X86::LOCK_AND16mi8,
1526 X86::LOCK_AND16mi,
1527 X86::LOCK_AND16mr,
1528 X86::LOCK_AND32mi8,
1529 X86::LOCK_AND32mi,
1530 X86::LOCK_AND32mr,
1531 X86::LOCK_AND64mi8,
1532 X86::LOCK_AND64mi32,
1533 X86::LOCK_AND64mr
1536 X86::LOCK_XOR8mi,
1537 X86::LOCK_XOR8mr,
1538 X86::LOCK_XOR16mi8,
1539 X86::LOCK_XOR16mi,
1540 X86::LOCK_XOR16mr,
1541 X86::LOCK_XOR32mi8,
1542 X86::LOCK_XOR32mi,
1543 X86::LOCK_XOR32mr,
1544 X86::LOCK_XOR64mi8,
1545 X86::LOCK_XOR64mi32,
1546 X86::LOCK_XOR64mr
1550 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1551 if (Node->hasAnyUseOfValue(0))
1552 return 0;
1554 // Optimize common patterns for __sync_or_and_fetch and similar arith
1555 // operations where the result is not used. This allows us to use the "lock"
1556 // version of the arithmetic instruction.
1557 // FIXME: Same as for 'add' and 'sub', try to merge those down here.
1558 SDValue Chain = Node->getOperand(0);
1559 SDValue Ptr = Node->getOperand(1);
1560 SDValue Val = Node->getOperand(2);
1561 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1562 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1563 return 0;
1565 // Which index into the table.
1566 enum AtomicOpc Op;
1567 switch (Node->getOpcode()) {
1568 case ISD::ATOMIC_LOAD_OR:
1569 Op = OR;
1570 break;
1571 case ISD::ATOMIC_LOAD_AND:
1572 Op = AND;
1573 break;
1574 case ISD::ATOMIC_LOAD_XOR:
1575 Op = XOR;
1576 break;
1577 default:
1578 return 0;
1581 bool isCN = false;
1582 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1583 if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
1584 isCN = true;
1585 Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
1588 unsigned Opc = 0;
1589 switch (NVT.getSimpleVT().SimpleTy) {
1590 default: return 0;
1591 case MVT::i8:
1592 if (isCN)
1593 Opc = AtomicOpcTbl[Op][ConstantI8];
1594 else
1595 Opc = AtomicOpcTbl[Op][I8];
1596 break;
1597 case MVT::i16:
1598 if (isCN) {
1599 if (immSext8(Val.getNode()))
1600 Opc = AtomicOpcTbl[Op][SextConstantI16];
1601 else
1602 Opc = AtomicOpcTbl[Op][ConstantI16];
1603 } else
1604 Opc = AtomicOpcTbl[Op][I16];
1605 break;
1606 case MVT::i32:
1607 if (isCN) {
1608 if (immSext8(Val.getNode()))
1609 Opc = AtomicOpcTbl[Op][SextConstantI32];
1610 else
1611 Opc = AtomicOpcTbl[Op][ConstantI32];
1612 } else
1613 Opc = AtomicOpcTbl[Op][I32];
1614 break;
1615 case MVT::i64:
1616 Opc = AtomicOpcTbl[Op][I64];
1617 if (isCN) {
1618 if (immSext8(Val.getNode()))
1619 Opc = AtomicOpcTbl[Op][SextConstantI64];
1620 else if (i64immSExt32(Val.getNode()))
1621 Opc = AtomicOpcTbl[Op][ConstantI64];
1623 break;
1626 assert(Opc != 0 && "Invalid arith lock transform!");
1628 DebugLoc dl = Node->getDebugLoc();
1629 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1630 dl, NVT), 0);
1631 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1632 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1633 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1634 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1635 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1636 SDValue RetVals[] = { Undef, Ret };
1637 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1640 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1641 /// any uses which require the SF or OF bits to be accurate.
1642 static bool HasNoSignedComparisonUses(SDNode *N) {
1643 // Examine each user of the node.
1644 for (SDNode::use_iterator UI = N->use_begin(),
1645 UE = N->use_end(); UI != UE; ++UI) {
1646 // Only examine CopyToReg uses.
1647 if (UI->getOpcode() != ISD::CopyToReg)
1648 return false;
1649 // Only examine CopyToReg uses that copy to EFLAGS.
1650 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1651 X86::EFLAGS)
1652 return false;
1653 // Examine each user of the CopyToReg use.
1654 for (SDNode::use_iterator FlagUI = UI->use_begin(),
1655 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1656 // Only examine the Flag result.
1657 if (FlagUI.getUse().getResNo() != 1) continue;
1658 // Anything unusual: assume conservatively.
1659 if (!FlagUI->isMachineOpcode()) return false;
1660 // Examine the opcode of the user.
1661 switch (FlagUI->getMachineOpcode()) {
1662 // These comparisons don't treat the most significant bit specially.
1663 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1664 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1665 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1666 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1667 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1668 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1669 case X86::CMOVA16rr: case X86::CMOVA16rm:
1670 case X86::CMOVA32rr: case X86::CMOVA32rm:
1671 case X86::CMOVA64rr: case X86::CMOVA64rm:
1672 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1673 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1674 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1675 case X86::CMOVB16rr: case X86::CMOVB16rm:
1676 case X86::CMOVB32rr: case X86::CMOVB32rm:
1677 case X86::CMOVB64rr: case X86::CMOVB64rm:
1678 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1679 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1680 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1681 case X86::CMOVE16rr: case X86::CMOVE16rm:
1682 case X86::CMOVE32rr: case X86::CMOVE32rm:
1683 case X86::CMOVE64rr: case X86::CMOVE64rm:
1684 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1685 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1686 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1687 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1688 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1689 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1690 case X86::CMOVP16rr: case X86::CMOVP16rm:
1691 case X86::CMOVP32rr: case X86::CMOVP32rm:
1692 case X86::CMOVP64rr: case X86::CMOVP64rm:
1693 continue;
1694 // Anything else: assume conservatively.
1695 default: return false;
1699 return true;
1702 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1703 EVT NVT = Node->getValueType(0);
1704 unsigned Opc, MOpc;
1705 unsigned Opcode = Node->getOpcode();
1706 DebugLoc dl = Node->getDebugLoc();
1708 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1710 if (Node->isMachineOpcode()) {
1711 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
1712 return NULL; // Already selected.
1715 switch (Opcode) {
1716 default: break;
1717 case X86ISD::GlobalBaseReg:
1718 return getGlobalBaseReg();
1720 case X86ISD::ATOMOR64_DAG:
1721 return SelectAtomic64(Node, X86::ATOMOR6432);
1722 case X86ISD::ATOMXOR64_DAG:
1723 return SelectAtomic64(Node, X86::ATOMXOR6432);
1724 case X86ISD::ATOMADD64_DAG:
1725 return SelectAtomic64(Node, X86::ATOMADD6432);
1726 case X86ISD::ATOMSUB64_DAG:
1727 return SelectAtomic64(Node, X86::ATOMSUB6432);
1728 case X86ISD::ATOMNAND64_DAG:
1729 return SelectAtomic64(Node, X86::ATOMNAND6432);
1730 case X86ISD::ATOMAND64_DAG:
1731 return SelectAtomic64(Node, X86::ATOMAND6432);
1732 case X86ISD::ATOMSWAP64_DAG:
1733 return SelectAtomic64(Node, X86::ATOMSWAP6432);
1735 case ISD::ATOMIC_LOAD_ADD: {
1736 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1737 if (RetVal)
1738 return RetVal;
1739 break;
1741 case ISD::ATOMIC_LOAD_XOR:
1742 case ISD::ATOMIC_LOAD_AND:
1743 case ISD::ATOMIC_LOAD_OR: {
1744 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
1745 if (RetVal)
1746 return RetVal;
1747 break;
1749 case ISD::AND:
1750 case ISD::OR:
1751 case ISD::XOR: {
1752 // For operations of the form (x << C1) op C2, check if we can use a smaller
1753 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
1754 SDValue N0 = Node->getOperand(0);
1755 SDValue N1 = Node->getOperand(1);
1757 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
1758 break;
1760 // i8 is unshrinkable, i16 should be promoted to i32.
1761 if (NVT != MVT::i32 && NVT != MVT::i64)
1762 break;
1764 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
1765 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1766 if (!Cst || !ShlCst)
1767 break;
1769 int64_t Val = Cst->getSExtValue();
1770 uint64_t ShlVal = ShlCst->getZExtValue();
1772 // Make sure that we don't change the operation by removing bits.
1773 // This only matters for OR and XOR, AND is unaffected.
1774 if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
1775 break;
1777 unsigned ShlOp, Op = 0;
1778 EVT CstVT = NVT;
1780 // Check the minimum bitwidth for the new constant.
1781 // TODO: AND32ri is the same as AND64ri32 with zext imm.
1782 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
1783 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
1784 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
1785 CstVT = MVT::i8;
1786 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
1787 CstVT = MVT::i32;
1789 // Bail if there is no smaller encoding.
1790 if (NVT == CstVT)
1791 break;
1793 switch (NVT.getSimpleVT().SimpleTy) {
1794 default: llvm_unreachable("Unsupported VT!");
1795 case MVT::i32:
1796 assert(CstVT == MVT::i8);
1797 ShlOp = X86::SHL32ri;
1799 switch (Opcode) {
1800 case ISD::AND: Op = X86::AND32ri8; break;
1801 case ISD::OR: Op = X86::OR32ri8; break;
1802 case ISD::XOR: Op = X86::XOR32ri8; break;
1804 break;
1805 case MVT::i64:
1806 assert(CstVT == MVT::i8 || CstVT == MVT::i32);
1807 ShlOp = X86::SHL64ri;
1809 switch (Opcode) {
1810 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
1811 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
1812 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
1814 break;
1817 // Emit the smaller op and the shift.
1818 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
1819 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
1820 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
1821 getI8Imm(ShlVal));
1822 break;
1824 case X86ISD::UMUL: {
1825 SDValue N0 = Node->getOperand(0);
1826 SDValue N1 = Node->getOperand(1);
1828 unsigned LoReg;
1829 switch (NVT.getSimpleVT().SimpleTy) {
1830 default: llvm_unreachable("Unsupported VT!");
1831 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
1832 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
1833 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
1834 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
1837 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1838 N0, SDValue()).getValue(1);
1840 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1841 SDValue Ops[] = {N1, InFlag};
1842 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1844 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
1845 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
1846 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
1847 return NULL;
1850 case ISD::SMUL_LOHI:
1851 case ISD::UMUL_LOHI: {
1852 SDValue N0 = Node->getOperand(0);
1853 SDValue N1 = Node->getOperand(1);
1855 bool isSigned = Opcode == ISD::SMUL_LOHI;
1856 if (!isSigned) {
1857 switch (NVT.getSimpleVT().SimpleTy) {
1858 default: llvm_unreachable("Unsupported VT!");
1859 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
1860 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1861 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1862 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1864 } else {
1865 switch (NVT.getSimpleVT().SimpleTy) {
1866 default: llvm_unreachable("Unsupported VT!");
1867 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
1868 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1869 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1870 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1874 unsigned LoReg, HiReg;
1875 switch (NVT.getSimpleVT().SimpleTy) {
1876 default: llvm_unreachable("Unsupported VT!");
1877 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
1878 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
1879 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1880 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1883 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1884 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1885 // Multiply is commmutative.
1886 if (!foldedLoad) {
1887 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1888 if (foldedLoad)
1889 std::swap(N0, N1);
1892 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1893 N0, SDValue()).getValue(1);
1895 if (foldedLoad) {
1896 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1897 InFlag };
1898 SDNode *CNode =
1899 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1900 array_lengthof(Ops));
1901 InFlag = SDValue(CNode, 1);
1903 // Update the chain.
1904 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1905 } else {
1906 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
1907 InFlag = SDValue(CNode, 0);
1910 // Prevent use of AH in a REX instruction by referencing AX instead.
1911 if (HiReg == X86::AH && Subtarget->is64Bit() &&
1912 !SDValue(Node, 1).use_empty()) {
1913 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1914 X86::AX, MVT::i16, InFlag);
1915 InFlag = Result.getValue(2);
1916 // Get the low part if needed. Don't use getCopyFromReg for aliasing
1917 // registers.
1918 if (!SDValue(Node, 0).use_empty())
1919 ReplaceUses(SDValue(Node, 1),
1920 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1922 // Shift AX down 8 bits.
1923 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1924 Result,
1925 CurDAG->getTargetConstant(8, MVT::i8)), 0);
1926 // Then truncate it down to i8.
1927 ReplaceUses(SDValue(Node, 1),
1928 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1930 // Copy the low half of the result, if it is needed.
1931 if (!SDValue(Node, 0).use_empty()) {
1932 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1933 LoReg, NVT, InFlag);
1934 InFlag = Result.getValue(2);
1935 ReplaceUses(SDValue(Node, 0), Result);
1936 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1938 // Copy the high half of the result, if it is needed.
1939 if (!SDValue(Node, 1).use_empty()) {
1940 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1941 HiReg, NVT, InFlag);
1942 InFlag = Result.getValue(2);
1943 ReplaceUses(SDValue(Node, 1), Result);
1944 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1947 return NULL;
1950 case ISD::SDIVREM:
1951 case ISD::UDIVREM: {
1952 SDValue N0 = Node->getOperand(0);
1953 SDValue N1 = Node->getOperand(1);
1955 bool isSigned = Opcode == ISD::SDIVREM;
1956 if (!isSigned) {
1957 switch (NVT.getSimpleVT().SimpleTy) {
1958 default: llvm_unreachable("Unsupported VT!");
1959 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
1960 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1961 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1962 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1964 } else {
1965 switch (NVT.getSimpleVT().SimpleTy) {
1966 default: llvm_unreachable("Unsupported VT!");
1967 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
1968 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1969 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1970 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1974 unsigned LoReg, HiReg, ClrReg;
1975 unsigned ClrOpcode, SExtOpcode;
1976 switch (NVT.getSimpleVT().SimpleTy) {
1977 default: llvm_unreachable("Unsupported VT!");
1978 case MVT::i8:
1979 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
1980 ClrOpcode = 0;
1981 SExtOpcode = X86::CBW;
1982 break;
1983 case MVT::i16:
1984 LoReg = X86::AX; HiReg = X86::DX;
1985 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX;
1986 SExtOpcode = X86::CWD;
1987 break;
1988 case MVT::i32:
1989 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1990 ClrOpcode = X86::MOV32r0;
1991 SExtOpcode = X86::CDQ;
1992 break;
1993 case MVT::i64:
1994 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1995 ClrOpcode = X86::MOV64r0;
1996 SExtOpcode = X86::CQO;
1997 break;
2000 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2001 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2002 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2004 SDValue InFlag;
2005 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2006 // Special case for div8, just use a move with zero extension to AX to
2007 // clear the upper 8 bits (AH).
2008 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2009 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2010 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2011 Move =
2012 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2013 MVT::Other, Ops,
2014 array_lengthof(Ops)), 0);
2015 Chain = Move.getValue(1);
2016 ReplaceUses(N0.getValue(1), Chain);
2017 } else {
2018 Move =
2019 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2020 Chain = CurDAG->getEntryNode();
2022 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2023 InFlag = Chain.getValue(1);
2024 } else {
2025 InFlag =
2026 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2027 LoReg, N0, SDValue()).getValue(1);
2028 if (isSigned && !signBitIsZero) {
2029 // Sign extend the low part into the high part.
2030 InFlag =
2031 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2032 } else {
2033 // Zero out the high part, effectively zero extending the input.
2034 SDValue ClrNode =
2035 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2036 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2037 ClrNode, InFlag).getValue(1);
2041 if (foldedLoad) {
2042 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2043 InFlag };
2044 SDNode *CNode =
2045 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2046 array_lengthof(Ops));
2047 InFlag = SDValue(CNode, 1);
2048 // Update the chain.
2049 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2050 } else {
2051 InFlag =
2052 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2055 // Prevent use of AH in a REX instruction by referencing AX instead.
2056 // Shift it down 8 bits.
2057 if (HiReg == X86::AH && Subtarget->is64Bit() &&
2058 !SDValue(Node, 1).use_empty()) {
2059 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2060 X86::AX, MVT::i16, InFlag);
2061 InFlag = Result.getValue(2);
2063 // If we also need AL (the quotient), get it by extracting a subreg from
2064 // Result. The fast register allocator does not like multiple CopyFromReg
2065 // nodes using aliasing registers.
2066 if (!SDValue(Node, 0).use_empty())
2067 ReplaceUses(SDValue(Node, 0),
2068 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2070 // Shift AX right by 8 bits instead of using AH.
2071 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2072 Result,
2073 CurDAG->getTargetConstant(8, MVT::i8)),
2075 ReplaceUses(SDValue(Node, 1),
2076 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2078 // Copy the division (low) result, if it is needed.
2079 if (!SDValue(Node, 0).use_empty()) {
2080 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2081 LoReg, NVT, InFlag);
2082 InFlag = Result.getValue(2);
2083 ReplaceUses(SDValue(Node, 0), Result);
2084 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2086 // Copy the remainder (high) result, if it is needed.
2087 if (!SDValue(Node, 1).use_empty()) {
2088 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2089 HiReg, NVT, InFlag);
2090 InFlag = Result.getValue(2);
2091 ReplaceUses(SDValue(Node, 1), Result);
2092 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2094 return NULL;
2097 case X86ISD::CMP: {
2098 SDValue N0 = Node->getOperand(0);
2099 SDValue N1 = Node->getOperand(1);
2101 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2102 // use a smaller encoding.
2103 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2104 HasNoSignedComparisonUses(Node))
2105 // Look past the truncate if CMP is the only use of it.
2106 N0 = N0.getOperand(0);
2107 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2108 N0.getValueType() != MVT::i8 &&
2109 X86::isZeroNode(N1)) {
2110 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2111 if (!C) break;
2113 // For example, convert "testl %eax, $8" to "testb %al, $8"
2114 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2115 (!(C->getZExtValue() & 0x80) ||
2116 HasNoSignedComparisonUses(Node))) {
2117 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2118 SDValue Reg = N0.getNode()->getOperand(0);
2120 // On x86-32, only the ABCD registers have 8-bit subregisters.
2121 if (!Subtarget->is64Bit()) {
2122 TargetRegisterClass *TRC = 0;
2123 switch (N0.getValueType().getSimpleVT().SimpleTy) {
2124 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2125 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2126 default: llvm_unreachable("Unsupported TEST operand type!");
2128 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2129 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2130 Reg.getValueType(), Reg, RC), 0);
2133 // Extract the l-register.
2134 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2135 MVT::i8, Reg);
2137 // Emit a testb.
2138 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2141 // For example, "testl %eax, $2048" to "testb %ah, $8".
2142 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2143 (!(C->getZExtValue() & 0x8000) ||
2144 HasNoSignedComparisonUses(Node))) {
2145 // Shift the immediate right by 8 bits.
2146 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2147 MVT::i8);
2148 SDValue Reg = N0.getNode()->getOperand(0);
2150 // Put the value in an ABCD register.
2151 TargetRegisterClass *TRC = 0;
2152 switch (N0.getValueType().getSimpleVT().SimpleTy) {
2153 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2154 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2155 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2156 default: llvm_unreachable("Unsupported TEST operand type!");
2158 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2159 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2160 Reg.getValueType(), Reg, RC), 0);
2162 // Extract the h-register.
2163 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2164 MVT::i8, Reg);
2166 // Emit a testb. No special NOREX tricks are needed since there's
2167 // only one GPR operand!
2168 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2169 Subreg, ShiftedImm);
2172 // For example, "testl %eax, $32776" to "testw %ax, $32776".
2173 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2174 N0.getValueType() != MVT::i16 &&
2175 (!(C->getZExtValue() & 0x8000) ||
2176 HasNoSignedComparisonUses(Node))) {
2177 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2178 SDValue Reg = N0.getNode()->getOperand(0);
2180 // Extract the 16-bit subregister.
2181 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2182 MVT::i16, Reg);
2184 // Emit a testw.
2185 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2188 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2189 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2190 N0.getValueType() == MVT::i64 &&
2191 (!(C->getZExtValue() & 0x80000000) ||
2192 HasNoSignedComparisonUses(Node))) {
2193 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2194 SDValue Reg = N0.getNode()->getOperand(0);
2196 // Extract the 32-bit subregister.
2197 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2198 MVT::i32, Reg);
2200 // Emit a testl.
2201 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2204 break;
2208 SDNode *ResNode = SelectCode(Node);
2210 DEBUG(dbgs() << "=> ";
2211 if (ResNode == NULL || ResNode == Node)
2212 Node->dump(CurDAG);
2213 else
2214 ResNode->dump(CurDAG);
2215 dbgs() << '\n');
2217 return ResNode;
2220 bool X86DAGToDAGISel::
2221 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2222 std::vector<SDValue> &OutOps) {
2223 SDValue Op0, Op1, Op2, Op3, Op4;
2224 switch (ConstraintCode) {
2225 case 'o': // offsetable ??
2226 case 'v': // not offsetable ??
2227 default: return true;
2228 case 'm': // memory
2229 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2230 return true;
2231 break;
2234 OutOps.push_back(Op0);
2235 OutOps.push_back(Op1);
2236 OutOps.push_back(Op2);
2237 OutOps.push_back(Op3);
2238 OutOps.push_back(Op4);
2239 return false;
2242 /// createX86ISelDag - This pass converts a legalized DAG into a
2243 /// X86-specific DAG, ready for instruction scheduling.
2245 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2246 llvm::CodeGenOpt::Level OptLevel) {
2247 return new X86DAGToDAGISel(TM, OptLevel);