1 //===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "X86InstrInfo.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/MC/MCAsmInfo.h"
38 #define GET_INSTRINFO_CTOR
39 #define GET_INSTRINFO_MC_DESC
40 #include "X86GenInstrInfo.inc"
45 NoFusing("disable-spill-fusing",
46 cl::desc("Disable fusing of spill code into instructions"));
48 PrintFailedFusing("print-failed-fuse-candidates",
49 cl::desc("Print instructions that the allocator wants to"
50 " fuse, but the X86 backend currently can't"),
53 ReMatPICStubLoad("remat-pic-stub-load",
54 cl::desc("Re-materialize load from stub in PIC mode"),
55 cl::init(false), cl::Hidden
);
57 X86InstrInfo::X86InstrInfo(X86TargetMachine
&tm
)
58 : X86GenInstrInfo((tm
.getSubtarget
<X86Subtarget
>().is64Bit()
59 ? X86::ADJCALLSTACKDOWN64
60 : X86::ADJCALLSTACKDOWN32
),
61 (tm
.getSubtarget
<X86Subtarget
>().is64Bit()
62 ? X86::ADJCALLSTACKUP64
63 : X86::ADJCALLSTACKUP32
)),
64 TM(tm
), RI(tm
, *this) {
66 TB_NOT_REVERSABLE
= 1U << 31,
67 TB_FLAGS
= TB_NOT_REVERSABLE
70 static const unsigned OpTbl2Addr
[][2] = {
71 { X86::ADC32ri
, X86::ADC32mi
},
72 { X86::ADC32ri8
, X86::ADC32mi8
},
73 { X86::ADC32rr
, X86::ADC32mr
},
74 { X86::ADC64ri32
, X86::ADC64mi32
},
75 { X86::ADC64ri8
, X86::ADC64mi8
},
76 { X86::ADC64rr
, X86::ADC64mr
},
77 { X86::ADD16ri
, X86::ADD16mi
},
78 { X86::ADD16ri8
, X86::ADD16mi8
},
79 { X86::ADD16ri_DB
, X86::ADD16mi
| TB_NOT_REVERSABLE
},
80 { X86::ADD16ri8_DB
, X86::ADD16mi8
| TB_NOT_REVERSABLE
},
81 { X86::ADD16rr
, X86::ADD16mr
},
82 { X86::ADD16rr_DB
, X86::ADD16mr
| TB_NOT_REVERSABLE
},
83 { X86::ADD32ri
, X86::ADD32mi
},
84 { X86::ADD32ri8
, X86::ADD32mi8
},
85 { X86::ADD32ri_DB
, X86::ADD32mi
| TB_NOT_REVERSABLE
},
86 { X86::ADD32ri8_DB
, X86::ADD32mi8
| TB_NOT_REVERSABLE
},
87 { X86::ADD32rr
, X86::ADD32mr
},
88 { X86::ADD32rr_DB
, X86::ADD32mr
| TB_NOT_REVERSABLE
},
89 { X86::ADD64ri32
, X86::ADD64mi32
},
90 { X86::ADD64ri8
, X86::ADD64mi8
},
91 { X86::ADD64ri32_DB
,X86::ADD64mi32
| TB_NOT_REVERSABLE
},
92 { X86::ADD64ri8_DB
, X86::ADD64mi8
| TB_NOT_REVERSABLE
},
93 { X86::ADD64rr
, X86::ADD64mr
},
94 { X86::ADD64rr_DB
, X86::ADD64mr
| TB_NOT_REVERSABLE
},
95 { X86::ADD8ri
, X86::ADD8mi
},
96 { X86::ADD8rr
, X86::ADD8mr
},
97 { X86::AND16ri
, X86::AND16mi
},
98 { X86::AND16ri8
, X86::AND16mi8
},
99 { X86::AND16rr
, X86::AND16mr
},
100 { X86::AND32ri
, X86::AND32mi
},
101 { X86::AND32ri8
, X86::AND32mi8
},
102 { X86::AND32rr
, X86::AND32mr
},
103 { X86::AND64ri32
, X86::AND64mi32
},
104 { X86::AND64ri8
, X86::AND64mi8
},
105 { X86::AND64rr
, X86::AND64mr
},
106 { X86::AND8ri
, X86::AND8mi
},
107 { X86::AND8rr
, X86::AND8mr
},
108 { X86::DEC16r
, X86::DEC16m
},
109 { X86::DEC32r
, X86::DEC32m
},
110 { X86::DEC64_16r
, X86::DEC64_16m
},
111 { X86::DEC64_32r
, X86::DEC64_32m
},
112 { X86::DEC64r
, X86::DEC64m
},
113 { X86::DEC8r
, X86::DEC8m
},
114 { X86::INC16r
, X86::INC16m
},
115 { X86::INC32r
, X86::INC32m
},
116 { X86::INC64_16r
, X86::INC64_16m
},
117 { X86::INC64_32r
, X86::INC64_32m
},
118 { X86::INC64r
, X86::INC64m
},
119 { X86::INC8r
, X86::INC8m
},
120 { X86::NEG16r
, X86::NEG16m
},
121 { X86::NEG32r
, X86::NEG32m
},
122 { X86::NEG64r
, X86::NEG64m
},
123 { X86::NEG8r
, X86::NEG8m
},
124 { X86::NOT16r
, X86::NOT16m
},
125 { X86::NOT32r
, X86::NOT32m
},
126 { X86::NOT64r
, X86::NOT64m
},
127 { X86::NOT8r
, X86::NOT8m
},
128 { X86::OR16ri
, X86::OR16mi
},
129 { X86::OR16ri8
, X86::OR16mi8
},
130 { X86::OR16rr
, X86::OR16mr
},
131 { X86::OR32ri
, X86::OR32mi
},
132 { X86::OR32ri8
, X86::OR32mi8
},
133 { X86::OR32rr
, X86::OR32mr
},
134 { X86::OR64ri32
, X86::OR64mi32
},
135 { X86::OR64ri8
, X86::OR64mi8
},
136 { X86::OR64rr
, X86::OR64mr
},
137 { X86::OR8ri
, X86::OR8mi
},
138 { X86::OR8rr
, X86::OR8mr
},
139 { X86::ROL16r1
, X86::ROL16m1
},
140 { X86::ROL16rCL
, X86::ROL16mCL
},
141 { X86::ROL16ri
, X86::ROL16mi
},
142 { X86::ROL32r1
, X86::ROL32m1
},
143 { X86::ROL32rCL
, X86::ROL32mCL
},
144 { X86::ROL32ri
, X86::ROL32mi
},
145 { X86::ROL64r1
, X86::ROL64m1
},
146 { X86::ROL64rCL
, X86::ROL64mCL
},
147 { X86::ROL64ri
, X86::ROL64mi
},
148 { X86::ROL8r1
, X86::ROL8m1
},
149 { X86::ROL8rCL
, X86::ROL8mCL
},
150 { X86::ROL8ri
, X86::ROL8mi
},
151 { X86::ROR16r1
, X86::ROR16m1
},
152 { X86::ROR16rCL
, X86::ROR16mCL
},
153 { X86::ROR16ri
, X86::ROR16mi
},
154 { X86::ROR32r1
, X86::ROR32m1
},
155 { X86::ROR32rCL
, X86::ROR32mCL
},
156 { X86::ROR32ri
, X86::ROR32mi
},
157 { X86::ROR64r1
, X86::ROR64m1
},
158 { X86::ROR64rCL
, X86::ROR64mCL
},
159 { X86::ROR64ri
, X86::ROR64mi
},
160 { X86::ROR8r1
, X86::ROR8m1
},
161 { X86::ROR8rCL
, X86::ROR8mCL
},
162 { X86::ROR8ri
, X86::ROR8mi
},
163 { X86::SAR16r1
, X86::SAR16m1
},
164 { X86::SAR16rCL
, X86::SAR16mCL
},
165 { X86::SAR16ri
, X86::SAR16mi
},
166 { X86::SAR32r1
, X86::SAR32m1
},
167 { X86::SAR32rCL
, X86::SAR32mCL
},
168 { X86::SAR32ri
, X86::SAR32mi
},
169 { X86::SAR64r1
, X86::SAR64m1
},
170 { X86::SAR64rCL
, X86::SAR64mCL
},
171 { X86::SAR64ri
, X86::SAR64mi
},
172 { X86::SAR8r1
, X86::SAR8m1
},
173 { X86::SAR8rCL
, X86::SAR8mCL
},
174 { X86::SAR8ri
, X86::SAR8mi
},
175 { X86::SBB32ri
, X86::SBB32mi
},
176 { X86::SBB32ri8
, X86::SBB32mi8
},
177 { X86::SBB32rr
, X86::SBB32mr
},
178 { X86::SBB64ri32
, X86::SBB64mi32
},
179 { X86::SBB64ri8
, X86::SBB64mi8
},
180 { X86::SBB64rr
, X86::SBB64mr
},
181 { X86::SHL16rCL
, X86::SHL16mCL
},
182 { X86::SHL16ri
, X86::SHL16mi
},
183 { X86::SHL32rCL
, X86::SHL32mCL
},
184 { X86::SHL32ri
, X86::SHL32mi
},
185 { X86::SHL64rCL
, X86::SHL64mCL
},
186 { X86::SHL64ri
, X86::SHL64mi
},
187 { X86::SHL8rCL
, X86::SHL8mCL
},
188 { X86::SHL8ri
, X86::SHL8mi
},
189 { X86::SHLD16rrCL
, X86::SHLD16mrCL
},
190 { X86::SHLD16rri8
, X86::SHLD16mri8
},
191 { X86::SHLD32rrCL
, X86::SHLD32mrCL
},
192 { X86::SHLD32rri8
, X86::SHLD32mri8
},
193 { X86::SHLD64rrCL
, X86::SHLD64mrCL
},
194 { X86::SHLD64rri8
, X86::SHLD64mri8
},
195 { X86::SHR16r1
, X86::SHR16m1
},
196 { X86::SHR16rCL
, X86::SHR16mCL
},
197 { X86::SHR16ri
, X86::SHR16mi
},
198 { X86::SHR32r1
, X86::SHR32m1
},
199 { X86::SHR32rCL
, X86::SHR32mCL
},
200 { X86::SHR32ri
, X86::SHR32mi
},
201 { X86::SHR64r1
, X86::SHR64m1
},
202 { X86::SHR64rCL
, X86::SHR64mCL
},
203 { X86::SHR64ri
, X86::SHR64mi
},
204 { X86::SHR8r1
, X86::SHR8m1
},
205 { X86::SHR8rCL
, X86::SHR8mCL
},
206 { X86::SHR8ri
, X86::SHR8mi
},
207 { X86::SHRD16rrCL
, X86::SHRD16mrCL
},
208 { X86::SHRD16rri8
, X86::SHRD16mri8
},
209 { X86::SHRD32rrCL
, X86::SHRD32mrCL
},
210 { X86::SHRD32rri8
, X86::SHRD32mri8
},
211 { X86::SHRD64rrCL
, X86::SHRD64mrCL
},
212 { X86::SHRD64rri8
, X86::SHRD64mri8
},
213 { X86::SUB16ri
, X86::SUB16mi
},
214 { X86::SUB16ri8
, X86::SUB16mi8
},
215 { X86::SUB16rr
, X86::SUB16mr
},
216 { X86::SUB32ri
, X86::SUB32mi
},
217 { X86::SUB32ri8
, X86::SUB32mi8
},
218 { X86::SUB32rr
, X86::SUB32mr
},
219 { X86::SUB64ri32
, X86::SUB64mi32
},
220 { X86::SUB64ri8
, X86::SUB64mi8
},
221 { X86::SUB64rr
, X86::SUB64mr
},
222 { X86::SUB8ri
, X86::SUB8mi
},
223 { X86::SUB8rr
, X86::SUB8mr
},
224 { X86::XOR16ri
, X86::XOR16mi
},
225 { X86::XOR16ri8
, X86::XOR16mi8
},
226 { X86::XOR16rr
, X86::XOR16mr
},
227 { X86::XOR32ri
, X86::XOR32mi
},
228 { X86::XOR32ri8
, X86::XOR32mi8
},
229 { X86::XOR32rr
, X86::XOR32mr
},
230 { X86::XOR64ri32
, X86::XOR64mi32
},
231 { X86::XOR64ri8
, X86::XOR64mi8
},
232 { X86::XOR64rr
, X86::XOR64mr
},
233 { X86::XOR8ri
, X86::XOR8mi
},
234 { X86::XOR8rr
, X86::XOR8mr
}
237 for (unsigned i
= 0, e
= array_lengthof(OpTbl2Addr
); i
!= e
; ++i
) {
238 unsigned RegOp
= OpTbl2Addr
[i
][0];
239 unsigned MemOp
= OpTbl2Addr
[i
][1] & ~TB_FLAGS
;
240 assert(!RegOp2MemOpTable2Addr
.count(RegOp
) && "Duplicated entries?");
241 RegOp2MemOpTable2Addr
[RegOp
] = std::make_pair(MemOp
, 0U);
243 // If this is not a reversible operation (because there is a many->one)
244 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
245 if (OpTbl2Addr
[i
][1] & TB_NOT_REVERSABLE
)
248 // Index 0, folded load and store, no alignment requirement.
249 unsigned AuxInfo
= 0 | (1 << 4) | (1 << 5);
251 assert(!MemOp2RegOpTable
.count(MemOp
) &&
252 "Duplicated entries in unfolding maps?");
253 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
256 // If the third value is 1, then it's folding either a load or a store.
257 static const unsigned OpTbl0
[][4] = {
258 { X86::BT16ri8
, X86::BT16mi8
, 1, 0 },
259 { X86::BT32ri8
, X86::BT32mi8
, 1, 0 },
260 { X86::BT64ri8
, X86::BT64mi8
, 1, 0 },
261 { X86::CALL32r
, X86::CALL32m
, 1, 0 },
262 { X86::CALL64r
, X86::CALL64m
, 1, 0 },
263 { X86::WINCALL64r
, X86::WINCALL64m
, 1, 0 },
264 { X86::CMP16ri
, X86::CMP16mi
, 1, 0 },
265 { X86::CMP16ri8
, X86::CMP16mi8
, 1, 0 },
266 { X86::CMP16rr
, X86::CMP16mr
, 1, 0 },
267 { X86::CMP32ri
, X86::CMP32mi
, 1, 0 },
268 { X86::CMP32ri8
, X86::CMP32mi8
, 1, 0 },
269 { X86::CMP32rr
, X86::CMP32mr
, 1, 0 },
270 { X86::CMP64ri32
, X86::CMP64mi32
, 1, 0 },
271 { X86::CMP64ri8
, X86::CMP64mi8
, 1, 0 },
272 { X86::CMP64rr
, X86::CMP64mr
, 1, 0 },
273 { X86::CMP8ri
, X86::CMP8mi
, 1, 0 },
274 { X86::CMP8rr
, X86::CMP8mr
, 1, 0 },
275 { X86::DIV16r
, X86::DIV16m
, 1, 0 },
276 { X86::DIV32r
, X86::DIV32m
, 1, 0 },
277 { X86::DIV64r
, X86::DIV64m
, 1, 0 },
278 { X86::DIV8r
, X86::DIV8m
, 1, 0 },
279 { X86::EXTRACTPSrr
, X86::EXTRACTPSmr
, 0, 16 },
280 { X86::FsMOVAPDrr
, X86::MOVSDmr
| TB_NOT_REVERSABLE
, 0, 0 },
281 { X86::FsMOVAPSrr
, X86::MOVSSmr
| TB_NOT_REVERSABLE
, 0, 0 },
282 { X86::IDIV16r
, X86::IDIV16m
, 1, 0 },
283 { X86::IDIV32r
, X86::IDIV32m
, 1, 0 },
284 { X86::IDIV64r
, X86::IDIV64m
, 1, 0 },
285 { X86::IDIV8r
, X86::IDIV8m
, 1, 0 },
286 { X86::IMUL16r
, X86::IMUL16m
, 1, 0 },
287 { X86::IMUL32r
, X86::IMUL32m
, 1, 0 },
288 { X86::IMUL64r
, X86::IMUL64m
, 1, 0 },
289 { X86::IMUL8r
, X86::IMUL8m
, 1, 0 },
290 { X86::JMP32r
, X86::JMP32m
, 1, 0 },
291 { X86::JMP64r
, X86::JMP64m
, 1, 0 },
292 { X86::MOV16ri
, X86::MOV16mi
, 0, 0 },
293 { X86::MOV16rr
, X86::MOV16mr
, 0, 0 },
294 { X86::MOV32ri
, X86::MOV32mi
, 0, 0 },
295 { X86::MOV32rr
, X86::MOV32mr
, 0, 0 },
296 { X86::MOV64ri32
, X86::MOV64mi32
, 0, 0 },
297 { X86::MOV64rr
, X86::MOV64mr
, 0, 0 },
298 { X86::MOV8ri
, X86::MOV8mi
, 0, 0 },
299 { X86::MOV8rr
, X86::MOV8mr
, 0, 0 },
300 { X86::MOV8rr_NOREX
, X86::MOV8mr_NOREX
, 0, 0 },
301 { X86::MOVAPDrr
, X86::MOVAPDmr
, 0, 16 },
302 { X86::MOVAPSrr
, X86::MOVAPSmr
, 0, 16 },
303 { X86::MOVDQArr
, X86::MOVDQAmr
, 0, 16 },
304 { X86::MOVPDI2DIrr
, X86::MOVPDI2DImr
, 0, 0 },
305 { X86::MOVPQIto64rr
,X86::MOVPQI2QImr
, 0, 0 },
306 { X86::MOVSDto64rr
, X86::MOVSDto64mr
, 0, 0 },
307 { X86::MOVSS2DIrr
, X86::MOVSS2DImr
, 0, 0 },
308 { X86::MOVUPDrr
, X86::MOVUPDmr
, 0, 0 },
309 { X86::MOVUPSrr
, X86::MOVUPSmr
, 0, 0 },
310 { X86::MUL16r
, X86::MUL16m
, 1, 0 },
311 { X86::MUL32r
, X86::MUL32m
, 1, 0 },
312 { X86::MUL64r
, X86::MUL64m
, 1, 0 },
313 { X86::MUL8r
, X86::MUL8m
, 1, 0 },
314 { X86::SETAEr
, X86::SETAEm
, 0, 0 },
315 { X86::SETAr
, X86::SETAm
, 0, 0 },
316 { X86::SETBEr
, X86::SETBEm
, 0, 0 },
317 { X86::SETBr
, X86::SETBm
, 0, 0 },
318 { X86::SETEr
, X86::SETEm
, 0, 0 },
319 { X86::SETGEr
, X86::SETGEm
, 0, 0 },
320 { X86::SETGr
, X86::SETGm
, 0, 0 },
321 { X86::SETLEr
, X86::SETLEm
, 0, 0 },
322 { X86::SETLr
, X86::SETLm
, 0, 0 },
323 { X86::SETNEr
, X86::SETNEm
, 0, 0 },
324 { X86::SETNOr
, X86::SETNOm
, 0, 0 },
325 { X86::SETNPr
, X86::SETNPm
, 0, 0 },
326 { X86::SETNSr
, X86::SETNSm
, 0, 0 },
327 { X86::SETOr
, X86::SETOm
, 0, 0 },
328 { X86::SETPr
, X86::SETPm
, 0, 0 },
329 { X86::SETSr
, X86::SETSm
, 0, 0 },
330 { X86::TAILJMPr
, X86::TAILJMPm
, 1, 0 },
331 { X86::TAILJMPr64
, X86::TAILJMPm64
, 1, 0 },
332 { X86::TEST16ri
, X86::TEST16mi
, 1, 0 },
333 { X86::TEST32ri
, X86::TEST32mi
, 1, 0 },
334 { X86::TEST64ri32
, X86::TEST64mi32
, 1, 0 },
335 { X86::TEST8ri
, X86::TEST8mi
, 1, 0 }
338 for (unsigned i
= 0, e
= array_lengthof(OpTbl0
); i
!= e
; ++i
) {
339 unsigned RegOp
= OpTbl0
[i
][0];
340 unsigned MemOp
= OpTbl0
[i
][1] & ~TB_FLAGS
;
341 unsigned FoldedLoad
= OpTbl0
[i
][2];
342 unsigned Align
= OpTbl0
[i
][3];
343 assert(!RegOp2MemOpTable0
.count(RegOp
) && "Duplicated entries?");
344 RegOp2MemOpTable0
[RegOp
] = std::make_pair(MemOp
, Align
);
346 // If this is not a reversible operation (because there is a many->one)
347 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
348 if (OpTbl0
[i
][1] & TB_NOT_REVERSABLE
)
351 // Index 0, folded load or store.
352 unsigned AuxInfo
= 0 | (FoldedLoad
<< 4) | ((FoldedLoad
^1) << 5);
353 assert(!MemOp2RegOpTable
.count(MemOp
) && "Duplicated entries?");
354 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
357 static const unsigned OpTbl1
[][3] = {
358 { X86::CMP16rr
, X86::CMP16rm
, 0 },
359 { X86::CMP32rr
, X86::CMP32rm
, 0 },
360 { X86::CMP64rr
, X86::CMP64rm
, 0 },
361 { X86::CMP8rr
, X86::CMP8rm
, 0 },
362 { X86::CVTSD2SSrr
, X86::CVTSD2SSrm
, 0 },
363 { X86::CVTSI2SD64rr
, X86::CVTSI2SD64rm
, 0 },
364 { X86::CVTSI2SDrr
, X86::CVTSI2SDrm
, 0 },
365 { X86::CVTSI2SS64rr
, X86::CVTSI2SS64rm
, 0 },
366 { X86::CVTSI2SSrr
, X86::CVTSI2SSrm
, 0 },
367 { X86::CVTSS2SDrr
, X86::CVTSS2SDrm
, 0 },
368 { X86::CVTTSD2SI64rr
, X86::CVTTSD2SI64rm
, 0 },
369 { X86::CVTTSD2SIrr
, X86::CVTTSD2SIrm
, 0 },
370 { X86::CVTTSS2SI64rr
, X86::CVTTSS2SI64rm
, 0 },
371 { X86::CVTTSS2SIrr
, X86::CVTTSS2SIrm
, 0 },
372 { X86::FsMOVAPDrr
, X86::MOVSDrm
| TB_NOT_REVERSABLE
, 0 },
373 { X86::FsMOVAPSrr
, X86::MOVSSrm
| TB_NOT_REVERSABLE
, 0 },
374 { X86::IMUL16rri
, X86::IMUL16rmi
, 0 },
375 { X86::IMUL16rri8
, X86::IMUL16rmi8
, 0 },
376 { X86::IMUL32rri
, X86::IMUL32rmi
, 0 },
377 { X86::IMUL32rri8
, X86::IMUL32rmi8
, 0 },
378 { X86::IMUL64rri32
, X86::IMUL64rmi32
, 0 },
379 { X86::IMUL64rri8
, X86::IMUL64rmi8
, 0 },
380 { X86::Int_COMISDrr
, X86::Int_COMISDrm
, 0 },
381 { X86::Int_COMISSrr
, X86::Int_COMISSrm
, 0 },
382 { X86::Int_CVTDQ2PDrr
, X86::Int_CVTDQ2PDrm
, 16 },
383 { X86::Int_CVTDQ2PSrr
, X86::Int_CVTDQ2PSrm
, 16 },
384 { X86::Int_CVTPD2DQrr
, X86::Int_CVTPD2DQrm
, 16 },
385 { X86::Int_CVTPD2PSrr
, X86::Int_CVTPD2PSrm
, 16 },
386 { X86::Int_CVTPS2DQrr
, X86::Int_CVTPS2DQrm
, 16 },
387 { X86::Int_CVTPS2PDrr
, X86::Int_CVTPS2PDrm
, 0 },
388 { X86::CVTSD2SI64rr
, X86::CVTSD2SI64rm
, 0 },
389 { X86::CVTSD2SIrr
, X86::CVTSD2SIrm
, 0 },
390 { X86::Int_CVTSD2SSrr
, X86::Int_CVTSD2SSrm
, 0 },
391 { X86::Int_CVTSI2SD64rr
,X86::Int_CVTSI2SD64rm
, 0 },
392 { X86::Int_CVTSI2SDrr
, X86::Int_CVTSI2SDrm
, 0 },
393 { X86::Int_CVTSI2SS64rr
,X86::Int_CVTSI2SS64rm
, 0 },
394 { X86::Int_CVTSI2SSrr
, X86::Int_CVTSI2SSrm
, 0 },
395 { X86::Int_CVTSS2SDrr
, X86::Int_CVTSS2SDrm
, 0 },
396 { X86::Int_CVTSS2SI64rr
,X86::Int_CVTSS2SI64rm
, 0 },
397 { X86::Int_CVTSS2SIrr
, X86::Int_CVTSS2SIrm
, 0 },
398 { X86::CVTTPD2DQrr
, X86::CVTTPD2DQrm
, 16 },
399 { X86::CVTTPS2DQrr
, X86::CVTTPS2DQrm
, 16 },
400 { X86::Int_CVTTSD2SI64rr
,X86::Int_CVTTSD2SI64rm
, 0 },
401 { X86::Int_CVTTSD2SIrr
, X86::Int_CVTTSD2SIrm
, 0 },
402 { X86::Int_CVTTSS2SI64rr
,X86::Int_CVTTSS2SI64rm
, 0 },
403 { X86::Int_CVTTSS2SIrr
, X86::Int_CVTTSS2SIrm
, 0 },
404 { X86::Int_UCOMISDrr
, X86::Int_UCOMISDrm
, 0 },
405 { X86::Int_UCOMISSrr
, X86::Int_UCOMISSrm
, 0 },
406 { X86::MOV16rr
, X86::MOV16rm
, 0 },
407 { X86::MOV32rr
, X86::MOV32rm
, 0 },
408 { X86::MOV64rr
, X86::MOV64rm
, 0 },
409 { X86::MOV64toPQIrr
, X86::MOVQI2PQIrm
, 0 },
410 { X86::MOV64toSDrr
, X86::MOV64toSDrm
, 0 },
411 { X86::MOV8rr
, X86::MOV8rm
, 0 },
412 { X86::MOVAPDrr
, X86::MOVAPDrm
, 16 },
413 { X86::MOVAPSrr
, X86::MOVAPSrm
, 16 },
414 { X86::MOVDDUPrr
, X86::MOVDDUPrm
, 0 },
415 { X86::MOVDI2PDIrr
, X86::MOVDI2PDIrm
, 0 },
416 { X86::MOVDI2SSrr
, X86::MOVDI2SSrm
, 0 },
417 { X86::MOVDQArr
, X86::MOVDQArm
, 16 },
418 { X86::MOVSHDUPrr
, X86::MOVSHDUPrm
, 16 },
419 { X86::MOVSLDUPrr
, X86::MOVSLDUPrm
, 16 },
420 { X86::MOVSX16rr8
, X86::MOVSX16rm8
, 0 },
421 { X86::MOVSX32rr16
, X86::MOVSX32rm16
, 0 },
422 { X86::MOVSX32rr8
, X86::MOVSX32rm8
, 0 },
423 { X86::MOVSX64rr16
, X86::MOVSX64rm16
, 0 },
424 { X86::MOVSX64rr32
, X86::MOVSX64rm32
, 0 },
425 { X86::MOVSX64rr8
, X86::MOVSX64rm8
, 0 },
426 { X86::MOVUPDrr
, X86::MOVUPDrm
, 16 },
427 { X86::MOVUPSrr
, X86::MOVUPSrm
, 0 },
428 { X86::MOVZDI2PDIrr
, X86::MOVZDI2PDIrm
, 0 },
429 { X86::MOVZQI2PQIrr
, X86::MOVZQI2PQIrm
, 0 },
430 { X86::MOVZPQILo2PQIrr
, X86::MOVZPQILo2PQIrm
, 16 },
431 { X86::MOVZX16rr8
, X86::MOVZX16rm8
, 0 },
432 { X86::MOVZX32rr16
, X86::MOVZX32rm16
, 0 },
433 { X86::MOVZX32_NOREXrr8
, X86::MOVZX32_NOREXrm8
, 0 },
434 { X86::MOVZX32rr8
, X86::MOVZX32rm8
, 0 },
435 { X86::MOVZX64rr16
, X86::MOVZX64rm16
, 0 },
436 { X86::MOVZX64rr32
, X86::MOVZX64rm32
, 0 },
437 { X86::MOVZX64rr8
, X86::MOVZX64rm8
, 0 },
438 { X86::PSHUFDri
, X86::PSHUFDmi
, 16 },
439 { X86::PSHUFHWri
, X86::PSHUFHWmi
, 16 },
440 { X86::PSHUFLWri
, X86::PSHUFLWmi
, 16 },
441 { X86::RCPPSr
, X86::RCPPSm
, 16 },
442 { X86::RCPPSr_Int
, X86::RCPPSm_Int
, 16 },
443 { X86::RSQRTPSr
, X86::RSQRTPSm
, 16 },
444 { X86::RSQRTPSr_Int
, X86::RSQRTPSm_Int
, 16 },
445 { X86::RSQRTSSr
, X86::RSQRTSSm
, 0 },
446 { X86::RSQRTSSr_Int
, X86::RSQRTSSm_Int
, 0 },
447 { X86::SQRTPDr
, X86::SQRTPDm
, 16 },
448 { X86::SQRTPDr_Int
, X86::SQRTPDm_Int
, 16 },
449 { X86::SQRTPSr
, X86::SQRTPSm
, 16 },
450 { X86::SQRTPSr_Int
, X86::SQRTPSm_Int
, 16 },
451 { X86::SQRTSDr
, X86::SQRTSDm
, 0 },
452 { X86::SQRTSDr_Int
, X86::SQRTSDm_Int
, 0 },
453 { X86::SQRTSSr
, X86::SQRTSSm
, 0 },
454 { X86::SQRTSSr_Int
, X86::SQRTSSm_Int
, 0 },
455 { X86::TEST16rr
, X86::TEST16rm
, 0 },
456 { X86::TEST32rr
, X86::TEST32rm
, 0 },
457 { X86::TEST64rr
, X86::TEST64rm
, 0 },
458 { X86::TEST8rr
, X86::TEST8rm
, 0 },
459 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
460 { X86::UCOMISDrr
, X86::UCOMISDrm
, 0 },
461 { X86::UCOMISSrr
, X86::UCOMISSrm
, 0 }
464 for (unsigned i
= 0, e
= array_lengthof(OpTbl1
); i
!= e
; ++i
) {
465 unsigned RegOp
= OpTbl1
[i
][0];
466 unsigned MemOp
= OpTbl1
[i
][1] & ~TB_FLAGS
;
467 unsigned Align
= OpTbl1
[i
][2];
468 assert(!RegOp2MemOpTable1
.count(RegOp
) && "Duplicate entries");
469 RegOp2MemOpTable1
[RegOp
] = std::make_pair(MemOp
, Align
);
471 // If this is not a reversible operation (because there is a many->one)
472 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
473 if (OpTbl1
[i
][1] & TB_NOT_REVERSABLE
)
476 // Index 1, folded load
477 unsigned AuxInfo
= 1 | (1 << 4);
478 assert(!MemOp2RegOpTable
.count(MemOp
) && "Duplicate entries");
479 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
482 static const unsigned OpTbl2
[][3] = {
483 { X86::ADC32rr
, X86::ADC32rm
, 0 },
484 { X86::ADC64rr
, X86::ADC64rm
, 0 },
485 { X86::ADD16rr
, X86::ADD16rm
, 0 },
486 { X86::ADD16rr_DB
, X86::ADD16rm
| TB_NOT_REVERSABLE
, 0 },
487 { X86::ADD32rr
, X86::ADD32rm
, 0 },
488 { X86::ADD32rr_DB
, X86::ADD32rm
| TB_NOT_REVERSABLE
, 0 },
489 { X86::ADD64rr
, X86::ADD64rm
, 0 },
490 { X86::ADD64rr_DB
, X86::ADD64rm
| TB_NOT_REVERSABLE
, 0 },
491 { X86::ADD8rr
, X86::ADD8rm
, 0 },
492 { X86::ADDPDrr
, X86::ADDPDrm
, 16 },
493 { X86::ADDPSrr
, X86::ADDPSrm
, 16 },
494 { X86::ADDSDrr
, X86::ADDSDrm
, 0 },
495 { X86::ADDSSrr
, X86::ADDSSrm
, 0 },
496 { X86::ADDSUBPDrr
, X86::ADDSUBPDrm
, 16 },
497 { X86::ADDSUBPSrr
, X86::ADDSUBPSrm
, 16 },
498 { X86::AND16rr
, X86::AND16rm
, 0 },
499 { X86::AND32rr
, X86::AND32rm
, 0 },
500 { X86::AND64rr
, X86::AND64rm
, 0 },
501 { X86::AND8rr
, X86::AND8rm
, 0 },
502 { X86::ANDNPDrr
, X86::ANDNPDrm
, 16 },
503 { X86::ANDNPSrr
, X86::ANDNPSrm
, 16 },
504 { X86::ANDPDrr
, X86::ANDPDrm
, 16 },
505 { X86::ANDPSrr
, X86::ANDPSrm
, 16 },
506 { X86::CMOVA16rr
, X86::CMOVA16rm
, 0 },
507 { X86::CMOVA32rr
, X86::CMOVA32rm
, 0 },
508 { X86::CMOVA64rr
, X86::CMOVA64rm
, 0 },
509 { X86::CMOVAE16rr
, X86::CMOVAE16rm
, 0 },
510 { X86::CMOVAE32rr
, X86::CMOVAE32rm
, 0 },
511 { X86::CMOVAE64rr
, X86::CMOVAE64rm
, 0 },
512 { X86::CMOVB16rr
, X86::CMOVB16rm
, 0 },
513 { X86::CMOVB32rr
, X86::CMOVB32rm
, 0 },
514 { X86::CMOVB64rr
, X86::CMOVB64rm
, 0 },
515 { X86::CMOVBE16rr
, X86::CMOVBE16rm
, 0 },
516 { X86::CMOVBE32rr
, X86::CMOVBE32rm
, 0 },
517 { X86::CMOVBE64rr
, X86::CMOVBE64rm
, 0 },
518 { X86::CMOVE16rr
, X86::CMOVE16rm
, 0 },
519 { X86::CMOVE32rr
, X86::CMOVE32rm
, 0 },
520 { X86::CMOVE64rr
, X86::CMOVE64rm
, 0 },
521 { X86::CMOVG16rr
, X86::CMOVG16rm
, 0 },
522 { X86::CMOVG32rr
, X86::CMOVG32rm
, 0 },
523 { X86::CMOVG64rr
, X86::CMOVG64rm
, 0 },
524 { X86::CMOVGE16rr
, X86::CMOVGE16rm
, 0 },
525 { X86::CMOVGE32rr
, X86::CMOVGE32rm
, 0 },
526 { X86::CMOVGE64rr
, X86::CMOVGE64rm
, 0 },
527 { X86::CMOVL16rr
, X86::CMOVL16rm
, 0 },
528 { X86::CMOVL32rr
, X86::CMOVL32rm
, 0 },
529 { X86::CMOVL64rr
, X86::CMOVL64rm
, 0 },
530 { X86::CMOVLE16rr
, X86::CMOVLE16rm
, 0 },
531 { X86::CMOVLE32rr
, X86::CMOVLE32rm
, 0 },
532 { X86::CMOVLE64rr
, X86::CMOVLE64rm
, 0 },
533 { X86::CMOVNE16rr
, X86::CMOVNE16rm
, 0 },
534 { X86::CMOVNE32rr
, X86::CMOVNE32rm
, 0 },
535 { X86::CMOVNE64rr
, X86::CMOVNE64rm
, 0 },
536 { X86::CMOVNO16rr
, X86::CMOVNO16rm
, 0 },
537 { X86::CMOVNO32rr
, X86::CMOVNO32rm
, 0 },
538 { X86::CMOVNO64rr
, X86::CMOVNO64rm
, 0 },
539 { X86::CMOVNP16rr
, X86::CMOVNP16rm
, 0 },
540 { X86::CMOVNP32rr
, X86::CMOVNP32rm
, 0 },
541 { X86::CMOVNP64rr
, X86::CMOVNP64rm
, 0 },
542 { X86::CMOVNS16rr
, X86::CMOVNS16rm
, 0 },
543 { X86::CMOVNS32rr
, X86::CMOVNS32rm
, 0 },
544 { X86::CMOVNS64rr
, X86::CMOVNS64rm
, 0 },
545 { X86::CMOVO16rr
, X86::CMOVO16rm
, 0 },
546 { X86::CMOVO32rr
, X86::CMOVO32rm
, 0 },
547 { X86::CMOVO64rr
, X86::CMOVO64rm
, 0 },
548 { X86::CMOVP16rr
, X86::CMOVP16rm
, 0 },
549 { X86::CMOVP32rr
, X86::CMOVP32rm
, 0 },
550 { X86::CMOVP64rr
, X86::CMOVP64rm
, 0 },
551 { X86::CMOVS16rr
, X86::CMOVS16rm
, 0 },
552 { X86::CMOVS32rr
, X86::CMOVS32rm
, 0 },
553 { X86::CMOVS64rr
, X86::CMOVS64rm
, 0 },
554 { X86::CMPPDrri
, X86::CMPPDrmi
, 16 },
555 { X86::CMPPSrri
, X86::CMPPSrmi
, 16 },
556 { X86::CMPSDrr
, X86::CMPSDrm
, 0 },
557 { X86::CMPSSrr
, X86::CMPSSrm
, 0 },
558 { X86::DIVPDrr
, X86::DIVPDrm
, 16 },
559 { X86::DIVPSrr
, X86::DIVPSrm
, 16 },
560 { X86::DIVSDrr
, X86::DIVSDrm
, 0 },
561 { X86::DIVSSrr
, X86::DIVSSrm
, 0 },
562 { X86::FsANDNPDrr
, X86::FsANDNPDrm
, 16 },
563 { X86::FsANDNPSrr
, X86::FsANDNPSrm
, 16 },
564 { X86::FsANDPDrr
, X86::FsANDPDrm
, 16 },
565 { X86::FsANDPSrr
, X86::FsANDPSrm
, 16 },
566 { X86::FsORPDrr
, X86::FsORPDrm
, 16 },
567 { X86::FsORPSrr
, X86::FsORPSrm
, 16 },
568 { X86::FsXORPDrr
, X86::FsXORPDrm
, 16 },
569 { X86::FsXORPSrr
, X86::FsXORPSrm
, 16 },
570 { X86::HADDPDrr
, X86::HADDPDrm
, 16 },
571 { X86::HADDPSrr
, X86::HADDPSrm
, 16 },
572 { X86::HSUBPDrr
, X86::HSUBPDrm
, 16 },
573 { X86::HSUBPSrr
, X86::HSUBPSrm
, 16 },
574 { X86::IMUL16rr
, X86::IMUL16rm
, 0 },
575 { X86::IMUL32rr
, X86::IMUL32rm
, 0 },
576 { X86::IMUL64rr
, X86::IMUL64rm
, 0 },
577 { X86::Int_CMPSDrr
, X86::Int_CMPSDrm
, 0 },
578 { X86::Int_CMPSSrr
, X86::Int_CMPSSrm
, 0 },
579 { X86::MAXPDrr
, X86::MAXPDrm
, 16 },
580 { X86::MAXPDrr_Int
, X86::MAXPDrm_Int
, 16 },
581 { X86::MAXPSrr
, X86::MAXPSrm
, 16 },
582 { X86::MAXPSrr_Int
, X86::MAXPSrm_Int
, 16 },
583 { X86::MAXSDrr
, X86::MAXSDrm
, 0 },
584 { X86::MAXSDrr_Int
, X86::MAXSDrm_Int
, 0 },
585 { X86::MAXSSrr
, X86::MAXSSrm
, 0 },
586 { X86::MAXSSrr_Int
, X86::MAXSSrm_Int
, 0 },
587 { X86::MINPDrr
, X86::MINPDrm
, 16 },
588 { X86::MINPDrr_Int
, X86::MINPDrm_Int
, 16 },
589 { X86::MINPSrr
, X86::MINPSrm
, 16 },
590 { X86::MINPSrr_Int
, X86::MINPSrm_Int
, 16 },
591 { X86::MINSDrr
, X86::MINSDrm
, 0 },
592 { X86::MINSDrr_Int
, X86::MINSDrm_Int
, 0 },
593 { X86::MINSSrr
, X86::MINSSrm
, 0 },
594 { X86::MINSSrr_Int
, X86::MINSSrm_Int
, 0 },
595 { X86::MULPDrr
, X86::MULPDrm
, 16 },
596 { X86::MULPSrr
, X86::MULPSrm
, 16 },
597 { X86::MULSDrr
, X86::MULSDrm
, 0 },
598 { X86::MULSSrr
, X86::MULSSrm
, 0 },
599 { X86::OR16rr
, X86::OR16rm
, 0 },
600 { X86::OR32rr
, X86::OR32rm
, 0 },
601 { X86::OR64rr
, X86::OR64rm
, 0 },
602 { X86::OR8rr
, X86::OR8rm
, 0 },
603 { X86::ORPDrr
, X86::ORPDrm
, 16 },
604 { X86::ORPSrr
, X86::ORPSrm
, 16 },
605 { X86::PACKSSDWrr
, X86::PACKSSDWrm
, 16 },
606 { X86::PACKSSWBrr
, X86::PACKSSWBrm
, 16 },
607 { X86::PACKUSWBrr
, X86::PACKUSWBrm
, 16 },
608 { X86::PADDBrr
, X86::PADDBrm
, 16 },
609 { X86::PADDDrr
, X86::PADDDrm
, 16 },
610 { X86::PADDQrr
, X86::PADDQrm
, 16 },
611 { X86::PADDSBrr
, X86::PADDSBrm
, 16 },
612 { X86::PADDSWrr
, X86::PADDSWrm
, 16 },
613 { X86::PADDWrr
, X86::PADDWrm
, 16 },
614 { X86::PANDNrr
, X86::PANDNrm
, 16 },
615 { X86::PANDrr
, X86::PANDrm
, 16 },
616 { X86::PAVGBrr
, X86::PAVGBrm
, 16 },
617 { X86::PAVGWrr
, X86::PAVGWrm
, 16 },
618 { X86::PCMPEQBrr
, X86::PCMPEQBrm
, 16 },
619 { X86::PCMPEQDrr
, X86::PCMPEQDrm
, 16 },
620 { X86::PCMPEQWrr
, X86::PCMPEQWrm
, 16 },
621 { X86::PCMPGTBrr
, X86::PCMPGTBrm
, 16 },
622 { X86::PCMPGTDrr
, X86::PCMPGTDrm
, 16 },
623 { X86::PCMPGTWrr
, X86::PCMPGTWrm
, 16 },
624 { X86::PINSRWrri
, X86::PINSRWrmi
, 16 },
625 { X86::PMADDWDrr
, X86::PMADDWDrm
, 16 },
626 { X86::PMAXSWrr
, X86::PMAXSWrm
, 16 },
627 { X86::PMAXUBrr
, X86::PMAXUBrm
, 16 },
628 { X86::PMINSWrr
, X86::PMINSWrm
, 16 },
629 { X86::PMINUBrr
, X86::PMINUBrm
, 16 },
630 { X86::PMULDQrr
, X86::PMULDQrm
, 16 },
631 { X86::PMULHUWrr
, X86::PMULHUWrm
, 16 },
632 { X86::PMULHWrr
, X86::PMULHWrm
, 16 },
633 { X86::PMULLDrr
, X86::PMULLDrm
, 16 },
634 { X86::PMULLWrr
, X86::PMULLWrm
, 16 },
635 { X86::PMULUDQrr
, X86::PMULUDQrm
, 16 },
636 { X86::PORrr
, X86::PORrm
, 16 },
637 { X86::PSADBWrr
, X86::PSADBWrm
, 16 },
638 { X86::PSLLDrr
, X86::PSLLDrm
, 16 },
639 { X86::PSLLQrr
, X86::PSLLQrm
, 16 },
640 { X86::PSLLWrr
, X86::PSLLWrm
, 16 },
641 { X86::PSRADrr
, X86::PSRADrm
, 16 },
642 { X86::PSRAWrr
, X86::PSRAWrm
, 16 },
643 { X86::PSRLDrr
, X86::PSRLDrm
, 16 },
644 { X86::PSRLQrr
, X86::PSRLQrm
, 16 },
645 { X86::PSRLWrr
, X86::PSRLWrm
, 16 },
646 { X86::PSUBBrr
, X86::PSUBBrm
, 16 },
647 { X86::PSUBDrr
, X86::PSUBDrm
, 16 },
648 { X86::PSUBSBrr
, X86::PSUBSBrm
, 16 },
649 { X86::PSUBSWrr
, X86::PSUBSWrm
, 16 },
650 { X86::PSUBWrr
, X86::PSUBWrm
, 16 },
651 { X86::PUNPCKHBWrr
, X86::PUNPCKHBWrm
, 16 },
652 { X86::PUNPCKHDQrr
, X86::PUNPCKHDQrm
, 16 },
653 { X86::PUNPCKHQDQrr
, X86::PUNPCKHQDQrm
, 16 },
654 { X86::PUNPCKHWDrr
, X86::PUNPCKHWDrm
, 16 },
655 { X86::PUNPCKLBWrr
, X86::PUNPCKLBWrm
, 16 },
656 { X86::PUNPCKLDQrr
, X86::PUNPCKLDQrm
, 16 },
657 { X86::PUNPCKLQDQrr
, X86::PUNPCKLQDQrm
, 16 },
658 { X86::PUNPCKLWDrr
, X86::PUNPCKLWDrm
, 16 },
659 { X86::PXORrr
, X86::PXORrm
, 16 },
660 { X86::SBB32rr
, X86::SBB32rm
, 0 },
661 { X86::SBB64rr
, X86::SBB64rm
, 0 },
662 { X86::SHUFPDrri
, X86::SHUFPDrmi
, 16 },
663 { X86::SHUFPSrri
, X86::SHUFPSrmi
, 16 },
664 { X86::SUB16rr
, X86::SUB16rm
, 0 },
665 { X86::SUB32rr
, X86::SUB32rm
, 0 },
666 { X86::SUB64rr
, X86::SUB64rm
, 0 },
667 { X86::SUB8rr
, X86::SUB8rm
, 0 },
668 { X86::SUBPDrr
, X86::SUBPDrm
, 16 },
669 { X86::SUBPSrr
, X86::SUBPSrm
, 16 },
670 { X86::SUBSDrr
, X86::SUBSDrm
, 0 },
671 { X86::SUBSSrr
, X86::SUBSSrm
, 0 },
672 // FIXME: TEST*rr -> swapped operand of TEST*mr.
673 { X86::UNPCKHPDrr
, X86::UNPCKHPDrm
, 16 },
674 { X86::UNPCKHPSrr
, X86::UNPCKHPSrm
, 16 },
675 { X86::UNPCKLPDrr
, X86::UNPCKLPDrm
, 16 },
676 { X86::UNPCKLPSrr
, X86::UNPCKLPSrm
, 16 },
677 { X86::XOR16rr
, X86::XOR16rm
, 0 },
678 { X86::XOR32rr
, X86::XOR32rm
, 0 },
679 { X86::XOR64rr
, X86::XOR64rm
, 0 },
680 { X86::XOR8rr
, X86::XOR8rm
, 0 },
681 { X86::XORPDrr
, X86::XORPDrm
, 16 },
682 { X86::XORPSrr
, X86::XORPSrm
, 16 }
685 for (unsigned i
= 0, e
= array_lengthof(OpTbl2
); i
!= e
; ++i
) {
686 unsigned RegOp
= OpTbl2
[i
][0];
687 unsigned MemOp
= OpTbl2
[i
][1] & ~TB_FLAGS
;
688 unsigned Align
= OpTbl2
[i
][2];
690 assert(!RegOp2MemOpTable2
.count(RegOp
) && "Duplicate entry!");
691 RegOp2MemOpTable2
[RegOp
] = std::make_pair(MemOp
, Align
);
693 // If this is not a reversible operation (because there is a many->one)
694 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
695 if (OpTbl2
[i
][1] & TB_NOT_REVERSABLE
)
698 // Index 2, folded load
699 unsigned AuxInfo
= 2 | (1 << 4);
700 assert(!MemOp2RegOpTable
.count(MemOp
) &&
701 "Duplicated entries in unfolding maps?");
702 MemOp2RegOpTable
[MemOp
] = std::make_pair(RegOp
, AuxInfo
);
707 X86InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
708 unsigned &SrcReg
, unsigned &DstReg
,
709 unsigned &SubIdx
) const {
710 switch (MI
.getOpcode()) {
712 case X86::MOVSX16rr8
:
713 case X86::MOVZX16rr8
:
714 case X86::MOVSX32rr8
:
715 case X86::MOVZX32rr8
:
716 case X86::MOVSX64rr8
:
717 case X86::MOVZX64rr8
:
718 if (!TM
.getSubtarget
<X86Subtarget
>().is64Bit())
719 // It's not always legal to reference the low 8-bit of the larger
720 // register in 32-bit mode.
722 case X86::MOVSX32rr16
:
723 case X86::MOVZX32rr16
:
724 case X86::MOVSX64rr16
:
725 case X86::MOVZX64rr16
:
726 case X86::MOVSX64rr32
:
727 case X86::MOVZX64rr32
: {
728 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
731 SrcReg
= MI
.getOperand(1).getReg();
732 DstReg
= MI
.getOperand(0).getReg();
733 switch (MI
.getOpcode()) {
737 case X86::MOVSX16rr8
:
738 case X86::MOVZX16rr8
:
739 case X86::MOVSX32rr8
:
740 case X86::MOVZX32rr8
:
741 case X86::MOVSX64rr8
:
742 case X86::MOVZX64rr8
:
743 SubIdx
= X86::sub_8bit
;
745 case X86::MOVSX32rr16
:
746 case X86::MOVZX32rr16
:
747 case X86::MOVSX64rr16
:
748 case X86::MOVZX64rr16
:
749 SubIdx
= X86::sub_16bit
;
751 case X86::MOVSX64rr32
:
752 case X86::MOVZX64rr32
:
753 SubIdx
= X86::sub_32bit
;
762 /// isFrameOperand - Return true and the FrameIndex if the specified
763 /// operand and follow operands form a reference to the stack frame.
764 bool X86InstrInfo::isFrameOperand(const MachineInstr
*MI
, unsigned int Op
,
765 int &FrameIndex
) const {
766 if (MI
->getOperand(Op
).isFI() && MI
->getOperand(Op
+1).isImm() &&
767 MI
->getOperand(Op
+2).isReg() && MI
->getOperand(Op
+3).isImm() &&
768 MI
->getOperand(Op
+1).getImm() == 1 &&
769 MI
->getOperand(Op
+2).getReg() == 0 &&
770 MI
->getOperand(Op
+3).getImm() == 0) {
771 FrameIndex
= MI
->getOperand(Op
).getIndex();
777 static bool isFrameLoadOpcode(int Opcode
) {
790 case X86::MMX_MOVD64rm
:
791 case X86::MMX_MOVQ64rm
:
798 static bool isFrameStoreOpcode(int Opcode
) {
811 case X86::MMX_MOVD64mr
:
812 case X86::MMX_MOVQ64mr
:
813 case X86::MMX_MOVNTQmr
:
819 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
*MI
,
820 int &FrameIndex
) const {
821 if (isFrameLoadOpcode(MI
->getOpcode()))
822 if (MI
->getOperand(0).getSubReg() == 0 && isFrameOperand(MI
, 1, FrameIndex
))
823 return MI
->getOperand(0).getReg();
827 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
*MI
,
828 int &FrameIndex
) const {
829 if (isFrameLoadOpcode(MI
->getOpcode())) {
831 if ((Reg
= isLoadFromStackSlot(MI
, FrameIndex
)))
833 // Check for post-frame index elimination operations
834 const MachineMemOperand
*Dummy
;
835 return hasLoadFromStackSlot(MI
, Dummy
, FrameIndex
);
840 bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr
*MI
,
841 const MachineMemOperand
*&MMO
,
842 int &FrameIndex
) const {
843 for (MachineInstr::mmo_iterator o
= MI
->memoperands_begin(),
844 oe
= MI
->memoperands_end();
847 if ((*o
)->isLoad() && (*o
)->getValue())
848 if (const FixedStackPseudoSourceValue
*Value
=
849 dyn_cast
<const FixedStackPseudoSourceValue
>((*o
)->getValue())) {
850 FrameIndex
= Value
->getFrameIndex();
858 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
*MI
,
859 int &FrameIndex
) const {
860 if (isFrameStoreOpcode(MI
->getOpcode()))
861 if (MI
->getOperand(X86::AddrNumOperands
).getSubReg() == 0 &&
862 isFrameOperand(MI
, 0, FrameIndex
))
863 return MI
->getOperand(X86::AddrNumOperands
).getReg();
867 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr
*MI
,
868 int &FrameIndex
) const {
869 if (isFrameStoreOpcode(MI
->getOpcode())) {
871 if ((Reg
= isStoreToStackSlot(MI
, FrameIndex
)))
873 // Check for post-frame index elimination operations
874 const MachineMemOperand
*Dummy
;
875 return hasStoreToStackSlot(MI
, Dummy
, FrameIndex
);
880 bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr
*MI
,
881 const MachineMemOperand
*&MMO
,
882 int &FrameIndex
) const {
883 for (MachineInstr::mmo_iterator o
= MI
->memoperands_begin(),
884 oe
= MI
->memoperands_end();
887 if ((*o
)->isStore() && (*o
)->getValue())
888 if (const FixedStackPseudoSourceValue
*Value
=
889 dyn_cast
<const FixedStackPseudoSourceValue
>((*o
)->getValue())) {
890 FrameIndex
= Value
->getFrameIndex();
898 /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
900 static bool regIsPICBase(unsigned BaseReg
, const MachineRegisterInfo
&MRI
) {
901 bool isPICBase
= false;
902 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
903 E
= MRI
.def_end(); I
!= E
; ++I
) {
904 MachineInstr
*DefMI
= I
.getOperand().getParent();
905 if (DefMI
->getOpcode() != X86::MOVPC32r
)
907 assert(!isPICBase
&& "More than one PIC base?");
914 X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
*MI
,
915 AliasAnalysis
*AA
) const {
916 switch (MI
->getOpcode()) {
929 case X86::MMX_MOVD64rm
:
930 case X86::MMX_MOVQ64rm
:
931 case X86::FsMOVAPSrm
:
932 case X86::FsMOVAPDrm
: {
933 // Loads from constant pools are trivially rematerializable.
934 if (MI
->getOperand(1).isReg() &&
935 MI
->getOperand(2).isImm() &&
936 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
937 MI
->isInvariantLoad(AA
)) {
938 unsigned BaseReg
= MI
->getOperand(1).getReg();
939 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
941 // Allow re-materialization of PIC load.
942 if (!ReMatPICStubLoad
&& MI
->getOperand(4).isGlobal())
944 const MachineFunction
&MF
= *MI
->getParent()->getParent();
945 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
946 bool isPICBase
= false;
947 for (MachineRegisterInfo::def_iterator I
= MRI
.def_begin(BaseReg
),
948 E
= MRI
.def_end(); I
!= E
; ++I
) {
949 MachineInstr
*DefMI
= I
.getOperand().getParent();
950 if (DefMI
->getOpcode() != X86::MOVPC32r
)
952 assert(!isPICBase
&& "More than one PIC base?");
962 if (MI
->getOperand(2).isImm() &&
963 MI
->getOperand(3).isReg() && MI
->getOperand(3).getReg() == 0 &&
964 !MI
->getOperand(4).isReg()) {
965 // lea fi#, lea GV, etc. are all rematerializable.
966 if (!MI
->getOperand(1).isReg())
968 unsigned BaseReg
= MI
->getOperand(1).getReg();
971 // Allow re-materialization of lea PICBase + x.
972 const MachineFunction
&MF
= *MI
->getParent()->getParent();
973 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
974 return regIsPICBase(BaseReg
, MRI
);
980 // All other instructions marked M_REMATERIALIZABLE are always trivially
985 /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
986 /// would clobber the EFLAGS condition register. Note the result may be
987 /// conservative. If it cannot definitely determine the safety after visiting
988 /// a few instructions in each direction it assumes it's not safe.
989 static bool isSafeToClobberEFLAGS(MachineBasicBlock
&MBB
,
990 MachineBasicBlock::iterator I
) {
991 MachineBasicBlock::iterator E
= MBB
.end();
993 // It's always safe to clobber EFLAGS at the end of a block.
997 // For compile time consideration, if we are not able to determine the
998 // safety after visiting 4 instructions in each direction, we will assume
1000 MachineBasicBlock::iterator Iter
= I
;
1001 for (unsigned i
= 0; i
< 4; ++i
) {
1002 bool SeenDef
= false;
1003 for (unsigned j
= 0, e
= Iter
->getNumOperands(); j
!= e
; ++j
) {
1004 MachineOperand
&MO
= Iter
->getOperand(j
);
1007 if (MO
.getReg() == X86::EFLAGS
) {
1015 // This instruction defines EFLAGS, no need to look any further.
1018 // Skip over DBG_VALUE.
1019 while (Iter
!= E
&& Iter
->isDebugValue())
1022 // If we make it to the end of the block, it's safe to clobber EFLAGS.
1027 MachineBasicBlock::iterator B
= MBB
.begin();
1029 for (unsigned i
= 0; i
< 4; ++i
) {
1030 // If we make it to the beginning of the block, it's safe to clobber
1031 // EFLAGS iff EFLAGS is not live-in.
1033 return !MBB
.isLiveIn(X86::EFLAGS
);
1036 // Skip over DBG_VALUE.
1037 while (Iter
!= B
&& Iter
->isDebugValue())
1040 bool SawKill
= false;
1041 for (unsigned j
= 0, e
= Iter
->getNumOperands(); j
!= e
; ++j
) {
1042 MachineOperand
&MO
= Iter
->getOperand(j
);
1043 if (MO
.isReg() && MO
.getReg() == X86::EFLAGS
) {
1044 if (MO
.isDef()) return MO
.isDead();
1045 if (MO
.isKill()) SawKill
= true;
1050 // This instruction kills EFLAGS and doesn't redefine it, so
1051 // there's no need to look further.
1055 // Conservative answer.
1059 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
1060 MachineBasicBlock::iterator I
,
1061 unsigned DestReg
, unsigned SubIdx
,
1062 const MachineInstr
*Orig
,
1063 const TargetRegisterInfo
&TRI
) const {
1064 DebugLoc DL
= Orig
->getDebugLoc();
1066 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1067 // Re-materialize them as movri instructions to avoid side effects.
1069 unsigned Opc
= Orig
->getOpcode();
1075 case X86::MOV64r0
: {
1076 if (!isSafeToClobberEFLAGS(MBB
, I
)) {
1079 case X86::MOV8r0
: Opc
= X86::MOV8ri
; break;
1080 case X86::MOV16r0
: Opc
= X86::MOV16ri
; break;
1081 case X86::MOV32r0
: Opc
= X86::MOV32ri
; break;
1082 case X86::MOV64r0
: Opc
= X86::MOV64ri64i32
; break;
1091 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(Orig
);
1094 BuildMI(MBB
, I
, DL
, get(Opc
)).addOperand(Orig
->getOperand(0)).addImm(0);
1097 MachineInstr
*NewMI
= prior(I
);
1098 NewMI
->substituteRegister(Orig
->getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
1101 /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1102 /// is not marked dead.
1103 static bool hasLiveCondCodeDef(MachineInstr
*MI
) {
1104 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1105 MachineOperand
&MO
= MI
->getOperand(i
);
1106 if (MO
.isReg() && MO
.isDef() &&
1107 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
1114 /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1115 /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1116 /// to a 32-bit superregister and then truncating back down to a 16-bit
1119 X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc
,
1120 MachineFunction::iterator
&MFI
,
1121 MachineBasicBlock::iterator
&MBBI
,
1122 LiveVariables
*LV
) const {
1123 MachineInstr
*MI
= MBBI
;
1124 unsigned Dest
= MI
->getOperand(0).getReg();
1125 unsigned Src
= MI
->getOperand(1).getReg();
1126 bool isDead
= MI
->getOperand(0).isDead();
1127 bool isKill
= MI
->getOperand(1).isKill();
1129 unsigned Opc
= TM
.getSubtarget
<X86Subtarget
>().is64Bit()
1130 ? X86::LEA64_32r
: X86::LEA32r
;
1131 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
1132 unsigned leaInReg
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
1133 unsigned leaOutReg
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1135 // Build and insert into an implicit UNDEF value. This is OK because
1136 // well be shifting and then extracting the lower 16-bits.
1137 // This has the potential to cause partial register stall. e.g.
1138 // movw (%rbp,%rcx,2), %dx
1139 // leal -65(%rdx), %esi
1140 // But testing has shown this *does* help performance in 64-bit mode (at
1141 // least on modern x86 machines).
1142 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(X86::IMPLICIT_DEF
), leaInReg
);
1143 MachineInstr
*InsMI
=
1144 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(TargetOpcode::COPY
))
1145 .addReg(leaInReg
, RegState::Define
, X86::sub_16bit
)
1146 .addReg(Src
, getKillRegState(isKill
));
1148 MachineInstrBuilder MIB
= BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(),
1149 get(Opc
), leaOutReg
);
1152 llvm_unreachable(0);
1154 case X86::SHL16ri
: {
1155 unsigned ShAmt
= MI
->getOperand(2).getImm();
1156 MIB
.addReg(0).addImm(1 << ShAmt
)
1157 .addReg(leaInReg
, RegState::Kill
).addImm(0).addReg(0);
1161 case X86::INC64_16r
:
1162 addRegOffset(MIB
, leaInReg
, true, 1);
1165 case X86::DEC64_16r
:
1166 addRegOffset(MIB
, leaInReg
, true, -1);
1170 case X86::ADD16ri_DB
:
1171 case X86::ADD16ri8_DB
:
1172 addRegOffset(MIB
, leaInReg
, true, MI
->getOperand(2).getImm());
1175 case X86::ADD16rr_DB
: {
1176 unsigned Src2
= MI
->getOperand(2).getReg();
1177 bool isKill2
= MI
->getOperand(2).isKill();
1178 unsigned leaInReg2
= 0;
1179 MachineInstr
*InsMI2
= 0;
1181 // ADD16rr %reg1028<kill>, %reg1028
1182 // just a single insert_subreg.
1183 addRegReg(MIB
, leaInReg
, true, leaInReg
, false);
1185 leaInReg2
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
1186 // Build and insert into an implicit UNDEF value. This is OK because
1187 // well be shifting and then extracting the lower 16-bits.
1188 BuildMI(*MFI
, MIB
, MI
->getDebugLoc(), get(X86::IMPLICIT_DEF
), leaInReg2
);
1190 BuildMI(*MFI
, MIB
, MI
->getDebugLoc(), get(TargetOpcode::COPY
))
1191 .addReg(leaInReg2
, RegState::Define
, X86::sub_16bit
)
1192 .addReg(Src2
, getKillRegState(isKill2
));
1193 addRegReg(MIB
, leaInReg
, true, leaInReg2
, true);
1195 if (LV
&& isKill2
&& InsMI2
)
1196 LV
->replaceKillInstruction(Src2
, MI
, InsMI2
);
1201 MachineInstr
*NewMI
= MIB
;
1202 MachineInstr
*ExtMI
=
1203 BuildMI(*MFI
, MBBI
, MI
->getDebugLoc(), get(TargetOpcode::COPY
))
1204 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1205 .addReg(leaOutReg
, RegState::Kill
, X86::sub_16bit
);
1208 // Update live variables
1209 LV
->getVarInfo(leaInReg
).Kills
.push_back(NewMI
);
1210 LV
->getVarInfo(leaOutReg
).Kills
.push_back(ExtMI
);
1212 LV
->replaceKillInstruction(Src
, MI
, InsMI
);
1214 LV
->replaceKillInstruction(Dest
, MI
, ExtMI
);
1220 /// convertToThreeAddress - This method must be implemented by targets that
1221 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1222 /// may be able to convert a two-address instruction into a true
1223 /// three-address instruction on demand. This allows the X86 target (for
1224 /// example) to convert ADD and SHL instructions into LEA instructions if they
1225 /// would require register copies due to two-addressness.
1227 /// This method returns a null pointer if the transformation cannot be
1228 /// performed, otherwise it returns the new instruction.
1231 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
1232 MachineBasicBlock::iterator
&MBBI
,
1233 LiveVariables
*LV
) const {
1234 MachineInstr
*MI
= MBBI
;
1235 MachineFunction
&MF
= *MI
->getParent()->getParent();
1236 // All instructions input are two-addr instructions. Get the known operands.
1237 unsigned Dest
= MI
->getOperand(0).getReg();
1238 unsigned Src
= MI
->getOperand(1).getReg();
1239 bool isDead
= MI
->getOperand(0).isDead();
1240 bool isKill
= MI
->getOperand(1).isKill();
1242 MachineInstr
*NewMI
= NULL
;
1243 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1244 // we have better subtarget support, enable the 16-bit LEA generation here.
1245 // 16-bit LEA is also slow on Core2.
1246 bool DisableLEA16
= true;
1247 bool is64Bit
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
1249 unsigned MIOpc
= MI
->getOpcode();
1251 case X86::SHUFPSrri
: {
1252 assert(MI
->getNumOperands() == 4 && "Unknown shufps instruction!");
1253 if (!TM
.getSubtarget
<X86Subtarget
>().hasSSE2()) return 0;
1255 unsigned B
= MI
->getOperand(1).getReg();
1256 unsigned C
= MI
->getOperand(2).getReg();
1257 if (B
!= C
) return 0;
1258 unsigned A
= MI
->getOperand(0).getReg();
1259 unsigned M
= MI
->getOperand(3).getImm();
1260 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::PSHUFDri
))
1261 .addReg(A
, RegState::Define
| getDeadRegState(isDead
))
1262 .addReg(B
, getKillRegState(isKill
)).addImm(M
);
1265 case X86::SHL64ri
: {
1266 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1267 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1268 // the flags produced by a shift yet, so this is safe.
1269 unsigned ShAmt
= MI
->getOperand(2).getImm();
1270 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1272 // LEA can't handle RSP.
1273 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1274 !MF
.getRegInfo().constrainRegClass(Src
, &X86::GR64_NOSPRegClass
))
1277 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1278 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1279 .addReg(0).addImm(1 << ShAmt
)
1280 .addReg(Src
, getKillRegState(isKill
))
1281 .addImm(0).addReg(0);
1284 case X86::SHL32ri
: {
1285 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1286 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1287 // the flags produced by a shift yet, so this is safe.
1288 unsigned ShAmt
= MI
->getOperand(2).getImm();
1289 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1291 // LEA can't handle ESP.
1292 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1293 !MF
.getRegInfo().constrainRegClass(Src
, &X86::GR32_NOSPRegClass
))
1296 unsigned Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1297 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1298 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1299 .addReg(0).addImm(1 << ShAmt
)
1300 .addReg(Src
, getKillRegState(isKill
)).addImm(0).addReg(0);
1303 case X86::SHL16ri
: {
1304 assert(MI
->getNumOperands() >= 3 && "Unknown shift instruction!");
1305 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1306 // the flags produced by a shift yet, so this is safe.
1307 unsigned ShAmt
= MI
->getOperand(2).getImm();
1308 if (ShAmt
== 0 || ShAmt
>= 4) return 0;
1311 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1312 NewMI
= BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1313 .addReg(Dest
, RegState::Define
| getDeadRegState(isDead
))
1314 .addReg(0).addImm(1 << ShAmt
)
1315 .addReg(Src
, getKillRegState(isKill
))
1316 .addImm(0).addReg(0);
1320 // The following opcodes also sets the condition code register(s). Only
1321 // convert them to equivalent lea if the condition code register def's
1323 if (hasLiveCondCodeDef(MI
))
1330 case X86::INC64_32r
: {
1331 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1332 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
1333 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1335 // LEA can't handle RSP.
1336 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1337 !MF
.getRegInfo().constrainRegClass(Src
,
1338 MIOpc
== X86::INC64r
? X86::GR64_NOSPRegisterClass
:
1339 X86::GR32_NOSPRegisterClass
))
1342 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1343 .addReg(Dest
, RegState::Define
|
1344 getDeadRegState(isDead
)),
1349 case X86::INC64_16r
:
1351 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1352 assert(MI
->getNumOperands() >= 2 && "Unknown inc instruction!");
1353 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1354 .addReg(Dest
, RegState::Define
|
1355 getDeadRegState(isDead
)),
1360 case X86::DEC64_32r
: {
1361 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1362 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
1363 : (is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1364 // LEA can't handle RSP.
1365 if (TargetRegisterInfo::isVirtualRegister(Src
) &&
1366 !MF
.getRegInfo().constrainRegClass(Src
,
1367 MIOpc
== X86::DEC64r
? X86::GR64_NOSPRegisterClass
:
1368 X86::GR32_NOSPRegisterClass
))
1371 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1372 .addReg(Dest
, RegState::Define
|
1373 getDeadRegState(isDead
)),
1378 case X86::DEC64_16r
:
1380 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1381 assert(MI
->getNumOperands() >= 2 && "Unknown dec instruction!");
1382 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1383 .addReg(Dest
, RegState::Define
|
1384 getDeadRegState(isDead
)),
1388 case X86::ADD64rr_DB
:
1390 case X86::ADD32rr_DB
: {
1391 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1393 TargetRegisterClass
*RC
;
1394 if (MIOpc
== X86::ADD64rr
|| MIOpc
== X86::ADD64rr_DB
) {
1396 RC
= X86::GR64_NOSPRegisterClass
;
1398 Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1399 RC
= X86::GR32_NOSPRegisterClass
;
1403 unsigned Src2
= MI
->getOperand(2).getReg();
1404 bool isKill2
= MI
->getOperand(2).isKill();
1406 // LEA can't handle RSP.
1407 if (TargetRegisterInfo::isVirtualRegister(Src2
) &&
1408 !MF
.getRegInfo().constrainRegClass(Src2
, RC
))
1411 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1412 .addReg(Dest
, RegState::Define
|
1413 getDeadRegState(isDead
)),
1414 Src
, isKill
, Src2
, isKill2
);
1416 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1420 case X86::ADD16rr_DB
: {
1422 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1423 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1424 unsigned Src2
= MI
->getOperand(2).getReg();
1425 bool isKill2
= MI
->getOperand(2).isKill();
1426 NewMI
= addRegReg(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1427 .addReg(Dest
, RegState::Define
|
1428 getDeadRegState(isDead
)),
1429 Src
, isKill
, Src2
, isKill2
);
1431 LV
->replaceKillInstruction(Src2
, MI
, NewMI
);
1434 case X86::ADD64ri32
:
1436 case X86::ADD64ri32_DB
:
1437 case X86::ADD64ri8_DB
:
1438 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1439 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA64r
))
1440 .addReg(Dest
, RegState::Define
|
1441 getDeadRegState(isDead
)),
1442 Src
, isKill
, MI
->getOperand(2).getImm());
1446 case X86::ADD32ri_DB
:
1447 case X86::ADD32ri8_DB
: {
1448 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1449 unsigned Opc
= is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1450 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(Opc
))
1451 .addReg(Dest
, RegState::Define
|
1452 getDeadRegState(isDead
)),
1453 Src
, isKill
, MI
->getOperand(2).getImm());
1458 case X86::ADD16ri_DB
:
1459 case X86::ADD16ri8_DB
:
1461 return is64Bit
? convertToThreeAddressWithLEA(MIOpc
, MFI
, MBBI
, LV
) : 0;
1462 assert(MI
->getNumOperands() >= 3 && "Unknown add instruction!");
1463 NewMI
= addRegOffset(BuildMI(MF
, MI
->getDebugLoc(), get(X86::LEA16r
))
1464 .addReg(Dest
, RegState::Define
|
1465 getDeadRegState(isDead
)),
1466 Src
, isKill
, MI
->getOperand(2).getImm());
1472 if (!NewMI
) return 0;
1474 if (LV
) { // Update live variables
1476 LV
->replaceKillInstruction(Src
, MI
, NewMI
);
1478 LV
->replaceKillInstruction(Dest
, MI
, NewMI
);
1481 MFI
->insert(MBBI
, NewMI
); // Insert the new inst
1485 /// commuteInstruction - We have a few instructions that must be hacked on to
1489 X86InstrInfo::commuteInstruction(MachineInstr
*MI
, bool NewMI
) const {
1490 switch (MI
->getOpcode()) {
1491 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1492 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1493 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1494 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1495 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1496 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1499 switch (MI
->getOpcode()) {
1500 default: llvm_unreachable("Unreachable!");
1501 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
1502 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
1503 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
1504 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
1505 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
1506 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
1508 unsigned Amt
= MI
->getOperand(3).getImm();
1510 MachineFunction
&MF
= *MI
->getParent()->getParent();
1511 MI
= MF
.CloneMachineInstr(MI
);
1514 MI
->setDesc(get(Opc
));
1515 MI
->getOperand(3).setImm(Size
-Amt
);
1516 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1518 case X86::CMOVB16rr
:
1519 case X86::CMOVB32rr
:
1520 case X86::CMOVB64rr
:
1521 case X86::CMOVAE16rr
:
1522 case X86::CMOVAE32rr
:
1523 case X86::CMOVAE64rr
:
1524 case X86::CMOVE16rr
:
1525 case X86::CMOVE32rr
:
1526 case X86::CMOVE64rr
:
1527 case X86::CMOVNE16rr
:
1528 case X86::CMOVNE32rr
:
1529 case X86::CMOVNE64rr
:
1530 case X86::CMOVBE16rr
:
1531 case X86::CMOVBE32rr
:
1532 case X86::CMOVBE64rr
:
1533 case X86::CMOVA16rr
:
1534 case X86::CMOVA32rr
:
1535 case X86::CMOVA64rr
:
1536 case X86::CMOVL16rr
:
1537 case X86::CMOVL32rr
:
1538 case X86::CMOVL64rr
:
1539 case X86::CMOVGE16rr
:
1540 case X86::CMOVGE32rr
:
1541 case X86::CMOVGE64rr
:
1542 case X86::CMOVLE16rr
:
1543 case X86::CMOVLE32rr
:
1544 case X86::CMOVLE64rr
:
1545 case X86::CMOVG16rr
:
1546 case X86::CMOVG32rr
:
1547 case X86::CMOVG64rr
:
1548 case X86::CMOVS16rr
:
1549 case X86::CMOVS32rr
:
1550 case X86::CMOVS64rr
:
1551 case X86::CMOVNS16rr
:
1552 case X86::CMOVNS32rr
:
1553 case X86::CMOVNS64rr
:
1554 case X86::CMOVP16rr
:
1555 case X86::CMOVP32rr
:
1556 case X86::CMOVP64rr
:
1557 case X86::CMOVNP16rr
:
1558 case X86::CMOVNP32rr
:
1559 case X86::CMOVNP64rr
:
1560 case X86::CMOVO16rr
:
1561 case X86::CMOVO32rr
:
1562 case X86::CMOVO64rr
:
1563 case X86::CMOVNO16rr
:
1564 case X86::CMOVNO32rr
:
1565 case X86::CMOVNO64rr
: {
1567 switch (MI
->getOpcode()) {
1569 case X86::CMOVB16rr
: Opc
= X86::CMOVAE16rr
; break;
1570 case X86::CMOVB32rr
: Opc
= X86::CMOVAE32rr
; break;
1571 case X86::CMOVB64rr
: Opc
= X86::CMOVAE64rr
; break;
1572 case X86::CMOVAE16rr
: Opc
= X86::CMOVB16rr
; break;
1573 case X86::CMOVAE32rr
: Opc
= X86::CMOVB32rr
; break;
1574 case X86::CMOVAE64rr
: Opc
= X86::CMOVB64rr
; break;
1575 case X86::CMOVE16rr
: Opc
= X86::CMOVNE16rr
; break;
1576 case X86::CMOVE32rr
: Opc
= X86::CMOVNE32rr
; break;
1577 case X86::CMOVE64rr
: Opc
= X86::CMOVNE64rr
; break;
1578 case X86::CMOVNE16rr
: Opc
= X86::CMOVE16rr
; break;
1579 case X86::CMOVNE32rr
: Opc
= X86::CMOVE32rr
; break;
1580 case X86::CMOVNE64rr
: Opc
= X86::CMOVE64rr
; break;
1581 case X86::CMOVBE16rr
: Opc
= X86::CMOVA16rr
; break;
1582 case X86::CMOVBE32rr
: Opc
= X86::CMOVA32rr
; break;
1583 case X86::CMOVBE64rr
: Opc
= X86::CMOVA64rr
; break;
1584 case X86::CMOVA16rr
: Opc
= X86::CMOVBE16rr
; break;
1585 case X86::CMOVA32rr
: Opc
= X86::CMOVBE32rr
; break;
1586 case X86::CMOVA64rr
: Opc
= X86::CMOVBE64rr
; break;
1587 case X86::CMOVL16rr
: Opc
= X86::CMOVGE16rr
; break;
1588 case X86::CMOVL32rr
: Opc
= X86::CMOVGE32rr
; break;
1589 case X86::CMOVL64rr
: Opc
= X86::CMOVGE64rr
; break;
1590 case X86::CMOVGE16rr
: Opc
= X86::CMOVL16rr
; break;
1591 case X86::CMOVGE32rr
: Opc
= X86::CMOVL32rr
; break;
1592 case X86::CMOVGE64rr
: Opc
= X86::CMOVL64rr
; break;
1593 case X86::CMOVLE16rr
: Opc
= X86::CMOVG16rr
; break;
1594 case X86::CMOVLE32rr
: Opc
= X86::CMOVG32rr
; break;
1595 case X86::CMOVLE64rr
: Opc
= X86::CMOVG64rr
; break;
1596 case X86::CMOVG16rr
: Opc
= X86::CMOVLE16rr
; break;
1597 case X86::CMOVG32rr
: Opc
= X86::CMOVLE32rr
; break;
1598 case X86::CMOVG64rr
: Opc
= X86::CMOVLE64rr
; break;
1599 case X86::CMOVS16rr
: Opc
= X86::CMOVNS16rr
; break;
1600 case X86::CMOVS32rr
: Opc
= X86::CMOVNS32rr
; break;
1601 case X86::CMOVS64rr
: Opc
= X86::CMOVNS64rr
; break;
1602 case X86::CMOVNS16rr
: Opc
= X86::CMOVS16rr
; break;
1603 case X86::CMOVNS32rr
: Opc
= X86::CMOVS32rr
; break;
1604 case X86::CMOVNS64rr
: Opc
= X86::CMOVS64rr
; break;
1605 case X86::CMOVP16rr
: Opc
= X86::CMOVNP16rr
; break;
1606 case X86::CMOVP32rr
: Opc
= X86::CMOVNP32rr
; break;
1607 case X86::CMOVP64rr
: Opc
= X86::CMOVNP64rr
; break;
1608 case X86::CMOVNP16rr
: Opc
= X86::CMOVP16rr
; break;
1609 case X86::CMOVNP32rr
: Opc
= X86::CMOVP32rr
; break;
1610 case X86::CMOVNP64rr
: Opc
= X86::CMOVP64rr
; break;
1611 case X86::CMOVO16rr
: Opc
= X86::CMOVNO16rr
; break;
1612 case X86::CMOVO32rr
: Opc
= X86::CMOVNO32rr
; break;
1613 case X86::CMOVO64rr
: Opc
= X86::CMOVNO64rr
; break;
1614 case X86::CMOVNO16rr
: Opc
= X86::CMOVO16rr
; break;
1615 case X86::CMOVNO32rr
: Opc
= X86::CMOVO32rr
; break;
1616 case X86::CMOVNO64rr
: Opc
= X86::CMOVO64rr
; break;
1619 MachineFunction
&MF
= *MI
->getParent()->getParent();
1620 MI
= MF
.CloneMachineInstr(MI
);
1623 MI
->setDesc(get(Opc
));
1624 // Fallthrough intended.
1627 return TargetInstrInfoImpl::commuteInstruction(MI
, NewMI
);
1631 static X86::CondCode
GetCondFromBranchOpc(unsigned BrOpc
) {
1633 default: return X86::COND_INVALID
;
1634 case X86::JE_4
: return X86::COND_E
;
1635 case X86::JNE_4
: return X86::COND_NE
;
1636 case X86::JL_4
: return X86::COND_L
;
1637 case X86::JLE_4
: return X86::COND_LE
;
1638 case X86::JG_4
: return X86::COND_G
;
1639 case X86::JGE_4
: return X86::COND_GE
;
1640 case X86::JB_4
: return X86::COND_B
;
1641 case X86::JBE_4
: return X86::COND_BE
;
1642 case X86::JA_4
: return X86::COND_A
;
1643 case X86::JAE_4
: return X86::COND_AE
;
1644 case X86::JS_4
: return X86::COND_S
;
1645 case X86::JNS_4
: return X86::COND_NS
;
1646 case X86::JP_4
: return X86::COND_P
;
1647 case X86::JNP_4
: return X86::COND_NP
;
1648 case X86::JO_4
: return X86::COND_O
;
1649 case X86::JNO_4
: return X86::COND_NO
;
1653 unsigned X86::GetCondBranchFromCond(X86::CondCode CC
) {
1655 default: llvm_unreachable("Illegal condition code!");
1656 case X86::COND_E
: return X86::JE_4
;
1657 case X86::COND_NE
: return X86::JNE_4
;
1658 case X86::COND_L
: return X86::JL_4
;
1659 case X86::COND_LE
: return X86::JLE_4
;
1660 case X86::COND_G
: return X86::JG_4
;
1661 case X86::COND_GE
: return X86::JGE_4
;
1662 case X86::COND_B
: return X86::JB_4
;
1663 case X86::COND_BE
: return X86::JBE_4
;
1664 case X86::COND_A
: return X86::JA_4
;
1665 case X86::COND_AE
: return X86::JAE_4
;
1666 case X86::COND_S
: return X86::JS_4
;
1667 case X86::COND_NS
: return X86::JNS_4
;
1668 case X86::COND_P
: return X86::JP_4
;
1669 case X86::COND_NP
: return X86::JNP_4
;
1670 case X86::COND_O
: return X86::JO_4
;
1671 case X86::COND_NO
: return X86::JNO_4
;
1675 /// GetOppositeBranchCondition - Return the inverse of the specified condition,
1676 /// e.g. turning COND_E to COND_NE.
1677 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
1679 default: llvm_unreachable("Illegal condition code!");
1680 case X86::COND_E
: return X86::COND_NE
;
1681 case X86::COND_NE
: return X86::COND_E
;
1682 case X86::COND_L
: return X86::COND_GE
;
1683 case X86::COND_LE
: return X86::COND_G
;
1684 case X86::COND_G
: return X86::COND_LE
;
1685 case X86::COND_GE
: return X86::COND_L
;
1686 case X86::COND_B
: return X86::COND_AE
;
1687 case X86::COND_BE
: return X86::COND_A
;
1688 case X86::COND_A
: return X86::COND_BE
;
1689 case X86::COND_AE
: return X86::COND_B
;
1690 case X86::COND_S
: return X86::COND_NS
;
1691 case X86::COND_NS
: return X86::COND_S
;
1692 case X86::COND_P
: return X86::COND_NP
;
1693 case X86::COND_NP
: return X86::COND_P
;
1694 case X86::COND_O
: return X86::COND_NO
;
1695 case X86::COND_NO
: return X86::COND_O
;
1699 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
*MI
) const {
1700 const MCInstrDesc
&MCID
= MI
->getDesc();
1701 if (!MCID
.isTerminator()) return false;
1703 // Conditional branch is a special case.
1704 if (MCID
.isBranch() && !MCID
.isBarrier())
1706 if (!MCID
.isPredicable())
1708 return !isPredicated(MI
);
1711 bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB
,
1712 MachineBasicBlock
*&TBB
,
1713 MachineBasicBlock
*&FBB
,
1714 SmallVectorImpl
<MachineOperand
> &Cond
,
1715 bool AllowModify
) const {
1716 // Start from the bottom of the block and work up, examining the
1717 // terminator instructions.
1718 MachineBasicBlock::iterator I
= MBB
.end();
1719 MachineBasicBlock::iterator UnCondBrIter
= MBB
.end();
1720 while (I
!= MBB
.begin()) {
1722 if (I
->isDebugValue())
1725 // Working from the bottom, when we see a non-terminator instruction, we're
1727 if (!isUnpredicatedTerminator(I
))
1730 // A terminator that isn't a branch can't easily be handled by this
1732 if (!I
->getDesc().isBranch())
1735 // Handle unconditional branches.
1736 if (I
->getOpcode() == X86::JMP_4
) {
1740 TBB
= I
->getOperand(0).getMBB();
1744 // If the block has any instructions after a JMP, delete them.
1745 while (llvm::next(I
) != MBB
.end())
1746 llvm::next(I
)->eraseFromParent();
1751 // Delete the JMP if it's equivalent to a fall-through.
1752 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
1754 I
->eraseFromParent();
1756 UnCondBrIter
= MBB
.end();
1760 // TBB is used to indicate the unconditional destination.
1761 TBB
= I
->getOperand(0).getMBB();
1765 // Handle conditional branches.
1766 X86::CondCode BranchCode
= GetCondFromBranchOpc(I
->getOpcode());
1767 if (BranchCode
== X86::COND_INVALID
)
1768 return true; // Can't handle indirect branch.
1770 // Working from the bottom, handle the first conditional branch.
1772 MachineBasicBlock
*TargetBB
= I
->getOperand(0).getMBB();
1773 if (AllowModify
&& UnCondBrIter
!= MBB
.end() &&
1774 MBB
.isLayoutSuccessor(TargetBB
)) {
1775 // If we can modify the code and it ends in something like:
1783 // Then we can change this to:
1790 // Which is a bit more efficient.
1791 // We conditionally jump to the fall-through block.
1792 BranchCode
= GetOppositeBranchCondition(BranchCode
);
1793 unsigned JNCC
= GetCondBranchFromCond(BranchCode
);
1794 MachineBasicBlock::iterator OldInst
= I
;
1796 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(JNCC
))
1797 .addMBB(UnCondBrIter
->getOperand(0).getMBB());
1798 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JMP_4
))
1801 OldInst
->eraseFromParent();
1802 UnCondBrIter
->eraseFromParent();
1804 // Restart the analysis.
1805 UnCondBrIter
= MBB
.end();
1811 TBB
= I
->getOperand(0).getMBB();
1812 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
1816 // Handle subsequent conditional branches. Only handle the case where all
1817 // conditional branches branch to the same destination and their condition
1818 // opcodes fit one of the special multi-branch idioms.
1819 assert(Cond
.size() == 1);
1822 // Only handle the case where all conditional branches branch to the same
1824 if (TBB
!= I
->getOperand(0).getMBB())
1827 // If the conditions are the same, we can leave them alone.
1828 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
1829 if (OldBranchCode
== BranchCode
)
1832 // If they differ, see if they fit one of the known patterns. Theoretically,
1833 // we could handle more patterns here, but we shouldn't expect to see them
1834 // if instruction selection has done a reasonable job.
1835 if ((OldBranchCode
== X86::COND_NP
&&
1836 BranchCode
== X86::COND_E
) ||
1837 (OldBranchCode
== X86::COND_E
&&
1838 BranchCode
== X86::COND_NP
))
1839 BranchCode
= X86::COND_NP_OR_E
;
1840 else if ((OldBranchCode
== X86::COND_P
&&
1841 BranchCode
== X86::COND_NE
) ||
1842 (OldBranchCode
== X86::COND_NE
&&
1843 BranchCode
== X86::COND_P
))
1844 BranchCode
= X86::COND_NE_OR_P
;
1848 // Update the MachineOperand.
1849 Cond
[0].setImm(BranchCode
);
1855 unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock
&MBB
) const {
1856 MachineBasicBlock::iterator I
= MBB
.end();
1859 while (I
!= MBB
.begin()) {
1861 if (I
->isDebugValue())
1863 if (I
->getOpcode() != X86::JMP_4
&&
1864 GetCondFromBranchOpc(I
->getOpcode()) == X86::COND_INVALID
)
1866 // Remove the branch.
1867 I
->eraseFromParent();
1876 X86InstrInfo::InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
1877 MachineBasicBlock
*FBB
,
1878 const SmallVectorImpl
<MachineOperand
> &Cond
,
1879 DebugLoc DL
) const {
1880 // Shouldn't be a fall through.
1881 assert(TBB
&& "InsertBranch must not be told to insert a fallthrough");
1882 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
1883 "X86 branch conditions have one component!");
1886 // Unconditional branch?
1887 assert(!FBB
&& "Unconditional branch with multiple successors!");
1888 BuildMI(&MBB
, DL
, get(X86::JMP_4
)).addMBB(TBB
);
1892 // Conditional branch.
1894 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
1896 case X86::COND_NP_OR_E
:
1897 // Synthesize NP_OR_E with two branches.
1898 BuildMI(&MBB
, DL
, get(X86::JNP_4
)).addMBB(TBB
);
1900 BuildMI(&MBB
, DL
, get(X86::JE_4
)).addMBB(TBB
);
1903 case X86::COND_NE_OR_P
:
1904 // Synthesize NE_OR_P with two branches.
1905 BuildMI(&MBB
, DL
, get(X86::JNE_4
)).addMBB(TBB
);
1907 BuildMI(&MBB
, DL
, get(X86::JP_4
)).addMBB(TBB
);
1911 unsigned Opc
= GetCondBranchFromCond(CC
);
1912 BuildMI(&MBB
, DL
, get(Opc
)).addMBB(TBB
);
1917 // Two-way Conditional branch. Insert the second branch.
1918 BuildMI(&MBB
, DL
, get(X86::JMP_4
)).addMBB(FBB
);
1924 /// isHReg - Test if the given register is a physical h register.
1925 static bool isHReg(unsigned Reg
) {
1926 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
1929 // Try and copy between VR128/VR64 and GR64 registers.
1930 static unsigned CopyToFromAsymmetricReg(unsigned DestReg
, unsigned SrcReg
) {
1931 // SrcReg(VR128) -> DestReg(GR64)
1932 // SrcReg(VR64) -> DestReg(GR64)
1933 // SrcReg(GR64) -> DestReg(VR128)
1934 // SrcReg(GR64) -> DestReg(VR64)
1936 if (X86::GR64RegClass
.contains(DestReg
)) {
1937 if (X86::VR128RegClass
.contains(SrcReg
)) {
1938 // Copy from a VR128 register to a GR64 register.
1939 return X86::MOVPQIto64rr
;
1940 } else if (X86::VR64RegClass
.contains(SrcReg
)) {
1941 // Copy from a VR64 register to a GR64 register.
1942 return X86::MOVSDto64rr
;
1944 } else if (X86::GR64RegClass
.contains(SrcReg
)) {
1945 // Copy from a GR64 register to a VR128 register.
1946 if (X86::VR128RegClass
.contains(DestReg
))
1947 return X86::MOV64toPQIrr
;
1948 // Copy from a GR64 register to a VR64 register.
1949 else if (X86::VR64RegClass
.contains(DestReg
))
1950 return X86::MOV64toSDrr
;
1956 void X86InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
1957 MachineBasicBlock::iterator MI
, DebugLoc DL
,
1958 unsigned DestReg
, unsigned SrcReg
,
1959 bool KillSrc
) const {
1960 // First deal with the normal symmetric copies.
1962 if (X86::GR64RegClass
.contains(DestReg
, SrcReg
))
1964 else if (X86::GR32RegClass
.contains(DestReg
, SrcReg
))
1966 else if (X86::GR16RegClass
.contains(DestReg
, SrcReg
))
1968 else if (X86::GR8RegClass
.contains(DestReg
, SrcReg
)) {
1969 // Copying to or from a physical H register on x86-64 requires a NOREX
1970 // move. Otherwise use a normal move.
1971 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
1972 TM
.getSubtarget
<X86Subtarget
>().is64Bit())
1973 Opc
= X86::MOV8rr_NOREX
;
1976 } else if (X86::VR128RegClass
.contains(DestReg
, SrcReg
))
1977 Opc
= X86::MOVAPSrr
;
1978 else if (X86::VR64RegClass
.contains(DestReg
, SrcReg
))
1979 Opc
= X86::MMX_MOVQ64rr
;
1981 Opc
= CopyToFromAsymmetricReg(DestReg
, SrcReg
);
1984 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
)
1985 .addReg(SrcReg
, getKillRegState(KillSrc
));
1989 // Moving EFLAGS to / from another register requires a push and a pop.
1990 if (SrcReg
== X86::EFLAGS
) {
1991 if (X86::GR64RegClass
.contains(DestReg
)) {
1992 BuildMI(MBB
, MI
, DL
, get(X86::PUSHF64
));
1993 BuildMI(MBB
, MI
, DL
, get(X86::POP64r
), DestReg
);
1995 } else if (X86::GR32RegClass
.contains(DestReg
)) {
1996 BuildMI(MBB
, MI
, DL
, get(X86::PUSHF32
));
1997 BuildMI(MBB
, MI
, DL
, get(X86::POP32r
), DestReg
);
2001 if (DestReg
== X86::EFLAGS
) {
2002 if (X86::GR64RegClass
.contains(SrcReg
)) {
2003 BuildMI(MBB
, MI
, DL
, get(X86::PUSH64r
))
2004 .addReg(SrcReg
, getKillRegState(KillSrc
));
2005 BuildMI(MBB
, MI
, DL
, get(X86::POPF64
));
2007 } else if (X86::GR32RegClass
.contains(SrcReg
)) {
2008 BuildMI(MBB
, MI
, DL
, get(X86::PUSH32r
))
2009 .addReg(SrcReg
, getKillRegState(KillSrc
));
2010 BuildMI(MBB
, MI
, DL
, get(X86::POPF32
));
2015 DEBUG(dbgs() << "Cannot copy " << RI
.getName(SrcReg
)
2016 << " to " << RI
.getName(DestReg
) << '\n');
2017 llvm_unreachable("Cannot emit physreg copy instruction");
2020 static unsigned getLoadStoreRegOpcode(unsigned Reg
,
2021 const TargetRegisterClass
*RC
,
2022 bool isStackAligned
,
2023 const TargetMachine
&TM
,
2025 switch (RC
->getSize()) {
2027 llvm_unreachable("Unknown spill size");
2029 assert(X86::GR8RegClass
.hasSubClassEq(RC
) && "Unknown 1-byte regclass");
2030 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
2031 // Copying to or from a physical H register on x86-64 requires a NOREX
2032 // move. Otherwise use a normal move.
2033 if (isHReg(Reg
) || X86::GR8_ABCD_HRegClass
.hasSubClassEq(RC
))
2034 return load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
2035 return load
? X86::MOV8rm
: X86::MOV8mr
;
2037 assert(X86::GR16RegClass
.hasSubClassEq(RC
) && "Unknown 2-byte regclass");
2038 return load
? X86::MOV16rm
: X86::MOV16mr
;
2040 if (X86::GR32RegClass
.hasSubClassEq(RC
))
2041 return load
? X86::MOV32rm
: X86::MOV32mr
;
2042 if (X86::FR32RegClass
.hasSubClassEq(RC
))
2043 return load
? X86::MOVSSrm
: X86::MOVSSmr
;
2044 if (X86::RFP32RegClass
.hasSubClassEq(RC
))
2045 return load
? X86::LD_Fp32m
: X86::ST_Fp32m
;
2046 llvm_unreachable("Unknown 4-byte regclass");
2048 if (X86::GR64RegClass
.hasSubClassEq(RC
))
2049 return load
? X86::MOV64rm
: X86::MOV64mr
;
2050 if (X86::FR64RegClass
.hasSubClassEq(RC
))
2051 return load
? X86::MOVSDrm
: X86::MOVSDmr
;
2052 if (X86::VR64RegClass
.hasSubClassEq(RC
))
2053 return load
? X86::MMX_MOVQ64rm
: X86::MMX_MOVQ64mr
;
2054 if (X86::RFP64RegClass
.hasSubClassEq(RC
))
2055 return load
? X86::LD_Fp64m
: X86::ST_Fp64m
;
2056 llvm_unreachable("Unknown 8-byte regclass");
2058 assert(X86::RFP80RegClass
.hasSubClassEq(RC
) && "Unknown 10-byte regclass");
2059 return load
? X86::LD_Fp80m
: X86::ST_FpP80m
;
2061 assert(X86::VR128RegClass
.hasSubClassEq(RC
) && "Unknown 16-byte regclass");
2062 // If stack is realigned we can use aligned stores.
2064 return load
? X86::MOVAPSrm
: X86::MOVAPSmr
;
2066 return load
? X86::MOVUPSrm
: X86::MOVUPSmr
;
2070 static unsigned getStoreRegOpcode(unsigned SrcReg
,
2071 const TargetRegisterClass
*RC
,
2072 bool isStackAligned
,
2073 TargetMachine
&TM
) {
2074 return getLoadStoreRegOpcode(SrcReg
, RC
, isStackAligned
, TM
, false);
2078 static unsigned getLoadRegOpcode(unsigned DestReg
,
2079 const TargetRegisterClass
*RC
,
2080 bool isStackAligned
,
2081 const TargetMachine
&TM
) {
2082 return getLoadStoreRegOpcode(DestReg
, RC
, isStackAligned
, TM
, true);
2085 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
2086 MachineBasicBlock::iterator MI
,
2087 unsigned SrcReg
, bool isKill
, int FrameIdx
,
2088 const TargetRegisterClass
*RC
,
2089 const TargetRegisterInfo
*TRI
) const {
2090 const MachineFunction
&MF
= *MBB
.getParent();
2091 assert(MF
.getFrameInfo()->getObjectSize(FrameIdx
) >= RC
->getSize() &&
2092 "Stack slot too small for store");
2093 bool isAligned
= (TM
.getFrameLowering()->getStackAlignment() >= 16) ||
2094 RI
.canRealignStack(MF
);
2095 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
2096 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2097 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
)), FrameIdx
)
2098 .addReg(SrcReg
, getKillRegState(isKill
));
2101 void X86InstrInfo::storeRegToAddr(MachineFunction
&MF
, unsigned SrcReg
,
2103 SmallVectorImpl
<MachineOperand
> &Addr
,
2104 const TargetRegisterClass
*RC
,
2105 MachineInstr::mmo_iterator MMOBegin
,
2106 MachineInstr::mmo_iterator MMOEnd
,
2107 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2108 bool isAligned
= MMOBegin
!= MMOEnd
&& (*MMOBegin
)->getAlignment() >= 16;
2109 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, TM
);
2111 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
2112 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
2113 MIB
.addOperand(Addr
[i
]);
2114 MIB
.addReg(SrcReg
, getKillRegState(isKill
));
2115 (*MIB
).setMemRefs(MMOBegin
, MMOEnd
);
2116 NewMIs
.push_back(MIB
);
2120 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
2121 MachineBasicBlock::iterator MI
,
2122 unsigned DestReg
, int FrameIdx
,
2123 const TargetRegisterClass
*RC
,
2124 const TargetRegisterInfo
*TRI
) const {
2125 const MachineFunction
&MF
= *MBB
.getParent();
2126 bool isAligned
= (TM
.getFrameLowering()->getStackAlignment() >= 16) ||
2127 RI
.canRealignStack(MF
);
2128 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
2129 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2130 addFrameReference(BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
), FrameIdx
);
2133 void X86InstrInfo::loadRegFromAddr(MachineFunction
&MF
, unsigned DestReg
,
2134 SmallVectorImpl
<MachineOperand
> &Addr
,
2135 const TargetRegisterClass
*RC
,
2136 MachineInstr::mmo_iterator MMOBegin
,
2137 MachineInstr::mmo_iterator MMOEnd
,
2138 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2139 bool isAligned
= MMOBegin
!= MMOEnd
&& (*MMOBegin
)->getAlignment() >= 16;
2140 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, TM
);
2142 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), DestReg
);
2143 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
2144 MIB
.addOperand(Addr
[i
]);
2145 (*MIB
).setMemRefs(MMOBegin
, MMOEnd
);
2146 NewMIs
.push_back(MIB
);
2150 X86InstrInfo::emitFrameIndexDebugValue(MachineFunction
&MF
,
2151 int FrameIx
, uint64_t Offset
,
2152 const MDNode
*MDPtr
,
2153 DebugLoc DL
) const {
2155 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
2156 AM
.Base
.FrameIndex
= FrameIx
;
2157 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(X86::DBG_VALUE
));
2158 addFullAddress(MIB
, AM
).addImm(Offset
).addMetadata(MDPtr
);
2162 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
2163 const SmallVectorImpl
<MachineOperand
> &MOs
,
2165 const TargetInstrInfo
&TII
) {
2166 // Create the base instruction with the memory operand as the first part.
2167 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2168 MI
->getDebugLoc(), true);
2169 MachineInstrBuilder
MIB(NewMI
);
2170 unsigned NumAddrOps
= MOs
.size();
2171 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2172 MIB
.addOperand(MOs
[i
]);
2173 if (NumAddrOps
< 4) // FrameIndex only
2176 // Loop over the rest of the ri operands, converting them over.
2177 unsigned NumOps
= MI
->getDesc().getNumOperands()-2;
2178 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2179 MachineOperand
&MO
= MI
->getOperand(i
+2);
2182 for (unsigned i
= NumOps
+2, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2183 MachineOperand
&MO
= MI
->getOperand(i
);
2189 static MachineInstr
*FuseInst(MachineFunction
&MF
,
2190 unsigned Opcode
, unsigned OpNo
,
2191 const SmallVectorImpl
<MachineOperand
> &MOs
,
2192 MachineInstr
*MI
, const TargetInstrInfo
&TII
) {
2193 MachineInstr
*NewMI
= MF
.CreateMachineInstr(TII
.get(Opcode
),
2194 MI
->getDebugLoc(), true);
2195 MachineInstrBuilder
MIB(NewMI
);
2197 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2198 MachineOperand
&MO
= MI
->getOperand(i
);
2200 assert(MO
.isReg() && "Expected to fold into reg operand!");
2201 unsigned NumAddrOps
= MOs
.size();
2202 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2203 MIB
.addOperand(MOs
[i
]);
2204 if (NumAddrOps
< 4) // FrameIndex only
2213 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
2214 const SmallVectorImpl
<MachineOperand
> &MOs
,
2216 MachineFunction
&MF
= *MI
->getParent()->getParent();
2217 MachineInstrBuilder MIB
= BuildMI(MF
, MI
->getDebugLoc(), TII
.get(Opcode
));
2219 unsigned NumAddrOps
= MOs
.size();
2220 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
2221 MIB
.addOperand(MOs
[i
]);
2222 if (NumAddrOps
< 4) // FrameIndex only
2224 return MIB
.addImm(0);
2228 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2229 MachineInstr
*MI
, unsigned i
,
2230 const SmallVectorImpl
<MachineOperand
> &MOs
,
2231 unsigned Size
, unsigned Align
) const {
2232 const DenseMap
<unsigned, std::pair
<unsigned,unsigned> > *OpcodeTablePtr
= 0;
2233 bool isTwoAddrFold
= false;
2234 unsigned NumOps
= MI
->getDesc().getNumOperands();
2235 bool isTwoAddr
= NumOps
> 1 &&
2236 MI
->getDesc().getOperandConstraint(1, MCOI::TIED_TO
) != -1;
2238 // FIXME: AsmPrinter doesn't know how to handle
2239 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2240 if (MI
->getOpcode() == X86::ADD32ri
&&
2241 MI
->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS
)
2244 MachineInstr
*NewMI
= NULL
;
2245 // Folding a memory location into the two-address part of a two-address
2246 // instruction is different than folding it other places. It requires
2247 // replacing the *two* registers with the memory location.
2248 if (isTwoAddr
&& NumOps
>= 2 && i
< 2 &&
2249 MI
->getOperand(0).isReg() &&
2250 MI
->getOperand(1).isReg() &&
2251 MI
->getOperand(0).getReg() == MI
->getOperand(1).getReg()) {
2252 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2253 isTwoAddrFold
= true;
2254 } else if (i
== 0) { // If operand 0
2255 if (MI
->getOpcode() == X86::MOV64r0
)
2256 NewMI
= MakeM0Inst(*this, X86::MOV64mi32
, MOs
, MI
);
2257 else if (MI
->getOpcode() == X86::MOV32r0
)
2258 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, MI
);
2259 else if (MI
->getOpcode() == X86::MOV16r0
)
2260 NewMI
= MakeM0Inst(*this, X86::MOV16mi
, MOs
, MI
);
2261 else if (MI
->getOpcode() == X86::MOV8r0
)
2262 NewMI
= MakeM0Inst(*this, X86::MOV8mi
, MOs
, MI
);
2266 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2267 } else if (i
== 1) {
2268 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2269 } else if (i
== 2) {
2270 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2273 // If table selected...
2274 if (OpcodeTablePtr
) {
2275 // Find the Opcode to fuse
2276 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2277 OpcodeTablePtr
->find(MI
->getOpcode());
2278 if (I
!= OpcodeTablePtr
->end()) {
2279 unsigned Opcode
= I
->second
.first
;
2280 unsigned MinAlign
= I
->second
.second
;
2281 if (Align
< MinAlign
)
2283 bool NarrowToMOV32rm
= false;
2285 unsigned RCSize
= getRegClass(MI
->getDesc(), i
, &RI
)->getSize();
2286 if (Size
< RCSize
) {
2287 // Check if it's safe to fold the load. If the size of the object is
2288 // narrower than the load width, then it's not.
2289 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
2291 // If this is a 64-bit load, but the spill slot is 32, then we can do
2292 // a 32-bit load which is implicitly zero-extended. This likely is due
2293 // to liveintervalanalysis remat'ing a load from stack slot.
2294 if (MI
->getOperand(0).getSubReg() || MI
->getOperand(1).getSubReg())
2296 Opcode
= X86::MOV32rm
;
2297 NarrowToMOV32rm
= true;
2302 NewMI
= FuseTwoAddrInst(MF
, Opcode
, MOs
, MI
, *this);
2304 NewMI
= FuseInst(MF
, Opcode
, i
, MOs
, MI
, *this);
2306 if (NarrowToMOV32rm
) {
2307 // If this is the special case where we use a MOV32rm to load a 32-bit
2308 // value and zero-extend the top bits. Change the destination register
2310 unsigned DstReg
= NewMI
->getOperand(0).getReg();
2311 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
2312 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
,
2315 NewMI
->getOperand(0).setSubReg(X86::sub_32bit
);
2322 if (PrintFailedFusing
&& !MI
->isCopy())
2323 dbgs() << "We failed to fuse operand " << i
<< " in " << *MI
;
2328 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2330 const SmallVectorImpl
<unsigned> &Ops
,
2331 int FrameIndex
) const {
2332 // Check switch flag
2333 if (NoFusing
) return NULL
;
2335 if (!MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
2336 switch (MI
->getOpcode()) {
2337 case X86::CVTSD2SSrr
:
2338 case X86::Int_CVTSD2SSrr
:
2339 case X86::CVTSS2SDrr
:
2340 case X86::Int_CVTSS2SDrr
:
2342 case X86::RCPSSr_Int
:
2346 case X86::RSQRTSSr_Int
:
2348 case X86::SQRTSSr_Int
:
2352 const MachineFrameInfo
*MFI
= MF
.getFrameInfo();
2353 unsigned Size
= MFI
->getObjectSize(FrameIndex
);
2354 unsigned Alignment
= MFI
->getObjectAlignment(FrameIndex
);
2355 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2356 unsigned NewOpc
= 0;
2357 unsigned RCSize
= 0;
2358 switch (MI
->getOpcode()) {
2359 default: return NULL
;
2360 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; RCSize
= 1; break;
2361 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; RCSize
= 2; break;
2362 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; RCSize
= 4; break;
2363 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; RCSize
= 8; break;
2365 // Check if it's safe to fold the load. If the size of the object is
2366 // narrower than the load width, then it's not.
2369 // Change to CMPXXri r, 0 first.
2370 MI
->setDesc(get(NewOpc
));
2371 MI
->getOperand(1).ChangeToImmediate(0);
2372 } else if (Ops
.size() != 1)
2375 SmallVector
<MachineOperand
,4> MOs
;
2376 MOs
.push_back(MachineOperand::CreateFI(FrameIndex
));
2377 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, Size
, Alignment
);
2380 MachineInstr
* X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
,
2382 const SmallVectorImpl
<unsigned> &Ops
,
2383 MachineInstr
*LoadMI
) const {
2384 // Check switch flag
2385 if (NoFusing
) return NULL
;
2387 if (!MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
2388 switch (MI
->getOpcode()) {
2389 case X86::CVTSD2SSrr
:
2390 case X86::Int_CVTSD2SSrr
:
2391 case X86::CVTSS2SDrr
:
2392 case X86::Int_CVTSS2SDrr
:
2394 case X86::RCPSSr_Int
:
2398 case X86::RSQRTSSr_Int
:
2400 case X86::SQRTSSr_Int
:
2404 // Determine the alignment of the load.
2405 unsigned Alignment
= 0;
2406 if (LoadMI
->hasOneMemOperand())
2407 Alignment
= (*LoadMI
->memoperands_begin())->getAlignment();
2409 switch (LoadMI
->getOpcode()) {
2410 case X86::AVX_SET0PSY
:
2411 case X86::AVX_SET0PDY
:
2417 case X86::V_SETALLONES
:
2418 case X86::AVX_SET0PS
:
2419 case X86::AVX_SET0PD
:
2420 case X86::AVX_SET0PI
:
2424 case X86::VFsFLD0SD
:
2428 case X86::VFsFLD0SS
:
2434 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2435 unsigned NewOpc
= 0;
2436 switch (MI
->getOpcode()) {
2437 default: return NULL
;
2438 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
2439 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; break;
2440 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; break;
2441 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; break;
2443 // Change to CMPXXri r, 0 first.
2444 MI
->setDesc(get(NewOpc
));
2445 MI
->getOperand(1).ChangeToImmediate(0);
2446 } else if (Ops
.size() != 1)
2449 // Make sure the subregisters match.
2450 // Otherwise we risk changing the size of the load.
2451 if (LoadMI
->getOperand(0).getSubReg() != MI
->getOperand(Ops
[0]).getSubReg())
2454 SmallVector
<MachineOperand
,X86::AddrNumOperands
> MOs
;
2455 switch (LoadMI
->getOpcode()) {
2459 case X86::V_SETALLONES
:
2460 case X86::AVX_SET0PS
:
2461 case X86::AVX_SET0PD
:
2462 case X86::AVX_SET0PI
:
2463 case X86::AVX_SET0PSY
:
2464 case X86::AVX_SET0PDY
:
2466 case X86::FsFLD0SS
: {
2467 // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2468 // Create a constant-pool entry and operands to load from it.
2470 // Medium and large mode can't fold loads this way.
2471 if (TM
.getCodeModel() != CodeModel::Small
&&
2472 TM
.getCodeModel() != CodeModel::Kernel
)
2475 // x86-32 PIC requires a PIC base register for constant pools.
2476 unsigned PICBase
= 0;
2477 if (TM
.getRelocationModel() == Reloc::PIC_
) {
2478 if (TM
.getSubtarget
<X86Subtarget
>().is64Bit())
2481 // FIXME: PICBase = getGlobalBaseReg(&MF);
2482 // This doesn't work for several reasons.
2483 // 1. GlobalBaseReg may have been spilled.
2484 // 2. It may not be live at MI.
2488 // Create a constant-pool entry.
2489 MachineConstantPool
&MCP
= *MF
.getConstantPool();
2491 unsigned Opc
= LoadMI
->getOpcode();
2492 if (Opc
== X86::FsFLD0SS
|| Opc
== X86::VFsFLD0SS
)
2493 Ty
= Type::getFloatTy(MF
.getFunction()->getContext());
2494 else if (Opc
== X86::FsFLD0SD
|| Opc
== X86::VFsFLD0SD
)
2495 Ty
= Type::getDoubleTy(MF
.getFunction()->getContext());
2496 else if (Opc
== X86::AVX_SET0PSY
|| Opc
== X86::AVX_SET0PDY
)
2497 Ty
= VectorType::get(Type::getFloatTy(MF
.getFunction()->getContext()), 8);
2499 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction()->getContext()), 4);
2500 const Constant
*C
= LoadMI
->getOpcode() == X86::V_SETALLONES
?
2501 Constant::getAllOnesValue(Ty
) :
2502 Constant::getNullValue(Ty
);
2503 unsigned CPI
= MCP
.getConstantPoolIndex(C
, Alignment
);
2505 // Create operands to load from the constant pool entry.
2506 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
2507 MOs
.push_back(MachineOperand::CreateImm(1));
2508 MOs
.push_back(MachineOperand::CreateReg(0, false));
2509 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
2510 MOs
.push_back(MachineOperand::CreateReg(0, false));
2514 // Folding a normal load. Just copy the load's address operands.
2515 unsigned NumOps
= LoadMI
->getDesc().getNumOperands();
2516 for (unsigned i
= NumOps
- X86::AddrNumOperands
; i
!= NumOps
; ++i
)
2517 MOs
.push_back(LoadMI
->getOperand(i
));
2521 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, 0, Alignment
);
2525 bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr
*MI
,
2526 const SmallVectorImpl
<unsigned> &Ops
) const {
2527 // Check switch flag
2528 if (NoFusing
) return 0;
2530 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
2531 switch (MI
->getOpcode()) {
2532 default: return false;
2539 // FIXME: AsmPrinter doesn't know how to handle
2540 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2541 if (MI
->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS
)
2547 if (Ops
.size() != 1)
2550 unsigned OpNum
= Ops
[0];
2551 unsigned Opc
= MI
->getOpcode();
2552 unsigned NumOps
= MI
->getDesc().getNumOperands();
2553 bool isTwoAddr
= NumOps
> 1 &&
2554 MI
->getDesc().getOperandConstraint(1, MCOI::TIED_TO
) != -1;
2556 // Folding a memory location into the two-address part of a two-address
2557 // instruction is different than folding it other places. It requires
2558 // replacing the *two* registers with the memory location.
2559 const DenseMap
<unsigned, std::pair
<unsigned,unsigned> > *OpcodeTablePtr
= 0;
2560 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2) {
2561 OpcodeTablePtr
= &RegOp2MemOpTable2Addr
;
2562 } else if (OpNum
== 0) { // If operand 0
2567 case X86::MOV64r0
: return true;
2570 OpcodeTablePtr
= &RegOp2MemOpTable0
;
2571 } else if (OpNum
== 1) {
2572 OpcodeTablePtr
= &RegOp2MemOpTable1
;
2573 } else if (OpNum
== 2) {
2574 OpcodeTablePtr
= &RegOp2MemOpTable2
;
2577 if (OpcodeTablePtr
&& OpcodeTablePtr
->count(Opc
))
2579 return TargetInstrInfoImpl::canFoldMemoryOperand(MI
, Ops
);
2582 bool X86InstrInfo::unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
*MI
,
2583 unsigned Reg
, bool UnfoldLoad
, bool UnfoldStore
,
2584 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
2585 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2586 MemOp2RegOpTable
.find(MI
->getOpcode());
2587 if (I
== MemOp2RegOpTable
.end())
2589 unsigned Opc
= I
->second
.first
;
2590 unsigned Index
= I
->second
.second
& 0xf;
2591 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2592 bool FoldedStore
= I
->second
.second
& (1 << 5);
2593 if (UnfoldLoad
&& !FoldedLoad
)
2595 UnfoldLoad
&= FoldedLoad
;
2596 if (UnfoldStore
&& !FoldedStore
)
2598 UnfoldStore
&= FoldedStore
;
2600 const MCInstrDesc
&MCID
= get(Opc
);
2601 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
);
2602 if (!MI
->hasOneMemOperand() &&
2603 RC
== &X86::VR128RegClass
&&
2604 !TM
.getSubtarget
<X86Subtarget
>().isUnalignedMemAccessFast())
2605 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2606 // conservatively assume the address is unaligned. That's bad for
2609 SmallVector
<MachineOperand
, X86::AddrNumOperands
> AddrOps
;
2610 SmallVector
<MachineOperand
,2> BeforeOps
;
2611 SmallVector
<MachineOperand
,2> AfterOps
;
2612 SmallVector
<MachineOperand
,4> ImpOps
;
2613 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2614 MachineOperand
&Op
= MI
->getOperand(i
);
2615 if (i
>= Index
&& i
< Index
+ X86::AddrNumOperands
)
2616 AddrOps
.push_back(Op
);
2617 else if (Op
.isReg() && Op
.isImplicit())
2618 ImpOps
.push_back(Op
);
2620 BeforeOps
.push_back(Op
);
2622 AfterOps
.push_back(Op
);
2625 // Emit the load instruction.
2627 std::pair
<MachineInstr::mmo_iterator
,
2628 MachineInstr::mmo_iterator
> MMOs
=
2629 MF
.extractLoadMemRefs(MI
->memoperands_begin(),
2630 MI
->memoperands_end());
2631 loadRegFromAddr(MF
, Reg
, AddrOps
, RC
, MMOs
.first
, MMOs
.second
, NewMIs
);
2633 // Address operands cannot be marked isKill.
2634 for (unsigned i
= 1; i
!= 1 + X86::AddrNumOperands
; ++i
) {
2635 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
2637 MO
.setIsKill(false);
2642 // Emit the data processing instruction.
2643 MachineInstr
*DataMI
= MF
.CreateMachineInstr(MCID
, MI
->getDebugLoc(), true);
2644 MachineInstrBuilder
MIB(DataMI
);
2647 MIB
.addReg(Reg
, RegState::Define
);
2648 for (unsigned i
= 0, e
= BeforeOps
.size(); i
!= e
; ++i
)
2649 MIB
.addOperand(BeforeOps
[i
]);
2652 for (unsigned i
= 0, e
= AfterOps
.size(); i
!= e
; ++i
)
2653 MIB
.addOperand(AfterOps
[i
]);
2654 for (unsigned i
= 0, e
= ImpOps
.size(); i
!= e
; ++i
) {
2655 MachineOperand
&MO
= ImpOps
[i
];
2656 MIB
.addReg(MO
.getReg(),
2657 getDefRegState(MO
.isDef()) |
2658 RegState::Implicit
|
2659 getKillRegState(MO
.isKill()) |
2660 getDeadRegState(MO
.isDead()) |
2661 getUndefRegState(MO
.isUndef()));
2663 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2664 unsigned NewOpc
= 0;
2665 switch (DataMI
->getOpcode()) {
2667 case X86::CMP64ri32
:
2674 MachineOperand
&MO0
= DataMI
->getOperand(0);
2675 MachineOperand
&MO1
= DataMI
->getOperand(1);
2676 if (MO1
.getImm() == 0) {
2677 switch (DataMI
->getOpcode()) {
2680 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
2682 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
2684 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
2685 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
2687 DataMI
->setDesc(get(NewOpc
));
2688 MO1
.ChangeToRegister(MO0
.getReg(), false);
2692 NewMIs
.push_back(DataMI
);
2694 // Emit the store instruction.
2696 const TargetRegisterClass
*DstRC
= getRegClass(MCID
, 0, &RI
);
2697 std::pair
<MachineInstr::mmo_iterator
,
2698 MachineInstr::mmo_iterator
> MMOs
=
2699 MF
.extractStoreMemRefs(MI
->memoperands_begin(),
2700 MI
->memoperands_end());
2701 storeRegToAddr(MF
, Reg
, true, AddrOps
, DstRC
, MMOs
.first
, MMOs
.second
, NewMIs
);
2708 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
2709 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
2710 if (!N
->isMachineOpcode())
2713 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2714 MemOp2RegOpTable
.find(N
->getMachineOpcode());
2715 if (I
== MemOp2RegOpTable
.end())
2717 unsigned Opc
= I
->second
.first
;
2718 unsigned Index
= I
->second
.second
& 0xf;
2719 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2720 bool FoldedStore
= I
->second
.second
& (1 << 5);
2721 const MCInstrDesc
&MCID
= get(Opc
);
2722 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
);
2723 unsigned NumDefs
= MCID
.NumDefs
;
2724 std::vector
<SDValue
> AddrOps
;
2725 std::vector
<SDValue
> BeforeOps
;
2726 std::vector
<SDValue
> AfterOps
;
2727 DebugLoc dl
= N
->getDebugLoc();
2728 unsigned NumOps
= N
->getNumOperands();
2729 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
2730 SDValue Op
= N
->getOperand(i
);
2731 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86::AddrNumOperands
)
2732 AddrOps
.push_back(Op
);
2733 else if (i
< Index
-NumDefs
)
2734 BeforeOps
.push_back(Op
);
2735 else if (i
> Index
-NumDefs
)
2736 AfterOps
.push_back(Op
);
2738 SDValue Chain
= N
->getOperand(NumOps
-1);
2739 AddrOps
.push_back(Chain
);
2741 // Emit the load instruction.
2743 MachineFunction
&MF
= DAG
.getMachineFunction();
2745 EVT VT
= *RC
->vt_begin();
2746 std::pair
<MachineInstr::mmo_iterator
,
2747 MachineInstr::mmo_iterator
> MMOs
=
2748 MF
.extractLoadMemRefs(cast
<MachineSDNode
>(N
)->memoperands_begin(),
2749 cast
<MachineSDNode
>(N
)->memoperands_end());
2750 if (!(*MMOs
.first
) &&
2751 RC
== &X86::VR128RegClass
&&
2752 !TM
.getSubtarget
<X86Subtarget
>().isUnalignedMemAccessFast())
2753 // Do not introduce a slow unaligned load.
2755 bool isAligned
= (*MMOs
.first
) && (*MMOs
.first
)->getAlignment() >= 16;
2756 Load
= DAG
.getMachineNode(getLoadRegOpcode(0, RC
, isAligned
, TM
), dl
,
2757 VT
, MVT::Other
, &AddrOps
[0], AddrOps
.size());
2758 NewNodes
.push_back(Load
);
2760 // Preserve memory reference information.
2761 cast
<MachineSDNode
>(Load
)->setMemRefs(MMOs
.first
, MMOs
.second
);
2764 // Emit the data processing instruction.
2765 std::vector
<EVT
> VTs
;
2766 const TargetRegisterClass
*DstRC
= 0;
2767 if (MCID
.getNumDefs() > 0) {
2768 DstRC
= getRegClass(MCID
, 0, &RI
);
2769 VTs
.push_back(*DstRC
->vt_begin());
2771 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
2772 EVT VT
= N
->getValueType(i
);
2773 if (VT
!= MVT::Other
&& i
>= (unsigned)MCID
.getNumDefs())
2777 BeforeOps
.push_back(SDValue(Load
, 0));
2778 std::copy(AfterOps
.begin(), AfterOps
.end(), std::back_inserter(BeforeOps
));
2779 SDNode
*NewNode
= DAG
.getMachineNode(Opc
, dl
, VTs
, &BeforeOps
[0],
2781 NewNodes
.push_back(NewNode
);
2783 // Emit the store instruction.
2786 AddrOps
.push_back(SDValue(NewNode
, 0));
2787 AddrOps
.push_back(Chain
);
2788 std::pair
<MachineInstr::mmo_iterator
,
2789 MachineInstr::mmo_iterator
> MMOs
=
2790 MF
.extractStoreMemRefs(cast
<MachineSDNode
>(N
)->memoperands_begin(),
2791 cast
<MachineSDNode
>(N
)->memoperands_end());
2792 if (!(*MMOs
.first
) &&
2793 RC
== &X86::VR128RegClass
&&
2794 !TM
.getSubtarget
<X86Subtarget
>().isUnalignedMemAccessFast())
2795 // Do not introduce a slow unaligned store.
2797 bool isAligned
= (*MMOs
.first
) && (*MMOs
.first
)->getAlignment() >= 16;
2798 SDNode
*Store
= DAG
.getMachineNode(getStoreRegOpcode(0, DstRC
,
2801 &AddrOps
[0], AddrOps
.size());
2802 NewNodes
.push_back(Store
);
2804 // Preserve memory reference information.
2805 cast
<MachineSDNode
>(Load
)->setMemRefs(MMOs
.first
, MMOs
.second
);
2811 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
2812 bool UnfoldLoad
, bool UnfoldStore
,
2813 unsigned *LoadRegIndex
) const {
2814 DenseMap
<unsigned, std::pair
<unsigned,unsigned> >::const_iterator I
=
2815 MemOp2RegOpTable
.find(Opc
);
2816 if (I
== MemOp2RegOpTable
.end())
2818 bool FoldedLoad
= I
->second
.second
& (1 << 4);
2819 bool FoldedStore
= I
->second
.second
& (1 << 5);
2820 if (UnfoldLoad
&& !FoldedLoad
)
2822 if (UnfoldStore
&& !FoldedStore
)
2825 *LoadRegIndex
= I
->second
.second
& 0xf;
2826 return I
->second
.first
;
2830 X86InstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
2831 int64_t &Offset1
, int64_t &Offset2
) const {
2832 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
2834 unsigned Opc1
= Load1
->getMachineOpcode();
2835 unsigned Opc2
= Load2
->getMachineOpcode();
2837 default: return false;
2847 case X86::MMX_MOVD64rm
:
2848 case X86::MMX_MOVQ64rm
:
2849 case X86::FsMOVAPSrm
:
2850 case X86::FsMOVAPDrm
:
2859 default: return false;
2869 case X86::MMX_MOVD64rm
:
2870 case X86::MMX_MOVQ64rm
:
2871 case X86::FsMOVAPSrm
:
2872 case X86::FsMOVAPDrm
:
2881 // Check if chain operands and base addresses match.
2882 if (Load1
->getOperand(0) != Load2
->getOperand(0) ||
2883 Load1
->getOperand(5) != Load2
->getOperand(5))
2885 // Segment operands should match as well.
2886 if (Load1
->getOperand(4) != Load2
->getOperand(4))
2888 // Scale should be 1, Index should be Reg0.
2889 if (Load1
->getOperand(1) == Load2
->getOperand(1) &&
2890 Load1
->getOperand(2) == Load2
->getOperand(2)) {
2891 if (cast
<ConstantSDNode
>(Load1
->getOperand(1))->getZExtValue() != 1)
2894 // Now let's examine the displacements.
2895 if (isa
<ConstantSDNode
>(Load1
->getOperand(3)) &&
2896 isa
<ConstantSDNode
>(Load2
->getOperand(3))) {
2897 Offset1
= cast
<ConstantSDNode
>(Load1
->getOperand(3))->getSExtValue();
2898 Offset2
= cast
<ConstantSDNode
>(Load2
->getOperand(3))->getSExtValue();
2905 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
2906 int64_t Offset1
, int64_t Offset2
,
2907 unsigned NumLoads
) const {
2908 assert(Offset2
> Offset1
);
2909 if ((Offset2
- Offset1
) / 8 > 64)
2912 unsigned Opc1
= Load1
->getMachineOpcode();
2913 unsigned Opc2
= Load2
->getMachineOpcode();
2915 return false; // FIXME: overly conservative?
2922 case X86::MMX_MOVD64rm
:
2923 case X86::MMX_MOVQ64rm
:
2927 EVT VT
= Load1
->getValueType(0);
2928 switch (VT
.getSimpleVT().SimpleTy
) {
2930 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2931 // have 16 of them to play with.
2932 if (TM
.getSubtargetImpl()->is64Bit()) {
2935 } else if (NumLoads
) {
2955 ReverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
2956 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
2957 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
2958 if (CC
== X86::COND_NE_OR_P
|| CC
== X86::COND_NP_OR_E
)
2960 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
2965 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
2966 // FIXME: Return false for x87 stack register classes for now. We can't
2967 // allow any loads of these registers before FpGet_ST0_80.
2968 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::RFP32RegClass
||
2969 RC
== &X86::RFP64RegClass
|| RC
== &X86::RFP80RegClass
);
2973 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
2974 /// register? e.g. r8, xmm8, xmm13, etc.
2975 bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo
) {
2978 case X86::R8
: case X86::R9
: case X86::R10
: case X86::R11
:
2979 case X86::R12
: case X86::R13
: case X86::R14
: case X86::R15
:
2980 case X86::R8D
: case X86::R9D
: case X86::R10D
: case X86::R11D
:
2981 case X86::R12D
: case X86::R13D
: case X86::R14D
: case X86::R15D
:
2982 case X86::R8W
: case X86::R9W
: case X86::R10W
: case X86::R11W
:
2983 case X86::R12W
: case X86::R13W
: case X86::R14W
: case X86::R15W
:
2984 case X86::R8B
: case X86::R9B
: case X86::R10B
: case X86::R11B
:
2985 case X86::R12B
: case X86::R13B
: case X86::R14B
: case X86::R15B
:
2986 case X86::XMM8
: case X86::XMM9
: case X86::XMM10
: case X86::XMM11
:
2987 case X86::XMM12
: case X86::XMM13
: case X86::XMM14
: case X86::XMM15
:
2988 case X86::YMM8
: case X86::YMM9
: case X86::YMM10
: case X86::YMM11
:
2989 case X86::YMM12
: case X86::YMM13
: case X86::YMM14
: case X86::YMM15
:
2990 case X86::CR8
: case X86::CR9
: case X86::CR10
: case X86::CR11
:
2991 case X86::CR12
: case X86::CR13
: case X86::CR14
: case X86::CR15
:
2997 /// getGlobalBaseReg - Return a virtual register initialized with the
2998 /// the global base register value. Output instructions required to
2999 /// initialize the register in the function entry block, if necessary.
3001 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
3003 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
3004 assert(!TM
.getSubtarget
<X86Subtarget
>().is64Bit() &&
3005 "X86-64 PIC uses RIP relative addressing");
3007 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
3008 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
3009 if (GlobalBaseReg
!= 0)
3010 return GlobalBaseReg
;
3012 // Create the register. The code to initialize it is inserted
3013 // later, by the CGBR pass (below).
3014 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
3015 GlobalBaseReg
= RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3016 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
3017 return GlobalBaseReg
;
3020 // These are the replaceable SSE instructions. Some of these have Int variants
3021 // that we don't include here. We don't want to replace instructions selected
3023 static const unsigned ReplaceableInstrs
[][3] = {
3024 //PackedSingle PackedDouble PackedInt
3025 { X86::MOVAPSmr
, X86::MOVAPDmr
, X86::MOVDQAmr
},
3026 { X86::MOVAPSrm
, X86::MOVAPDrm
, X86::MOVDQArm
},
3027 { X86::MOVAPSrr
, X86::MOVAPDrr
, X86::MOVDQArr
},
3028 { X86::MOVUPSmr
, X86::MOVUPDmr
, X86::MOVDQUmr
},
3029 { X86::MOVUPSrm
, X86::MOVUPDrm
, X86::MOVDQUrm
},
3030 { X86::MOVNTPSmr
, X86::MOVNTPDmr
, X86::MOVNTDQmr
},
3031 { X86::ANDNPSrm
, X86::ANDNPDrm
, X86::PANDNrm
},
3032 { X86::ANDNPSrr
, X86::ANDNPDrr
, X86::PANDNrr
},
3033 { X86::ANDPSrm
, X86::ANDPDrm
, X86::PANDrm
},
3034 { X86::ANDPSrr
, X86::ANDPDrr
, X86::PANDrr
},
3035 { X86::ORPSrm
, X86::ORPDrm
, X86::PORrm
},
3036 { X86::ORPSrr
, X86::ORPDrr
, X86::PORrr
},
3037 { X86::V_SET0PS
, X86::V_SET0PD
, X86::V_SET0PI
},
3038 { X86::XORPSrm
, X86::XORPDrm
, X86::PXORrm
},
3039 { X86::XORPSrr
, X86::XORPDrr
, X86::PXORrr
},
3040 // AVX 128-bit support
3041 { X86::VMOVAPSmr
, X86::VMOVAPDmr
, X86::VMOVDQAmr
},
3042 { X86::VMOVAPSrm
, X86::VMOVAPDrm
, X86::VMOVDQArm
},
3043 { X86::VMOVAPSrr
, X86::VMOVAPDrr
, X86::VMOVDQArr
},
3044 { X86::VMOVUPSmr
, X86::VMOVUPDmr
, X86::VMOVDQUmr
},
3045 { X86::VMOVUPSrm
, X86::VMOVUPDrm
, X86::VMOVDQUrm
},
3046 { X86::VMOVNTPSmr
, X86::VMOVNTPDmr
, X86::VMOVNTDQmr
},
3047 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNrm
},
3048 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNrr
},
3049 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDrm
},
3050 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDrr
},
3051 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORrm
},
3052 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORrr
},
3053 { X86::AVX_SET0PS
, X86::AVX_SET0PD
, X86::AVX_SET0PI
},
3054 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORrm
},
3055 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORrr
},
3058 // FIXME: Some shuffle and unpack instructions have equivalents in different
3059 // domains, but they require a bit more work than just switching opcodes.
3061 static const unsigned *lookup(unsigned opcode
, unsigned domain
) {
3062 for (unsigned i
= 0, e
= array_lengthof(ReplaceableInstrs
); i
!= e
; ++i
)
3063 if (ReplaceableInstrs
[i
][domain
-1] == opcode
)
3064 return ReplaceableInstrs
[i
];
3068 std::pair
<uint16_t, uint16_t>
3069 X86InstrInfo::GetSSEDomain(const MachineInstr
*MI
) const {
3070 uint16_t domain
= (MI
->getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
3071 return std::make_pair(domain
,
3072 domain
&& lookup(MI
->getOpcode(), domain
) ? 0xe : 0);
3075 void X86InstrInfo::SetSSEDomain(MachineInstr
*MI
, unsigned Domain
) const {
3076 assert(Domain
>0 && Domain
<4 && "Invalid execution domain");
3077 uint16_t dom
= (MI
->getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
3078 assert(dom
&& "Not an SSE instruction");
3079 const unsigned *table
= lookup(MI
->getOpcode(), dom
);
3080 assert(table
&& "Cannot change domain");
3081 MI
->setDesc(get(table
[Domain
-1]));
3084 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3085 void X86InstrInfo::getNoopForMachoTarget(MCInst
&NopInst
) const {
3086 NopInst
.setOpcode(X86::NOOP
);
3089 bool X86InstrInfo::isHighLatencyDef(int opc
) const {
3091 default: return false;
3093 case X86::DIVSDrm_Int
:
3095 case X86::DIVSDrr_Int
:
3097 case X86::DIVSSrm_Int
:
3099 case X86::DIVSSrr_Int
:
3101 case X86::SQRTPDm_Int
:
3103 case X86::SQRTPDr_Int
:
3105 case X86::SQRTPSm_Int
:
3107 case X86::SQRTPSr_Int
:
3109 case X86::SQRTSDm_Int
:
3111 case X86::SQRTSDr_Int
:
3113 case X86::SQRTSSm_Int
:
3115 case X86::SQRTSSr_Int
:
3121 hasHighOperandLatency(const InstrItineraryData
*ItinData
,
3122 const MachineRegisterInfo
*MRI
,
3123 const MachineInstr
*DefMI
, unsigned DefIdx
,
3124 const MachineInstr
*UseMI
, unsigned UseIdx
) const {
3125 return isHighLatencyDef(DefMI
->getOpcode());
3129 /// CGBR - Create Global Base Reg pass. This initializes the PIC
3130 /// global base register for x86-32.
3131 struct CGBR
: public MachineFunctionPass
{
3133 CGBR() : MachineFunctionPass(ID
) {}
3135 virtual bool runOnMachineFunction(MachineFunction
&MF
) {
3136 const X86TargetMachine
*TM
=
3137 static_cast<const X86TargetMachine
*>(&MF
.getTarget());
3139 assert(!TM
->getSubtarget
<X86Subtarget
>().is64Bit() &&
3140 "X86-64 PIC uses RIP relative addressing");
3142 // Only emit a global base reg in PIC mode.
3143 if (TM
->getRelocationModel() != Reloc::PIC_
)
3146 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
3147 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
3149 // If we didn't need a GlobalBaseReg, don't insert code.
3150 if (GlobalBaseReg
== 0)
3153 // Insert the set of GlobalBaseReg into the first MBB of the function
3154 MachineBasicBlock
&FirstMBB
= MF
.front();
3155 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
3156 DebugLoc DL
= FirstMBB
.findDebugLoc(MBBI
);
3157 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
3158 const X86InstrInfo
*TII
= TM
->getInstrInfo();
3161 if (TM
->getSubtarget
<X86Subtarget
>().isPICStyleGOT())
3162 PC
= RegInfo
.createVirtualRegister(X86::GR32RegisterClass
);
3166 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3167 // only used in JIT code emission as displacement to pc.
3168 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
3170 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3171 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3172 if (TM
->getSubtarget
<X86Subtarget
>().isPICStyleGOT()) {
3173 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3174 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
3175 .addReg(PC
).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3176 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
3182 virtual const char *getPassName() const {
3183 return "X86 PIC Global Base Reg Initialization";
3186 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
3187 AU
.setPreservesCFG();
3188 MachineFunctionPass::getAnalysisUsage(AU
);
3195 llvm::createGlobalBaseRegPass() { return new CGBR(); }