the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / lib / Target / X86 / X86InstrInfo.h
blob5f2eba34ac45fd75570f2a8a47a37cb1586bb365
1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "X86.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/ADT/DenseMap.h"
22 #define GET_INSTRINFO_HEADER
23 #include "X86GenInstrInfo.inc"
25 namespace llvm {
26 class X86RegisterInfo;
27 class X86TargetMachine;
29 namespace X86 {
30 // Enums for memory operand decoding. Each memory operand is represented with
31 // a 5 operand sequence in the form:
32 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
33 // These enums help decode this.
34 enum {
35 AddrBaseReg = 0,
36 AddrScaleAmt = 1,
37 AddrIndexReg = 2,
38 AddrDisp = 3,
40 /// AddrSegmentReg - The operand # of the segment in the memory operand.
41 AddrSegmentReg = 4,
43 /// AddrNumOperands - Total number of operands in a memory reference.
44 AddrNumOperands = 5
48 // X86 specific condition code. These correspond to X86_*_COND in
49 // X86InstrInfo.td. They must be kept in synch.
50 enum CondCode {
51 COND_A = 0,
52 COND_AE = 1,
53 COND_B = 2,
54 COND_BE = 3,
55 COND_E = 4,
56 COND_G = 5,
57 COND_GE = 6,
58 COND_L = 7,
59 COND_LE = 8,
60 COND_NE = 9,
61 COND_NO = 10,
62 COND_NP = 11,
63 COND_NS = 12,
64 COND_O = 13,
65 COND_P = 14,
66 COND_S = 15,
68 // Artificial condition codes. These are used by AnalyzeBranch
69 // to indicate a block terminated with two conditional branches to
70 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
71 // which can't be represented on x86 with a single condition. These
72 // are never used in MachineInstrs.
73 COND_NE_OR_P,
74 COND_NP_OR_E,
76 COND_INVALID
79 // Turn condition code into conditional branch opcode.
80 unsigned GetCondBranchFromCond(CondCode CC);
82 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
83 /// e.g. turning COND_E to COND_NE.
84 CondCode GetOppositeBranchCondition(X86::CondCode CC);
88 /// X86II - This namespace holds all of the target specific flags that
89 /// instruction info tracks.
90 ///
91 namespace X86II {
92 /// Target Operand Flag enum.
93 enum TOF {
94 //===------------------------------------------------------------------===//
95 // X86 Specific MachineOperand flags.
97 MO_NO_FLAG,
99 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
100 /// relocation of:
101 /// SYMBOL_LABEL + [. - PICBASELABEL]
102 MO_GOT_ABSOLUTE_ADDRESS,
104 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
105 /// immediate should get the value of the symbol minus the PIC base label:
106 /// SYMBOL_LABEL - PICBASELABEL
107 MO_PIC_BASE_OFFSET,
109 /// MO_GOT - On a symbol operand this indicates that the immediate is the
110 /// offset to the GOT entry for the symbol name from the base of the GOT.
112 /// See the X86-64 ELF ABI supplement for more details.
113 /// SYMBOL_LABEL @GOT
114 MO_GOT,
116 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
117 /// the offset to the location of the symbol name from the base of the GOT.
119 /// See the X86-64 ELF ABI supplement for more details.
120 /// SYMBOL_LABEL @GOTOFF
121 MO_GOTOFF,
123 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
124 /// offset to the GOT entry for the symbol name from the current code
125 /// location.
127 /// See the X86-64 ELF ABI supplement for more details.
128 /// SYMBOL_LABEL @GOTPCREL
129 MO_GOTPCREL,
131 /// MO_PLT - On a symbol operand this indicates that the immediate is
132 /// offset to the PLT entry of symbol name from the current code location.
134 /// See the X86-64 ELF ABI supplement for more details.
135 /// SYMBOL_LABEL @PLT
136 MO_PLT,
138 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
139 /// some TLS offset.
141 /// See 'ELF Handling for Thread-Local Storage' for more details.
142 /// SYMBOL_LABEL @TLSGD
143 MO_TLSGD,
145 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
146 /// some TLS offset.
148 /// See 'ELF Handling for Thread-Local Storage' for more details.
149 /// SYMBOL_LABEL @GOTTPOFF
150 MO_GOTTPOFF,
152 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
153 /// some TLS offset.
155 /// See 'ELF Handling for Thread-Local Storage' for more details.
156 /// SYMBOL_LABEL @INDNTPOFF
157 MO_INDNTPOFF,
159 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
160 /// some TLS offset.
162 /// See 'ELF Handling for Thread-Local Storage' for more details.
163 /// SYMBOL_LABEL @TPOFF
164 MO_TPOFF,
166 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
167 /// some TLS offset.
169 /// See 'ELF Handling for Thread-Local Storage' for more details.
170 /// SYMBOL_LABEL @NTPOFF
171 MO_NTPOFF,
173 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
174 /// reference is actually to the "__imp_FOO" symbol. This is used for
175 /// dllimport linkage on windows.
176 MO_DLLIMPORT,
178 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
179 /// reference is actually to the "FOO$stub" symbol. This is used for calls
180 /// and jumps to external functions on Tiger and earlier.
181 MO_DARWIN_STUB,
183 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
184 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
185 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
186 MO_DARWIN_NONLAZY,
188 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
189 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
190 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
191 MO_DARWIN_NONLAZY_PIC_BASE,
193 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
194 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
195 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
196 /// stub.
197 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199 /// MO_TLVP - On a symbol operand this indicates that the immediate is
200 /// some TLS offset.
202 /// This is the TLS offset for the Darwin TLS mechanism.
203 MO_TLVP,
205 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
206 /// is some TLS offset from the picbase.
208 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
209 MO_TLVP_PIC_BASE
213 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
214 /// a reference to a stub for a global, not the global itself.
215 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
216 switch (TargetFlag) {
217 case X86II::MO_DLLIMPORT: // dllimport stub.
218 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
219 case X86II::MO_GOT: // normal GOT reference.
220 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
221 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
222 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
223 return true;
224 default:
225 return false;
229 /// isGlobalRelativeToPICBase - Return true if the specified global value
230 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
231 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
232 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
233 switch (TargetFlag) {
234 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
235 case X86II::MO_GOT: // isPICStyleGOT: other global.
236 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
237 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
238 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
239 case X86II::MO_TLVP: // ??? Pretty sure..
240 return true;
241 default:
242 return false;
246 /// X86II - This namespace holds all of the target specific flags that
247 /// instruction info tracks.
249 namespace X86II {
250 enum {
251 //===------------------------------------------------------------------===//
252 // Instruction encodings. These are the standard/most common forms for X86
253 // instructions.
256 // PseudoFrm - This represents an instruction that is a pseudo instruction
257 // or one that has not been implemented yet. It is illegal to code generate
258 // it, but tolerated for intermediate implementation stages.
259 Pseudo = 0,
261 /// Raw - This form is for instructions that don't have any operands, so
262 /// they are just a fixed opcode value, like 'leave'.
263 RawFrm = 1,
265 /// AddRegFrm - This form is used for instructions like 'push r32' that have
266 /// their one register operand added to their opcode.
267 AddRegFrm = 2,
269 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
270 /// to specify a destination, which in this case is a register.
272 MRMDestReg = 3,
274 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
275 /// to specify a destination, which in this case is memory.
277 MRMDestMem = 4,
279 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
280 /// to specify a source, which in this case is a register.
282 MRMSrcReg = 5,
284 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
285 /// to specify a source, which in this case is memory.
287 MRMSrcMem = 6,
289 /// MRM[0-7][rm] - These forms are used to represent instructions that use
290 /// a Mod/RM byte, and use the middle field to hold extended opcode
291 /// information. In the intel manual these are represented as /0, /1, ...
294 // First, instructions that operate on a register r/m operand...
295 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
296 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
298 // Next, instructions that operate on a memory r/m operand...
299 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
300 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
302 // MRMInitReg - This form is used for instructions whose source and
303 // destinations are the same register.
304 MRMInitReg = 32,
306 //// MRM_C1 - A mod/rm byte of exactly 0xC1.
307 MRM_C1 = 33,
308 MRM_C2 = 34,
309 MRM_C3 = 35,
310 MRM_C4 = 36,
311 MRM_C8 = 37,
312 MRM_C9 = 38,
313 MRM_E8 = 39,
314 MRM_F0 = 40,
315 MRM_F8 = 41,
316 MRM_F9 = 42,
317 MRM_D0 = 45,
318 MRM_D1 = 46,
320 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
321 /// immediates, the first of which is a 16-bit immediate (specified by
322 /// the imm encoding) and the second is a 8-bit fixed value.
323 RawFrmImm8 = 43,
325 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
326 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
327 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
328 /// manual, this operand is described as pntr16:32 and pntr16:16
329 RawFrmImm16 = 44,
331 FormMask = 63,
333 //===------------------------------------------------------------------===//
334 // Actual flags...
336 // OpSize - Set if this instruction requires an operand size prefix (0x66),
337 // which most often indicates that the instruction operates on 16 bit data
338 // instead of 32 bit data.
339 OpSize = 1 << 6,
341 // AsSize - Set if this instruction requires an operand size prefix (0x67),
342 // which most often indicates that the instruction address 16 bit address
343 // instead of 32 bit address (or 32 bit address in 64 bit mode).
344 AdSize = 1 << 7,
346 //===------------------------------------------------------------------===//
347 // Op0Mask - There are several prefix bytes that are used to form two byte
348 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
349 // used to obtain the setting of this field. If no bits in this field is
350 // set, there is no prefix byte for obtaining a multibyte opcode.
352 Op0Shift = 8,
353 Op0Mask = 0x1F << Op0Shift,
355 // TB - TwoByte - Set if this instruction has a two byte opcode, which
356 // starts with a 0x0F byte before the real opcode.
357 TB = 1 << Op0Shift,
359 // REP - The 0xF3 prefix byte indicating repetition of the following
360 // instruction.
361 REP = 2 << Op0Shift,
363 // D8-DF - These escape opcodes are used by the floating point unit. These
364 // values must remain sequential.
365 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
366 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
367 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
368 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
370 // XS, XD - These prefix codes are for single and double precision scalar
371 // floating point operations performed in the SSE registers.
372 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
374 // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
375 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
376 A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
378 // TF - Prefix before and after 0x0F
379 TF = 17 << Op0Shift,
381 //===------------------------------------------------------------------===//
382 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
383 // They are used to specify GPRs and SSE registers, 64-bit operand size,
384 // etc. We only cares about REX.W and REX.R bits and only the former is
385 // statically determined.
387 REXShift = Op0Shift + 5,
388 REX_W = 1 << REXShift,
390 //===------------------------------------------------------------------===//
391 // This three-bit field describes the size of an immediate operand. Zero is
392 // unused so that we can tell if we forgot to set a value.
393 ImmShift = REXShift + 1,
394 ImmMask = 7 << ImmShift,
395 Imm8 = 1 << ImmShift,
396 Imm8PCRel = 2 << ImmShift,
397 Imm16 = 3 << ImmShift,
398 Imm16PCRel = 4 << ImmShift,
399 Imm32 = 5 << ImmShift,
400 Imm32PCRel = 6 << ImmShift,
401 Imm64 = 7 << ImmShift,
403 //===------------------------------------------------------------------===//
404 // FP Instruction Classification... Zero is non-fp instruction.
406 // FPTypeMask - Mask for all of the FP types...
407 FPTypeShift = ImmShift + 3,
408 FPTypeMask = 7 << FPTypeShift,
410 // NotFP - The default, set for instructions that do not use FP registers.
411 NotFP = 0 << FPTypeShift,
413 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
414 ZeroArgFP = 1 << FPTypeShift,
416 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
417 OneArgFP = 2 << FPTypeShift,
419 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
420 // result back to ST(0). For example, fcos, fsqrt, etc.
422 OneArgFPRW = 3 << FPTypeShift,
424 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
425 // explicit argument, storing the result to either ST(0) or the implicit
426 // argument. For example: fadd, fsub, fmul, etc...
427 TwoArgFP = 4 << FPTypeShift,
429 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
430 // explicit argument, but have no destination. Example: fucom, fucomi, ...
431 CompareFP = 5 << FPTypeShift,
433 // CondMovFP - "2 operand" floating point conditional move instructions.
434 CondMovFP = 6 << FPTypeShift,
436 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
437 SpecialFP = 7 << FPTypeShift,
439 // Lock prefix
440 LOCKShift = FPTypeShift + 3,
441 LOCK = 1 << LOCKShift,
443 // Segment override prefixes. Currently we just need ability to address
444 // stuff in gs and fs segments.
445 SegOvrShift = LOCKShift + 1,
446 SegOvrMask = 3 << SegOvrShift,
447 FS = 1 << SegOvrShift,
448 GS = 2 << SegOvrShift,
450 // Execution domain for SSE instructions in bits 23, 24.
451 // 0 in bits 23-24 means normal, non-SSE instruction.
452 SSEDomainShift = SegOvrShift + 2,
454 OpcodeShift = SSEDomainShift + 2,
456 //===------------------------------------------------------------------===//
457 /// VEX - The opcode prefix used by AVX instructions
458 VEXShift = OpcodeShift + 8,
459 VEX = 1U << 0,
461 /// VEX_W - Has a opcode specific functionality, but is used in the same
462 /// way as REX_W is for regular SSE instructions.
463 VEX_W = 1U << 1,
465 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
466 /// address instructions in SSE are represented as 3 address ones in AVX
467 /// and the additional register is encoded in VEX_VVVV prefix.
468 VEX_4V = 1U << 2,
470 /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
471 /// must be encoded in the i8 immediate field. This usually happens in
472 /// instructions with 4 operands.
473 VEX_I8IMM = 1U << 3,
475 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
476 /// instruction uses 256-bit wide registers. This is usually auto detected
477 /// if a VR256 register is used, but some AVX instructions also have this
478 /// field marked when using a f256 memory references.
479 VEX_L = 1U << 4,
481 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
482 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
483 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
484 /// storing a classifier in the imm8 field. To simplify our implementation,
485 /// we handle this by storeing the classifier in the opcode field and using
486 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
487 Has3DNow0F0FOpcode = 1U << 5
490 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
491 // specified machine instruction.
493 static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
494 return TSFlags >> X86II::OpcodeShift;
497 static inline bool hasImm(uint64_t TSFlags) {
498 return (TSFlags & X86II::ImmMask) != 0;
501 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
502 /// of the specified instruction.
503 static inline unsigned getSizeOfImm(uint64_t TSFlags) {
504 switch (TSFlags & X86II::ImmMask) {
505 default: assert(0 && "Unknown immediate size");
506 case X86II::Imm8:
507 case X86II::Imm8PCRel: return 1;
508 case X86II::Imm16:
509 case X86II::Imm16PCRel: return 2;
510 case X86II::Imm32:
511 case X86II::Imm32PCRel: return 4;
512 case X86II::Imm64: return 8;
516 /// isImmPCRel - Return true if the immediate of the specified instruction's
517 /// TSFlags indicates that it is pc relative.
518 static inline unsigned isImmPCRel(uint64_t TSFlags) {
519 switch (TSFlags & X86II::ImmMask) {
520 default: assert(0 && "Unknown immediate size");
521 case X86II::Imm8PCRel:
522 case X86II::Imm16PCRel:
523 case X86II::Imm32PCRel:
524 return true;
525 case X86II::Imm8:
526 case X86II::Imm16:
527 case X86II::Imm32:
528 case X86II::Imm64:
529 return false;
533 /// getMemoryOperandNo - The function returns the MCInst operand # for the
534 /// first field of the memory operand. If the instruction doesn't have a
535 /// memory operand, this returns -1.
537 /// Note that this ignores tied operands. If there is a tied register which
538 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
539 /// counted as one operand.
541 static inline int getMemoryOperandNo(uint64_t TSFlags) {
542 switch (TSFlags & X86II::FormMask) {
543 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
544 default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
545 case X86II::Pseudo:
546 case X86II::RawFrm:
547 case X86II::AddRegFrm:
548 case X86II::MRMDestReg:
549 case X86II::MRMSrcReg:
550 case X86II::RawFrmImm8:
551 case X86II::RawFrmImm16:
552 return -1;
553 case X86II::MRMDestMem:
554 return 0;
555 case X86II::MRMSrcMem: {
556 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
557 unsigned FirstMemOp = 1;
558 if (HasVEX_4V)
559 ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
561 // FIXME: Maybe lea should have its own form? This is a horrible hack.
562 //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
563 // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
564 return FirstMemOp;
566 case X86II::MRM0r: case X86II::MRM1r:
567 case X86II::MRM2r: case X86II::MRM3r:
568 case X86II::MRM4r: case X86II::MRM5r:
569 case X86II::MRM6r: case X86II::MRM7r:
570 return -1;
571 case X86II::MRM0m: case X86II::MRM1m:
572 case X86II::MRM2m: case X86II::MRM3m:
573 case X86II::MRM4m: case X86II::MRM5m:
574 case X86II::MRM6m: case X86II::MRM7m:
575 return 0;
576 case X86II::MRM_C1:
577 case X86II::MRM_C2:
578 case X86II::MRM_C3:
579 case X86II::MRM_C4:
580 case X86II::MRM_C8:
581 case X86II::MRM_C9:
582 case X86II::MRM_E8:
583 case X86II::MRM_F0:
584 case X86II::MRM_F8:
585 case X86II::MRM_F9:
586 case X86II::MRM_D0:
587 case X86II::MRM_D1:
588 return -1;
593 inline static bool isScale(const MachineOperand &MO) {
594 return MO.isImm() &&
595 (MO.getImm() == 1 || MO.getImm() == 2 ||
596 MO.getImm() == 4 || MO.getImm() == 8);
599 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
600 if (MI->getOperand(Op).isFI()) return true;
601 return Op+4 <= MI->getNumOperands() &&
602 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
603 MI->getOperand(Op+2).isReg() &&
604 (MI->getOperand(Op+3).isImm() ||
605 MI->getOperand(Op+3).isGlobal() ||
606 MI->getOperand(Op+3).isCPI() ||
607 MI->getOperand(Op+3).isJTI());
610 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
611 if (MI->getOperand(Op).isFI()) return true;
612 return Op+5 <= MI->getNumOperands() &&
613 MI->getOperand(Op+4).isReg() &&
614 isLeaMem(MI, Op);
617 class X86InstrInfo : public X86GenInstrInfo {
618 X86TargetMachine &TM;
619 const X86RegisterInfo RI;
621 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
622 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
624 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
625 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
626 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
627 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
629 /// MemOp2RegOpTable - Load / store unfolding opcode map.
631 DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
633 public:
634 explicit X86InstrInfo(X86TargetMachine &tm);
636 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
637 /// such, whenever a client has an instance of instruction info, it should
638 /// always be able to get register info as well (through this method).
640 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
642 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
643 /// extension instruction. That is, it's like a copy where it's legal for the
644 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
645 /// true, then it's expected the pre-extension value is available as a subreg
646 /// of the result register. This also returns the sub-register index in
647 /// SubIdx.
648 virtual bool isCoalescableExtInstr(const MachineInstr &MI,
649 unsigned &SrcReg, unsigned &DstReg,
650 unsigned &SubIdx) const;
652 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
653 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
654 /// stack locations as well. This uses a heuristic so it isn't
655 /// reliable for correctness.
656 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
657 int &FrameIndex) const;
659 /// hasLoadFromStackSlot - If the specified machine instruction has
660 /// a load from a stack slot, return true along with the FrameIndex
661 /// of the loaded stack slot and the machine mem operand containing
662 /// the reference. If not, return false. Unlike
663 /// isLoadFromStackSlot, this returns true for any instructions that
664 /// loads from the stack. This is a hint only and may not catch all
665 /// cases.
666 bool hasLoadFromStackSlot(const MachineInstr *MI,
667 const MachineMemOperand *&MMO,
668 int &FrameIndex) const;
670 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
671 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
672 /// stack locations as well. This uses a heuristic so it isn't
673 /// reliable for correctness.
674 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
675 int &FrameIndex) const;
677 /// hasStoreToStackSlot - If the specified machine instruction has a
678 /// store to a stack slot, return true along with the FrameIndex of
679 /// the loaded stack slot and the machine mem operand containing the
680 /// reference. If not, return false. Unlike isStoreToStackSlot,
681 /// this returns true for any instructions that loads from the
682 /// stack. This is a hint only and may not catch all cases.
683 bool hasStoreToStackSlot(const MachineInstr *MI,
684 const MachineMemOperand *&MMO,
685 int &FrameIndex) const;
687 bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
688 AliasAnalysis *AA) const;
689 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
690 unsigned DestReg, unsigned SubIdx,
691 const MachineInstr *Orig,
692 const TargetRegisterInfo &TRI) const;
694 /// convertToThreeAddress - This method must be implemented by targets that
695 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
696 /// may be able to convert a two-address instruction into a true
697 /// three-address instruction on demand. This allows the X86 target (for
698 /// example) to convert ADD and SHL instructions into LEA instructions if they
699 /// would require register copies due to two-addressness.
701 /// This method returns a null pointer if the transformation cannot be
702 /// performed, otherwise it returns the new instruction.
704 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
705 MachineBasicBlock::iterator &MBBI,
706 LiveVariables *LV) const;
708 /// commuteInstruction - We have a few instructions that must be hacked on to
709 /// commute them.
711 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
713 // Branch analysis.
714 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
715 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
716 MachineBasicBlock *&FBB,
717 SmallVectorImpl<MachineOperand> &Cond,
718 bool AllowModify) const;
719 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
720 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
721 MachineBasicBlock *FBB,
722 const SmallVectorImpl<MachineOperand> &Cond,
723 DebugLoc DL) const;
724 virtual void copyPhysReg(MachineBasicBlock &MBB,
725 MachineBasicBlock::iterator MI, DebugLoc DL,
726 unsigned DestReg, unsigned SrcReg,
727 bool KillSrc) const;
728 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
729 MachineBasicBlock::iterator MI,
730 unsigned SrcReg, bool isKill, int FrameIndex,
731 const TargetRegisterClass *RC,
732 const TargetRegisterInfo *TRI) const;
734 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
735 SmallVectorImpl<MachineOperand> &Addr,
736 const TargetRegisterClass *RC,
737 MachineInstr::mmo_iterator MMOBegin,
738 MachineInstr::mmo_iterator MMOEnd,
739 SmallVectorImpl<MachineInstr*> &NewMIs) const;
741 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
742 MachineBasicBlock::iterator MI,
743 unsigned DestReg, int FrameIndex,
744 const TargetRegisterClass *RC,
745 const TargetRegisterInfo *TRI) const;
747 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
748 SmallVectorImpl<MachineOperand> &Addr,
749 const TargetRegisterClass *RC,
750 MachineInstr::mmo_iterator MMOBegin,
751 MachineInstr::mmo_iterator MMOEnd,
752 SmallVectorImpl<MachineInstr*> &NewMIs) const;
753 virtual
754 MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
755 int FrameIx, uint64_t Offset,
756 const MDNode *MDPtr,
757 DebugLoc DL) const;
759 /// foldMemoryOperand - If this target supports it, fold a load or store of
760 /// the specified stack slot into the specified machine instruction for the
761 /// specified operand(s). If this is possible, the target should perform the
762 /// folding and return true, otherwise it should return false. If it folds
763 /// the instruction, it is likely that the MachineInstruction the iterator
764 /// references has been changed.
765 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
766 MachineInstr* MI,
767 const SmallVectorImpl<unsigned> &Ops,
768 int FrameIndex) const;
770 /// foldMemoryOperand - Same as the previous version except it allows folding
771 /// of any load and store from / to any address, not just from a specific
772 /// stack slot.
773 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
774 MachineInstr* MI,
775 const SmallVectorImpl<unsigned> &Ops,
776 MachineInstr* LoadMI) const;
778 /// canFoldMemoryOperand - Returns true if the specified load / store is
779 /// folding is possible.
780 virtual bool canFoldMemoryOperand(const MachineInstr*,
781 const SmallVectorImpl<unsigned> &) const;
783 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
784 /// a store or a load and a store into two or more instruction. If this is
785 /// possible, returns true as well as the new instructions by reference.
786 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
787 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
788 SmallVectorImpl<MachineInstr*> &NewMIs) const;
790 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
791 SmallVectorImpl<SDNode*> &NewNodes) const;
793 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
794 /// instruction after load / store are unfolded from an instruction of the
795 /// specified opcode. It returns zero if the specified unfolding is not
796 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
797 /// index of the operand which will hold the register holding the loaded
798 /// value.
799 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
800 bool UnfoldLoad, bool UnfoldStore,
801 unsigned *LoadRegIndex = 0) const;
803 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
804 /// to determine if two loads are loading from the same base address. It
805 /// should only return true if the base pointers are the same and the
806 /// only differences between the two addresses are the offset. It also returns
807 /// the offsets by reference.
808 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
809 int64_t &Offset1, int64_t &Offset2) const;
811 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
812 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
813 /// be scheduled togther. On some targets if two loads are loading from
814 /// addresses in the same cache line, it's better if they are scheduled
815 /// together. This function takes two integers that represent the load offsets
816 /// from the common base address. It returns true if it decides it's desirable
817 /// to schedule the two loads together. "NumLoads" is the number of loads that
818 /// have already been scheduled after Load1.
819 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
820 int64_t Offset1, int64_t Offset2,
821 unsigned NumLoads) const;
823 virtual void getNoopForMachoTarget(MCInst &NopInst) const;
825 virtual
826 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
828 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
829 /// instruction that defines the specified register class.
830 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
832 static bool isX86_64NonExtLowByteReg(unsigned reg) {
833 return (reg == X86::SPL || reg == X86::BPL ||
834 reg == X86::SIL || reg == X86::DIL);
837 static bool isX86_64ExtendedReg(const MachineOperand &MO) {
838 if (!MO.isReg()) return false;
839 return isX86_64ExtendedReg(MO.getReg());
842 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
843 /// higher) register? e.g. r8, xmm8, xmm13, etc.
844 static bool isX86_64ExtendedReg(unsigned RegNo);
846 /// getGlobalBaseReg - Return a virtual register initialized with the
847 /// the global base register value. Output instructions required to
848 /// initialize the register in the function entry block, if necessary.
850 unsigned getGlobalBaseReg(MachineFunction *MF) const;
852 /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
853 /// and a bitmask of possible arguments to SetSSEDomain ase the second.
854 std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
856 /// SetSSEDomain - Set the SSEDomain of MI.
857 void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
859 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
860 MachineInstr* MI,
861 unsigned OpNum,
862 const SmallVectorImpl<MachineOperand> &MOs,
863 unsigned Size, unsigned Alignment) const;
865 bool isHighLatencyDef(int opc) const;
867 bool hasHighOperandLatency(const InstrItineraryData *ItinData,
868 const MachineRegisterInfo *MRI,
869 const MachineInstr *DefMI, unsigned DefIdx,
870 const MachineInstr *UseMI, unsigned UseIdx) const;
872 private:
873 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
874 MachineFunction::iterator &MFI,
875 MachineBasicBlock::iterator &MBBI,
876 LiveVariables *LV) const;
878 /// isFrameOperand - Return true and the FrameIndex if the specified
879 /// operand and follow operands form a reference to the stack frame.
880 bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
881 int &FrameIndex) const;
884 } // End llvm namespace
886 #endif