the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / lib / VMCore / AsmWriter.cpp
blob9278e58c2fc1d7d4ec4d68c588f70adf33ebd399
1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Module.h"
28 #include "llvm/ValueSymbolTable.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Dwarf.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/FormattedStream.h"
39 #include <algorithm>
40 #include <cctype>
41 using namespace llvm;
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46 //===----------------------------------------------------------------------===//
47 // Helper Functions
48 //===----------------------------------------------------------------------===//
50 static const Module *getModuleFromVal(const Value *V) {
51 if (const Argument *MA = dyn_cast<Argument>(V))
52 return MA->getParent() ? MA->getParent()->getParent() : 0;
54 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55 return BB->getParent() ? BB->getParent()->getParent() : 0;
57 if (const Instruction *I = dyn_cast<Instruction>(V)) {
58 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59 return M ? M->getParent() : 0;
62 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63 return GV->getParent();
64 return 0;
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
70 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
71 unsigned char C = Name[i];
72 if (isprint(C) && C != '\\' && C != '"')
73 Out << C;
74 else
75 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
79 enum PrefixType {
80 GlobalPrefix,
81 LabelPrefix,
82 LocalPrefix,
83 NoPrefix
86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
87 /// prefixed with % (if the string only contains simple characters) or is
88 /// surrounded with ""'s (if it has special chars in it). Print it out.
89 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
90 assert(!Name.empty() && "Cannot get empty name!");
91 switch (Prefix) {
92 default: llvm_unreachable("Bad prefix!");
93 case NoPrefix: break;
94 case GlobalPrefix: OS << '@'; break;
95 case LabelPrefix: break;
96 case LocalPrefix: OS << '%'; break;
99 // Scan the name to see if it needs quotes first.
100 bool NeedsQuotes = isdigit(Name[0]);
101 if (!NeedsQuotes) {
102 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
103 char C = Name[i];
104 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
105 NeedsQuotes = true;
106 break;
111 // If we didn't need any quotes, just write out the name in one blast.
112 if (!NeedsQuotes) {
113 OS << Name;
114 return;
117 // Okay, we need quotes. Output the quotes and escape any scary characters as
118 // needed.
119 OS << '"';
120 PrintEscapedString(Name, OS);
121 OS << '"';
124 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
125 /// prefixed with % (if the string only contains simple characters) or is
126 /// surrounded with ""'s (if it has special chars in it). Print it out.
127 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
128 PrintLLVMName(OS, V->getName(),
129 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
132 //===----------------------------------------------------------------------===//
133 // TypePrinting Class: Type printing machinery
134 //===----------------------------------------------------------------------===//
136 /// TypePrinting - Type printing machinery.
137 namespace {
138 class TypePrinting {
139 TypePrinting(const TypePrinting &); // DO NOT IMPLEMENT
140 void operator=(const TypePrinting&); // DO NOT IMPLEMENT
141 public:
143 /// NamedTypes - The named types that are used by the current module.
144 std::vector<StructType*> NamedTypes;
146 /// NumberedTypes - The numbered types, along with their value.
147 DenseMap<StructType*, unsigned> NumberedTypes;
150 TypePrinting() {}
151 ~TypePrinting() {}
153 void incorporateTypes(const Module &M);
155 void print(Type *Ty, raw_ostream &OS);
157 void printStructBody(StructType *Ty, raw_ostream &OS);
159 } // end anonymous namespace.
162 void TypePrinting::incorporateTypes(const Module &M) {
163 M.findUsedStructTypes(NamedTypes);
165 // The list of struct types we got back includes all the struct types, split
166 // the unnamed ones out to a numbering and remove the anonymous structs.
167 unsigned NextNumber = 0;
169 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
170 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
171 StructType *STy = *I;
173 // Ignore anonymous types.
174 if (STy->isAnonymous())
175 continue;
177 if (STy->getName().empty())
178 NumberedTypes[STy] = NextNumber++;
179 else
180 *NextToUse++ = STy;
183 NamedTypes.erase(NextToUse, NamedTypes.end());
187 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
188 /// use of type names or up references to shorten the type name where possible.
189 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
190 switch (Ty->getTypeID()) {
191 case Type::VoidTyID: OS << "void"; break;
192 case Type::FloatTyID: OS << "float"; break;
193 case Type::DoubleTyID: OS << "double"; break;
194 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
195 case Type::FP128TyID: OS << "fp128"; break;
196 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
197 case Type::LabelTyID: OS << "label"; break;
198 case Type::MetadataTyID: OS << "metadata"; break;
199 case Type::X86_MMXTyID: OS << "x86_mmx"; break;
200 case Type::IntegerTyID:
201 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
202 return;
204 case Type::FunctionTyID: {
205 FunctionType *FTy = cast<FunctionType>(Ty);
206 print(FTy->getReturnType(), OS);
207 OS << " (";
208 for (FunctionType::param_iterator I = FTy->param_begin(),
209 E = FTy->param_end(); I != E; ++I) {
210 if (I != FTy->param_begin())
211 OS << ", ";
212 print(*I, OS);
214 if (FTy->isVarArg()) {
215 if (FTy->getNumParams()) OS << ", ";
216 OS << "...";
218 OS << ')';
219 return;
221 case Type::StructTyID: {
222 StructType *STy = cast<StructType>(Ty);
224 if (STy->isAnonymous())
225 return printStructBody(STy, OS);
227 if (!STy->getName().empty())
228 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
230 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
231 if (I != NumberedTypes.end())
232 OS << '%' << I->second;
233 else // Not enumerated, print the hex address.
234 OS << "%\"type 0x" << STy << '\"';
235 return;
237 case Type::PointerTyID: {
238 PointerType *PTy = cast<PointerType>(Ty);
239 print(PTy->getElementType(), OS);
240 if (unsigned AddressSpace = PTy->getAddressSpace())
241 OS << " addrspace(" << AddressSpace << ')';
242 OS << '*';
243 return;
245 case Type::ArrayTyID: {
246 ArrayType *ATy = cast<ArrayType>(Ty);
247 OS << '[' << ATy->getNumElements() << " x ";
248 print(ATy->getElementType(), OS);
249 OS << ']';
250 return;
252 case Type::VectorTyID: {
253 VectorType *PTy = cast<VectorType>(Ty);
254 OS << "<" << PTy->getNumElements() << " x ";
255 print(PTy->getElementType(), OS);
256 OS << '>';
257 return;
259 default:
260 OS << "<unrecognized-type>";
261 return;
265 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
266 if (STy->isOpaque()) {
267 OS << "opaque";
268 return;
271 if (STy->isPacked())
272 OS << '<';
274 if (STy->getNumElements() == 0) {
275 OS << "{}";
276 } else {
277 StructType::element_iterator I = STy->element_begin();
278 OS << "{ ";
279 print(*I++, OS);
280 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
281 OS << ", ";
282 print(*I, OS);
285 OS << " }";
287 if (STy->isPacked())
288 OS << '>';
293 //===----------------------------------------------------------------------===//
294 // SlotTracker Class: Enumerate slot numbers for unnamed values
295 //===----------------------------------------------------------------------===//
297 namespace {
299 /// This class provides computation of slot numbers for LLVM Assembly writing.
301 class SlotTracker {
302 public:
303 /// ValueMap - A mapping of Values to slot numbers.
304 typedef DenseMap<const Value*, unsigned> ValueMap;
306 private:
307 /// TheModule - The module for which we are holding slot numbers.
308 const Module* TheModule;
310 /// TheFunction - The function for which we are holding slot numbers.
311 const Function* TheFunction;
312 bool FunctionProcessed;
314 /// mMap - The TypePlanes map for the module level data.
315 ValueMap mMap;
316 unsigned mNext;
318 /// fMap - The TypePlanes map for the function level data.
319 ValueMap fMap;
320 unsigned fNext;
322 /// mdnMap - Map for MDNodes.
323 DenseMap<const MDNode*, unsigned> mdnMap;
324 unsigned mdnNext;
325 public:
326 /// Construct from a module
327 explicit SlotTracker(const Module *M);
328 /// Construct from a function, starting out in incorp state.
329 explicit SlotTracker(const Function *F);
331 /// Return the slot number of the specified value in it's type
332 /// plane. If something is not in the SlotTracker, return -1.
333 int getLocalSlot(const Value *V);
334 int getGlobalSlot(const GlobalValue *V);
335 int getMetadataSlot(const MDNode *N);
337 /// If you'd like to deal with a function instead of just a module, use
338 /// this method to get its data into the SlotTracker.
339 void incorporateFunction(const Function *F) {
340 TheFunction = F;
341 FunctionProcessed = false;
344 /// After calling incorporateFunction, use this method to remove the
345 /// most recently incorporated function from the SlotTracker. This
346 /// will reset the state of the machine back to just the module contents.
347 void purgeFunction();
349 /// MDNode map iterators.
350 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
351 mdn_iterator mdn_begin() { return mdnMap.begin(); }
352 mdn_iterator mdn_end() { return mdnMap.end(); }
353 unsigned mdn_size() const { return mdnMap.size(); }
354 bool mdn_empty() const { return mdnMap.empty(); }
356 /// This function does the actual initialization.
357 inline void initialize();
359 // Implementation Details
360 private:
361 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
362 void CreateModuleSlot(const GlobalValue *V);
364 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
365 void CreateMetadataSlot(const MDNode *N);
367 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
368 void CreateFunctionSlot(const Value *V);
370 /// Add all of the module level global variables (and their initializers)
371 /// and function declarations, but not the contents of those functions.
372 void processModule();
374 /// Add all of the functions arguments, basic blocks, and instructions.
375 void processFunction();
377 SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
378 void operator=(const SlotTracker &); // DO NOT IMPLEMENT
381 } // end anonymous namespace
384 static SlotTracker *createSlotTracker(const Value *V) {
385 if (const Argument *FA = dyn_cast<Argument>(V))
386 return new SlotTracker(FA->getParent());
388 if (const Instruction *I = dyn_cast<Instruction>(V))
389 return new SlotTracker(I->getParent()->getParent());
391 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
392 return new SlotTracker(BB->getParent());
394 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
395 return new SlotTracker(GV->getParent());
397 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
398 return new SlotTracker(GA->getParent());
400 if (const Function *Func = dyn_cast<Function>(V))
401 return new SlotTracker(Func);
403 if (const MDNode *MD = dyn_cast<MDNode>(V)) {
404 if (!MD->isFunctionLocal())
405 return new SlotTracker(MD->getFunction());
407 return new SlotTracker((Function *)0);
410 return 0;
413 #if 0
414 #define ST_DEBUG(X) dbgs() << X
415 #else
416 #define ST_DEBUG(X)
417 #endif
419 // Module level constructor. Causes the contents of the Module (sans functions)
420 // to be added to the slot table.
421 SlotTracker::SlotTracker(const Module *M)
422 : TheModule(M), TheFunction(0), FunctionProcessed(false),
423 mNext(0), fNext(0), mdnNext(0) {
426 // Function level constructor. Causes the contents of the Module and the one
427 // function provided to be added to the slot table.
428 SlotTracker::SlotTracker(const Function *F)
429 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
430 mNext(0), fNext(0), mdnNext(0) {
433 inline void SlotTracker::initialize() {
434 if (TheModule) {
435 processModule();
436 TheModule = 0; ///< Prevent re-processing next time we're called.
439 if (TheFunction && !FunctionProcessed)
440 processFunction();
443 // Iterate through all the global variables, functions, and global
444 // variable initializers and create slots for them.
445 void SlotTracker::processModule() {
446 ST_DEBUG("begin processModule!\n");
448 // Add all of the unnamed global variables to the value table.
449 for (Module::const_global_iterator I = TheModule->global_begin(),
450 E = TheModule->global_end(); I != E; ++I) {
451 if (!I->hasName())
452 CreateModuleSlot(I);
455 // Add metadata used by named metadata.
456 for (Module::const_named_metadata_iterator
457 I = TheModule->named_metadata_begin(),
458 E = TheModule->named_metadata_end(); I != E; ++I) {
459 const NamedMDNode *NMD = I;
460 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
461 CreateMetadataSlot(NMD->getOperand(i));
464 // Add all the unnamed functions to the table.
465 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
466 I != E; ++I)
467 if (!I->hasName())
468 CreateModuleSlot(I);
470 ST_DEBUG("end processModule!\n");
473 // Process the arguments, basic blocks, and instructions of a function.
474 void SlotTracker::processFunction() {
475 ST_DEBUG("begin processFunction!\n");
476 fNext = 0;
478 // Add all the function arguments with no names.
479 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
480 AE = TheFunction->arg_end(); AI != AE; ++AI)
481 if (!AI->hasName())
482 CreateFunctionSlot(AI);
484 ST_DEBUG("Inserting Instructions:\n");
486 SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
488 // Add all of the basic blocks and instructions with no names.
489 for (Function::const_iterator BB = TheFunction->begin(),
490 E = TheFunction->end(); BB != E; ++BB) {
491 if (!BB->hasName())
492 CreateFunctionSlot(BB);
494 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
495 ++I) {
496 if (!I->getType()->isVoidTy() && !I->hasName())
497 CreateFunctionSlot(I);
499 // Intrinsics can directly use metadata. We allow direct calls to any
500 // llvm.foo function here, because the target may not be linked into the
501 // optimizer.
502 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
503 if (Function *F = CI->getCalledFunction())
504 if (F->getName().startswith("llvm."))
505 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
506 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
507 CreateMetadataSlot(N);
510 // Process metadata attached with this instruction.
511 I->getAllMetadata(MDForInst);
512 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
513 CreateMetadataSlot(MDForInst[i].second);
514 MDForInst.clear();
518 FunctionProcessed = true;
520 ST_DEBUG("end processFunction!\n");
523 /// Clean up after incorporating a function. This is the only way to get out of
524 /// the function incorporation state that affects get*Slot/Create*Slot. Function
525 /// incorporation state is indicated by TheFunction != 0.
526 void SlotTracker::purgeFunction() {
527 ST_DEBUG("begin purgeFunction!\n");
528 fMap.clear(); // Simply discard the function level map
529 TheFunction = 0;
530 FunctionProcessed = false;
531 ST_DEBUG("end purgeFunction!\n");
534 /// getGlobalSlot - Get the slot number of a global value.
535 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
536 // Check for uninitialized state and do lazy initialization.
537 initialize();
539 // Find the type plane in the module map
540 ValueMap::iterator MI = mMap.find(V);
541 return MI == mMap.end() ? -1 : (int)MI->second;
544 /// getMetadataSlot - Get the slot number of a MDNode.
545 int SlotTracker::getMetadataSlot(const MDNode *N) {
546 // Check for uninitialized state and do lazy initialization.
547 initialize();
549 // Find the type plane in the module map
550 mdn_iterator MI = mdnMap.find(N);
551 return MI == mdnMap.end() ? -1 : (int)MI->second;
555 /// getLocalSlot - Get the slot number for a value that is local to a function.
556 int SlotTracker::getLocalSlot(const Value *V) {
557 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
559 // Check for uninitialized state and do lazy initialization.
560 initialize();
562 ValueMap::iterator FI = fMap.find(V);
563 return FI == fMap.end() ? -1 : (int)FI->second;
567 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
568 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
569 assert(V && "Can't insert a null Value into SlotTracker!");
570 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
571 assert(!V->hasName() && "Doesn't need a slot!");
573 unsigned DestSlot = mNext++;
574 mMap[V] = DestSlot;
576 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
577 DestSlot << " [");
578 // G = Global, F = Function, A = Alias, o = other
579 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
580 (isa<Function>(V) ? 'F' :
581 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
584 /// CreateSlot - Create a new slot for the specified value if it has no name.
585 void SlotTracker::CreateFunctionSlot(const Value *V) {
586 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
588 unsigned DestSlot = fNext++;
589 fMap[V] = DestSlot;
591 // G = Global, F = Function, o = other
592 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
593 DestSlot << " [o]\n");
596 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
597 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
598 assert(N && "Can't insert a null Value into SlotTracker!");
600 // Don't insert if N is a function-local metadata, these are always printed
601 // inline.
602 if (!N->isFunctionLocal()) {
603 mdn_iterator I = mdnMap.find(N);
604 if (I != mdnMap.end())
605 return;
607 unsigned DestSlot = mdnNext++;
608 mdnMap[N] = DestSlot;
611 // Recursively add any MDNodes referenced by operands.
612 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
613 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
614 CreateMetadataSlot(Op);
617 //===----------------------------------------------------------------------===//
618 // AsmWriter Implementation
619 //===----------------------------------------------------------------------===//
621 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
622 TypePrinting *TypePrinter,
623 SlotTracker *Machine,
624 const Module *Context);
628 static const char *getPredicateText(unsigned predicate) {
629 const char * pred = "unknown";
630 switch (predicate) {
631 case FCmpInst::FCMP_FALSE: pred = "false"; break;
632 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
633 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
634 case FCmpInst::FCMP_OGE: pred = "oge"; break;
635 case FCmpInst::FCMP_OLT: pred = "olt"; break;
636 case FCmpInst::FCMP_OLE: pred = "ole"; break;
637 case FCmpInst::FCMP_ONE: pred = "one"; break;
638 case FCmpInst::FCMP_ORD: pred = "ord"; break;
639 case FCmpInst::FCMP_UNO: pred = "uno"; break;
640 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
641 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
642 case FCmpInst::FCMP_UGE: pred = "uge"; break;
643 case FCmpInst::FCMP_ULT: pred = "ult"; break;
644 case FCmpInst::FCMP_ULE: pred = "ule"; break;
645 case FCmpInst::FCMP_UNE: pred = "une"; break;
646 case FCmpInst::FCMP_TRUE: pred = "true"; break;
647 case ICmpInst::ICMP_EQ: pred = "eq"; break;
648 case ICmpInst::ICMP_NE: pred = "ne"; break;
649 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
650 case ICmpInst::ICMP_SGE: pred = "sge"; break;
651 case ICmpInst::ICMP_SLT: pred = "slt"; break;
652 case ICmpInst::ICMP_SLE: pred = "sle"; break;
653 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
654 case ICmpInst::ICMP_UGE: pred = "uge"; break;
655 case ICmpInst::ICMP_ULT: pred = "ult"; break;
656 case ICmpInst::ICMP_ULE: pred = "ule"; break;
658 return pred;
662 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
663 if (const OverflowingBinaryOperator *OBO =
664 dyn_cast<OverflowingBinaryOperator>(U)) {
665 if (OBO->hasNoUnsignedWrap())
666 Out << " nuw";
667 if (OBO->hasNoSignedWrap())
668 Out << " nsw";
669 } else if (const PossiblyExactOperator *Div =
670 dyn_cast<PossiblyExactOperator>(U)) {
671 if (Div->isExact())
672 Out << " exact";
673 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
674 if (GEP->isInBounds())
675 Out << " inbounds";
679 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
680 TypePrinting &TypePrinter,
681 SlotTracker *Machine,
682 const Module *Context) {
683 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
684 if (CI->getType()->isIntegerTy(1)) {
685 Out << (CI->getZExtValue() ? "true" : "false");
686 return;
688 Out << CI->getValue();
689 return;
692 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
693 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
694 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
695 // We would like to output the FP constant value in exponential notation,
696 // but we cannot do this if doing so will lose precision. Check here to
697 // make sure that we only output it in exponential format if we can parse
698 // the value back and get the same value.
700 bool ignored;
701 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
702 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
703 CFP->getValueAPF().convertToFloat();
704 SmallString<128> StrVal;
705 raw_svector_ostream(StrVal) << Val;
707 // Check to make sure that the stringized number is not some string like
708 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
709 // that the string matches the "[-+]?[0-9]" regex.
711 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
712 ((StrVal[0] == '-' || StrVal[0] == '+') &&
713 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
714 // Reparse stringized version!
715 if (atof(StrVal.c_str()) == Val) {
716 Out << StrVal.str();
717 return;
720 // Otherwise we could not reparse it to exactly the same value, so we must
721 // output the string in hexadecimal format! Note that loading and storing
722 // floating point types changes the bits of NaNs on some hosts, notably
723 // x86, so we must not use these types.
724 assert(sizeof(double) == sizeof(uint64_t) &&
725 "assuming that double is 64 bits!");
726 char Buffer[40];
727 APFloat apf = CFP->getValueAPF();
728 // Floats are represented in ASCII IR as double, convert.
729 if (!isDouble)
730 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
731 &ignored);
732 Out << "0x" <<
733 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
734 Buffer+40);
735 return;
738 // Some form of long double. These appear as a magic letter identifying
739 // the type, then a fixed number of hex digits.
740 Out << "0x";
741 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
742 Out << 'K';
743 // api needed to prevent premature destruction
744 APInt api = CFP->getValueAPF().bitcastToAPInt();
745 const uint64_t* p = api.getRawData();
746 uint64_t word = p[1];
747 int shiftcount=12;
748 int width = api.getBitWidth();
749 for (int j=0; j<width; j+=4, shiftcount-=4) {
750 unsigned int nibble = (word>>shiftcount) & 15;
751 if (nibble < 10)
752 Out << (unsigned char)(nibble + '0');
753 else
754 Out << (unsigned char)(nibble - 10 + 'A');
755 if (shiftcount == 0 && j+4 < width) {
756 word = *p;
757 shiftcount = 64;
758 if (width-j-4 < 64)
759 shiftcount = width-j-4;
762 return;
763 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
764 Out << 'L';
765 else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
766 Out << 'M';
767 else
768 llvm_unreachable("Unsupported floating point type");
769 // api needed to prevent premature destruction
770 APInt api = CFP->getValueAPF().bitcastToAPInt();
771 const uint64_t* p = api.getRawData();
772 uint64_t word = *p;
773 int shiftcount=60;
774 int width = api.getBitWidth();
775 for (int j=0; j<width; j+=4, shiftcount-=4) {
776 unsigned int nibble = (word>>shiftcount) & 15;
777 if (nibble < 10)
778 Out << (unsigned char)(nibble + '0');
779 else
780 Out << (unsigned char)(nibble - 10 + 'A');
781 if (shiftcount == 0 && j+4 < width) {
782 word = *(++p);
783 shiftcount = 64;
784 if (width-j-4 < 64)
785 shiftcount = width-j-4;
788 return;
791 if (isa<ConstantAggregateZero>(CV)) {
792 Out << "zeroinitializer";
793 return;
796 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
797 Out << "blockaddress(";
798 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
799 Context);
800 Out << ", ";
801 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
802 Context);
803 Out << ")";
804 return;
807 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
808 // As a special case, print the array as a string if it is an array of
809 // i8 with ConstantInt values.
811 Type *ETy = CA->getType()->getElementType();
812 if (CA->isString()) {
813 Out << "c\"";
814 PrintEscapedString(CA->getAsString(), Out);
815 Out << '"';
816 } else { // Cannot output in string format...
817 Out << '[';
818 if (CA->getNumOperands()) {
819 TypePrinter.print(ETy, Out);
820 Out << ' ';
821 WriteAsOperandInternal(Out, CA->getOperand(0),
822 &TypePrinter, Machine,
823 Context);
824 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
825 Out << ", ";
826 TypePrinter.print(ETy, Out);
827 Out << ' ';
828 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
829 Context);
832 Out << ']';
834 return;
837 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
838 if (CS->getType()->isPacked())
839 Out << '<';
840 Out << '{';
841 unsigned N = CS->getNumOperands();
842 if (N) {
843 Out << ' ';
844 TypePrinter.print(CS->getOperand(0)->getType(), Out);
845 Out << ' ';
847 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
848 Context);
850 for (unsigned i = 1; i < N; i++) {
851 Out << ", ";
852 TypePrinter.print(CS->getOperand(i)->getType(), Out);
853 Out << ' ';
855 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
856 Context);
858 Out << ' ';
861 Out << '}';
862 if (CS->getType()->isPacked())
863 Out << '>';
864 return;
867 if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
868 Type *ETy = CP->getType()->getElementType();
869 assert(CP->getNumOperands() > 0 &&
870 "Number of operands for a PackedConst must be > 0");
871 Out << '<';
872 TypePrinter.print(ETy, Out);
873 Out << ' ';
874 WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine,
875 Context);
876 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
877 Out << ", ";
878 TypePrinter.print(ETy, Out);
879 Out << ' ';
880 WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine,
881 Context);
883 Out << '>';
884 return;
887 if (isa<ConstantPointerNull>(CV)) {
888 Out << "null";
889 return;
892 if (isa<UndefValue>(CV)) {
893 Out << "undef";
894 return;
897 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
898 Out << CE->getOpcodeName();
899 WriteOptimizationInfo(Out, CE);
900 if (CE->isCompare())
901 Out << ' ' << getPredicateText(CE->getPredicate());
902 Out << " (";
904 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
905 TypePrinter.print((*OI)->getType(), Out);
906 Out << ' ';
907 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
908 if (OI+1 != CE->op_end())
909 Out << ", ";
912 if (CE->hasIndices()) {
913 ArrayRef<unsigned> Indices = CE->getIndices();
914 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
915 Out << ", " << Indices[i];
918 if (CE->isCast()) {
919 Out << " to ";
920 TypePrinter.print(CE->getType(), Out);
923 Out << ')';
924 return;
927 Out << "<placeholder or erroneous Constant>";
930 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
931 TypePrinting *TypePrinter,
932 SlotTracker *Machine,
933 const Module *Context) {
934 Out << "!{";
935 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
936 const Value *V = Node->getOperand(mi);
937 if (V == 0)
938 Out << "null";
939 else {
940 TypePrinter->print(V->getType(), Out);
941 Out << ' ';
942 WriteAsOperandInternal(Out, Node->getOperand(mi),
943 TypePrinter, Machine, Context);
945 if (mi + 1 != me)
946 Out << ", ";
949 Out << "}";
953 /// WriteAsOperand - Write the name of the specified value out to the specified
954 /// ostream. This can be useful when you just want to print int %reg126, not
955 /// the whole instruction that generated it.
957 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
958 TypePrinting *TypePrinter,
959 SlotTracker *Machine,
960 const Module *Context) {
961 if (V->hasName()) {
962 PrintLLVMName(Out, V);
963 return;
966 const Constant *CV = dyn_cast<Constant>(V);
967 if (CV && !isa<GlobalValue>(CV)) {
968 assert(TypePrinter && "Constants require TypePrinting!");
969 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
970 return;
973 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
974 Out << "asm ";
975 if (IA->hasSideEffects())
976 Out << "sideeffect ";
977 if (IA->isAlignStack())
978 Out << "alignstack ";
979 Out << '"';
980 PrintEscapedString(IA->getAsmString(), Out);
981 Out << "\", \"";
982 PrintEscapedString(IA->getConstraintString(), Out);
983 Out << '"';
984 return;
987 if (const MDNode *N = dyn_cast<MDNode>(V)) {
988 if (N->isFunctionLocal()) {
989 // Print metadata inline, not via slot reference number.
990 WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
991 return;
994 if (!Machine) {
995 if (N->isFunctionLocal())
996 Machine = new SlotTracker(N->getFunction());
997 else
998 Machine = new SlotTracker(Context);
1000 int Slot = Machine->getMetadataSlot(N);
1001 if (Slot == -1)
1002 Out << "<badref>";
1003 else
1004 Out << '!' << Slot;
1005 return;
1008 if (const MDString *MDS = dyn_cast<MDString>(V)) {
1009 Out << "!\"";
1010 PrintEscapedString(MDS->getString(), Out);
1011 Out << '"';
1012 return;
1015 if (V->getValueID() == Value::PseudoSourceValueVal ||
1016 V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1017 V->print(Out);
1018 return;
1021 char Prefix = '%';
1022 int Slot;
1023 if (Machine) {
1024 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1025 Slot = Machine->getGlobalSlot(GV);
1026 Prefix = '@';
1027 } else {
1028 Slot = Machine->getLocalSlot(V);
1030 } else {
1031 Machine = createSlotTracker(V);
1032 if (Machine) {
1033 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1034 Slot = Machine->getGlobalSlot(GV);
1035 Prefix = '@';
1036 } else {
1037 Slot = Machine->getLocalSlot(V);
1039 delete Machine;
1040 } else {
1041 Slot = -1;
1045 if (Slot != -1)
1046 Out << Prefix << Slot;
1047 else
1048 Out << "<badref>";
1051 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1052 bool PrintType, const Module *Context) {
1054 // Fast path: Don't construct and populate a TypePrinting object if we
1055 // won't be needing any types printed.
1056 if (!PrintType &&
1057 ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1058 V->hasName() || isa<GlobalValue>(V))) {
1059 WriteAsOperandInternal(Out, V, 0, 0, Context);
1060 return;
1063 if (Context == 0) Context = getModuleFromVal(V);
1065 TypePrinting TypePrinter;
1066 if (Context)
1067 TypePrinter.incorporateTypes(*Context);
1068 if (PrintType) {
1069 TypePrinter.print(V->getType(), Out);
1070 Out << ' ';
1073 WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1076 namespace {
1078 class AssemblyWriter {
1079 formatted_raw_ostream &Out;
1080 SlotTracker &Machine;
1081 const Module *TheModule;
1082 TypePrinting TypePrinter;
1083 AssemblyAnnotationWriter *AnnotationWriter;
1085 public:
1086 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1087 const Module *M,
1088 AssemblyAnnotationWriter *AAW)
1089 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1090 if (M)
1091 TypePrinter.incorporateTypes(*M);
1094 void printMDNodeBody(const MDNode *MD);
1095 void printNamedMDNode(const NamedMDNode *NMD);
1097 void printModule(const Module *M);
1099 void writeOperand(const Value *Op, bool PrintType);
1100 void writeParamOperand(const Value *Operand, Attributes Attrs);
1102 void writeAllMDNodes();
1104 void printTypeIdentities();
1105 void printGlobal(const GlobalVariable *GV);
1106 void printAlias(const GlobalAlias *GV);
1107 void printFunction(const Function *F);
1108 void printArgument(const Argument *FA, Attributes Attrs);
1109 void printBasicBlock(const BasicBlock *BB);
1110 void printInstruction(const Instruction &I);
1112 private:
1113 // printInfoComment - Print a little comment after the instruction indicating
1114 // which slot it occupies.
1115 void printInfoComment(const Value &V);
1117 } // end of anonymous namespace
1119 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1120 if (Operand == 0) {
1121 Out << "<null operand!>";
1122 return;
1124 if (PrintType) {
1125 TypePrinter.print(Operand->getType(), Out);
1126 Out << ' ';
1128 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1131 void AssemblyWriter::writeParamOperand(const Value *Operand,
1132 Attributes Attrs) {
1133 if (Operand == 0) {
1134 Out << "<null operand!>";
1135 return;
1138 // Print the type
1139 TypePrinter.print(Operand->getType(), Out);
1140 // Print parameter attributes list
1141 if (Attrs != Attribute::None)
1142 Out << ' ' << Attribute::getAsString(Attrs);
1143 Out << ' ';
1144 // Print the operand
1145 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1148 void AssemblyWriter::printModule(const Module *M) {
1149 if (!M->getModuleIdentifier().empty() &&
1150 // Don't print the ID if it will start a new line (which would
1151 // require a comment char before it).
1152 M->getModuleIdentifier().find('\n') == std::string::npos)
1153 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1155 if (!M->getDataLayout().empty())
1156 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1157 if (!M->getTargetTriple().empty())
1158 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1160 if (!M->getModuleInlineAsm().empty()) {
1161 // Split the string into lines, to make it easier to read the .ll file.
1162 std::string Asm = M->getModuleInlineAsm();
1163 size_t CurPos = 0;
1164 size_t NewLine = Asm.find_first_of('\n', CurPos);
1165 Out << '\n';
1166 while (NewLine != std::string::npos) {
1167 // We found a newline, print the portion of the asm string from the
1168 // last newline up to this newline.
1169 Out << "module asm \"";
1170 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1171 Out);
1172 Out << "\"\n";
1173 CurPos = NewLine+1;
1174 NewLine = Asm.find_first_of('\n', CurPos);
1176 std::string rest(Asm.begin()+CurPos, Asm.end());
1177 if (!rest.empty()) {
1178 Out << "module asm \"";
1179 PrintEscapedString(rest, Out);
1180 Out << "\"\n";
1184 // Loop over the dependent libraries and emit them.
1185 Module::lib_iterator LI = M->lib_begin();
1186 Module::lib_iterator LE = M->lib_end();
1187 if (LI != LE) {
1188 Out << '\n';
1189 Out << "deplibs = [ ";
1190 while (LI != LE) {
1191 Out << '"' << *LI << '"';
1192 ++LI;
1193 if (LI != LE)
1194 Out << ", ";
1196 Out << " ]";
1199 printTypeIdentities();
1201 // Output all globals.
1202 if (!M->global_empty()) Out << '\n';
1203 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1204 I != E; ++I)
1205 printGlobal(I);
1207 // Output all aliases.
1208 if (!M->alias_empty()) Out << "\n";
1209 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1210 I != E; ++I)
1211 printAlias(I);
1213 // Output all of the functions.
1214 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1215 printFunction(I);
1217 // Output named metadata.
1218 if (!M->named_metadata_empty()) Out << '\n';
1220 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1221 E = M->named_metadata_end(); I != E; ++I)
1222 printNamedMDNode(I);
1224 // Output metadata.
1225 if (!Machine.mdn_empty()) {
1226 Out << '\n';
1227 writeAllMDNodes();
1231 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1232 Out << '!';
1233 StringRef Name = NMD->getName();
1234 if (Name.empty()) {
1235 Out << "<empty name> ";
1236 } else {
1237 if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' ||
1238 Name[0] == '.' || Name[0] == '_')
1239 Out << Name[0];
1240 else
1241 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1242 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1243 unsigned char C = Name[i];
1244 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
1245 Out << C;
1246 else
1247 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1250 Out << " = !{";
1251 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1252 if (i) Out << ", ";
1253 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1254 if (Slot == -1)
1255 Out << "<badref>";
1256 else
1257 Out << '!' << Slot;
1259 Out << "}\n";
1263 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1264 formatted_raw_ostream &Out) {
1265 switch (LT) {
1266 case GlobalValue::ExternalLinkage: break;
1267 case GlobalValue::PrivateLinkage: Out << "private "; break;
1268 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1269 case GlobalValue::LinkerPrivateWeakLinkage:
1270 Out << "linker_private_weak ";
1271 break;
1272 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
1273 Out << "linker_private_weak_def_auto ";
1274 break;
1275 case GlobalValue::InternalLinkage: Out << "internal "; break;
1276 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1277 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1278 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1279 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1280 case GlobalValue::CommonLinkage: Out << "common "; break;
1281 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1282 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1283 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1284 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1285 case GlobalValue::AvailableExternallyLinkage:
1286 Out << "available_externally ";
1287 break;
1292 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1293 formatted_raw_ostream &Out) {
1294 switch (Vis) {
1295 case GlobalValue::DefaultVisibility: break;
1296 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1297 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1301 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1302 if (GV->isMaterializable())
1303 Out << "; Materializable\n";
1305 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1306 Out << " = ";
1308 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1309 Out << "external ";
1311 PrintLinkage(GV->getLinkage(), Out);
1312 PrintVisibility(GV->getVisibility(), Out);
1314 if (GV->isThreadLocal()) Out << "thread_local ";
1315 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1316 Out << "addrspace(" << AddressSpace << ") ";
1317 if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1318 Out << (GV->isConstant() ? "constant " : "global ");
1319 TypePrinter.print(GV->getType()->getElementType(), Out);
1321 if (GV->hasInitializer()) {
1322 Out << ' ';
1323 writeOperand(GV->getInitializer(), false);
1326 if (GV->hasSection()) {
1327 Out << ", section \"";
1328 PrintEscapedString(GV->getSection(), Out);
1329 Out << '"';
1331 if (GV->getAlignment())
1332 Out << ", align " << GV->getAlignment();
1334 printInfoComment(*GV);
1335 Out << '\n';
1338 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1339 if (GA->isMaterializable())
1340 Out << "; Materializable\n";
1342 // Don't crash when dumping partially built GA
1343 if (!GA->hasName())
1344 Out << "<<nameless>> = ";
1345 else {
1346 PrintLLVMName(Out, GA);
1347 Out << " = ";
1349 PrintVisibility(GA->getVisibility(), Out);
1351 Out << "alias ";
1353 PrintLinkage(GA->getLinkage(), Out);
1355 const Constant *Aliasee = GA->getAliasee();
1357 if (Aliasee == 0) {
1358 TypePrinter.print(GA->getType(), Out);
1359 Out << " <<NULL ALIASEE>>";
1360 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1361 TypePrinter.print(GV->getType(), Out);
1362 Out << ' ';
1363 PrintLLVMName(Out, GV);
1364 } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1365 TypePrinter.print(F->getFunctionType(), Out);
1366 Out << "* ";
1368 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1369 } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1370 TypePrinter.print(GA->getType(), Out);
1371 Out << ' ';
1372 PrintLLVMName(Out, GA);
1373 } else {
1374 const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1375 // The only valid GEP is an all zero GEP.
1376 assert((CE->getOpcode() == Instruction::BitCast ||
1377 CE->getOpcode() == Instruction::GetElementPtr) &&
1378 "Unsupported aliasee");
1379 writeOperand(CE, false);
1382 printInfoComment(*GA);
1383 Out << '\n';
1386 void AssemblyWriter::printTypeIdentities() {
1387 if (TypePrinter.NumberedTypes.empty() &&
1388 TypePrinter.NamedTypes.empty())
1389 return;
1391 Out << '\n';
1393 // We know all the numbers that each type is used and we know that it is a
1394 // dense assignment. Convert the map to an index table.
1395 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1396 for (DenseMap<StructType*, unsigned>::iterator I =
1397 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1398 I != E; ++I) {
1399 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1400 NumberedTypes[I->second] = I->first;
1403 // Emit all numbered types.
1404 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1405 Out << '%' << i << " = type ";
1407 // Make sure we print out at least one level of the type structure, so
1408 // that we do not get %2 = type %2
1409 TypePrinter.printStructBody(NumberedTypes[i], Out);
1410 Out << '\n';
1413 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1414 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1415 Out << " = type ";
1417 // Make sure we print out at least one level of the type structure, so
1418 // that we do not get %FILE = type %FILE
1419 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1420 Out << '\n';
1424 /// printFunction - Print all aspects of a function.
1426 void AssemblyWriter::printFunction(const Function *F) {
1427 // Print out the return type and name.
1428 Out << '\n';
1430 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1432 if (F->isMaterializable())
1433 Out << "; Materializable\n";
1435 if (F->isDeclaration())
1436 Out << "declare ";
1437 else
1438 Out << "define ";
1440 PrintLinkage(F->getLinkage(), Out);
1441 PrintVisibility(F->getVisibility(), Out);
1443 // Print the calling convention.
1444 switch (F->getCallingConv()) {
1445 case CallingConv::C: break; // default
1446 case CallingConv::Fast: Out << "fastcc "; break;
1447 case CallingConv::Cold: Out << "coldcc "; break;
1448 case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
1449 case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1450 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break;
1451 case CallingConv::ARM_APCS: Out << "arm_apcscc "; break;
1452 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break;
1453 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1454 case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break;
1455 case CallingConv::PTX_Kernel: Out << "ptx_kernel "; break;
1456 case CallingConv::PTX_Device: Out << "ptx_device "; break;
1457 default: Out << "cc" << F->getCallingConv() << " "; break;
1460 const FunctionType *FT = F->getFunctionType();
1461 const AttrListPtr &Attrs = F->getAttributes();
1462 Attributes RetAttrs = Attrs.getRetAttributes();
1463 if (RetAttrs != Attribute::None)
1464 Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1465 TypePrinter.print(F->getReturnType(), Out);
1466 Out << ' ';
1467 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1468 Out << '(';
1469 Machine.incorporateFunction(F);
1471 // Loop over the arguments, printing them...
1473 unsigned Idx = 1;
1474 if (!F->isDeclaration()) {
1475 // If this isn't a declaration, print the argument names as well.
1476 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1477 I != E; ++I) {
1478 // Insert commas as we go... the first arg doesn't get a comma
1479 if (I != F->arg_begin()) Out << ", ";
1480 printArgument(I, Attrs.getParamAttributes(Idx));
1481 Idx++;
1483 } else {
1484 // Otherwise, print the types from the function type.
1485 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1486 // Insert commas as we go... the first arg doesn't get a comma
1487 if (i) Out << ", ";
1489 // Output type...
1490 TypePrinter.print(FT->getParamType(i), Out);
1492 Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1493 if (ArgAttrs != Attribute::None)
1494 Out << ' ' << Attribute::getAsString(ArgAttrs);
1498 // Finish printing arguments...
1499 if (FT->isVarArg()) {
1500 if (FT->getNumParams()) Out << ", ";
1501 Out << "..."; // Output varargs portion of signature!
1503 Out << ')';
1504 if (F->hasUnnamedAddr())
1505 Out << " unnamed_addr";
1506 Attributes FnAttrs = Attrs.getFnAttributes();
1507 if (FnAttrs != Attribute::None)
1508 Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1509 if (F->hasSection()) {
1510 Out << " section \"";
1511 PrintEscapedString(F->getSection(), Out);
1512 Out << '"';
1514 if (F->getAlignment())
1515 Out << " align " << F->getAlignment();
1516 if (F->hasGC())
1517 Out << " gc \"" << F->getGC() << '"';
1518 if (F->isDeclaration()) {
1519 Out << '\n';
1520 } else {
1521 Out << " {";
1522 // Output all of the function's basic blocks.
1523 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1524 printBasicBlock(I);
1526 Out << "}\n";
1529 Machine.purgeFunction();
1532 /// printArgument - This member is called for every argument that is passed into
1533 /// the function. Simply print it out
1535 void AssemblyWriter::printArgument(const Argument *Arg,
1536 Attributes Attrs) {
1537 // Output type...
1538 TypePrinter.print(Arg->getType(), Out);
1540 // Output parameter attributes list
1541 if (Attrs != Attribute::None)
1542 Out << ' ' << Attribute::getAsString(Attrs);
1544 // Output name, if available...
1545 if (Arg->hasName()) {
1546 Out << ' ';
1547 PrintLLVMName(Out, Arg);
1551 /// printBasicBlock - This member is called for each basic block in a method.
1553 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1554 if (BB->hasName()) { // Print out the label if it exists...
1555 Out << "\n";
1556 PrintLLVMName(Out, BB->getName(), LabelPrefix);
1557 Out << ':';
1558 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1559 Out << "\n; <label>:";
1560 int Slot = Machine.getLocalSlot(BB);
1561 if (Slot != -1)
1562 Out << Slot;
1563 else
1564 Out << "<badref>";
1567 if (BB->getParent() == 0) {
1568 Out.PadToColumn(50);
1569 Out << "; Error: Block without parent!";
1570 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1571 // Output predecessors for the block.
1572 Out.PadToColumn(50);
1573 Out << ";";
1574 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1576 if (PI == PE) {
1577 Out << " No predecessors!";
1578 } else {
1579 Out << " preds = ";
1580 writeOperand(*PI, false);
1581 for (++PI; PI != PE; ++PI) {
1582 Out << ", ";
1583 writeOperand(*PI, false);
1588 Out << "\n";
1590 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1592 // Output all of the instructions in the basic block...
1593 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1594 printInstruction(*I);
1595 Out << '\n';
1598 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1601 /// printInfoComment - Print a little comment after the instruction indicating
1602 /// which slot it occupies.
1604 void AssemblyWriter::printInfoComment(const Value &V) {
1605 if (AnnotationWriter) {
1606 AnnotationWriter->printInfoComment(V, Out);
1607 return;
1611 // This member is called for each Instruction in a function..
1612 void AssemblyWriter::printInstruction(const Instruction &I) {
1613 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1615 // Print out indentation for an instruction.
1616 Out << " ";
1618 // Print out name if it exists...
1619 if (I.hasName()) {
1620 PrintLLVMName(Out, &I);
1621 Out << " = ";
1622 } else if (!I.getType()->isVoidTy()) {
1623 // Print out the def slot taken.
1624 int SlotNum = Machine.getLocalSlot(&I);
1625 if (SlotNum == -1)
1626 Out << "<badref> = ";
1627 else
1628 Out << '%' << SlotNum << " = ";
1631 // If this is a volatile load or store, print out the volatile marker.
1632 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1633 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1634 Out << "volatile ";
1635 } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1636 // If this is a call, check if it's a tail call.
1637 Out << "tail ";
1640 // Print out the opcode...
1641 Out << I.getOpcodeName();
1643 // Print out optimization information.
1644 WriteOptimizationInfo(Out, &I);
1646 // Print out the compare instruction predicates
1647 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1648 Out << ' ' << getPredicateText(CI->getPredicate());
1650 // Print out the type of the operands...
1651 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1653 // Special case conditional branches to swizzle the condition out to the front
1654 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1655 BranchInst &BI(cast<BranchInst>(I));
1656 Out << ' ';
1657 writeOperand(BI.getCondition(), true);
1658 Out << ", ";
1659 writeOperand(BI.getSuccessor(0), true);
1660 Out << ", ";
1661 writeOperand(BI.getSuccessor(1), true);
1663 } else if (isa<SwitchInst>(I)) {
1664 // Special case switch instruction to get formatting nice and correct.
1665 Out << ' ';
1666 writeOperand(Operand , true);
1667 Out << ", ";
1668 writeOperand(I.getOperand(1), true);
1669 Out << " [";
1671 for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1672 Out << "\n ";
1673 writeOperand(I.getOperand(op ), true);
1674 Out << ", ";
1675 writeOperand(I.getOperand(op+1), true);
1677 Out << "\n ]";
1678 } else if (isa<IndirectBrInst>(I)) {
1679 // Special case indirectbr instruction to get formatting nice and correct.
1680 Out << ' ';
1681 writeOperand(Operand, true);
1682 Out << ", [";
1684 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1685 if (i != 1)
1686 Out << ", ";
1687 writeOperand(I.getOperand(i), true);
1689 Out << ']';
1690 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1691 Out << ' ';
1692 TypePrinter.print(I.getType(), Out);
1693 Out << ' ';
1695 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1696 if (op) Out << ", ";
1697 Out << "[ ";
1698 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1699 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1701 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1702 Out << ' ';
1703 writeOperand(I.getOperand(0), true);
1704 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1705 Out << ", " << *i;
1706 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1707 Out << ' ';
1708 writeOperand(I.getOperand(0), true); Out << ", ";
1709 writeOperand(I.getOperand(1), true);
1710 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1711 Out << ", " << *i;
1712 } else if (isa<ReturnInst>(I) && !Operand) {
1713 Out << " void";
1714 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1715 // Print the calling convention being used.
1716 switch (CI->getCallingConv()) {
1717 case CallingConv::C: break; // default
1718 case CallingConv::Fast: Out << " fastcc"; break;
1719 case CallingConv::Cold: Out << " coldcc"; break;
1720 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1721 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1722 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1723 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1724 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1725 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1726 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break;
1727 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break;
1728 case CallingConv::PTX_Device: Out << " ptx_device"; break;
1729 default: Out << " cc" << CI->getCallingConv(); break;
1732 Operand = CI->getCalledValue();
1733 PointerType *PTy = cast<PointerType>(Operand->getType());
1734 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1735 Type *RetTy = FTy->getReturnType();
1736 const AttrListPtr &PAL = CI->getAttributes();
1738 if (PAL.getRetAttributes() != Attribute::None)
1739 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1741 // If possible, print out the short form of the call instruction. We can
1742 // only do this if the first argument is a pointer to a nonvararg function,
1743 // and if the return type is not a pointer to a function.
1745 Out << ' ';
1746 if (!FTy->isVarArg() &&
1747 (!RetTy->isPointerTy() ||
1748 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1749 TypePrinter.print(RetTy, Out);
1750 Out << ' ';
1751 writeOperand(Operand, false);
1752 } else {
1753 writeOperand(Operand, true);
1755 Out << '(';
1756 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1757 if (op > 0)
1758 Out << ", ";
1759 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
1761 Out << ')';
1762 if (PAL.getFnAttributes() != Attribute::None)
1763 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1764 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1765 Operand = II->getCalledValue();
1766 PointerType *PTy = cast<PointerType>(Operand->getType());
1767 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1768 Type *RetTy = FTy->getReturnType();
1769 const AttrListPtr &PAL = II->getAttributes();
1771 // Print the calling convention being used.
1772 switch (II->getCallingConv()) {
1773 case CallingConv::C: break; // default
1774 case CallingConv::Fast: Out << " fastcc"; break;
1775 case CallingConv::Cold: Out << " coldcc"; break;
1776 case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
1777 case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1778 case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1779 case CallingConv::ARM_APCS: Out << " arm_apcscc "; break;
1780 case CallingConv::ARM_AAPCS: Out << " arm_aapcscc "; break;
1781 case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1782 case CallingConv::MSP430_INTR: Out << " msp430_intrcc "; break;
1783 case CallingConv::PTX_Kernel: Out << " ptx_kernel"; break;
1784 case CallingConv::PTX_Device: Out << " ptx_device"; break;
1785 default: Out << " cc" << II->getCallingConv(); break;
1788 if (PAL.getRetAttributes() != Attribute::None)
1789 Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1791 // If possible, print out the short form of the invoke instruction. We can
1792 // only do this if the first argument is a pointer to a nonvararg function,
1793 // and if the return type is not a pointer to a function.
1795 Out << ' ';
1796 if (!FTy->isVarArg() &&
1797 (!RetTy->isPointerTy() ||
1798 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1799 TypePrinter.print(RetTy, Out);
1800 Out << ' ';
1801 writeOperand(Operand, false);
1802 } else {
1803 writeOperand(Operand, true);
1805 Out << '(';
1806 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1807 if (op)
1808 Out << ", ";
1809 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
1812 Out << ')';
1813 if (PAL.getFnAttributes() != Attribute::None)
1814 Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1816 Out << "\n to ";
1817 writeOperand(II->getNormalDest(), true);
1818 Out << " unwind ";
1819 writeOperand(II->getUnwindDest(), true);
1821 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1822 Out << ' ';
1823 TypePrinter.print(AI->getType()->getElementType(), Out);
1824 if (!AI->getArraySize() || AI->isArrayAllocation()) {
1825 Out << ", ";
1826 writeOperand(AI->getArraySize(), true);
1828 if (AI->getAlignment()) {
1829 Out << ", align " << AI->getAlignment();
1831 } else if (isa<CastInst>(I)) {
1832 if (Operand) {
1833 Out << ' ';
1834 writeOperand(Operand, true); // Work with broken code
1836 Out << " to ";
1837 TypePrinter.print(I.getType(), Out);
1838 } else if (isa<VAArgInst>(I)) {
1839 if (Operand) {
1840 Out << ' ';
1841 writeOperand(Operand, true); // Work with broken code
1843 Out << ", ";
1844 TypePrinter.print(I.getType(), Out);
1845 } else if (Operand) { // Print the normal way.
1847 // PrintAllTypes - Instructions who have operands of all the same type
1848 // omit the type from all but the first operand. If the instruction has
1849 // different type operands (for example br), then they are all printed.
1850 bool PrintAllTypes = false;
1851 Type *TheType = Operand->getType();
1853 // Select, Store and ShuffleVector always print all types.
1854 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1855 || isa<ReturnInst>(I)) {
1856 PrintAllTypes = true;
1857 } else {
1858 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1859 Operand = I.getOperand(i);
1860 // note that Operand shouldn't be null, but the test helps make dump()
1861 // more tolerant of malformed IR
1862 if (Operand && Operand->getType() != TheType) {
1863 PrintAllTypes = true; // We have differing types! Print them all!
1864 break;
1869 if (!PrintAllTypes) {
1870 Out << ' ';
1871 TypePrinter.print(TheType, Out);
1874 Out << ' ';
1875 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1876 if (i) Out << ", ";
1877 writeOperand(I.getOperand(i), PrintAllTypes);
1881 // Print post operand alignment for load/store.
1882 if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1883 Out << ", align " << cast<LoadInst>(I).getAlignment();
1884 } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1885 Out << ", align " << cast<StoreInst>(I).getAlignment();
1888 // Print Metadata info.
1889 SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
1890 I.getAllMetadata(InstMD);
1891 if (!InstMD.empty()) {
1892 SmallVector<StringRef, 8> MDNames;
1893 I.getType()->getContext().getMDKindNames(MDNames);
1894 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
1895 unsigned Kind = InstMD[i].first;
1896 if (Kind < MDNames.size()) {
1897 Out << ", !" << MDNames[Kind];
1898 } else {
1899 Out << ", !<unknown kind #" << Kind << ">";
1901 Out << ' ';
1902 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
1903 TheModule);
1906 printInfoComment(I);
1909 static void WriteMDNodeComment(const MDNode *Node,
1910 formatted_raw_ostream &Out) {
1911 if (Node->getNumOperands() < 1)
1912 return;
1913 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
1914 if (!CI) return;
1915 APInt Val = CI->getValue();
1916 APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask);
1917 if (Val.ult(LLVMDebugVersion))
1918 return;
1920 Out.PadToColumn(50);
1921 if (Tag == dwarf::DW_TAG_user_base)
1922 Out << "; [ DW_TAG_user_base ]";
1923 else if (Tag.isIntN(32)) {
1924 if (const char *TagName = dwarf::TagString(Tag.getZExtValue()))
1925 Out << "; [ " << TagName << " ]";
1929 void AssemblyWriter::writeAllMDNodes() {
1930 SmallVector<const MDNode *, 16> Nodes;
1931 Nodes.resize(Machine.mdn_size());
1932 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
1933 I != E; ++I)
1934 Nodes[I->second] = cast<MDNode>(I->first);
1936 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1937 Out << '!' << i << " = metadata ";
1938 printMDNodeBody(Nodes[i]);
1942 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
1943 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
1944 WriteMDNodeComment(Node, Out);
1945 Out << "\n";
1948 //===----------------------------------------------------------------------===//
1949 // External Interface declarations
1950 //===----------------------------------------------------------------------===//
1952 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
1953 SlotTracker SlotTable(this);
1954 formatted_raw_ostream OS(ROS);
1955 AssemblyWriter W(OS, SlotTable, this, AAW);
1956 W.printModule(this);
1959 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
1960 SlotTracker SlotTable(getParent());
1961 formatted_raw_ostream OS(ROS);
1962 AssemblyWriter W(OS, SlotTable, getParent(), AAW);
1963 W.printNamedMDNode(this);
1966 void Type::print(raw_ostream &OS) const {
1967 if (this == 0) {
1968 OS << "<null Type>";
1969 return;
1971 TypePrinting TP;
1972 TP.print(const_cast<Type*>(this), OS);
1974 // If the type is a named struct type, print the body as well.
1975 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
1976 if (!STy->isAnonymous()) {
1977 OS << " = type ";
1978 TP.printStructBody(STy, OS);
1982 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
1983 if (this == 0) {
1984 ROS << "printing a <null> value\n";
1985 return;
1987 formatted_raw_ostream OS(ROS);
1988 if (const Instruction *I = dyn_cast<Instruction>(this)) {
1989 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
1990 SlotTracker SlotTable(F);
1991 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
1992 W.printInstruction(*I);
1993 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
1994 SlotTracker SlotTable(BB->getParent());
1995 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
1996 W.printBasicBlock(BB);
1997 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
1998 SlotTracker SlotTable(GV->getParent());
1999 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2000 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2001 W.printGlobal(V);
2002 else if (const Function *F = dyn_cast<Function>(GV))
2003 W.printFunction(F);
2004 else
2005 W.printAlias(cast<GlobalAlias>(GV));
2006 } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2007 const Function *F = N->getFunction();
2008 SlotTracker SlotTable(F);
2009 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2010 W.printMDNodeBody(N);
2011 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2012 TypePrinting TypePrinter;
2013 TypePrinter.print(C->getType(), OS);
2014 OS << ' ';
2015 WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2016 } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2017 isa<Argument>(this)) {
2018 WriteAsOperand(OS, this, true, 0);
2019 } else {
2020 // Otherwise we don't know what it is. Call the virtual function to
2021 // allow a subclass to print itself.
2022 printCustom(OS);
2026 // Value::printCustom - subclasses should override this to implement printing.
2027 void Value::printCustom(raw_ostream &OS) const {
2028 llvm_unreachable("Unknown value to print out!");
2031 // Value::dump - allow easy printing of Values from the debugger.
2032 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2034 // Type::dump - allow easy printing of Types from the debugger.
2035 void Type::dump() const { print(dbgs()); }
2037 // Module::dump() - Allow printing of Modules from the debugger.
2038 void Module::dump() const { print(dbgs(), 0); }