1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/Assembly/PrintModulePass.h"
19 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/InlineAsm.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Module.h"
28 #include "llvm/ValueSymbolTable.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Dwarf.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/FormattedStream.h"
43 // Make virtual table appear in this compilation unit.
44 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46 //===----------------------------------------------------------------------===//
48 //===----------------------------------------------------------------------===//
50 static const Module
*getModuleFromVal(const Value
*V
) {
51 if (const Argument
*MA
= dyn_cast
<Argument
>(V
))
52 return MA
->getParent() ? MA
->getParent()->getParent() : 0;
54 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
55 return BB
->getParent() ? BB
->getParent()->getParent() : 0;
57 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
58 const Function
*M
= I
->getParent() ? I
->getParent()->getParent() : 0;
59 return M
? M
->getParent() : 0;
62 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
63 return GV
->getParent();
67 // PrintEscapedString - Print each character of the specified string, escaping
68 // it if it is not printable or if it is an escape char.
69 static void PrintEscapedString(StringRef Name
, raw_ostream
&Out
) {
70 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
71 unsigned char C
= Name
[i
];
72 if (isprint(C
) && C
!= '\\' && C
!= '"')
75 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
86 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
87 /// prefixed with % (if the string only contains simple characters) or is
88 /// surrounded with ""'s (if it has special chars in it). Print it out.
89 static void PrintLLVMName(raw_ostream
&OS
, StringRef Name
, PrefixType Prefix
) {
90 assert(!Name
.empty() && "Cannot get empty name!");
92 default: llvm_unreachable("Bad prefix!");
94 case GlobalPrefix
: OS
<< '@'; break;
95 case LabelPrefix
: break;
96 case LocalPrefix
: OS
<< '%'; break;
99 // Scan the name to see if it needs quotes first.
100 bool NeedsQuotes
= isdigit(Name
[0]);
102 for (unsigned i
= 0, e
= Name
.size(); i
!= e
; ++i
) {
104 if (!isalnum(C
) && C
!= '-' && C
!= '.' && C
!= '_') {
111 // If we didn't need any quotes, just write out the name in one blast.
117 // Okay, we need quotes. Output the quotes and escape any scary characters as
120 PrintEscapedString(Name
, OS
);
124 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
125 /// prefixed with % (if the string only contains simple characters) or is
126 /// surrounded with ""'s (if it has special chars in it). Print it out.
127 static void PrintLLVMName(raw_ostream
&OS
, const Value
*V
) {
128 PrintLLVMName(OS
, V
->getName(),
129 isa
<GlobalValue
>(V
) ? GlobalPrefix
: LocalPrefix
);
132 //===----------------------------------------------------------------------===//
133 // TypePrinting Class: Type printing machinery
134 //===----------------------------------------------------------------------===//
136 /// TypePrinting - Type printing machinery.
139 TypePrinting(const TypePrinting
&); // DO NOT IMPLEMENT
140 void operator=(const TypePrinting
&); // DO NOT IMPLEMENT
143 /// NamedTypes - The named types that are used by the current module.
144 std::vector
<StructType
*> NamedTypes
;
146 /// NumberedTypes - The numbered types, along with their value.
147 DenseMap
<StructType
*, unsigned> NumberedTypes
;
153 void incorporateTypes(const Module
&M
);
155 void print(Type
*Ty
, raw_ostream
&OS
);
157 void printStructBody(StructType
*Ty
, raw_ostream
&OS
);
159 } // end anonymous namespace.
162 void TypePrinting::incorporateTypes(const Module
&M
) {
163 M
.findUsedStructTypes(NamedTypes
);
165 // The list of struct types we got back includes all the struct types, split
166 // the unnamed ones out to a numbering and remove the anonymous structs.
167 unsigned NextNumber
= 0;
169 std::vector
<StructType
*>::iterator NextToUse
= NamedTypes
.begin(), I
, E
;
170 for (I
= NamedTypes
.begin(), E
= NamedTypes
.end(); I
!= E
; ++I
) {
171 StructType
*STy
= *I
;
173 // Ignore anonymous types.
174 if (STy
->isAnonymous())
177 if (STy
->getName().empty())
178 NumberedTypes
[STy
] = NextNumber
++;
183 NamedTypes
.erase(NextToUse
, NamedTypes
.end());
187 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
188 /// use of type names or up references to shorten the type name where possible.
189 void TypePrinting::print(Type
*Ty
, raw_ostream
&OS
) {
190 switch (Ty
->getTypeID()) {
191 case Type::VoidTyID
: OS
<< "void"; break;
192 case Type::FloatTyID
: OS
<< "float"; break;
193 case Type::DoubleTyID
: OS
<< "double"; break;
194 case Type::X86_FP80TyID
: OS
<< "x86_fp80"; break;
195 case Type::FP128TyID
: OS
<< "fp128"; break;
196 case Type::PPC_FP128TyID
: OS
<< "ppc_fp128"; break;
197 case Type::LabelTyID
: OS
<< "label"; break;
198 case Type::MetadataTyID
: OS
<< "metadata"; break;
199 case Type::X86_MMXTyID
: OS
<< "x86_mmx"; break;
200 case Type::IntegerTyID
:
201 OS
<< 'i' << cast
<IntegerType
>(Ty
)->getBitWidth();
204 case Type::FunctionTyID
: {
205 FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
206 print(FTy
->getReturnType(), OS
);
208 for (FunctionType::param_iterator I
= FTy
->param_begin(),
209 E
= FTy
->param_end(); I
!= E
; ++I
) {
210 if (I
!= FTy
->param_begin())
214 if (FTy
->isVarArg()) {
215 if (FTy
->getNumParams()) OS
<< ", ";
221 case Type::StructTyID
: {
222 StructType
*STy
= cast
<StructType
>(Ty
);
224 if (STy
->isAnonymous())
225 return printStructBody(STy
, OS
);
227 if (!STy
->getName().empty())
228 return PrintLLVMName(OS
, STy
->getName(), LocalPrefix
);
230 DenseMap
<StructType
*, unsigned>::iterator I
= NumberedTypes
.find(STy
);
231 if (I
!= NumberedTypes
.end())
232 OS
<< '%' << I
->second
;
233 else // Not enumerated, print the hex address.
234 OS
<< "%\"type 0x" << STy
<< '\"';
237 case Type::PointerTyID
: {
238 PointerType
*PTy
= cast
<PointerType
>(Ty
);
239 print(PTy
->getElementType(), OS
);
240 if (unsigned AddressSpace
= PTy
->getAddressSpace())
241 OS
<< " addrspace(" << AddressSpace
<< ')';
245 case Type::ArrayTyID
: {
246 ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
247 OS
<< '[' << ATy
->getNumElements() << " x ";
248 print(ATy
->getElementType(), OS
);
252 case Type::VectorTyID
: {
253 VectorType
*PTy
= cast
<VectorType
>(Ty
);
254 OS
<< "<" << PTy
->getNumElements() << " x ";
255 print(PTy
->getElementType(), OS
);
260 OS
<< "<unrecognized-type>";
265 void TypePrinting::printStructBody(StructType
*STy
, raw_ostream
&OS
) {
266 if (STy
->isOpaque()) {
274 if (STy
->getNumElements() == 0) {
277 StructType::element_iterator I
= STy
->element_begin();
280 for (StructType::element_iterator E
= STy
->element_end(); I
!= E
; ++I
) {
293 //===----------------------------------------------------------------------===//
294 // SlotTracker Class: Enumerate slot numbers for unnamed values
295 //===----------------------------------------------------------------------===//
299 /// This class provides computation of slot numbers for LLVM Assembly writing.
303 /// ValueMap - A mapping of Values to slot numbers.
304 typedef DenseMap
<const Value
*, unsigned> ValueMap
;
307 /// TheModule - The module for which we are holding slot numbers.
308 const Module
* TheModule
;
310 /// TheFunction - The function for which we are holding slot numbers.
311 const Function
* TheFunction
;
312 bool FunctionProcessed
;
314 /// mMap - The TypePlanes map for the module level data.
318 /// fMap - The TypePlanes map for the function level data.
322 /// mdnMap - Map for MDNodes.
323 DenseMap
<const MDNode
*, unsigned> mdnMap
;
326 /// Construct from a module
327 explicit SlotTracker(const Module
*M
);
328 /// Construct from a function, starting out in incorp state.
329 explicit SlotTracker(const Function
*F
);
331 /// Return the slot number of the specified value in it's type
332 /// plane. If something is not in the SlotTracker, return -1.
333 int getLocalSlot(const Value
*V
);
334 int getGlobalSlot(const GlobalValue
*V
);
335 int getMetadataSlot(const MDNode
*N
);
337 /// If you'd like to deal with a function instead of just a module, use
338 /// this method to get its data into the SlotTracker.
339 void incorporateFunction(const Function
*F
) {
341 FunctionProcessed
= false;
344 /// After calling incorporateFunction, use this method to remove the
345 /// most recently incorporated function from the SlotTracker. This
346 /// will reset the state of the machine back to just the module contents.
347 void purgeFunction();
349 /// MDNode map iterators.
350 typedef DenseMap
<const MDNode
*, unsigned>::iterator mdn_iterator
;
351 mdn_iterator
mdn_begin() { return mdnMap
.begin(); }
352 mdn_iterator
mdn_end() { return mdnMap
.end(); }
353 unsigned mdn_size() const { return mdnMap
.size(); }
354 bool mdn_empty() const { return mdnMap
.empty(); }
356 /// This function does the actual initialization.
357 inline void initialize();
359 // Implementation Details
361 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
362 void CreateModuleSlot(const GlobalValue
*V
);
364 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
365 void CreateMetadataSlot(const MDNode
*N
);
367 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
368 void CreateFunctionSlot(const Value
*V
);
370 /// Add all of the module level global variables (and their initializers)
371 /// and function declarations, but not the contents of those functions.
372 void processModule();
374 /// Add all of the functions arguments, basic blocks, and instructions.
375 void processFunction();
377 SlotTracker(const SlotTracker
&); // DO NOT IMPLEMENT
378 void operator=(const SlotTracker
&); // DO NOT IMPLEMENT
381 } // end anonymous namespace
384 static SlotTracker
*createSlotTracker(const Value
*V
) {
385 if (const Argument
*FA
= dyn_cast
<Argument
>(V
))
386 return new SlotTracker(FA
->getParent());
388 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
389 return new SlotTracker(I
->getParent()->getParent());
391 if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
))
392 return new SlotTracker(BB
->getParent());
394 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
395 return new SlotTracker(GV
->getParent());
397 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
398 return new SlotTracker(GA
->getParent());
400 if (const Function
*Func
= dyn_cast
<Function
>(V
))
401 return new SlotTracker(Func
);
403 if (const MDNode
*MD
= dyn_cast
<MDNode
>(V
)) {
404 if (!MD
->isFunctionLocal())
405 return new SlotTracker(MD
->getFunction());
407 return new SlotTracker((Function
*)0);
414 #define ST_DEBUG(X) dbgs() << X
419 // Module level constructor. Causes the contents of the Module (sans functions)
420 // to be added to the slot table.
421 SlotTracker::SlotTracker(const Module
*M
)
422 : TheModule(M
), TheFunction(0), FunctionProcessed(false),
423 mNext(0), fNext(0), mdnNext(0) {
426 // Function level constructor. Causes the contents of the Module and the one
427 // function provided to be added to the slot table.
428 SlotTracker::SlotTracker(const Function
*F
)
429 : TheModule(F
? F
->getParent() : 0), TheFunction(F
), FunctionProcessed(false),
430 mNext(0), fNext(0), mdnNext(0) {
433 inline void SlotTracker::initialize() {
436 TheModule
= 0; ///< Prevent re-processing next time we're called.
439 if (TheFunction
&& !FunctionProcessed
)
443 // Iterate through all the global variables, functions, and global
444 // variable initializers and create slots for them.
445 void SlotTracker::processModule() {
446 ST_DEBUG("begin processModule!\n");
448 // Add all of the unnamed global variables to the value table.
449 for (Module::const_global_iterator I
= TheModule
->global_begin(),
450 E
= TheModule
->global_end(); I
!= E
; ++I
) {
455 // Add metadata used by named metadata.
456 for (Module::const_named_metadata_iterator
457 I
= TheModule
->named_metadata_begin(),
458 E
= TheModule
->named_metadata_end(); I
!= E
; ++I
) {
459 const NamedMDNode
*NMD
= I
;
460 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
)
461 CreateMetadataSlot(NMD
->getOperand(i
));
464 // Add all the unnamed functions to the table.
465 for (Module::const_iterator I
= TheModule
->begin(), E
= TheModule
->end();
470 ST_DEBUG("end processModule!\n");
473 // Process the arguments, basic blocks, and instructions of a function.
474 void SlotTracker::processFunction() {
475 ST_DEBUG("begin processFunction!\n");
478 // Add all the function arguments with no names.
479 for(Function::const_arg_iterator AI
= TheFunction
->arg_begin(),
480 AE
= TheFunction
->arg_end(); AI
!= AE
; ++AI
)
482 CreateFunctionSlot(AI
);
484 ST_DEBUG("Inserting Instructions:\n");
486 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDForInst
;
488 // Add all of the basic blocks and instructions with no names.
489 for (Function::const_iterator BB
= TheFunction
->begin(),
490 E
= TheFunction
->end(); BB
!= E
; ++BB
) {
492 CreateFunctionSlot(BB
);
494 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
496 if (!I
->getType()->isVoidTy() && !I
->hasName())
497 CreateFunctionSlot(I
);
499 // Intrinsics can directly use metadata. We allow direct calls to any
500 // llvm.foo function here, because the target may not be linked into the
502 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
503 if (Function
*F
= CI
->getCalledFunction())
504 if (F
->getName().startswith("llvm."))
505 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
506 if (MDNode
*N
= dyn_cast_or_null
<MDNode
>(I
->getOperand(i
)))
507 CreateMetadataSlot(N
);
510 // Process metadata attached with this instruction.
511 I
->getAllMetadata(MDForInst
);
512 for (unsigned i
= 0, e
= MDForInst
.size(); i
!= e
; ++i
)
513 CreateMetadataSlot(MDForInst
[i
].second
);
518 FunctionProcessed
= true;
520 ST_DEBUG("end processFunction!\n");
523 /// Clean up after incorporating a function. This is the only way to get out of
524 /// the function incorporation state that affects get*Slot/Create*Slot. Function
525 /// incorporation state is indicated by TheFunction != 0.
526 void SlotTracker::purgeFunction() {
527 ST_DEBUG("begin purgeFunction!\n");
528 fMap
.clear(); // Simply discard the function level map
530 FunctionProcessed
= false;
531 ST_DEBUG("end purgeFunction!\n");
534 /// getGlobalSlot - Get the slot number of a global value.
535 int SlotTracker::getGlobalSlot(const GlobalValue
*V
) {
536 // Check for uninitialized state and do lazy initialization.
539 // Find the type plane in the module map
540 ValueMap::iterator MI
= mMap
.find(V
);
541 return MI
== mMap
.end() ? -1 : (int)MI
->second
;
544 /// getMetadataSlot - Get the slot number of a MDNode.
545 int SlotTracker::getMetadataSlot(const MDNode
*N
) {
546 // Check for uninitialized state and do lazy initialization.
549 // Find the type plane in the module map
550 mdn_iterator MI
= mdnMap
.find(N
);
551 return MI
== mdnMap
.end() ? -1 : (int)MI
->second
;
555 /// getLocalSlot - Get the slot number for a value that is local to a function.
556 int SlotTracker::getLocalSlot(const Value
*V
) {
557 assert(!isa
<Constant
>(V
) && "Can't get a constant or global slot with this!");
559 // Check for uninitialized state and do lazy initialization.
562 ValueMap::iterator FI
= fMap
.find(V
);
563 return FI
== fMap
.end() ? -1 : (int)FI
->second
;
567 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
568 void SlotTracker::CreateModuleSlot(const GlobalValue
*V
) {
569 assert(V
&& "Can't insert a null Value into SlotTracker!");
570 assert(!V
->getType()->isVoidTy() && "Doesn't need a slot!");
571 assert(!V
->hasName() && "Doesn't need a slot!");
573 unsigned DestSlot
= mNext
++;
576 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
578 // G = Global, F = Function, A = Alias, o = other
579 ST_DEBUG((isa
<GlobalVariable
>(V
) ? 'G' :
580 (isa
<Function
>(V
) ? 'F' :
581 (isa
<GlobalAlias
>(V
) ? 'A' : 'o'))) << "]\n");
584 /// CreateSlot - Create a new slot for the specified value if it has no name.
585 void SlotTracker::CreateFunctionSlot(const Value
*V
) {
586 assert(!V
->getType()->isVoidTy() && !V
->hasName() && "Doesn't need a slot!");
588 unsigned DestSlot
= fNext
++;
591 // G = Global, F = Function, o = other
592 ST_DEBUG(" Inserting value [" << V
->getType() << "] = " << V
<< " slot=" <<
593 DestSlot
<< " [o]\n");
596 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
597 void SlotTracker::CreateMetadataSlot(const MDNode
*N
) {
598 assert(N
&& "Can't insert a null Value into SlotTracker!");
600 // Don't insert if N is a function-local metadata, these are always printed
602 if (!N
->isFunctionLocal()) {
603 mdn_iterator I
= mdnMap
.find(N
);
604 if (I
!= mdnMap
.end())
607 unsigned DestSlot
= mdnNext
++;
608 mdnMap
[N
] = DestSlot
;
611 // Recursively add any MDNodes referenced by operands.
612 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
613 if (const MDNode
*Op
= dyn_cast_or_null
<MDNode
>(N
->getOperand(i
)))
614 CreateMetadataSlot(Op
);
617 //===----------------------------------------------------------------------===//
618 // AsmWriter Implementation
619 //===----------------------------------------------------------------------===//
621 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
622 TypePrinting
*TypePrinter
,
623 SlotTracker
*Machine
,
624 const Module
*Context
);
628 static const char *getPredicateText(unsigned predicate
) {
629 const char * pred
= "unknown";
631 case FCmpInst::FCMP_FALSE
: pred
= "false"; break;
632 case FCmpInst::FCMP_OEQ
: pred
= "oeq"; break;
633 case FCmpInst::FCMP_OGT
: pred
= "ogt"; break;
634 case FCmpInst::FCMP_OGE
: pred
= "oge"; break;
635 case FCmpInst::FCMP_OLT
: pred
= "olt"; break;
636 case FCmpInst::FCMP_OLE
: pred
= "ole"; break;
637 case FCmpInst::FCMP_ONE
: pred
= "one"; break;
638 case FCmpInst::FCMP_ORD
: pred
= "ord"; break;
639 case FCmpInst::FCMP_UNO
: pred
= "uno"; break;
640 case FCmpInst::FCMP_UEQ
: pred
= "ueq"; break;
641 case FCmpInst::FCMP_UGT
: pred
= "ugt"; break;
642 case FCmpInst::FCMP_UGE
: pred
= "uge"; break;
643 case FCmpInst::FCMP_ULT
: pred
= "ult"; break;
644 case FCmpInst::FCMP_ULE
: pred
= "ule"; break;
645 case FCmpInst::FCMP_UNE
: pred
= "une"; break;
646 case FCmpInst::FCMP_TRUE
: pred
= "true"; break;
647 case ICmpInst::ICMP_EQ
: pred
= "eq"; break;
648 case ICmpInst::ICMP_NE
: pred
= "ne"; break;
649 case ICmpInst::ICMP_SGT
: pred
= "sgt"; break;
650 case ICmpInst::ICMP_SGE
: pred
= "sge"; break;
651 case ICmpInst::ICMP_SLT
: pred
= "slt"; break;
652 case ICmpInst::ICMP_SLE
: pred
= "sle"; break;
653 case ICmpInst::ICMP_UGT
: pred
= "ugt"; break;
654 case ICmpInst::ICMP_UGE
: pred
= "uge"; break;
655 case ICmpInst::ICMP_ULT
: pred
= "ult"; break;
656 case ICmpInst::ICMP_ULE
: pred
= "ule"; break;
662 static void WriteOptimizationInfo(raw_ostream
&Out
, const User
*U
) {
663 if (const OverflowingBinaryOperator
*OBO
=
664 dyn_cast
<OverflowingBinaryOperator
>(U
)) {
665 if (OBO
->hasNoUnsignedWrap())
667 if (OBO
->hasNoSignedWrap())
669 } else if (const PossiblyExactOperator
*Div
=
670 dyn_cast
<PossiblyExactOperator
>(U
)) {
673 } else if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(U
)) {
674 if (GEP
->isInBounds())
679 static void WriteConstantInternal(raw_ostream
&Out
, const Constant
*CV
,
680 TypePrinting
&TypePrinter
,
681 SlotTracker
*Machine
,
682 const Module
*Context
) {
683 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
684 if (CI
->getType()->isIntegerTy(1)) {
685 Out
<< (CI
->getZExtValue() ? "true" : "false");
688 Out
<< CI
->getValue();
692 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
693 if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEdouble
||
694 &CFP
->getValueAPF().getSemantics() == &APFloat::IEEEsingle
) {
695 // We would like to output the FP constant value in exponential notation,
696 // but we cannot do this if doing so will lose precision. Check here to
697 // make sure that we only output it in exponential format if we can parse
698 // the value back and get the same value.
701 bool isDouble
= &CFP
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
;
702 double Val
= isDouble
? CFP
->getValueAPF().convertToDouble() :
703 CFP
->getValueAPF().convertToFloat();
704 SmallString
<128> StrVal
;
705 raw_svector_ostream(StrVal
) << Val
;
707 // Check to make sure that the stringized number is not some string like
708 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
709 // that the string matches the "[-+]?[0-9]" regex.
711 if ((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
712 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
713 (StrVal
[1] >= '0' && StrVal
[1] <= '9'))) {
714 // Reparse stringized version!
715 if (atof(StrVal
.c_str()) == Val
) {
720 // Otherwise we could not reparse it to exactly the same value, so we must
721 // output the string in hexadecimal format! Note that loading and storing
722 // floating point types changes the bits of NaNs on some hosts, notably
723 // x86, so we must not use these types.
724 assert(sizeof(double) == sizeof(uint64_t) &&
725 "assuming that double is 64 bits!");
727 APFloat apf
= CFP
->getValueAPF();
728 // Floats are represented in ASCII IR as double, convert.
730 apf
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
,
733 utohex_buffer(uint64_t(apf
.bitcastToAPInt().getZExtValue()),
738 // Some form of long double. These appear as a magic letter identifying
739 // the type, then a fixed number of hex digits.
741 if (&CFP
->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended
) {
743 // api needed to prevent premature destruction
744 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
745 const uint64_t* p
= api
.getRawData();
746 uint64_t word
= p
[1];
748 int width
= api
.getBitWidth();
749 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
750 unsigned int nibble
= (word
>>shiftcount
) & 15;
752 Out
<< (unsigned char)(nibble
+ '0');
754 Out
<< (unsigned char)(nibble
- 10 + 'A');
755 if (shiftcount
== 0 && j
+4 < width
) {
759 shiftcount
= width
-j
-4;
763 } else if (&CFP
->getValueAPF().getSemantics() == &APFloat::IEEEquad
)
765 else if (&CFP
->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble
)
768 llvm_unreachable("Unsupported floating point type");
769 // api needed to prevent premature destruction
770 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
771 const uint64_t* p
= api
.getRawData();
774 int width
= api
.getBitWidth();
775 for (int j
=0; j
<width
; j
+=4, shiftcount
-=4) {
776 unsigned int nibble
= (word
>>shiftcount
) & 15;
778 Out
<< (unsigned char)(nibble
+ '0');
780 Out
<< (unsigned char)(nibble
- 10 + 'A');
781 if (shiftcount
== 0 && j
+4 < width
) {
785 shiftcount
= width
-j
-4;
791 if (isa
<ConstantAggregateZero
>(CV
)) {
792 Out
<< "zeroinitializer";
796 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
)) {
797 Out
<< "blockaddress(";
798 WriteAsOperandInternal(Out
, BA
->getFunction(), &TypePrinter
, Machine
,
801 WriteAsOperandInternal(Out
, BA
->getBasicBlock(), &TypePrinter
, Machine
,
807 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CV
)) {
808 // As a special case, print the array as a string if it is an array of
809 // i8 with ConstantInt values.
811 Type
*ETy
= CA
->getType()->getElementType();
812 if (CA
->isString()) {
814 PrintEscapedString(CA
->getAsString(), Out
);
816 } else { // Cannot output in string format...
818 if (CA
->getNumOperands()) {
819 TypePrinter
.print(ETy
, Out
);
821 WriteAsOperandInternal(Out
, CA
->getOperand(0),
822 &TypePrinter
, Machine
,
824 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
826 TypePrinter
.print(ETy
, Out
);
828 WriteAsOperandInternal(Out
, CA
->getOperand(i
), &TypePrinter
, Machine
,
837 if (const ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(CV
)) {
838 if (CS
->getType()->isPacked())
841 unsigned N
= CS
->getNumOperands();
844 TypePrinter
.print(CS
->getOperand(0)->getType(), Out
);
847 WriteAsOperandInternal(Out
, CS
->getOperand(0), &TypePrinter
, Machine
,
850 for (unsigned i
= 1; i
< N
; i
++) {
852 TypePrinter
.print(CS
->getOperand(i
)->getType(), Out
);
855 WriteAsOperandInternal(Out
, CS
->getOperand(i
), &TypePrinter
, Machine
,
862 if (CS
->getType()->isPacked())
867 if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
868 Type
*ETy
= CP
->getType()->getElementType();
869 assert(CP
->getNumOperands() > 0 &&
870 "Number of operands for a PackedConst must be > 0");
872 TypePrinter
.print(ETy
, Out
);
874 WriteAsOperandInternal(Out
, CP
->getOperand(0), &TypePrinter
, Machine
,
876 for (unsigned i
= 1, e
= CP
->getNumOperands(); i
!= e
; ++i
) {
878 TypePrinter
.print(ETy
, Out
);
880 WriteAsOperandInternal(Out
, CP
->getOperand(i
), &TypePrinter
, Machine
,
887 if (isa
<ConstantPointerNull
>(CV
)) {
892 if (isa
<UndefValue
>(CV
)) {
897 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
898 Out
<< CE
->getOpcodeName();
899 WriteOptimizationInfo(Out
, CE
);
901 Out
<< ' ' << getPredicateText(CE
->getPredicate());
904 for (User::const_op_iterator OI
=CE
->op_begin(); OI
!= CE
->op_end(); ++OI
) {
905 TypePrinter
.print((*OI
)->getType(), Out
);
907 WriteAsOperandInternal(Out
, *OI
, &TypePrinter
, Machine
, Context
);
908 if (OI
+1 != CE
->op_end())
912 if (CE
->hasIndices()) {
913 ArrayRef
<unsigned> Indices
= CE
->getIndices();
914 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
)
915 Out
<< ", " << Indices
[i
];
920 TypePrinter
.print(CE
->getType(), Out
);
927 Out
<< "<placeholder or erroneous Constant>";
930 static void WriteMDNodeBodyInternal(raw_ostream
&Out
, const MDNode
*Node
,
931 TypePrinting
*TypePrinter
,
932 SlotTracker
*Machine
,
933 const Module
*Context
) {
935 for (unsigned mi
= 0, me
= Node
->getNumOperands(); mi
!= me
; ++mi
) {
936 const Value
*V
= Node
->getOperand(mi
);
940 TypePrinter
->print(V
->getType(), Out
);
942 WriteAsOperandInternal(Out
, Node
->getOperand(mi
),
943 TypePrinter
, Machine
, Context
);
953 /// WriteAsOperand - Write the name of the specified value out to the specified
954 /// ostream. This can be useful when you just want to print int %reg126, not
955 /// the whole instruction that generated it.
957 static void WriteAsOperandInternal(raw_ostream
&Out
, const Value
*V
,
958 TypePrinting
*TypePrinter
,
959 SlotTracker
*Machine
,
960 const Module
*Context
) {
962 PrintLLVMName(Out
, V
);
966 const Constant
*CV
= dyn_cast
<Constant
>(V
);
967 if (CV
&& !isa
<GlobalValue
>(CV
)) {
968 assert(TypePrinter
&& "Constants require TypePrinting!");
969 WriteConstantInternal(Out
, CV
, *TypePrinter
, Machine
, Context
);
973 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
975 if (IA
->hasSideEffects())
976 Out
<< "sideeffect ";
977 if (IA
->isAlignStack())
978 Out
<< "alignstack ";
980 PrintEscapedString(IA
->getAsmString(), Out
);
982 PrintEscapedString(IA
->getConstraintString(), Out
);
987 if (const MDNode
*N
= dyn_cast
<MDNode
>(V
)) {
988 if (N
->isFunctionLocal()) {
989 // Print metadata inline, not via slot reference number.
990 WriteMDNodeBodyInternal(Out
, N
, TypePrinter
, Machine
, Context
);
995 if (N
->isFunctionLocal())
996 Machine
= new SlotTracker(N
->getFunction());
998 Machine
= new SlotTracker(Context
);
1000 int Slot
= Machine
->getMetadataSlot(N
);
1008 if (const MDString
*MDS
= dyn_cast
<MDString
>(V
)) {
1010 PrintEscapedString(MDS
->getString(), Out
);
1015 if (V
->getValueID() == Value::PseudoSourceValueVal
||
1016 V
->getValueID() == Value::FixedStackPseudoSourceValueVal
) {
1024 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1025 Slot
= Machine
->getGlobalSlot(GV
);
1028 Slot
= Machine
->getLocalSlot(V
);
1031 Machine
= createSlotTracker(V
);
1033 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
1034 Slot
= Machine
->getGlobalSlot(GV
);
1037 Slot
= Machine
->getLocalSlot(V
);
1046 Out
<< Prefix
<< Slot
;
1051 void llvm::WriteAsOperand(raw_ostream
&Out
, const Value
*V
,
1052 bool PrintType
, const Module
*Context
) {
1054 // Fast path: Don't construct and populate a TypePrinting object if we
1055 // won't be needing any types printed.
1057 ((!isa
<Constant
>(V
) && !isa
<MDNode
>(V
)) ||
1058 V
->hasName() || isa
<GlobalValue
>(V
))) {
1059 WriteAsOperandInternal(Out
, V
, 0, 0, Context
);
1063 if (Context
== 0) Context
= getModuleFromVal(V
);
1065 TypePrinting TypePrinter
;
1067 TypePrinter
.incorporateTypes(*Context
);
1069 TypePrinter
.print(V
->getType(), Out
);
1073 WriteAsOperandInternal(Out
, V
, &TypePrinter
, 0, Context
);
1078 class AssemblyWriter
{
1079 formatted_raw_ostream
&Out
;
1080 SlotTracker
&Machine
;
1081 const Module
*TheModule
;
1082 TypePrinting TypePrinter
;
1083 AssemblyAnnotationWriter
*AnnotationWriter
;
1086 inline AssemblyWriter(formatted_raw_ostream
&o
, SlotTracker
&Mac
,
1088 AssemblyAnnotationWriter
*AAW
)
1089 : Out(o
), Machine(Mac
), TheModule(M
), AnnotationWriter(AAW
) {
1091 TypePrinter
.incorporateTypes(*M
);
1094 void printMDNodeBody(const MDNode
*MD
);
1095 void printNamedMDNode(const NamedMDNode
*NMD
);
1097 void printModule(const Module
*M
);
1099 void writeOperand(const Value
*Op
, bool PrintType
);
1100 void writeParamOperand(const Value
*Operand
, Attributes Attrs
);
1102 void writeAllMDNodes();
1104 void printTypeIdentities();
1105 void printGlobal(const GlobalVariable
*GV
);
1106 void printAlias(const GlobalAlias
*GV
);
1107 void printFunction(const Function
*F
);
1108 void printArgument(const Argument
*FA
, Attributes Attrs
);
1109 void printBasicBlock(const BasicBlock
*BB
);
1110 void printInstruction(const Instruction
&I
);
1113 // printInfoComment - Print a little comment after the instruction indicating
1114 // which slot it occupies.
1115 void printInfoComment(const Value
&V
);
1117 } // end of anonymous namespace
1119 void AssemblyWriter::writeOperand(const Value
*Operand
, bool PrintType
) {
1121 Out
<< "<null operand!>";
1125 TypePrinter
.print(Operand
->getType(), Out
);
1128 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
, TheModule
);
1131 void AssemblyWriter::writeParamOperand(const Value
*Operand
,
1134 Out
<< "<null operand!>";
1139 TypePrinter
.print(Operand
->getType(), Out
);
1140 // Print parameter attributes list
1141 if (Attrs
!= Attribute::None
)
1142 Out
<< ' ' << Attribute::getAsString(Attrs
);
1144 // Print the operand
1145 WriteAsOperandInternal(Out
, Operand
, &TypePrinter
, &Machine
, TheModule
);
1148 void AssemblyWriter::printModule(const Module
*M
) {
1149 if (!M
->getModuleIdentifier().empty() &&
1150 // Don't print the ID if it will start a new line (which would
1151 // require a comment char before it).
1152 M
->getModuleIdentifier().find('\n') == std::string::npos
)
1153 Out
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
1155 if (!M
->getDataLayout().empty())
1156 Out
<< "target datalayout = \"" << M
->getDataLayout() << "\"\n";
1157 if (!M
->getTargetTriple().empty())
1158 Out
<< "target triple = \"" << M
->getTargetTriple() << "\"\n";
1160 if (!M
->getModuleInlineAsm().empty()) {
1161 // Split the string into lines, to make it easier to read the .ll file.
1162 std::string Asm
= M
->getModuleInlineAsm();
1164 size_t NewLine
= Asm
.find_first_of('\n', CurPos
);
1166 while (NewLine
!= std::string::npos
) {
1167 // We found a newline, print the portion of the asm string from the
1168 // last newline up to this newline.
1169 Out
<< "module asm \"";
1170 PrintEscapedString(std::string(Asm
.begin()+CurPos
, Asm
.begin()+NewLine
),
1174 NewLine
= Asm
.find_first_of('\n', CurPos
);
1176 std::string
rest(Asm
.begin()+CurPos
, Asm
.end());
1177 if (!rest
.empty()) {
1178 Out
<< "module asm \"";
1179 PrintEscapedString(rest
, Out
);
1184 // Loop over the dependent libraries and emit them.
1185 Module::lib_iterator LI
= M
->lib_begin();
1186 Module::lib_iterator LE
= M
->lib_end();
1189 Out
<< "deplibs = [ ";
1191 Out
<< '"' << *LI
<< '"';
1199 printTypeIdentities();
1201 // Output all globals.
1202 if (!M
->global_empty()) Out
<< '\n';
1203 for (Module::const_global_iterator I
= M
->global_begin(), E
= M
->global_end();
1207 // Output all aliases.
1208 if (!M
->alias_empty()) Out
<< "\n";
1209 for (Module::const_alias_iterator I
= M
->alias_begin(), E
= M
->alias_end();
1213 // Output all of the functions.
1214 for (Module::const_iterator I
= M
->begin(), E
= M
->end(); I
!= E
; ++I
)
1217 // Output named metadata.
1218 if (!M
->named_metadata_empty()) Out
<< '\n';
1220 for (Module::const_named_metadata_iterator I
= M
->named_metadata_begin(),
1221 E
= M
->named_metadata_end(); I
!= E
; ++I
)
1222 printNamedMDNode(I
);
1225 if (!Machine
.mdn_empty()) {
1231 void AssemblyWriter::printNamedMDNode(const NamedMDNode
*NMD
) {
1233 StringRef Name
= NMD
->getName();
1235 Out
<< "<empty name> ";
1237 if (isalpha(Name
[0]) || Name
[0] == '-' || Name
[0] == '$' ||
1238 Name
[0] == '.' || Name
[0] == '_')
1241 Out
<< '\\' << hexdigit(Name
[0] >> 4) << hexdigit(Name
[0] & 0x0F);
1242 for (unsigned i
= 1, e
= Name
.size(); i
!= e
; ++i
) {
1243 unsigned char C
= Name
[i
];
1244 if (isalnum(C
) || C
== '-' || C
== '$' || C
== '.' || C
== '_')
1247 Out
<< '\\' << hexdigit(C
>> 4) << hexdigit(C
& 0x0F);
1251 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
1253 int Slot
= Machine
.getMetadataSlot(NMD
->getOperand(i
));
1263 static void PrintLinkage(GlobalValue::LinkageTypes LT
,
1264 formatted_raw_ostream
&Out
) {
1266 case GlobalValue::ExternalLinkage
: break;
1267 case GlobalValue::PrivateLinkage
: Out
<< "private "; break;
1268 case GlobalValue::LinkerPrivateLinkage
: Out
<< "linker_private "; break;
1269 case GlobalValue::LinkerPrivateWeakLinkage
:
1270 Out
<< "linker_private_weak ";
1272 case GlobalValue::LinkerPrivateWeakDefAutoLinkage
:
1273 Out
<< "linker_private_weak_def_auto ";
1275 case GlobalValue::InternalLinkage
: Out
<< "internal "; break;
1276 case GlobalValue::LinkOnceAnyLinkage
: Out
<< "linkonce "; break;
1277 case GlobalValue::LinkOnceODRLinkage
: Out
<< "linkonce_odr "; break;
1278 case GlobalValue::WeakAnyLinkage
: Out
<< "weak "; break;
1279 case GlobalValue::WeakODRLinkage
: Out
<< "weak_odr "; break;
1280 case GlobalValue::CommonLinkage
: Out
<< "common "; break;
1281 case GlobalValue::AppendingLinkage
: Out
<< "appending "; break;
1282 case GlobalValue::DLLImportLinkage
: Out
<< "dllimport "; break;
1283 case GlobalValue::DLLExportLinkage
: Out
<< "dllexport "; break;
1284 case GlobalValue::ExternalWeakLinkage
: Out
<< "extern_weak "; break;
1285 case GlobalValue::AvailableExternallyLinkage
:
1286 Out
<< "available_externally ";
1292 static void PrintVisibility(GlobalValue::VisibilityTypes Vis
,
1293 formatted_raw_ostream
&Out
) {
1295 case GlobalValue::DefaultVisibility
: break;
1296 case GlobalValue::HiddenVisibility
: Out
<< "hidden "; break;
1297 case GlobalValue::ProtectedVisibility
: Out
<< "protected "; break;
1301 void AssemblyWriter::printGlobal(const GlobalVariable
*GV
) {
1302 if (GV
->isMaterializable())
1303 Out
<< "; Materializable\n";
1305 WriteAsOperandInternal(Out
, GV
, &TypePrinter
, &Machine
, GV
->getParent());
1308 if (!GV
->hasInitializer() && GV
->hasExternalLinkage())
1311 PrintLinkage(GV
->getLinkage(), Out
);
1312 PrintVisibility(GV
->getVisibility(), Out
);
1314 if (GV
->isThreadLocal()) Out
<< "thread_local ";
1315 if (unsigned AddressSpace
= GV
->getType()->getAddressSpace())
1316 Out
<< "addrspace(" << AddressSpace
<< ") ";
1317 if (GV
->hasUnnamedAddr()) Out
<< "unnamed_addr ";
1318 Out
<< (GV
->isConstant() ? "constant " : "global ");
1319 TypePrinter
.print(GV
->getType()->getElementType(), Out
);
1321 if (GV
->hasInitializer()) {
1323 writeOperand(GV
->getInitializer(), false);
1326 if (GV
->hasSection()) {
1327 Out
<< ", section \"";
1328 PrintEscapedString(GV
->getSection(), Out
);
1331 if (GV
->getAlignment())
1332 Out
<< ", align " << GV
->getAlignment();
1334 printInfoComment(*GV
);
1338 void AssemblyWriter::printAlias(const GlobalAlias
*GA
) {
1339 if (GA
->isMaterializable())
1340 Out
<< "; Materializable\n";
1342 // Don't crash when dumping partially built GA
1344 Out
<< "<<nameless>> = ";
1346 PrintLLVMName(Out
, GA
);
1349 PrintVisibility(GA
->getVisibility(), Out
);
1353 PrintLinkage(GA
->getLinkage(), Out
);
1355 const Constant
*Aliasee
= GA
->getAliasee();
1358 TypePrinter
.print(GA
->getType(), Out
);
1359 Out
<< " <<NULL ALIASEE>>";
1360 } else if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Aliasee
)) {
1361 TypePrinter
.print(GV
->getType(), Out
);
1363 PrintLLVMName(Out
, GV
);
1364 } else if (const Function
*F
= dyn_cast
<Function
>(Aliasee
)) {
1365 TypePrinter
.print(F
->getFunctionType(), Out
);
1368 WriteAsOperandInternal(Out
, F
, &TypePrinter
, &Machine
, F
->getParent());
1369 } else if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(Aliasee
)) {
1370 TypePrinter
.print(GA
->getType(), Out
);
1372 PrintLLVMName(Out
, GA
);
1374 const ConstantExpr
*CE
= cast
<ConstantExpr
>(Aliasee
);
1375 // The only valid GEP is an all zero GEP.
1376 assert((CE
->getOpcode() == Instruction::BitCast
||
1377 CE
->getOpcode() == Instruction::GetElementPtr
) &&
1378 "Unsupported aliasee");
1379 writeOperand(CE
, false);
1382 printInfoComment(*GA
);
1386 void AssemblyWriter::printTypeIdentities() {
1387 if (TypePrinter
.NumberedTypes
.empty() &&
1388 TypePrinter
.NamedTypes
.empty())
1393 // We know all the numbers that each type is used and we know that it is a
1394 // dense assignment. Convert the map to an index table.
1395 std::vector
<StructType
*> NumberedTypes(TypePrinter
.NumberedTypes
.size());
1396 for (DenseMap
<StructType
*, unsigned>::iterator I
=
1397 TypePrinter
.NumberedTypes
.begin(), E
= TypePrinter
.NumberedTypes
.end();
1399 assert(I
->second
< NumberedTypes
.size() && "Didn't get a dense numbering?");
1400 NumberedTypes
[I
->second
] = I
->first
;
1403 // Emit all numbered types.
1404 for (unsigned i
= 0, e
= NumberedTypes
.size(); i
!= e
; ++i
) {
1405 Out
<< '%' << i
<< " = type ";
1407 // Make sure we print out at least one level of the type structure, so
1408 // that we do not get %2 = type %2
1409 TypePrinter
.printStructBody(NumberedTypes
[i
], Out
);
1413 for (unsigned i
= 0, e
= TypePrinter
.NamedTypes
.size(); i
!= e
; ++i
) {
1414 PrintLLVMName(Out
, TypePrinter
.NamedTypes
[i
]->getName(), LocalPrefix
);
1417 // Make sure we print out at least one level of the type structure, so
1418 // that we do not get %FILE = type %FILE
1419 TypePrinter
.printStructBody(TypePrinter
.NamedTypes
[i
], Out
);
1424 /// printFunction - Print all aspects of a function.
1426 void AssemblyWriter::printFunction(const Function
*F
) {
1427 // Print out the return type and name.
1430 if (AnnotationWriter
) AnnotationWriter
->emitFunctionAnnot(F
, Out
);
1432 if (F
->isMaterializable())
1433 Out
<< "; Materializable\n";
1435 if (F
->isDeclaration())
1440 PrintLinkage(F
->getLinkage(), Out
);
1441 PrintVisibility(F
->getVisibility(), Out
);
1443 // Print the calling convention.
1444 switch (F
->getCallingConv()) {
1445 case CallingConv::C
: break; // default
1446 case CallingConv::Fast
: Out
<< "fastcc "; break;
1447 case CallingConv::Cold
: Out
<< "coldcc "; break;
1448 case CallingConv::X86_StdCall
: Out
<< "x86_stdcallcc "; break;
1449 case CallingConv::X86_FastCall
: Out
<< "x86_fastcallcc "; break;
1450 case CallingConv::X86_ThisCall
: Out
<< "x86_thiscallcc "; break;
1451 case CallingConv::ARM_APCS
: Out
<< "arm_apcscc "; break;
1452 case CallingConv::ARM_AAPCS
: Out
<< "arm_aapcscc "; break;
1453 case CallingConv::ARM_AAPCS_VFP
:Out
<< "arm_aapcs_vfpcc "; break;
1454 case CallingConv::MSP430_INTR
: Out
<< "msp430_intrcc "; break;
1455 case CallingConv::PTX_Kernel
: Out
<< "ptx_kernel "; break;
1456 case CallingConv::PTX_Device
: Out
<< "ptx_device "; break;
1457 default: Out
<< "cc" << F
->getCallingConv() << " "; break;
1460 const FunctionType
*FT
= F
->getFunctionType();
1461 const AttrListPtr
&Attrs
= F
->getAttributes();
1462 Attributes RetAttrs
= Attrs
.getRetAttributes();
1463 if (RetAttrs
!= Attribute::None
)
1464 Out
<< Attribute::getAsString(Attrs
.getRetAttributes()) << ' ';
1465 TypePrinter
.print(F
->getReturnType(), Out
);
1467 WriteAsOperandInternal(Out
, F
, &TypePrinter
, &Machine
, F
->getParent());
1469 Machine
.incorporateFunction(F
);
1471 // Loop over the arguments, printing them...
1474 if (!F
->isDeclaration()) {
1475 // If this isn't a declaration, print the argument names as well.
1476 for (Function::const_arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
1478 // Insert commas as we go... the first arg doesn't get a comma
1479 if (I
!= F
->arg_begin()) Out
<< ", ";
1480 printArgument(I
, Attrs
.getParamAttributes(Idx
));
1484 // Otherwise, print the types from the function type.
1485 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1486 // Insert commas as we go... the first arg doesn't get a comma
1490 TypePrinter
.print(FT
->getParamType(i
), Out
);
1492 Attributes ArgAttrs
= Attrs
.getParamAttributes(i
+1);
1493 if (ArgAttrs
!= Attribute::None
)
1494 Out
<< ' ' << Attribute::getAsString(ArgAttrs
);
1498 // Finish printing arguments...
1499 if (FT
->isVarArg()) {
1500 if (FT
->getNumParams()) Out
<< ", ";
1501 Out
<< "..."; // Output varargs portion of signature!
1504 if (F
->hasUnnamedAddr())
1505 Out
<< " unnamed_addr";
1506 Attributes FnAttrs
= Attrs
.getFnAttributes();
1507 if (FnAttrs
!= Attribute::None
)
1508 Out
<< ' ' << Attribute::getAsString(Attrs
.getFnAttributes());
1509 if (F
->hasSection()) {
1510 Out
<< " section \"";
1511 PrintEscapedString(F
->getSection(), Out
);
1514 if (F
->getAlignment())
1515 Out
<< " align " << F
->getAlignment();
1517 Out
<< " gc \"" << F
->getGC() << '"';
1518 if (F
->isDeclaration()) {
1522 // Output all of the function's basic blocks.
1523 for (Function::const_iterator I
= F
->begin(), E
= F
->end(); I
!= E
; ++I
)
1529 Machine
.purgeFunction();
1532 /// printArgument - This member is called for every argument that is passed into
1533 /// the function. Simply print it out
1535 void AssemblyWriter::printArgument(const Argument
*Arg
,
1538 TypePrinter
.print(Arg
->getType(), Out
);
1540 // Output parameter attributes list
1541 if (Attrs
!= Attribute::None
)
1542 Out
<< ' ' << Attribute::getAsString(Attrs
);
1544 // Output name, if available...
1545 if (Arg
->hasName()) {
1547 PrintLLVMName(Out
, Arg
);
1551 /// printBasicBlock - This member is called for each basic block in a method.
1553 void AssemblyWriter::printBasicBlock(const BasicBlock
*BB
) {
1554 if (BB
->hasName()) { // Print out the label if it exists...
1556 PrintLLVMName(Out
, BB
->getName(), LabelPrefix
);
1558 } else if (!BB
->use_empty()) { // Don't print block # of no uses...
1559 Out
<< "\n; <label>:";
1560 int Slot
= Machine
.getLocalSlot(BB
);
1567 if (BB
->getParent() == 0) {
1568 Out
.PadToColumn(50);
1569 Out
<< "; Error: Block without parent!";
1570 } else if (BB
!= &BB
->getParent()->getEntryBlock()) { // Not the entry block?
1571 // Output predecessors for the block.
1572 Out
.PadToColumn(50);
1574 const_pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
1577 Out
<< " No predecessors!";
1580 writeOperand(*PI
, false);
1581 for (++PI
; PI
!= PE
; ++PI
) {
1583 writeOperand(*PI
, false);
1590 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockStartAnnot(BB
, Out
);
1592 // Output all of the instructions in the basic block...
1593 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
1594 printInstruction(*I
);
1598 if (AnnotationWriter
) AnnotationWriter
->emitBasicBlockEndAnnot(BB
, Out
);
1601 /// printInfoComment - Print a little comment after the instruction indicating
1602 /// which slot it occupies.
1604 void AssemblyWriter::printInfoComment(const Value
&V
) {
1605 if (AnnotationWriter
) {
1606 AnnotationWriter
->printInfoComment(V
, Out
);
1611 // This member is called for each Instruction in a function..
1612 void AssemblyWriter::printInstruction(const Instruction
&I
) {
1613 if (AnnotationWriter
) AnnotationWriter
->emitInstructionAnnot(&I
, Out
);
1615 // Print out indentation for an instruction.
1618 // Print out name if it exists...
1620 PrintLLVMName(Out
, &I
);
1622 } else if (!I
.getType()->isVoidTy()) {
1623 // Print out the def slot taken.
1624 int SlotNum
= Machine
.getLocalSlot(&I
);
1626 Out
<< "<badref> = ";
1628 Out
<< '%' << SlotNum
<< " = ";
1631 // If this is a volatile load or store, print out the volatile marker.
1632 if ((isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).isVolatile()) ||
1633 (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).isVolatile())) {
1635 } else if (isa
<CallInst
>(I
) && cast
<CallInst
>(I
).isTailCall()) {
1636 // If this is a call, check if it's a tail call.
1640 // Print out the opcode...
1641 Out
<< I
.getOpcodeName();
1643 // Print out optimization information.
1644 WriteOptimizationInfo(Out
, &I
);
1646 // Print out the compare instruction predicates
1647 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(&I
))
1648 Out
<< ' ' << getPredicateText(CI
->getPredicate());
1650 // Print out the type of the operands...
1651 const Value
*Operand
= I
.getNumOperands() ? I
.getOperand(0) : 0;
1653 // Special case conditional branches to swizzle the condition out to the front
1654 if (isa
<BranchInst
>(I
) && cast
<BranchInst
>(I
).isConditional()) {
1655 BranchInst
&BI(cast
<BranchInst
>(I
));
1657 writeOperand(BI
.getCondition(), true);
1659 writeOperand(BI
.getSuccessor(0), true);
1661 writeOperand(BI
.getSuccessor(1), true);
1663 } else if (isa
<SwitchInst
>(I
)) {
1664 // Special case switch instruction to get formatting nice and correct.
1666 writeOperand(Operand
, true);
1668 writeOperand(I
.getOperand(1), true);
1671 for (unsigned op
= 2, Eop
= I
.getNumOperands(); op
< Eop
; op
+= 2) {
1673 writeOperand(I
.getOperand(op
), true);
1675 writeOperand(I
.getOperand(op
+1), true);
1678 } else if (isa
<IndirectBrInst
>(I
)) {
1679 // Special case indirectbr instruction to get formatting nice and correct.
1681 writeOperand(Operand
, true);
1684 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1687 writeOperand(I
.getOperand(i
), true);
1690 } else if (const PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
1692 TypePrinter
.print(I
.getType(), Out
);
1695 for (unsigned op
= 0, Eop
= PN
->getNumIncomingValues(); op
< Eop
; ++op
) {
1696 if (op
) Out
<< ", ";
1698 writeOperand(PN
->getIncomingValue(op
), false); Out
<< ", ";
1699 writeOperand(PN
->getIncomingBlock(op
), false); Out
<< " ]";
1701 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(&I
)) {
1703 writeOperand(I
.getOperand(0), true);
1704 for (const unsigned *i
= EVI
->idx_begin(), *e
= EVI
->idx_end(); i
!= e
; ++i
)
1706 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(&I
)) {
1708 writeOperand(I
.getOperand(0), true); Out
<< ", ";
1709 writeOperand(I
.getOperand(1), true);
1710 for (const unsigned *i
= IVI
->idx_begin(), *e
= IVI
->idx_end(); i
!= e
; ++i
)
1712 } else if (isa
<ReturnInst
>(I
) && !Operand
) {
1714 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
1715 // Print the calling convention being used.
1716 switch (CI
->getCallingConv()) {
1717 case CallingConv::C
: break; // default
1718 case CallingConv::Fast
: Out
<< " fastcc"; break;
1719 case CallingConv::Cold
: Out
<< " coldcc"; break;
1720 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1721 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1722 case CallingConv::X86_ThisCall
: Out
<< " x86_thiscallcc"; break;
1723 case CallingConv::ARM_APCS
: Out
<< " arm_apcscc "; break;
1724 case CallingConv::ARM_AAPCS
: Out
<< " arm_aapcscc "; break;
1725 case CallingConv::ARM_AAPCS_VFP
:Out
<< " arm_aapcs_vfpcc "; break;
1726 case CallingConv::MSP430_INTR
: Out
<< " msp430_intrcc "; break;
1727 case CallingConv::PTX_Kernel
: Out
<< " ptx_kernel"; break;
1728 case CallingConv::PTX_Device
: Out
<< " ptx_device"; break;
1729 default: Out
<< " cc" << CI
->getCallingConv(); break;
1732 Operand
= CI
->getCalledValue();
1733 PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1734 FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1735 Type
*RetTy
= FTy
->getReturnType();
1736 const AttrListPtr
&PAL
= CI
->getAttributes();
1738 if (PAL
.getRetAttributes() != Attribute::None
)
1739 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1741 // If possible, print out the short form of the call instruction. We can
1742 // only do this if the first argument is a pointer to a nonvararg function,
1743 // and if the return type is not a pointer to a function.
1746 if (!FTy
->isVarArg() &&
1747 (!RetTy
->isPointerTy() ||
1748 !cast
<PointerType
>(RetTy
)->getElementType()->isFunctionTy())) {
1749 TypePrinter
.print(RetTy
, Out
);
1751 writeOperand(Operand
, false);
1753 writeOperand(Operand
, true);
1756 for (unsigned op
= 0, Eop
= CI
->getNumArgOperands(); op
< Eop
; ++op
) {
1759 writeParamOperand(CI
->getArgOperand(op
), PAL
.getParamAttributes(op
+ 1));
1762 if (PAL
.getFnAttributes() != Attribute::None
)
1763 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1764 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(&I
)) {
1765 Operand
= II
->getCalledValue();
1766 PointerType
*PTy
= cast
<PointerType
>(Operand
->getType());
1767 FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1768 Type
*RetTy
= FTy
->getReturnType();
1769 const AttrListPtr
&PAL
= II
->getAttributes();
1771 // Print the calling convention being used.
1772 switch (II
->getCallingConv()) {
1773 case CallingConv::C
: break; // default
1774 case CallingConv::Fast
: Out
<< " fastcc"; break;
1775 case CallingConv::Cold
: Out
<< " coldcc"; break;
1776 case CallingConv::X86_StdCall
: Out
<< " x86_stdcallcc"; break;
1777 case CallingConv::X86_FastCall
: Out
<< " x86_fastcallcc"; break;
1778 case CallingConv::X86_ThisCall
: Out
<< " x86_thiscallcc"; break;
1779 case CallingConv::ARM_APCS
: Out
<< " arm_apcscc "; break;
1780 case CallingConv::ARM_AAPCS
: Out
<< " arm_aapcscc "; break;
1781 case CallingConv::ARM_AAPCS_VFP
:Out
<< " arm_aapcs_vfpcc "; break;
1782 case CallingConv::MSP430_INTR
: Out
<< " msp430_intrcc "; break;
1783 case CallingConv::PTX_Kernel
: Out
<< " ptx_kernel"; break;
1784 case CallingConv::PTX_Device
: Out
<< " ptx_device"; break;
1785 default: Out
<< " cc" << II
->getCallingConv(); break;
1788 if (PAL
.getRetAttributes() != Attribute::None
)
1789 Out
<< ' ' << Attribute::getAsString(PAL
.getRetAttributes());
1791 // If possible, print out the short form of the invoke instruction. We can
1792 // only do this if the first argument is a pointer to a nonvararg function,
1793 // and if the return type is not a pointer to a function.
1796 if (!FTy
->isVarArg() &&
1797 (!RetTy
->isPointerTy() ||
1798 !cast
<PointerType
>(RetTy
)->getElementType()->isFunctionTy())) {
1799 TypePrinter
.print(RetTy
, Out
);
1801 writeOperand(Operand
, false);
1803 writeOperand(Operand
, true);
1806 for (unsigned op
= 0, Eop
= II
->getNumArgOperands(); op
< Eop
; ++op
) {
1809 writeParamOperand(II
->getArgOperand(op
), PAL
.getParamAttributes(op
+ 1));
1813 if (PAL
.getFnAttributes() != Attribute::None
)
1814 Out
<< ' ' << Attribute::getAsString(PAL
.getFnAttributes());
1817 writeOperand(II
->getNormalDest(), true);
1819 writeOperand(II
->getUnwindDest(), true);
1821 } else if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(&I
)) {
1823 TypePrinter
.print(AI
->getType()->getElementType(), Out
);
1824 if (!AI
->getArraySize() || AI
->isArrayAllocation()) {
1826 writeOperand(AI
->getArraySize(), true);
1828 if (AI
->getAlignment()) {
1829 Out
<< ", align " << AI
->getAlignment();
1831 } else if (isa
<CastInst
>(I
)) {
1834 writeOperand(Operand
, true); // Work with broken code
1837 TypePrinter
.print(I
.getType(), Out
);
1838 } else if (isa
<VAArgInst
>(I
)) {
1841 writeOperand(Operand
, true); // Work with broken code
1844 TypePrinter
.print(I
.getType(), Out
);
1845 } else if (Operand
) { // Print the normal way.
1847 // PrintAllTypes - Instructions who have operands of all the same type
1848 // omit the type from all but the first operand. If the instruction has
1849 // different type operands (for example br), then they are all printed.
1850 bool PrintAllTypes
= false;
1851 Type
*TheType
= Operand
->getType();
1853 // Select, Store and ShuffleVector always print all types.
1854 if (isa
<SelectInst
>(I
) || isa
<StoreInst
>(I
) || isa
<ShuffleVectorInst
>(I
)
1855 || isa
<ReturnInst
>(I
)) {
1856 PrintAllTypes
= true;
1858 for (unsigned i
= 1, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1859 Operand
= I
.getOperand(i
);
1860 // note that Operand shouldn't be null, but the test helps make dump()
1861 // more tolerant of malformed IR
1862 if (Operand
&& Operand
->getType() != TheType
) {
1863 PrintAllTypes
= true; // We have differing types! Print them all!
1869 if (!PrintAllTypes
) {
1871 TypePrinter
.print(TheType
, Out
);
1875 for (unsigned i
= 0, E
= I
.getNumOperands(); i
!= E
; ++i
) {
1877 writeOperand(I
.getOperand(i
), PrintAllTypes
);
1881 // Print post operand alignment for load/store.
1882 if (isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
).getAlignment()) {
1883 Out
<< ", align " << cast
<LoadInst
>(I
).getAlignment();
1884 } else if (isa
<StoreInst
>(I
) && cast
<StoreInst
>(I
).getAlignment()) {
1885 Out
<< ", align " << cast
<StoreInst
>(I
).getAlignment();
1888 // Print Metadata info.
1889 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> InstMD
;
1890 I
.getAllMetadata(InstMD
);
1891 if (!InstMD
.empty()) {
1892 SmallVector
<StringRef
, 8> MDNames
;
1893 I
.getType()->getContext().getMDKindNames(MDNames
);
1894 for (unsigned i
= 0, e
= InstMD
.size(); i
!= e
; ++i
) {
1895 unsigned Kind
= InstMD
[i
].first
;
1896 if (Kind
< MDNames
.size()) {
1897 Out
<< ", !" << MDNames
[Kind
];
1899 Out
<< ", !<unknown kind #" << Kind
<< ">";
1902 WriteAsOperandInternal(Out
, InstMD
[i
].second
, &TypePrinter
, &Machine
,
1906 printInfoComment(I
);
1909 static void WriteMDNodeComment(const MDNode
*Node
,
1910 formatted_raw_ostream
&Out
) {
1911 if (Node
->getNumOperands() < 1)
1913 ConstantInt
*CI
= dyn_cast_or_null
<ConstantInt
>(Node
->getOperand(0));
1915 APInt Val
= CI
->getValue();
1916 APInt Tag
= Val
& ~APInt(Val
.getBitWidth(), LLVMDebugVersionMask
);
1917 if (Val
.ult(LLVMDebugVersion
))
1920 Out
.PadToColumn(50);
1921 if (Tag
== dwarf::DW_TAG_user_base
)
1922 Out
<< "; [ DW_TAG_user_base ]";
1923 else if (Tag
.isIntN(32)) {
1924 if (const char *TagName
= dwarf::TagString(Tag
.getZExtValue()))
1925 Out
<< "; [ " << TagName
<< " ]";
1929 void AssemblyWriter::writeAllMDNodes() {
1930 SmallVector
<const MDNode
*, 16> Nodes
;
1931 Nodes
.resize(Machine
.mdn_size());
1932 for (SlotTracker::mdn_iterator I
= Machine
.mdn_begin(), E
= Machine
.mdn_end();
1934 Nodes
[I
->second
] = cast
<MDNode
>(I
->first
);
1936 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
1937 Out
<< '!' << i
<< " = metadata ";
1938 printMDNodeBody(Nodes
[i
]);
1942 void AssemblyWriter::printMDNodeBody(const MDNode
*Node
) {
1943 WriteMDNodeBodyInternal(Out
, Node
, &TypePrinter
, &Machine
, TheModule
);
1944 WriteMDNodeComment(Node
, Out
);
1948 //===----------------------------------------------------------------------===//
1949 // External Interface declarations
1950 //===----------------------------------------------------------------------===//
1952 void Module::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
) const {
1953 SlotTracker
SlotTable(this);
1954 formatted_raw_ostream
OS(ROS
);
1955 AssemblyWriter
W(OS
, SlotTable
, this, AAW
);
1956 W
.printModule(this);
1959 void NamedMDNode::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
) const {
1960 SlotTracker
SlotTable(getParent());
1961 formatted_raw_ostream
OS(ROS
);
1962 AssemblyWriter
W(OS
, SlotTable
, getParent(), AAW
);
1963 W
.printNamedMDNode(this);
1966 void Type::print(raw_ostream
&OS
) const {
1968 OS
<< "<null Type>";
1972 TP
.print(const_cast<Type
*>(this), OS
);
1974 // If the type is a named struct type, print the body as well.
1975 if (StructType
*STy
= dyn_cast
<StructType
>(const_cast<Type
*>(this)))
1976 if (!STy
->isAnonymous()) {
1978 TP
.printStructBody(STy
, OS
);
1982 void Value::print(raw_ostream
&ROS
, AssemblyAnnotationWriter
*AAW
) const {
1984 ROS
<< "printing a <null> value\n";
1987 formatted_raw_ostream
OS(ROS
);
1988 if (const Instruction
*I
= dyn_cast
<Instruction
>(this)) {
1989 const Function
*F
= I
->getParent() ? I
->getParent()->getParent() : 0;
1990 SlotTracker
SlotTable(F
);
1991 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(I
), AAW
);
1992 W
.printInstruction(*I
);
1993 } else if (const BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this)) {
1994 SlotTracker
SlotTable(BB
->getParent());
1995 AssemblyWriter
W(OS
, SlotTable
, getModuleFromVal(BB
), AAW
);
1996 W
.printBasicBlock(BB
);
1997 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(this)) {
1998 SlotTracker
SlotTable(GV
->getParent());
1999 AssemblyWriter
W(OS
, SlotTable
, GV
->getParent(), AAW
);
2000 if (const GlobalVariable
*V
= dyn_cast
<GlobalVariable
>(GV
))
2002 else if (const Function
*F
= dyn_cast
<Function
>(GV
))
2005 W
.printAlias(cast
<GlobalAlias
>(GV
));
2006 } else if (const MDNode
*N
= dyn_cast
<MDNode
>(this)) {
2007 const Function
*F
= N
->getFunction();
2008 SlotTracker
SlotTable(F
);
2009 AssemblyWriter
W(OS
, SlotTable
, F
? F
->getParent() : 0, AAW
);
2010 W
.printMDNodeBody(N
);
2011 } else if (const Constant
*C
= dyn_cast
<Constant
>(this)) {
2012 TypePrinting TypePrinter
;
2013 TypePrinter
.print(C
->getType(), OS
);
2015 WriteConstantInternal(OS
, C
, TypePrinter
, 0, 0);
2016 } else if (isa
<InlineAsm
>(this) || isa
<MDString
>(this) ||
2017 isa
<Argument
>(this)) {
2018 WriteAsOperand(OS
, this, true, 0);
2020 // Otherwise we don't know what it is. Call the virtual function to
2021 // allow a subclass to print itself.
2026 // Value::printCustom - subclasses should override this to implement printing.
2027 void Value::printCustom(raw_ostream
&OS
) const {
2028 llvm_unreachable("Unknown value to print out!");
2031 // Value::dump - allow easy printing of Values from the debugger.
2032 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2034 // Type::dump - allow easy printing of Types from the debugger.
2035 void Type::dump() const { print(dbgs()); }
2037 // Module::dump() - Allow printing of Modules from the debugger.
2038 void Module::dump() const { print(dbgs(), 0); }