1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines routines for folding instructions into constants.
12 // Also, to supplement the basic VMCore ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // TargetData information. These functions cannot go in VMCore due to library
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Operator.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GetElementPtrTypeIterator.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/FEnv.h"
39 //===----------------------------------------------------------------------===//
40 // Constant Folding internal helper functions
41 //===----------------------------------------------------------------------===//
43 /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
44 /// TargetData. This always returns a non-null constant, but it may be a
45 /// ConstantExpr if unfoldable.
46 static Constant
*FoldBitCast(Constant
*C
, const Type
*DestTy
,
47 const TargetData
&TD
) {
49 // This only handles casts to vectors currently.
50 const VectorType
*DestVTy
= dyn_cast
<VectorType
>(DestTy
);
52 return ConstantExpr::getBitCast(C
, DestTy
);
54 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
55 // vector so the code below can handle it uniformly.
56 if (isa
<ConstantFP
>(C
) || isa
<ConstantInt
>(C
)) {
57 Constant
*Ops
= C
; // don't take the address of C!
58 return FoldBitCast(ConstantVector::get(Ops
), DestTy
, TD
);
61 // If this is a bitcast from constant vector -> vector, fold it.
62 ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
);
64 return ConstantExpr::getBitCast(C
, DestTy
);
66 // If the element types match, VMCore can fold it.
67 unsigned NumDstElt
= DestVTy
->getNumElements();
68 unsigned NumSrcElt
= CV
->getNumOperands();
69 if (NumDstElt
== NumSrcElt
)
70 return ConstantExpr::getBitCast(C
, DestTy
);
72 const Type
*SrcEltTy
= CV
->getType()->getElementType();
73 const Type
*DstEltTy
= DestVTy
->getElementType();
75 // Otherwise, we're changing the number of elements in a vector, which
76 // requires endianness information to do the right thing. For example,
77 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
78 // folds to (little endian):
79 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
80 // and to (big endian):
81 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
83 // First thing is first. We only want to think about integer here, so if
84 // we have something in FP form, recast it as integer.
85 if (DstEltTy
->isFloatingPointTy()) {
86 // Fold to an vector of integers with same size as our FP type.
87 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
88 const Type
*DestIVTy
=
89 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumDstElt
);
90 // Recursively handle this integer conversion, if possible.
91 C
= FoldBitCast(C
, DestIVTy
, TD
);
92 if (!C
) return ConstantExpr::getBitCast(C
, DestTy
);
94 // Finally, VMCore can handle this now that #elts line up.
95 return ConstantExpr::getBitCast(C
, DestTy
);
98 // Okay, we know the destination is integer, if the input is FP, convert
99 // it to integer first.
100 if (SrcEltTy
->isFloatingPointTy()) {
101 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
102 const Type
*SrcIVTy
=
103 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumSrcElt
);
104 // Ask VMCore to do the conversion now that #elts line up.
105 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
106 CV
= dyn_cast
<ConstantVector
>(C
);
107 if (!CV
) // If VMCore wasn't able to fold it, bail out.
111 // Now we know that the input and output vectors are both integer vectors
112 // of the same size, and that their #elements is not the same. Do the
113 // conversion here, which depends on whether the input or output has
115 bool isLittleEndian
= TD
.isLittleEndian();
117 SmallVector
<Constant
*, 32> Result
;
118 if (NumDstElt
< NumSrcElt
) {
119 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
120 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
121 unsigned Ratio
= NumSrcElt
/NumDstElt
;
122 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
124 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
125 // Build each element of the result.
126 Constant
*Elt
= Zero
;
127 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
128 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
129 Constant
*Src
= dyn_cast
<ConstantInt
>(CV
->getOperand(SrcElt
++));
130 if (!Src
) // Reject constantexpr elements.
131 return ConstantExpr::getBitCast(C
, DestTy
);
133 // Zero extend the element to the right size.
134 Src
= ConstantExpr::getZExt(Src
, Elt
->getType());
136 // Shift it to the right place, depending on endianness.
137 Src
= ConstantExpr::getShl(Src
,
138 ConstantInt::get(Src
->getType(), ShiftAmt
));
139 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
142 Elt
= ConstantExpr::getOr(Elt
, Src
);
144 Result
.push_back(Elt
);
147 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
148 unsigned Ratio
= NumDstElt
/NumSrcElt
;
149 unsigned DstBitSize
= DstEltTy
->getPrimitiveSizeInBits();
151 // Loop over each source value, expanding into multiple results.
152 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
153 Constant
*Src
= dyn_cast
<ConstantInt
>(CV
->getOperand(i
));
154 if (!Src
) // Reject constantexpr elements.
155 return ConstantExpr::getBitCast(C
, DestTy
);
157 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
158 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
159 // Shift the piece of the value into the right place, depending on
161 Constant
*Elt
= ConstantExpr::getLShr(Src
,
162 ConstantInt::get(Src
->getType(), ShiftAmt
));
163 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
165 // Truncate and remember this piece.
166 Result
.push_back(ConstantExpr::getTrunc(Elt
, DstEltTy
));
171 return ConstantVector::get(Result
);
175 /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
176 /// from a global, return the global and the constant. Because of
177 /// constantexprs, this function is recursive.
178 static bool IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
179 int64_t &Offset
, const TargetData
&TD
) {
180 // Trivial case, constant is the global.
181 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
186 // Otherwise, if this isn't a constant expr, bail out.
187 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
188 if (!CE
) return false;
190 // Look through ptr->int and ptr->ptr casts.
191 if (CE
->getOpcode() == Instruction::PtrToInt
||
192 CE
->getOpcode() == Instruction::BitCast
)
193 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, TD
);
195 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
196 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
197 // Cannot compute this if the element type of the pointer is missing size
199 if (!cast
<PointerType
>(CE
->getOperand(0)->getType())
200 ->getElementType()->isSized())
203 // If the base isn't a global+constant, we aren't either.
204 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, TD
))
207 // Otherwise, add any offset that our operands provide.
208 gep_type_iterator GTI
= gep_type_begin(CE
);
209 for (User::const_op_iterator i
= CE
->op_begin() + 1, e
= CE
->op_end();
210 i
!= e
; ++i
, ++GTI
) {
211 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*i
);
212 if (!CI
) return false; // Index isn't a simple constant?
213 if (CI
->isZero()) continue; // Not adding anything.
215 if (const StructType
*ST
= dyn_cast
<StructType
>(*GTI
)) {
217 Offset
+= TD
.getStructLayout(ST
)->getElementOffset(CI
->getZExtValue());
219 const SequentialType
*SQT
= cast
<SequentialType
>(*GTI
);
220 Offset
+= TD
.getTypeAllocSize(SQT
->getElementType())*CI
->getSExtValue();
229 /// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
230 /// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
231 /// pointer to copy results into and BytesLeft is the number of bytes left in
232 /// the CurPtr buffer. TD is the target data.
233 static bool ReadDataFromGlobal(Constant
*C
, uint64_t ByteOffset
,
234 unsigned char *CurPtr
, unsigned BytesLeft
,
235 const TargetData
&TD
) {
236 assert(ByteOffset
<= TD
.getTypeAllocSize(C
->getType()) &&
237 "Out of range access");
239 // If this element is zero or undefined, we can just return since *CurPtr is
241 if (isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
))
244 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
245 if (CI
->getBitWidth() > 64 ||
246 (CI
->getBitWidth() & 7) != 0)
249 uint64_t Val
= CI
->getZExtValue();
250 unsigned IntBytes
= unsigned(CI
->getBitWidth()/8);
252 for (unsigned i
= 0; i
!= BytesLeft
&& ByteOffset
!= IntBytes
; ++i
) {
253 CurPtr
[i
] = (unsigned char)(Val
>> (ByteOffset
* 8));
259 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
260 if (CFP
->getType()->isDoubleTy()) {
261 C
= FoldBitCast(C
, Type::getInt64Ty(C
->getContext()), TD
);
262 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, TD
);
264 if (CFP
->getType()->isFloatTy()){
265 C
= FoldBitCast(C
, Type::getInt32Ty(C
->getContext()), TD
);
266 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, TD
);
271 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(C
)) {
272 const StructLayout
*SL
= TD
.getStructLayout(CS
->getType());
273 unsigned Index
= SL
->getElementContainingOffset(ByteOffset
);
274 uint64_t CurEltOffset
= SL
->getElementOffset(Index
);
275 ByteOffset
-= CurEltOffset
;
278 // If the element access is to the element itself and not to tail padding,
279 // read the bytes from the element.
280 uint64_t EltSize
= TD
.getTypeAllocSize(CS
->getOperand(Index
)->getType());
282 if (ByteOffset
< EltSize
&&
283 !ReadDataFromGlobal(CS
->getOperand(Index
), ByteOffset
, CurPtr
,
289 // Check to see if we read from the last struct element, if so we're done.
290 if (Index
== CS
->getType()->getNumElements())
293 // If we read all of the bytes we needed from this element we're done.
294 uint64_t NextEltOffset
= SL
->getElementOffset(Index
);
296 if (BytesLeft
<= NextEltOffset
-CurEltOffset
-ByteOffset
)
299 // Move to the next element of the struct.
300 CurPtr
+= NextEltOffset
-CurEltOffset
-ByteOffset
;
301 BytesLeft
-= NextEltOffset
-CurEltOffset
-ByteOffset
;
303 CurEltOffset
= NextEltOffset
;
308 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(C
)) {
309 uint64_t EltSize
= TD
.getTypeAllocSize(CA
->getType()->getElementType());
310 uint64_t Index
= ByteOffset
/ EltSize
;
311 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
312 for (; Index
!= CA
->getType()->getNumElements(); ++Index
) {
313 if (!ReadDataFromGlobal(CA
->getOperand(Index
), Offset
, CurPtr
,
316 if (EltSize
>= BytesLeft
)
320 BytesLeft
-= EltSize
;
326 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
327 uint64_t EltSize
= TD
.getTypeAllocSize(CV
->getType()->getElementType());
328 uint64_t Index
= ByteOffset
/ EltSize
;
329 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
330 for (; Index
!= CV
->getType()->getNumElements(); ++Index
) {
331 if (!ReadDataFromGlobal(CV
->getOperand(Index
), Offset
, CurPtr
,
334 if (EltSize
>= BytesLeft
)
338 BytesLeft
-= EltSize
;
344 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
345 if (CE
->getOpcode() == Instruction::IntToPtr
&&
346 CE
->getOperand(0)->getType() == TD
.getIntPtrType(CE
->getContext()))
347 return ReadDataFromGlobal(CE
->getOperand(0), ByteOffset
, CurPtr
,
351 // Otherwise, unknown initializer type.
355 static Constant
*FoldReinterpretLoadFromConstPtr(Constant
*C
,
356 const TargetData
&TD
) {
357 const Type
*LoadTy
= cast
<PointerType
>(C
->getType())->getElementType();
358 const IntegerType
*IntType
= dyn_cast
<IntegerType
>(LoadTy
);
360 // If this isn't an integer load we can't fold it directly.
362 // If this is a float/double load, we can try folding it as an int32/64 load
363 // and then bitcast the result. This can be useful for union cases. Note
364 // that address spaces don't matter here since we're not going to result in
365 // an actual new load.
367 if (LoadTy
->isFloatTy())
368 MapTy
= Type::getInt32PtrTy(C
->getContext());
369 else if (LoadTy
->isDoubleTy())
370 MapTy
= Type::getInt64PtrTy(C
->getContext());
371 else if (LoadTy
->isVectorTy()) {
372 MapTy
= IntegerType::get(C
->getContext(),
373 TD
.getTypeAllocSizeInBits(LoadTy
));
374 MapTy
= PointerType::getUnqual(MapTy
);
378 C
= FoldBitCast(C
, MapTy
, TD
);
379 if (Constant
*Res
= FoldReinterpretLoadFromConstPtr(C
, TD
))
380 return FoldBitCast(Res
, LoadTy
, TD
);
384 unsigned BytesLoaded
= (IntType
->getBitWidth() + 7) / 8;
385 if (BytesLoaded
> 32 || BytesLoaded
== 0) return 0;
389 if (!IsConstantOffsetFromGlobal(C
, GVal
, Offset
, TD
))
392 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GVal
);
393 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
394 !GV
->getInitializer()->getType()->isSized())
397 // If we're loading off the beginning of the global, some bytes may be valid,
398 // but we don't try to handle this.
399 if (Offset
< 0) return 0;
401 // If we're not accessing anything in this constant, the result is undefined.
402 if (uint64_t(Offset
) >= TD
.getTypeAllocSize(GV
->getInitializer()->getType()))
403 return UndefValue::get(IntType
);
405 unsigned char RawBytes
[32] = {0};
406 if (!ReadDataFromGlobal(GV
->getInitializer(), Offset
, RawBytes
,
410 APInt ResultVal
= APInt(IntType
->getBitWidth(), RawBytes
[BytesLoaded
-1]);
411 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
413 ResultVal
|= RawBytes
[BytesLoaded
-1-i
];
416 return ConstantInt::get(IntType
->getContext(), ResultVal
);
419 /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
420 /// produce if it is constant and determinable. If this is not determinable,
422 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
,
423 const TargetData
*TD
) {
424 // First, try the easy cases:
425 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(C
))
426 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
427 return GV
->getInitializer();
429 // If the loaded value isn't a constant expr, we can't handle it.
430 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
433 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
434 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0)))
435 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
437 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
))
441 // Instead of loading constant c string, use corresponding integer value
442 // directly if string length is small enough.
444 if (TD
&& GetConstantStringInfo(CE
, Str
) && !Str
.empty()) {
445 unsigned StrLen
= Str
.length();
446 const Type
*Ty
= cast
<PointerType
>(CE
->getType())->getElementType();
447 unsigned NumBits
= Ty
->getPrimitiveSizeInBits();
448 // Replace load with immediate integer if the result is an integer or fp
450 if ((NumBits
>> 3) == StrLen
+ 1 && (NumBits
& 7) == 0 &&
451 (isa
<IntegerType
>(Ty
) || Ty
->isFloatingPointTy())) {
452 APInt
StrVal(NumBits
, 0);
453 APInt
SingleChar(NumBits
, 0);
454 if (TD
->isLittleEndian()) {
455 for (signed i
= StrLen
-1; i
>= 0; i
--) {
456 SingleChar
= (uint64_t) Str
[i
] & UCHAR_MAX
;
457 StrVal
= (StrVal
<< 8) | SingleChar
;
460 for (unsigned i
= 0; i
< StrLen
; i
++) {
461 SingleChar
= (uint64_t) Str
[i
] & UCHAR_MAX
;
462 StrVal
= (StrVal
<< 8) | SingleChar
;
464 // Append NULL at the end.
466 StrVal
= (StrVal
<< 8) | SingleChar
;
469 Constant
*Res
= ConstantInt::get(CE
->getContext(), StrVal
);
470 if (Ty
->isFloatingPointTy())
471 Res
= ConstantExpr::getBitCast(Res
, Ty
);
476 // If this load comes from anywhere in a constant global, and if the global
477 // is all undef or zero, we know what it loads.
478 if (GlobalVariable
*GV
=
479 dyn_cast
<GlobalVariable
>(GetUnderlyingObject(CE
, TD
))) {
480 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
481 const Type
*ResTy
= cast
<PointerType
>(C
->getType())->getElementType();
482 if (GV
->getInitializer()->isNullValue())
483 return Constant::getNullValue(ResTy
);
484 if (isa
<UndefValue
>(GV
->getInitializer()))
485 return UndefValue::get(ResTy
);
489 // Try hard to fold loads from bitcasted strange and non-type-safe things. We
490 // currently don't do any of this for big endian systems. It can be
491 // generalized in the future if someone is interested.
492 if (TD
&& TD
->isLittleEndian())
493 return FoldReinterpretLoadFromConstPtr(CE
, *TD
);
497 static Constant
*ConstantFoldLoadInst(const LoadInst
*LI
, const TargetData
*TD
){
498 if (LI
->isVolatile()) return 0;
500 if (Constant
*C
= dyn_cast
<Constant
>(LI
->getOperand(0)))
501 return ConstantFoldLoadFromConstPtr(C
, TD
);
506 /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
507 /// Attempt to symbolically evaluate the result of a binary operator merging
508 /// these together. If target data info is available, it is provided as TD,
509 /// otherwise TD is null.
510 static Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
,
511 Constant
*Op1
, const TargetData
*TD
){
514 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
515 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
519 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
520 // constant. This happens frequently when iterating over a global array.
521 if (Opc
== Instruction::Sub
&& TD
) {
522 GlobalValue
*GV1
, *GV2
;
523 int64_t Offs1
, Offs2
;
525 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, *TD
))
526 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, *TD
) &&
528 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
529 return ConstantInt::get(Op0
->getType(), Offs1
-Offs2
);
536 /// CastGEPIndices - If array indices are not pointer-sized integers,
537 /// explicitly cast them so that they aren't implicitly casted by the
539 static Constant
*CastGEPIndices(Constant
*const *Ops
, unsigned NumOps
,
540 const Type
*ResultTy
,
541 const TargetData
*TD
) {
543 const Type
*IntPtrTy
= TD
->getIntPtrType(ResultTy
->getContext());
546 SmallVector
<Constant
*, 32> NewIdxs
;
547 for (unsigned i
= 1; i
!= NumOps
; ++i
) {
549 !isa
<StructType
>(GetElementPtrInst::getIndexedType(Ops
[0]->getType(),
550 reinterpret_cast<Value
*const *>(Ops
+1),
552 Ops
[i
]->getType() != IntPtrTy
) {
554 NewIdxs
.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops
[i
],
560 NewIdxs
.push_back(Ops
[i
]);
565 ConstantExpr::getGetElementPtr(Ops
[0], &NewIdxs
[0], NewIdxs
.size());
566 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
))
567 if (Constant
*Folded
= ConstantFoldConstantExpression(CE
, TD
))
572 /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
573 /// constant expression, do so.
574 static Constant
*SymbolicallyEvaluateGEP(Constant
*const *Ops
, unsigned NumOps
,
575 const Type
*ResultTy
,
576 const TargetData
*TD
) {
577 Constant
*Ptr
= Ops
[0];
578 if (!TD
|| !cast
<PointerType
>(Ptr
->getType())->getElementType()->isSized())
581 const Type
*IntPtrTy
= TD
->getIntPtrType(Ptr
->getContext());
583 // If this is a constant expr gep that is effectively computing an
584 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
585 for (unsigned i
= 1; i
!= NumOps
; ++i
)
586 if (!isa
<ConstantInt
>(Ops
[i
])) {
588 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
589 // "inttoptr (sub (ptrtoint Ptr), V)"
591 cast
<PointerType
>(ResultTy
)->getElementType()->isIntegerTy(8)) {
592 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ops
[1]);
593 assert((CE
== 0 || CE
->getType() == IntPtrTy
) &&
594 "CastGEPIndices didn't canonicalize index types!");
595 if (CE
&& CE
->getOpcode() == Instruction::Sub
&&
596 CE
->getOperand(0)->isNullValue()) {
597 Constant
*Res
= ConstantExpr::getPtrToInt(Ptr
, CE
->getType());
598 Res
= ConstantExpr::getSub(Res
, CE
->getOperand(1));
599 Res
= ConstantExpr::getIntToPtr(Res
, ResultTy
);
600 if (ConstantExpr
*ResCE
= dyn_cast
<ConstantExpr
>(Res
))
601 Res
= ConstantFoldConstantExpression(ResCE
, TD
);
608 unsigned BitWidth
= TD
->getTypeSizeInBits(IntPtrTy
);
609 APInt Offset
= APInt(BitWidth
,
610 TD
->getIndexedOffset(Ptr
->getType(),
611 (Value
**)Ops
+1, NumOps
-1));
612 Ptr
= cast
<Constant
>(Ptr
->stripPointerCasts());
614 // If this is a GEP of a GEP, fold it all into a single GEP.
615 while (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
616 SmallVector
<Value
*, 4> NestedOps(GEP
->op_begin()+1, GEP
->op_end());
618 // Do not try the incorporate the sub-GEP if some index is not a number.
619 bool AllConstantInt
= true;
620 for (unsigned i
= 0, e
= NestedOps
.size(); i
!= e
; ++i
)
621 if (!isa
<ConstantInt
>(NestedOps
[i
])) {
622 AllConstantInt
= false;
628 Ptr
= cast
<Constant
>(GEP
->getOperand(0));
629 Offset
+= APInt(BitWidth
,
630 TD
->getIndexedOffset(Ptr
->getType(),
631 (Value
**)NestedOps
.data(),
633 Ptr
= cast
<Constant
>(Ptr
->stripPointerCasts());
636 // If the base value for this address is a literal integer value, fold the
637 // getelementptr to the resulting integer value casted to the pointer type.
638 APInt
BasePtr(BitWidth
, 0);
639 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
640 if (CE
->getOpcode() == Instruction::IntToPtr
)
641 if (ConstantInt
*Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
642 BasePtr
= Base
->getValue().zextOrTrunc(BitWidth
);
643 if (Ptr
->isNullValue() || BasePtr
!= 0) {
644 Constant
*C
= ConstantInt::get(Ptr
->getContext(), Offset
+BasePtr
);
645 return ConstantExpr::getIntToPtr(C
, ResultTy
);
648 // Otherwise form a regular getelementptr. Recompute the indices so that
649 // we eliminate over-indexing of the notional static type array bounds.
650 // This makes it easy to determine if the getelementptr is "inbounds".
651 // Also, this helps GlobalOpt do SROA on GlobalVariables.
652 const Type
*Ty
= Ptr
->getType();
653 SmallVector
<Constant
*, 32> NewIdxs
;
655 if (const SequentialType
*ATy
= dyn_cast
<SequentialType
>(Ty
)) {
656 if (ATy
->isPointerTy()) {
657 // The only pointer indexing we'll do is on the first index of the GEP.
658 if (!NewIdxs
.empty())
661 // Only handle pointers to sized types, not pointers to functions.
662 if (!ATy
->getElementType()->isSized())
666 // Determine which element of the array the offset points into.
667 APInt
ElemSize(BitWidth
, TD
->getTypeAllocSize(ATy
->getElementType()));
668 const IntegerType
*IntPtrTy
= TD
->getIntPtrType(Ty
->getContext());
670 // The element size is 0. This may be [0 x Ty]*, so just use a zero
671 // index for this level and proceed to the next level to see if it can
672 // accommodate the offset.
673 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, 0));
675 // The element size is non-zero divide the offset by the element
676 // size (rounding down), to compute the index at this level.
677 APInt NewIdx
= Offset
.udiv(ElemSize
);
678 Offset
-= NewIdx
* ElemSize
;
679 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, NewIdx
));
681 Ty
= ATy
->getElementType();
682 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
683 // Determine which field of the struct the offset points into. The
684 // getZExtValue is at least as safe as the StructLayout API because we
685 // know the offset is within the struct at this point.
686 const StructLayout
&SL
= *TD
->getStructLayout(STy
);
687 unsigned ElIdx
= SL
.getElementContainingOffset(Offset
.getZExtValue());
688 NewIdxs
.push_back(ConstantInt::get(Type::getInt32Ty(Ty
->getContext()),
690 Offset
-= APInt(BitWidth
, SL
.getElementOffset(ElIdx
));
691 Ty
= STy
->getTypeAtIndex(ElIdx
);
693 // We've reached some non-indexable type.
696 } while (Ty
!= cast
<PointerType
>(ResultTy
)->getElementType());
698 // If we haven't used up the entire offset by descending the static
699 // type, then the offset is pointing into the middle of an indivisible
700 // member, so we can't simplify it.
706 ConstantExpr::getGetElementPtr(Ptr
, &NewIdxs
[0], NewIdxs
.size());
707 assert(cast
<PointerType
>(C
->getType())->getElementType() == Ty
&&
708 "Computed GetElementPtr has unexpected type!");
710 // If we ended up indexing a member with a type that doesn't match
711 // the type of what the original indices indexed, add a cast.
712 if (Ty
!= cast
<PointerType
>(ResultTy
)->getElementType())
713 C
= FoldBitCast(C
, ResultTy
, *TD
);
720 //===----------------------------------------------------------------------===//
721 // Constant Folding public APIs
722 //===----------------------------------------------------------------------===//
724 /// ConstantFoldInstruction - Try to constant fold the specified instruction.
725 /// If successful, the constant result is returned, if not, null is returned.
726 /// Note that this fails if not all of the operands are constant. Otherwise,
727 /// this function can only fail when attempting to fold instructions like loads
728 /// and stores, which have no constant expression form.
729 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const TargetData
*TD
) {
730 // Handle PHI nodes quickly here...
731 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
732 Constant
*CommonValue
= 0;
734 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
735 Value
*Incoming
= PN
->getIncomingValue(i
);
736 // If the incoming value is undef then skip it. Note that while we could
737 // skip the value if it is equal to the phi node itself we choose not to
738 // because that would break the rule that constant folding only applies if
739 // all operands are constants.
740 if (isa
<UndefValue
>(Incoming
))
742 // If the incoming value is not a constant, or is a different constant to
743 // the one we saw previously, then give up.
744 Constant
*C
= dyn_cast
<Constant
>(Incoming
);
745 if (!C
|| (CommonValue
&& C
!= CommonValue
))
750 // If we reach here, all incoming values are the same constant or undef.
751 return CommonValue
? CommonValue
: UndefValue::get(PN
->getType());
754 // Scan the operand list, checking to see if they are all constants, if so,
755 // hand off to ConstantFoldInstOperands.
756 SmallVector
<Constant
*, 8> Ops
;
757 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
758 if (Constant
*Op
= dyn_cast
<Constant
>(*i
))
761 return 0; // All operands not constant!
763 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
764 return ConstantFoldCompareInstOperands(CI
->getPredicate(), Ops
[0], Ops
[1],
767 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
768 return ConstantFoldLoadInst(LI
, TD
);
770 if (InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(I
))
771 return ConstantExpr::getInsertValue(
772 cast
<Constant
>(IVI
->getAggregateOperand()),
773 cast
<Constant
>(IVI
->getInsertedValueOperand()),
774 IVI
->idx_begin(), IVI
->getNumIndices());
776 if (ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(I
))
777 return ConstantExpr::getExtractValue(
778 cast
<Constant
>(EVI
->getAggregateOperand()),
779 EVI
->idx_begin(), EVI
->getNumIndices());
781 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
782 Ops
.data(), Ops
.size(), TD
);
785 /// ConstantFoldConstantExpression - Attempt to fold the constant expression
786 /// using the specified TargetData. If successful, the constant result is
787 /// result is returned, if not, null is returned.
788 Constant
*llvm::ConstantFoldConstantExpression(const ConstantExpr
*CE
,
789 const TargetData
*TD
) {
790 SmallVector
<Constant
*, 8> Ops
;
791 for (User::const_op_iterator i
= CE
->op_begin(), e
= CE
->op_end();
793 Constant
*NewC
= cast
<Constant
>(*i
);
794 // Recursively fold the ConstantExpr's operands.
795 if (ConstantExpr
*NewCE
= dyn_cast
<ConstantExpr
>(NewC
))
796 NewC
= ConstantFoldConstantExpression(NewCE
, TD
);
801 return ConstantFoldCompareInstOperands(CE
->getPredicate(), Ops
[0], Ops
[1],
803 return ConstantFoldInstOperands(CE
->getOpcode(), CE
->getType(),
804 Ops
.data(), Ops
.size(), TD
);
807 /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
808 /// specified opcode and operands. If successful, the constant result is
809 /// returned, if not, null is returned. Note that this function can fail when
810 /// attempting to fold instructions like loads and stores, which have no
811 /// constant expression form.
813 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
814 /// information, due to only being passed an opcode and operands. Constant
815 /// folding using this function strips this information.
817 Constant
*llvm::ConstantFoldInstOperands(unsigned Opcode
, const Type
*DestTy
,
818 Constant
* const* Ops
, unsigned NumOps
,
819 const TargetData
*TD
) {
820 // Handle easy binops first.
821 if (Instruction::isBinaryOp(Opcode
)) {
822 if (isa
<ConstantExpr
>(Ops
[0]) || isa
<ConstantExpr
>(Ops
[1]))
823 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, Ops
[0], Ops
[1], TD
))
826 return ConstantExpr::get(Opcode
, Ops
[0], Ops
[1]);
831 case Instruction::ICmp
:
832 case Instruction::FCmp
: assert(0 && "Invalid for compares");
833 case Instruction::Call
:
834 if (Function
*F
= dyn_cast
<Function
>(Ops
[NumOps
- 1]))
835 if (canConstantFoldCallTo(F
))
836 return ConstantFoldCall(F
, Ops
, NumOps
- 1);
838 case Instruction::PtrToInt
:
839 // If the input is a inttoptr, eliminate the pair. This requires knowing
840 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
841 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ops
[0])) {
842 if (TD
&& CE
->getOpcode() == Instruction::IntToPtr
) {
843 Constant
*Input
= CE
->getOperand(0);
844 unsigned InWidth
= Input
->getType()->getScalarSizeInBits();
845 if (TD
->getPointerSizeInBits() < InWidth
) {
847 ConstantInt::get(CE
->getContext(), APInt::getLowBitsSet(InWidth
,
848 TD
->getPointerSizeInBits()));
849 Input
= ConstantExpr::getAnd(Input
, Mask
);
851 // Do a zext or trunc to get to the dest size.
852 return ConstantExpr::getIntegerCast(Input
, DestTy
, false);
855 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
856 case Instruction::IntToPtr
:
857 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
858 // the int size is >= the ptr size. This requires knowing the width of a
859 // pointer, so it can't be done in ConstantExpr::getCast.
860 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ops
[0]))
862 TD
->getPointerSizeInBits() <= CE
->getType()->getScalarSizeInBits() &&
863 CE
->getOpcode() == Instruction::PtrToInt
)
864 return FoldBitCast(CE
->getOperand(0), DestTy
, *TD
);
866 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
867 case Instruction::Trunc
:
868 case Instruction::ZExt
:
869 case Instruction::SExt
:
870 case Instruction::FPTrunc
:
871 case Instruction::FPExt
:
872 case Instruction::UIToFP
:
873 case Instruction::SIToFP
:
874 case Instruction::FPToUI
:
875 case Instruction::FPToSI
:
876 return ConstantExpr::getCast(Opcode
, Ops
[0], DestTy
);
877 case Instruction::BitCast
:
879 return FoldBitCast(Ops
[0], DestTy
, *TD
);
880 return ConstantExpr::getBitCast(Ops
[0], DestTy
);
881 case Instruction::Select
:
882 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
883 case Instruction::ExtractElement
:
884 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
885 case Instruction::InsertElement
:
886 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
887 case Instruction::ShuffleVector
:
888 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
889 case Instruction::GetElementPtr
:
890 if (Constant
*C
= CastGEPIndices(Ops
, NumOps
, DestTy
, TD
))
892 if (Constant
*C
= SymbolicallyEvaluateGEP(Ops
, NumOps
, DestTy
, TD
))
895 return ConstantExpr::getGetElementPtr(Ops
[0], Ops
+1, NumOps
-1);
899 /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
900 /// instruction (icmp/fcmp) with the specified operands. If it fails, it
901 /// returns a constant expression of the specified operands.
903 Constant
*llvm::ConstantFoldCompareInstOperands(unsigned Predicate
,
904 Constant
*Ops0
, Constant
*Ops1
,
905 const TargetData
*TD
) {
906 // fold: icmp (inttoptr x), null -> icmp x, 0
907 // fold: icmp (ptrtoint x), 0 -> icmp x, null
908 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
909 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
911 // ConstantExpr::getCompare cannot do this, because it doesn't have TD
912 // around to know if bit truncation is happening.
913 if (ConstantExpr
*CE0
= dyn_cast
<ConstantExpr
>(Ops0
)) {
914 if (TD
&& Ops1
->isNullValue()) {
915 const Type
*IntPtrTy
= TD
->getIntPtrType(CE0
->getContext());
916 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
917 // Convert the integer value to the right size to ensure we get the
918 // proper extension or truncation.
919 Constant
*C
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
921 Constant
*Null
= Constant::getNullValue(C
->getType());
922 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, TD
);
925 // Only do this transformation if the int is intptrty in size, otherwise
926 // there is a truncation or extension that we aren't modeling.
927 if (CE0
->getOpcode() == Instruction::PtrToInt
&&
928 CE0
->getType() == IntPtrTy
) {
929 Constant
*C
= CE0
->getOperand(0);
930 Constant
*Null
= Constant::getNullValue(C
->getType());
931 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, TD
);
935 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(Ops1
)) {
936 if (TD
&& CE0
->getOpcode() == CE1
->getOpcode()) {
937 const Type
*IntPtrTy
= TD
->getIntPtrType(CE0
->getContext());
939 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
940 // Convert the integer value to the right size to ensure we get the
941 // proper extension or truncation.
942 Constant
*C0
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
944 Constant
*C1
= ConstantExpr::getIntegerCast(CE1
->getOperand(0),
946 return ConstantFoldCompareInstOperands(Predicate
, C0
, C1
, TD
);
949 // Only do this transformation if the int is intptrty in size, otherwise
950 // there is a truncation or extension that we aren't modeling.
951 if ((CE0
->getOpcode() == Instruction::PtrToInt
&&
952 CE0
->getType() == IntPtrTy
&&
953 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType()))
954 return ConstantFoldCompareInstOperands(Predicate
, CE0
->getOperand(0),
955 CE1
->getOperand(0), TD
);
959 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
960 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
961 if ((Predicate
== ICmpInst::ICMP_EQ
|| Predicate
== ICmpInst::ICMP_NE
) &&
962 CE0
->getOpcode() == Instruction::Or
&& Ops1
->isNullValue()) {
964 ConstantFoldCompareInstOperands(Predicate
, CE0
->getOperand(0), Ops1
,TD
);
966 ConstantFoldCompareInstOperands(Predicate
, CE0
->getOperand(1), Ops1
,TD
);
968 Predicate
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
969 Constant
*Ops
[] = { LHS
, RHS
};
970 return ConstantFoldInstOperands(OpC
, LHS
->getType(), Ops
, 2, TD
);
974 return ConstantExpr::getCompare(Predicate
, Ops0
, Ops1
);
978 /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
979 /// getelementptr constantexpr, return the constant value being addressed by the
980 /// constant expression, or null if something is funny and we can't decide.
981 Constant
*llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant
*C
,
983 if (CE
->getOperand(1) != Constant::getNullValue(CE
->getOperand(1)->getType()))
984 return 0; // Do not allow stepping over the value!
986 // Loop over all of the operands, tracking down which value we are
988 gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
989 for (++I
; I
!= E
; ++I
)
990 if (const StructType
*STy
= dyn_cast
<StructType
>(*I
)) {
991 ConstantInt
*CU
= cast
<ConstantInt
>(I
.getOperand());
992 assert(CU
->getZExtValue() < STy
->getNumElements() &&
993 "Struct index out of range!");
994 unsigned El
= (unsigned)CU
->getZExtValue();
995 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(C
)) {
996 C
= CS
->getOperand(El
);
997 } else if (isa
<ConstantAggregateZero
>(C
)) {
998 C
= Constant::getNullValue(STy
->getElementType(El
));
999 } else if (isa
<UndefValue
>(C
)) {
1000 C
= UndefValue::get(STy
->getElementType(El
));
1004 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getOperand())) {
1005 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(*I
)) {
1006 if (CI
->getZExtValue() >= ATy
->getNumElements())
1008 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(C
))
1009 C
= CA
->getOperand(CI
->getZExtValue());
1010 else if (isa
<ConstantAggregateZero
>(C
))
1011 C
= Constant::getNullValue(ATy
->getElementType());
1012 else if (isa
<UndefValue
>(C
))
1013 C
= UndefValue::get(ATy
->getElementType());
1016 } else if (const VectorType
*VTy
= dyn_cast
<VectorType
>(*I
)) {
1017 if (CI
->getZExtValue() >= VTy
->getNumElements())
1019 if (ConstantVector
*CP
= dyn_cast
<ConstantVector
>(C
))
1020 C
= CP
->getOperand(CI
->getZExtValue());
1021 else if (isa
<ConstantAggregateZero
>(C
))
1022 C
= Constant::getNullValue(VTy
->getElementType());
1023 else if (isa
<UndefValue
>(C
))
1024 C
= UndefValue::get(VTy
->getElementType());
1037 //===----------------------------------------------------------------------===//
1038 // Constant Folding for Calls
1041 /// canConstantFoldCallTo - Return true if its even possible to fold a call to
1042 /// the specified function.
1044 llvm::canConstantFoldCallTo(const Function
*F
) {
1045 switch (F
->getIntrinsicID()) {
1046 case Intrinsic::sqrt
:
1047 case Intrinsic::powi
:
1048 case Intrinsic::bswap
:
1049 case Intrinsic::ctpop
:
1050 case Intrinsic::ctlz
:
1051 case Intrinsic::cttz
:
1052 case Intrinsic::sadd_with_overflow
:
1053 case Intrinsic::uadd_with_overflow
:
1054 case Intrinsic::ssub_with_overflow
:
1055 case Intrinsic::usub_with_overflow
:
1056 case Intrinsic::smul_with_overflow
:
1057 case Intrinsic::umul_with_overflow
:
1058 case Intrinsic::convert_from_fp16
:
1059 case Intrinsic::convert_to_fp16
:
1060 case Intrinsic::x86_sse_cvtss2si
:
1061 case Intrinsic::x86_sse_cvtss2si64
:
1062 case Intrinsic::x86_sse_cvttss2si
:
1063 case Intrinsic::x86_sse_cvttss2si64
:
1064 case Intrinsic::x86_sse2_cvtsd2si
:
1065 case Intrinsic::x86_sse2_cvtsd2si64
:
1066 case Intrinsic::x86_sse2_cvttsd2si
:
1067 case Intrinsic::x86_sse2_cvttsd2si64
:
1074 if (!F
->hasName()) return false;
1075 StringRef Name
= F
->getName();
1077 // In these cases, the check of the length is required. We don't want to
1078 // return true for a name like "cos\0blah" which strcmp would return equal to
1079 // "cos", but has length 8.
1081 default: return false;
1083 return Name
== "acos" || Name
== "asin" ||
1084 Name
== "atan" || Name
== "atan2";
1086 return Name
== "cos" || Name
== "ceil" || Name
== "cosf" || Name
== "cosh";
1088 return Name
== "exp" || Name
== "exp2";
1090 return Name
== "fabs" || Name
== "fmod" || Name
== "floor";
1092 return Name
== "log" || Name
== "log10";
1094 return Name
== "pow";
1096 return Name
== "sin" || Name
== "sinh" || Name
== "sqrt" ||
1097 Name
== "sinf" || Name
== "sqrtf";
1099 return Name
== "tan" || Name
== "tanh";
1103 static Constant
*ConstantFoldFP(double (*NativeFP
)(double), double V
,
1105 sys::llvm_fenv_clearexcept();
1107 if (sys::llvm_fenv_testexcept()) {
1108 sys::llvm_fenv_clearexcept();
1112 if (Ty
->isFloatTy())
1113 return ConstantFP::get(Ty
->getContext(), APFloat((float)V
));
1114 if (Ty
->isDoubleTy())
1115 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1116 llvm_unreachable("Can only constant fold float/double");
1117 return 0; // dummy return to suppress warning
1120 static Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double),
1121 double V
, double W
, const Type
*Ty
) {
1122 sys::llvm_fenv_clearexcept();
1124 if (sys::llvm_fenv_testexcept()) {
1125 sys::llvm_fenv_clearexcept();
1129 if (Ty
->isFloatTy())
1130 return ConstantFP::get(Ty
->getContext(), APFloat((float)V
));
1131 if (Ty
->isDoubleTy())
1132 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1133 llvm_unreachable("Can only constant fold float/double");
1134 return 0; // dummy return to suppress warning
1137 /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1138 /// conversion of a constant floating point. If roundTowardZero is false, the
1139 /// default IEEE rounding is used (toward nearest, ties to even). This matches
1140 /// the behavior of the non-truncating SSE instructions in the default rounding
1141 /// mode. The desired integer type Ty is used to select how many bits are
1142 /// available for the result. Returns null if the conversion cannot be
1143 /// performed, otherwise returns the Constant value resulting from the
1145 static Constant
*ConstantFoldConvertToInt(ConstantFP
*Op
, bool roundTowardZero
,
1147 assert(Op
&& "Called with NULL operand");
1148 APFloat
Val(Op
->getValueAPF());
1150 // All of these conversion intrinsics form an integer of at most 64bits.
1151 unsigned ResultWidth
= cast
<IntegerType
>(Ty
)->getBitWidth();
1152 assert(ResultWidth
<= 64 &&
1153 "Can only constant fold conversions to 64 and 32 bit ints");
1156 bool isExact
= false;
1157 APFloat::roundingMode mode
= roundTowardZero
? APFloat::rmTowardZero
1158 : APFloat::rmNearestTiesToEven
;
1159 APFloat::opStatus status
= Val
.convertToInteger(&UIntVal
, ResultWidth
,
1160 /*isSigned=*/true, mode
,
1162 if (status
!= APFloat::opOK
&& status
!= APFloat::opInexact
)
1164 return ConstantInt::get(Ty
, UIntVal
, /*isSigned=*/true);
1167 /// ConstantFoldCall - Attempt to constant fold a call to the specified function
1168 /// with the specified arguments, returning null if unsuccessful.
1170 llvm::ConstantFoldCall(Function
*F
,
1171 Constant
*const *Operands
, unsigned NumOperands
) {
1172 if (!F
->hasName()) return 0;
1173 StringRef Name
= F
->getName();
1175 const Type
*Ty
= F
->getReturnType();
1176 if (NumOperands
== 1) {
1177 if (ConstantFP
*Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1178 if (F
->getIntrinsicID() == Intrinsic::convert_to_fp16
) {
1179 APFloat
Val(Op
->getValueAPF());
1182 Val
.convert(APFloat::IEEEhalf
, APFloat::rmNearestTiesToEven
, &lost
);
1184 return ConstantInt::get(F
->getContext(), Val
.bitcastToAPInt());
1187 if (!Ty
->isFloatTy() && !Ty
->isDoubleTy())
1190 /// We only fold functions with finite arguments. Folding NaN and inf is
1191 /// likely to be aborted with an exception anyway, and some host libms
1192 /// have known errors raising exceptions.
1193 if (Op
->getValueAPF().isNaN() || Op
->getValueAPF().isInfinity())
1196 /// Currently APFloat versions of these functions do not exist, so we use
1197 /// the host native double versions. Float versions are not called
1198 /// directly but for all these it is true (float)(f((double)arg)) ==
1199 /// f(arg). Long double not supported yet.
1200 double V
= Ty
->isFloatTy() ? (double)Op
->getValueAPF().convertToFloat() :
1201 Op
->getValueAPF().convertToDouble();
1205 return ConstantFoldFP(acos
, V
, Ty
);
1206 else if (Name
== "asin")
1207 return ConstantFoldFP(asin
, V
, Ty
);
1208 else if (Name
== "atan")
1209 return ConstantFoldFP(atan
, V
, Ty
);
1213 return ConstantFoldFP(ceil
, V
, Ty
);
1214 else if (Name
== "cos")
1215 return ConstantFoldFP(cos
, V
, Ty
);
1216 else if (Name
== "cosh")
1217 return ConstantFoldFP(cosh
, V
, Ty
);
1218 else if (Name
== "cosf")
1219 return ConstantFoldFP(cos
, V
, Ty
);
1223 return ConstantFoldFP(exp
, V
, Ty
);
1225 if (Name
== "exp2") {
1226 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1228 return ConstantFoldBinaryFP(pow
, 2.0, V
, Ty
);
1233 return ConstantFoldFP(fabs
, V
, Ty
);
1234 else if (Name
== "floor")
1235 return ConstantFoldFP(floor
, V
, Ty
);
1238 if (Name
== "log" && V
> 0)
1239 return ConstantFoldFP(log
, V
, Ty
);
1240 else if (Name
== "log10" && V
> 0)
1241 return ConstantFoldFP(log10
, V
, Ty
);
1242 else if (F
->getIntrinsicID() == Intrinsic::sqrt
&&
1243 (Ty
->isFloatTy() || Ty
->isDoubleTy())) {
1245 return ConstantFoldFP(sqrt
, V
, Ty
);
1247 return Constant::getNullValue(Ty
);
1252 return ConstantFoldFP(sin
, V
, Ty
);
1253 else if (Name
== "sinh")
1254 return ConstantFoldFP(sinh
, V
, Ty
);
1255 else if (Name
== "sqrt" && V
>= 0)
1256 return ConstantFoldFP(sqrt
, V
, Ty
);
1257 else if (Name
== "sqrtf" && V
>= 0)
1258 return ConstantFoldFP(sqrt
, V
, Ty
);
1259 else if (Name
== "sinf")
1260 return ConstantFoldFP(sin
, V
, Ty
);
1264 return ConstantFoldFP(tan
, V
, Ty
);
1265 else if (Name
== "tanh")
1266 return ConstantFoldFP(tanh
, V
, Ty
);
1274 if (ConstantInt
*Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
1275 switch (F
->getIntrinsicID()) {
1276 case Intrinsic::bswap
:
1277 return ConstantInt::get(F
->getContext(), Op
->getValue().byteSwap());
1278 case Intrinsic::ctpop
:
1279 return ConstantInt::get(Ty
, Op
->getValue().countPopulation());
1280 case Intrinsic::cttz
:
1281 return ConstantInt::get(Ty
, Op
->getValue().countTrailingZeros());
1282 case Intrinsic::ctlz
:
1283 return ConstantInt::get(Ty
, Op
->getValue().countLeadingZeros());
1284 case Intrinsic::convert_from_fp16
: {
1285 APFloat
Val(Op
->getValue());
1288 APFloat::opStatus status
=
1289 Val
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
, &lost
);
1291 // Conversion is always precise.
1293 assert(status
== APFloat::opOK
&& !lost
&&
1294 "Precision lost during fp16 constfolding");
1296 return ConstantFP::get(F
->getContext(), Val
);
1303 if (ConstantVector
*Op
= dyn_cast
<ConstantVector
>(Operands
[0])) {
1304 switch (F
->getIntrinsicID()) {
1306 case Intrinsic::x86_sse_cvtss2si
:
1307 case Intrinsic::x86_sse_cvtss2si64
:
1308 case Intrinsic::x86_sse2_cvtsd2si
:
1309 case Intrinsic::x86_sse2_cvtsd2si64
:
1310 if (ConstantFP
*FPOp
= dyn_cast
<ConstantFP
>(Op
->getOperand(0)))
1311 return ConstantFoldConvertToInt(FPOp
, /*roundTowardZero=*/false, Ty
);
1312 case Intrinsic::x86_sse_cvttss2si
:
1313 case Intrinsic::x86_sse_cvttss2si64
:
1314 case Intrinsic::x86_sse2_cvttsd2si
:
1315 case Intrinsic::x86_sse2_cvttsd2si64
:
1316 if (ConstantFP
*FPOp
= dyn_cast
<ConstantFP
>(Op
->getOperand(0)))
1317 return ConstantFoldConvertToInt(FPOp
, /*roundTowardZero=*/true, Ty
);
1321 if (isa
<UndefValue
>(Operands
[0])) {
1322 if (F
->getIntrinsicID() == Intrinsic::bswap
)
1330 if (NumOperands
== 2) {
1331 if (ConstantFP
*Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1332 if (!Ty
->isFloatTy() && !Ty
->isDoubleTy())
1334 double Op1V
= Ty
->isFloatTy() ?
1335 (double)Op1
->getValueAPF().convertToFloat() :
1336 Op1
->getValueAPF().convertToDouble();
1337 if (ConstantFP
*Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
1338 if (Op2
->getType() != Op1
->getType())
1341 double Op2V
= Ty
->isFloatTy() ?
1342 (double)Op2
->getValueAPF().convertToFloat():
1343 Op2
->getValueAPF().convertToDouble();
1346 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
1348 return ConstantFoldBinaryFP(fmod
, Op1V
, Op2V
, Ty
);
1349 if (Name
== "atan2")
1350 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
1351 } else if (ConstantInt
*Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
1352 if (F
->getIntrinsicID() == Intrinsic::powi
&& Ty
->isFloatTy())
1353 return ConstantFP::get(F
->getContext(),
1354 APFloat((float)std::pow((float)Op1V
,
1355 (int)Op2C
->getZExtValue())));
1356 if (F
->getIntrinsicID() == Intrinsic::powi
&& Ty
->isDoubleTy())
1357 return ConstantFP::get(F
->getContext(),
1358 APFloat((double)std::pow((double)Op1V
,
1359 (int)Op2C
->getZExtValue())));
1365 if (ConstantInt
*Op1
= dyn_cast
<ConstantInt
>(Operands
[0])) {
1366 if (ConstantInt
*Op2
= dyn_cast
<ConstantInt
>(Operands
[1])) {
1367 switch (F
->getIntrinsicID()) {
1369 case Intrinsic::sadd_with_overflow
:
1370 case Intrinsic::uadd_with_overflow
:
1371 case Intrinsic::ssub_with_overflow
:
1372 case Intrinsic::usub_with_overflow
:
1373 case Intrinsic::smul_with_overflow
:
1374 case Intrinsic::umul_with_overflow
: {
1377 switch (F
->getIntrinsicID()) {
1378 default: assert(0 && "Invalid case");
1379 case Intrinsic::sadd_with_overflow
:
1380 Res
= Op1
->getValue().sadd_ov(Op2
->getValue(), Overflow
);
1382 case Intrinsic::uadd_with_overflow
:
1383 Res
= Op1
->getValue().uadd_ov(Op2
->getValue(), Overflow
);
1385 case Intrinsic::ssub_with_overflow
:
1386 Res
= Op1
->getValue().ssub_ov(Op2
->getValue(), Overflow
);
1388 case Intrinsic::usub_with_overflow
:
1389 Res
= Op1
->getValue().usub_ov(Op2
->getValue(), Overflow
);
1391 case Intrinsic::smul_with_overflow
:
1392 Res
= Op1
->getValue().smul_ov(Op2
->getValue(), Overflow
);
1394 case Intrinsic::umul_with_overflow
:
1395 Res
= Op1
->getValue().umul_ov(Op2
->getValue(), Overflow
);
1399 ConstantInt::get(F
->getContext(), Res
),
1400 ConstantInt::get(Type::getInt1Ty(F
->getContext()), Overflow
)
1402 return ConstantStruct::get(cast
<StructType
>(F
->getReturnType()), Ops
);