1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "instsimplify"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Support/ConstantRange.h"
28 #include "llvm/Support/PatternMatch.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/Target/TargetData.h"
32 using namespace llvm::PatternMatch
;
34 enum { RecursionLimit
= 3 };
36 STATISTIC(NumExpand
, "Number of expansions");
37 STATISTIC(NumFactor
, "Number of factorizations");
38 STATISTIC(NumReassoc
, "Number of reassociations");
40 static Value
*SimplifyAndInst(Value
*, Value
*, const TargetData
*,
41 const DominatorTree
*, unsigned);
42 static Value
*SimplifyBinOp(unsigned, Value
*, Value
*, const TargetData
*,
43 const DominatorTree
*, unsigned);
44 static Value
*SimplifyCmpInst(unsigned, Value
*, Value
*, const TargetData
*,
45 const DominatorTree
*, unsigned);
46 static Value
*SimplifyOrInst(Value
*, Value
*, const TargetData
*,
47 const DominatorTree
*, unsigned);
48 static Value
*SimplifyXorInst(Value
*, Value
*, const TargetData
*,
49 const DominatorTree
*, unsigned);
51 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
52 static bool ValueDominatesPHI(Value
*V
, PHINode
*P
, const DominatorTree
*DT
) {
53 Instruction
*I
= dyn_cast
<Instruction
>(V
);
55 // Arguments and constants dominate all instructions.
58 // If we have a DominatorTree then do a precise test.
60 return DT
->dominates(I
, P
);
62 // Otherwise, if the instruction is in the entry block, and is not an invoke,
63 // then it obviously dominates all phi nodes.
64 if (I
->getParent() == &I
->getParent()->getParent()->getEntryBlock() &&
71 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
72 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
73 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
74 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
75 /// Returns the simplified value, or null if no simplification was performed.
76 static Value
*ExpandBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
77 unsigned OpcToExpand
, const TargetData
*TD
,
78 const DominatorTree
*DT
, unsigned MaxRecurse
) {
79 Instruction::BinaryOps OpcodeToExpand
= (Instruction::BinaryOps
)OpcToExpand
;
80 // Recursion is always used, so bail out at once if we already hit the limit.
84 // Check whether the expression has the form "(A op' B) op C".
85 if (BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
))
86 if (Op0
->getOpcode() == OpcodeToExpand
) {
87 // It does! Try turning it into "(A op C) op' (B op C)".
88 Value
*A
= Op0
->getOperand(0), *B
= Op0
->getOperand(1), *C
= RHS
;
89 // Do "A op C" and "B op C" both simplify?
90 if (Value
*L
= SimplifyBinOp(Opcode
, A
, C
, TD
, DT
, MaxRecurse
))
91 if (Value
*R
= SimplifyBinOp(Opcode
, B
, C
, TD
, DT
, MaxRecurse
)) {
92 // They do! Return "L op' R" if it simplifies or is already available.
93 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
94 if ((L
== A
&& R
== B
) || (Instruction::isCommutative(OpcodeToExpand
)
95 && L
== B
&& R
== A
)) {
99 // Otherwise return "L op' R" if it simplifies.
100 if (Value
*V
= SimplifyBinOp(OpcodeToExpand
, L
, R
, TD
, DT
,
108 // Check whether the expression has the form "A op (B op' C)".
109 if (BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
))
110 if (Op1
->getOpcode() == OpcodeToExpand
) {
111 // It does! Try turning it into "(A op B) op' (A op C)".
112 Value
*A
= LHS
, *B
= Op1
->getOperand(0), *C
= Op1
->getOperand(1);
113 // Do "A op B" and "A op C" both simplify?
114 if (Value
*L
= SimplifyBinOp(Opcode
, A
, B
, TD
, DT
, MaxRecurse
))
115 if (Value
*R
= SimplifyBinOp(Opcode
, A
, C
, TD
, DT
, MaxRecurse
)) {
116 // They do! Return "L op' R" if it simplifies or is already available.
117 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
118 if ((L
== B
&& R
== C
) || (Instruction::isCommutative(OpcodeToExpand
)
119 && L
== C
&& R
== B
)) {
123 // Otherwise return "L op' R" if it simplifies.
124 if (Value
*V
= SimplifyBinOp(OpcodeToExpand
, L
, R
, TD
, DT
,
135 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
136 /// using the operation OpCodeToExtract. For example, when Opcode is Add and
137 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
138 /// Returns the simplified value, or null if no simplification was performed.
139 static Value
*FactorizeBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
140 unsigned OpcToExtract
, const TargetData
*TD
,
141 const DominatorTree
*DT
, unsigned MaxRecurse
) {
142 Instruction::BinaryOps OpcodeToExtract
= (Instruction::BinaryOps
)OpcToExtract
;
143 // Recursion is always used, so bail out at once if we already hit the limit.
147 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
148 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
150 if (!Op0
|| Op0
->getOpcode() != OpcodeToExtract
||
151 !Op1
|| Op1
->getOpcode() != OpcodeToExtract
)
154 // The expression has the form "(A op' B) op (C op' D)".
155 Value
*A
= Op0
->getOperand(0), *B
= Op0
->getOperand(1);
156 Value
*C
= Op1
->getOperand(0), *D
= Op1
->getOperand(1);
158 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
159 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
160 // commutative case, "(A op' B) op (C op' A)"?
161 if (A
== C
|| (Instruction::isCommutative(OpcodeToExtract
) && A
== D
)) {
162 Value
*DD
= A
== C
? D
: C
;
163 // Form "A op' (B op DD)" if it simplifies completely.
164 // Does "B op DD" simplify?
165 if (Value
*V
= SimplifyBinOp(Opcode
, B
, DD
, TD
, DT
, MaxRecurse
)) {
166 // It does! Return "A op' V" if it simplifies or is already available.
167 // If V equals B then "A op' V" is just the LHS. If V equals DD then
168 // "A op' V" is just the RHS.
169 if (V
== B
|| V
== DD
) {
171 return V
== B
? LHS
: RHS
;
173 // Otherwise return "A op' V" if it simplifies.
174 if (Value
*W
= SimplifyBinOp(OpcodeToExtract
, A
, V
, TD
, DT
, MaxRecurse
)) {
181 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
182 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
183 // commutative case, "(A op' B) op (B op' D)"?
184 if (B
== D
|| (Instruction::isCommutative(OpcodeToExtract
) && B
== C
)) {
185 Value
*CC
= B
== D
? C
: D
;
186 // Form "(A op CC) op' B" if it simplifies completely..
187 // Does "A op CC" simplify?
188 if (Value
*V
= SimplifyBinOp(Opcode
, A
, CC
, TD
, DT
, MaxRecurse
)) {
189 // It does! Return "V op' B" if it simplifies or is already available.
190 // If V equals A then "V op' B" is just the LHS. If V equals CC then
191 // "V op' B" is just the RHS.
192 if (V
== A
|| V
== CC
) {
194 return V
== A
? LHS
: RHS
;
196 // Otherwise return "V op' B" if it simplifies.
197 if (Value
*W
= SimplifyBinOp(OpcodeToExtract
, V
, B
, TD
, DT
, MaxRecurse
)) {
207 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
208 /// operations. Returns the simpler value, or null if none was found.
209 static Value
*SimplifyAssociativeBinOp(unsigned Opc
, Value
*LHS
, Value
*RHS
,
210 const TargetData
*TD
,
211 const DominatorTree
*DT
,
212 unsigned MaxRecurse
) {
213 Instruction::BinaryOps Opcode
= (Instruction::BinaryOps
)Opc
;
214 assert(Instruction::isAssociative(Opcode
) && "Not an associative operation!");
216 // Recursion is always used, so bail out at once if we already hit the limit.
220 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
221 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
223 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
224 if (Op0
&& Op0
->getOpcode() == Opcode
) {
225 Value
*A
= Op0
->getOperand(0);
226 Value
*B
= Op0
->getOperand(1);
229 // Does "B op C" simplify?
230 if (Value
*V
= SimplifyBinOp(Opcode
, B
, C
, TD
, DT
, MaxRecurse
)) {
231 // It does! Return "A op V" if it simplifies or is already available.
232 // If V equals B then "A op V" is just the LHS.
233 if (V
== B
) return LHS
;
234 // Otherwise return "A op V" if it simplifies.
235 if (Value
*W
= SimplifyBinOp(Opcode
, A
, V
, TD
, DT
, MaxRecurse
)) {
242 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
243 if (Op1
&& Op1
->getOpcode() == Opcode
) {
245 Value
*B
= Op1
->getOperand(0);
246 Value
*C
= Op1
->getOperand(1);
248 // Does "A op B" simplify?
249 if (Value
*V
= SimplifyBinOp(Opcode
, A
, B
, TD
, DT
, MaxRecurse
)) {
250 // It does! Return "V op C" if it simplifies or is already available.
251 // If V equals B then "V op C" is just the RHS.
252 if (V
== B
) return RHS
;
253 // Otherwise return "V op C" if it simplifies.
254 if (Value
*W
= SimplifyBinOp(Opcode
, V
, C
, TD
, DT
, MaxRecurse
)) {
261 // The remaining transforms require commutativity as well as associativity.
262 if (!Instruction::isCommutative(Opcode
))
265 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
266 if (Op0
&& Op0
->getOpcode() == Opcode
) {
267 Value
*A
= Op0
->getOperand(0);
268 Value
*B
= Op0
->getOperand(1);
271 // Does "C op A" simplify?
272 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, TD
, DT
, MaxRecurse
)) {
273 // It does! Return "V op B" if it simplifies or is already available.
274 // If V equals A then "V op B" is just the LHS.
275 if (V
== A
) return LHS
;
276 // Otherwise return "V op B" if it simplifies.
277 if (Value
*W
= SimplifyBinOp(Opcode
, V
, B
, TD
, DT
, MaxRecurse
)) {
284 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
285 if (Op1
&& Op1
->getOpcode() == Opcode
) {
287 Value
*B
= Op1
->getOperand(0);
288 Value
*C
= Op1
->getOperand(1);
290 // Does "C op A" simplify?
291 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, TD
, DT
, MaxRecurse
)) {
292 // It does! Return "B op V" if it simplifies or is already available.
293 // If V equals C then "B op V" is just the RHS.
294 if (V
== C
) return RHS
;
295 // Otherwise return "B op V" if it simplifies.
296 if (Value
*W
= SimplifyBinOp(Opcode
, B
, V
, TD
, DT
, MaxRecurse
)) {
306 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
307 /// instruction as an operand, try to simplify the binop by seeing whether
308 /// evaluating it on both branches of the select results in the same value.
309 /// Returns the common value if so, otherwise returns null.
310 static Value
*ThreadBinOpOverSelect(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
311 const TargetData
*TD
,
312 const DominatorTree
*DT
,
313 unsigned MaxRecurse
) {
314 // Recursion is always used, so bail out at once if we already hit the limit.
319 if (isa
<SelectInst
>(LHS
)) {
320 SI
= cast
<SelectInst
>(LHS
);
322 assert(isa
<SelectInst
>(RHS
) && "No select instruction operand!");
323 SI
= cast
<SelectInst
>(RHS
);
326 // Evaluate the BinOp on the true and false branches of the select.
330 TV
= SimplifyBinOp(Opcode
, SI
->getTrueValue(), RHS
, TD
, DT
, MaxRecurse
);
331 FV
= SimplifyBinOp(Opcode
, SI
->getFalseValue(), RHS
, TD
, DT
, MaxRecurse
);
333 TV
= SimplifyBinOp(Opcode
, LHS
, SI
->getTrueValue(), TD
, DT
, MaxRecurse
);
334 FV
= SimplifyBinOp(Opcode
, LHS
, SI
->getFalseValue(), TD
, DT
, MaxRecurse
);
337 // If they simplified to the same value, then return the common value.
338 // If they both failed to simplify then return null.
342 // If one branch simplified to undef, return the other one.
343 if (TV
&& isa
<UndefValue
>(TV
))
345 if (FV
&& isa
<UndefValue
>(FV
))
348 // If applying the operation did not change the true and false select values,
349 // then the result of the binop is the select itself.
350 if (TV
== SI
->getTrueValue() && FV
== SI
->getFalseValue())
353 // If one branch simplified and the other did not, and the simplified
354 // value is equal to the unsimplified one, return the simplified value.
355 // For example, select (cond, X, X & Z) & Z -> X & Z.
356 if ((FV
&& !TV
) || (TV
&& !FV
)) {
357 // Check that the simplified value has the form "X op Y" where "op" is the
358 // same as the original operation.
359 Instruction
*Simplified
= dyn_cast
<Instruction
>(FV
? FV
: TV
);
360 if (Simplified
&& Simplified
->getOpcode() == Opcode
) {
361 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
362 // We already know that "op" is the same as for the simplified value. See
363 // if the operands match too. If so, return the simplified value.
364 Value
*UnsimplifiedBranch
= FV
? SI
->getTrueValue() : SI
->getFalseValue();
365 Value
*UnsimplifiedLHS
= SI
== LHS
? UnsimplifiedBranch
: LHS
;
366 Value
*UnsimplifiedRHS
= SI
== LHS
? RHS
: UnsimplifiedBranch
;
367 if (Simplified
->getOperand(0) == UnsimplifiedLHS
&&
368 Simplified
->getOperand(1) == UnsimplifiedRHS
)
370 if (Simplified
->isCommutative() &&
371 Simplified
->getOperand(1) == UnsimplifiedLHS
&&
372 Simplified
->getOperand(0) == UnsimplifiedRHS
)
380 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
381 /// try to simplify the comparison by seeing whether both branches of the select
382 /// result in the same value. Returns the common value if so, otherwise returns
384 static Value
*ThreadCmpOverSelect(CmpInst::Predicate Pred
, Value
*LHS
,
385 Value
*RHS
, const TargetData
*TD
,
386 const DominatorTree
*DT
,
387 unsigned MaxRecurse
) {
388 // Recursion is always used, so bail out at once if we already hit the limit.
392 // Make sure the select is on the LHS.
393 if (!isa
<SelectInst
>(LHS
)) {
395 Pred
= CmpInst::getSwappedPredicate(Pred
);
397 assert(isa
<SelectInst
>(LHS
) && "Not comparing with a select instruction!");
398 SelectInst
*SI
= cast
<SelectInst
>(LHS
);
400 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
401 // Does "cmp TV, RHS" simplify?
402 if (Value
*TCmp
= SimplifyCmpInst(Pred
, SI
->getTrueValue(), RHS
, TD
, DT
,
404 // It does! Does "cmp FV, RHS" simplify?
405 if (Value
*FCmp
= SimplifyCmpInst(Pred
, SI
->getFalseValue(), RHS
, TD
, DT
,
407 // It does! If they simplified to the same value, then use it as the
408 // result of the original comparison.
411 Value
*Cond
= SI
->getCondition();
412 // If the false value simplified to false, then the result of the compare
413 // is equal to "Cond && TCmp". This also catches the case when the false
414 // value simplified to false and the true value to true, returning "Cond".
415 if (match(FCmp
, m_Zero()))
416 if (Value
*V
= SimplifyAndInst(Cond
, TCmp
, TD
, DT
, MaxRecurse
))
418 // If the true value simplified to true, then the result of the compare
419 // is equal to "Cond || FCmp".
420 if (match(TCmp
, m_One()))
421 if (Value
*V
= SimplifyOrInst(Cond
, FCmp
, TD
, DT
, MaxRecurse
))
423 // Finally, if the false value simplified to true and the true value to
424 // false, then the result of the compare is equal to "!Cond".
425 if (match(FCmp
, m_One()) && match(TCmp
, m_Zero()))
427 SimplifyXorInst(Cond
, Constant::getAllOnesValue(Cond
->getType()),
436 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
437 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
438 /// it on the incoming phi values yields the same result for every value. If so
439 /// returns the common value, otherwise returns null.
440 static Value
*ThreadBinOpOverPHI(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
441 const TargetData
*TD
, const DominatorTree
*DT
,
442 unsigned MaxRecurse
) {
443 // Recursion is always used, so bail out at once if we already hit the limit.
448 if (isa
<PHINode
>(LHS
)) {
449 PI
= cast
<PHINode
>(LHS
);
450 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
451 if (!ValueDominatesPHI(RHS
, PI
, DT
))
454 assert(isa
<PHINode
>(RHS
) && "No PHI instruction operand!");
455 PI
= cast
<PHINode
>(RHS
);
456 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
457 if (!ValueDominatesPHI(LHS
, PI
, DT
))
461 // Evaluate the BinOp on the incoming phi values.
462 Value
*CommonValue
= 0;
463 for (unsigned i
= 0, e
= PI
->getNumIncomingValues(); i
!= e
; ++i
) {
464 Value
*Incoming
= PI
->getIncomingValue(i
);
465 // If the incoming value is the phi node itself, it can safely be skipped.
466 if (Incoming
== PI
) continue;
467 Value
*V
= PI
== LHS
?
468 SimplifyBinOp(Opcode
, Incoming
, RHS
, TD
, DT
, MaxRecurse
) :
469 SimplifyBinOp(Opcode
, LHS
, Incoming
, TD
, DT
, MaxRecurse
);
470 // If the operation failed to simplify, or simplified to a different value
471 // to previously, then give up.
472 if (!V
|| (CommonValue
&& V
!= CommonValue
))
480 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
481 /// try to simplify the comparison by seeing whether comparing with all of the
482 /// incoming phi values yields the same result every time. If so returns the
483 /// common result, otherwise returns null.
484 static Value
*ThreadCmpOverPHI(CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
485 const TargetData
*TD
, const DominatorTree
*DT
,
486 unsigned MaxRecurse
) {
487 // Recursion is always used, so bail out at once if we already hit the limit.
491 // Make sure the phi is on the LHS.
492 if (!isa
<PHINode
>(LHS
)) {
494 Pred
= CmpInst::getSwappedPredicate(Pred
);
496 assert(isa
<PHINode
>(LHS
) && "Not comparing with a phi instruction!");
497 PHINode
*PI
= cast
<PHINode
>(LHS
);
499 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
500 if (!ValueDominatesPHI(RHS
, PI
, DT
))
503 // Evaluate the BinOp on the incoming phi values.
504 Value
*CommonValue
= 0;
505 for (unsigned i
= 0, e
= PI
->getNumIncomingValues(); i
!= e
; ++i
) {
506 Value
*Incoming
= PI
->getIncomingValue(i
);
507 // If the incoming value is the phi node itself, it can safely be skipped.
508 if (Incoming
== PI
) continue;
509 Value
*V
= SimplifyCmpInst(Pred
, Incoming
, RHS
, TD
, DT
, MaxRecurse
);
510 // If the operation failed to simplify, or simplified to a different value
511 // to previously, then give up.
512 if (!V
|| (CommonValue
&& V
!= CommonValue
))
520 /// SimplifyAddInst - Given operands for an Add, see if we can
521 /// fold the result. If not, this returns null.
522 static Value
*SimplifyAddInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
523 const TargetData
*TD
, const DominatorTree
*DT
,
524 unsigned MaxRecurse
) {
525 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
526 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
527 Constant
*Ops
[] = { CLHS
, CRHS
};
528 return ConstantFoldInstOperands(Instruction::Add
, CLHS
->getType(),
532 // Canonicalize the constant to the RHS.
536 // X + undef -> undef
537 if (match(Op1
, m_Undef()))
541 if (match(Op1
, m_Zero()))
548 if (match(Op1
, m_Sub(m_Value(Y
), m_Specific(Op0
))) ||
549 match(Op0
, m_Sub(m_Value(Y
), m_Specific(Op1
))))
552 // X + ~X -> -1 since ~X = -X-1
553 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
554 match(Op1
, m_Not(m_Specific(Op0
))))
555 return Constant::getAllOnesValue(Op0
->getType());
558 if (MaxRecurse
&& Op0
->getType()->isIntegerTy(1))
559 if (Value
*V
= SimplifyXorInst(Op0
, Op1
, TD
, DT
, MaxRecurse
-1))
562 // Try some generic simplifications for associative operations.
563 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Add
, Op0
, Op1
, TD
, DT
,
567 // Mul distributes over Add. Try some generic simplifications based on this.
568 if (Value
*V
= FactorizeBinOp(Instruction::Add
, Op0
, Op1
, Instruction::Mul
,
572 // Threading Add over selects and phi nodes is pointless, so don't bother.
573 // Threading over the select in "A + select(cond, B, C)" means evaluating
574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
575 // only if B and C are equal. If B and C are equal then (since we assume
576 // that operands have already been simplified) "select(cond, B, C)" should
577 // have been simplified to the common value of B and C already. Analysing
578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
579 // for threading over phi nodes.
584 Value
*llvm::SimplifyAddInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
585 const TargetData
*TD
, const DominatorTree
*DT
) {
586 return ::SimplifyAddInst(Op0
, Op1
, isNSW
, isNUW
, TD
, DT
, RecursionLimit
);
589 /// SimplifySubInst - Given operands for a Sub, see if we can
590 /// fold the result. If not, this returns null.
591 static Value
*SimplifySubInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
592 const TargetData
*TD
, const DominatorTree
*DT
,
593 unsigned MaxRecurse
) {
594 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
))
595 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
596 Constant
*Ops
[] = { CLHS
, CRHS
};
597 return ConstantFoldInstOperands(Instruction::Sub
, CLHS
->getType(),
601 // X - undef -> undef
602 // undef - X -> undef
603 if (match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
604 return UndefValue::get(Op0
->getType());
607 if (match(Op1
, m_Zero()))
612 return Constant::getNullValue(Op0
->getType());
617 if (match(Op0
, m_Mul(m_Specific(Op1
), m_ConstantInt
<2>())) ||
618 match(Op0
, m_Shl(m_Specific(Op1
), m_One())))
621 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
622 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
623 Value
*Y
= 0, *Z
= Op1
;
624 if (MaxRecurse
&& match(Op0
, m_Add(m_Value(X
), m_Value(Y
)))) { // (X + Y) - Z
625 // See if "V === Y - Z" simplifies.
626 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, Y
, Z
, TD
, DT
, MaxRecurse
-1))
627 // It does! Now see if "X + V" simplifies.
628 if (Value
*W
= SimplifyBinOp(Instruction::Add
, X
, V
, TD
, DT
,
630 // It does, we successfully reassociated!
634 // See if "V === X - Z" simplifies.
635 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Z
, TD
, DT
, MaxRecurse
-1))
636 // It does! Now see if "Y + V" simplifies.
637 if (Value
*W
= SimplifyBinOp(Instruction::Add
, Y
, V
, TD
, DT
,
639 // It does, we successfully reassociated!
645 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
646 // For example, X - (X + 1) -> -1
648 if (MaxRecurse
&& match(Op1
, m_Add(m_Value(Y
), m_Value(Z
)))) { // X - (Y + Z)
649 // See if "V === X - Y" simplifies.
650 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Y
, TD
, DT
, MaxRecurse
-1))
651 // It does! Now see if "V - Z" simplifies.
652 if (Value
*W
= SimplifyBinOp(Instruction::Sub
, V
, Z
, TD
, DT
,
654 // It does, we successfully reassociated!
658 // See if "V === X - Z" simplifies.
659 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Z
, TD
, DT
, MaxRecurse
-1))
660 // It does! Now see if "V - Y" simplifies.
661 if (Value
*W
= SimplifyBinOp(Instruction::Sub
, V
, Y
, TD
, DT
,
663 // It does, we successfully reassociated!
669 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
670 // For example, X - (X - Y) -> Y.
672 if (MaxRecurse
&& match(Op1
, m_Sub(m_Value(X
), m_Value(Y
)))) // Z - (X - Y)
673 // See if "V === Z - X" simplifies.
674 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, Z
, X
, TD
, DT
, MaxRecurse
-1))
675 // It does! Now see if "V + Y" simplifies.
676 if (Value
*W
= SimplifyBinOp(Instruction::Add
, V
, Y
, TD
, DT
,
678 // It does, we successfully reassociated!
683 // Mul distributes over Sub. Try some generic simplifications based on this.
684 if (Value
*V
= FactorizeBinOp(Instruction::Sub
, Op0
, Op1
, Instruction::Mul
,
689 if (MaxRecurse
&& Op0
->getType()->isIntegerTy(1))
690 if (Value
*V
= SimplifyXorInst(Op0
, Op1
, TD
, DT
, MaxRecurse
-1))
693 // Threading Sub over selects and phi nodes is pointless, so don't bother.
694 // Threading over the select in "A - select(cond, B, C)" means evaluating
695 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
696 // only if B and C are equal. If B and C are equal then (since we assume
697 // that operands have already been simplified) "select(cond, B, C)" should
698 // have been simplified to the common value of B and C already. Analysing
699 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
700 // for threading over phi nodes.
705 Value
*llvm::SimplifySubInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
706 const TargetData
*TD
, const DominatorTree
*DT
) {
707 return ::SimplifySubInst(Op0
, Op1
, isNSW
, isNUW
, TD
, DT
, RecursionLimit
);
710 /// SimplifyMulInst - Given operands for a Mul, see if we can
711 /// fold the result. If not, this returns null.
712 static Value
*SimplifyMulInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
713 const DominatorTree
*DT
, unsigned MaxRecurse
) {
714 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
715 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
716 Constant
*Ops
[] = { CLHS
, CRHS
};
717 return ConstantFoldInstOperands(Instruction::Mul
, CLHS
->getType(),
721 // Canonicalize the constant to the RHS.
726 if (match(Op1
, m_Undef()))
727 return Constant::getNullValue(Op0
->getType());
730 if (match(Op1
, m_Zero()))
734 if (match(Op1
, m_One()))
737 // (X / Y) * Y -> X if the division is exact.
738 Value
*X
= 0, *Y
= 0;
739 if ((match(Op0
, m_IDiv(m_Value(X
), m_Value(Y
))) && Y
== Op1
) || // (X / Y) * Y
740 (match(Op1
, m_IDiv(m_Value(X
), m_Value(Y
))) && Y
== Op0
)) { // Y * (X / Y)
741 BinaryOperator
*Div
= cast
<BinaryOperator
>(Y
== Op1
? Op0
: Op1
);
747 if (MaxRecurse
&& Op0
->getType()->isIntegerTy(1))
748 if (Value
*V
= SimplifyAndInst(Op0
, Op1
, TD
, DT
, MaxRecurse
-1))
751 // Try some generic simplifications for associative operations.
752 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Mul
, Op0
, Op1
, TD
, DT
,
756 // Mul distributes over Add. Try some generic simplifications based on this.
757 if (Value
*V
= ExpandBinOp(Instruction::Mul
, Op0
, Op1
, Instruction::Add
,
761 // If the operation is with the result of a select instruction, check whether
762 // operating on either branch of the select always yields the same value.
763 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
764 if (Value
*V
= ThreadBinOpOverSelect(Instruction::Mul
, Op0
, Op1
, TD
, DT
,
768 // If the operation is with the result of a phi instruction, check whether
769 // operating on all incoming values of the phi always yields the same value.
770 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
771 if (Value
*V
= ThreadBinOpOverPHI(Instruction::Mul
, Op0
, Op1
, TD
, DT
,
778 Value
*llvm::SimplifyMulInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
779 const DominatorTree
*DT
) {
780 return ::SimplifyMulInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
783 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
784 /// fold the result. If not, this returns null.
785 static Value
*SimplifyDiv(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
786 const TargetData
*TD
, const DominatorTree
*DT
,
787 unsigned MaxRecurse
) {
788 if (Constant
*C0
= dyn_cast
<Constant
>(Op0
)) {
789 if (Constant
*C1
= dyn_cast
<Constant
>(Op1
)) {
790 Constant
*Ops
[] = { C0
, C1
};
791 return ConstantFoldInstOperands(Opcode
, C0
->getType(), Ops
, 2, TD
);
795 bool isSigned
= Opcode
== Instruction::SDiv
;
797 // X / undef -> undef
798 if (match(Op1
, m_Undef()))
802 if (match(Op0
, m_Undef()))
803 return Constant::getNullValue(Op0
->getType());
805 // 0 / X -> 0, we don't need to preserve faults!
806 if (match(Op0
, m_Zero()))
810 if (match(Op1
, m_One()))
813 if (Op0
->getType()->isIntegerTy(1))
814 // It can't be division by zero, hence it must be division by one.
819 return ConstantInt::get(Op0
->getType(), 1);
821 // (X * Y) / Y -> X if the multiplication does not overflow.
822 Value
*X
= 0, *Y
= 0;
823 if (match(Op0
, m_Mul(m_Value(X
), m_Value(Y
))) && (X
== Op1
|| Y
== Op1
)) {
824 if (Y
!= Op1
) std::swap(X
, Y
); // Ensure expression is (X * Y) / Y, Y = Op1
825 BinaryOperator
*Mul
= cast
<BinaryOperator
>(Op0
);
826 // If the Mul knows it does not overflow, then we are good to go.
827 if ((isSigned
&& Mul
->hasNoSignedWrap()) ||
828 (!isSigned
&& Mul
->hasNoUnsignedWrap()))
830 // If X has the form X = A / Y then X * Y cannot overflow.
831 if (BinaryOperator
*Div
= dyn_cast
<BinaryOperator
>(X
))
832 if (Div
->getOpcode() == Opcode
&& Div
->getOperand(1) == Y
)
836 // (X rem Y) / Y -> 0
837 if ((isSigned
&& match(Op0
, m_SRem(m_Value(), m_Specific(Op1
)))) ||
838 (!isSigned
&& match(Op0
, m_URem(m_Value(), m_Specific(Op1
)))))
839 return Constant::getNullValue(Op0
->getType());
841 // If the operation is with the result of a select instruction, check whether
842 // operating on either branch of the select always yields the same value.
843 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
844 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
847 // If the operation is with the result of a phi instruction, check whether
848 // operating on all incoming values of the phi always yields the same value.
849 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
850 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
856 /// SimplifySDivInst - Given operands for an SDiv, see if we can
857 /// fold the result. If not, this returns null.
858 static Value
*SimplifySDivInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
859 const DominatorTree
*DT
, unsigned MaxRecurse
) {
860 if (Value
*V
= SimplifyDiv(Instruction::SDiv
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
866 Value
*llvm::SimplifySDivInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
867 const DominatorTree
*DT
) {
868 return ::SimplifySDivInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
871 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
872 /// fold the result. If not, this returns null.
873 static Value
*SimplifyUDivInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
874 const DominatorTree
*DT
, unsigned MaxRecurse
) {
875 if (Value
*V
= SimplifyDiv(Instruction::UDiv
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
881 Value
*llvm::SimplifyUDivInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
882 const DominatorTree
*DT
) {
883 return ::SimplifyUDivInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
886 static Value
*SimplifyFDivInst(Value
*Op0
, Value
*Op1
, const TargetData
*,
887 const DominatorTree
*, unsigned) {
888 // undef / X -> undef (the undef could be a snan).
889 if (match(Op0
, m_Undef()))
892 // X / undef -> undef
893 if (match(Op1
, m_Undef()))
899 Value
*llvm::SimplifyFDivInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
900 const DominatorTree
*DT
) {
901 return ::SimplifyFDivInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
904 /// SimplifyRem - Given operands for an SRem or URem, see if we can
905 /// fold the result. If not, this returns null.
906 static Value
*SimplifyRem(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
907 const TargetData
*TD
, const DominatorTree
*DT
,
908 unsigned MaxRecurse
) {
909 if (Constant
*C0
= dyn_cast
<Constant
>(Op0
)) {
910 if (Constant
*C1
= dyn_cast
<Constant
>(Op1
)) {
911 Constant
*Ops
[] = { C0
, C1
};
912 return ConstantFoldInstOperands(Opcode
, C0
->getType(), Ops
, 2, TD
);
916 // X % undef -> undef
917 if (match(Op1
, m_Undef()))
921 if (match(Op0
, m_Undef()))
922 return Constant::getNullValue(Op0
->getType());
924 // 0 % X -> 0, we don't need to preserve faults!
925 if (match(Op0
, m_Zero()))
928 // X % 0 -> undef, we don't need to preserve faults!
929 if (match(Op1
, m_Zero()))
930 return UndefValue::get(Op0
->getType());
933 if (match(Op1
, m_One()))
934 return Constant::getNullValue(Op0
->getType());
936 if (Op0
->getType()->isIntegerTy(1))
937 // It can't be remainder by zero, hence it must be remainder by one.
938 return Constant::getNullValue(Op0
->getType());
942 return Constant::getNullValue(Op0
->getType());
944 // If the operation is with the result of a select instruction, check whether
945 // operating on either branch of the select always yields the same value.
946 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
947 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
950 // If the operation is with the result of a phi instruction, check whether
951 // operating on all incoming values of the phi always yields the same value.
952 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
953 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
959 /// SimplifySRemInst - Given operands for an SRem, see if we can
960 /// fold the result. If not, this returns null.
961 static Value
*SimplifySRemInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
962 const DominatorTree
*DT
, unsigned MaxRecurse
) {
963 if (Value
*V
= SimplifyRem(Instruction::SRem
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
969 Value
*llvm::SimplifySRemInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
970 const DominatorTree
*DT
) {
971 return ::SimplifySRemInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
974 /// SimplifyURemInst - Given operands for a URem, see if we can
975 /// fold the result. If not, this returns null.
976 static Value
*SimplifyURemInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
977 const DominatorTree
*DT
, unsigned MaxRecurse
) {
978 if (Value
*V
= SimplifyRem(Instruction::URem
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
984 Value
*llvm::SimplifyURemInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
985 const DominatorTree
*DT
) {
986 return ::SimplifyURemInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
989 static Value
*SimplifyFRemInst(Value
*Op0
, Value
*Op1
, const TargetData
*,
990 const DominatorTree
*, unsigned) {
991 // undef % X -> undef (the undef could be a snan).
992 if (match(Op0
, m_Undef()))
995 // X % undef -> undef
996 if (match(Op1
, m_Undef()))
1002 Value
*llvm::SimplifyFRemInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
1003 const DominatorTree
*DT
) {
1004 return ::SimplifyFRemInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
1007 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1008 /// fold the result. If not, this returns null.
1009 static Value
*SimplifyShift(unsigned Opcode
, Value
*Op0
, Value
*Op1
,
1010 const TargetData
*TD
, const DominatorTree
*DT
,
1011 unsigned MaxRecurse
) {
1012 if (Constant
*C0
= dyn_cast
<Constant
>(Op0
)) {
1013 if (Constant
*C1
= dyn_cast
<Constant
>(Op1
)) {
1014 Constant
*Ops
[] = { C0
, C1
};
1015 return ConstantFoldInstOperands(Opcode
, C0
->getType(), Ops
, 2, TD
);
1019 // 0 shift by X -> 0
1020 if (match(Op0
, m_Zero()))
1023 // X shift by 0 -> X
1024 if (match(Op1
, m_Zero()))
1027 // X shift by undef -> undef because it may shift by the bitwidth.
1028 if (match(Op1
, m_Undef()))
1031 // Shifting by the bitwidth or more is undefined.
1032 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op1
))
1033 if (CI
->getValue().getLimitedValue() >=
1034 Op0
->getType()->getScalarSizeInBits())
1035 return UndefValue::get(Op0
->getType());
1037 // If the operation is with the result of a select instruction, check whether
1038 // operating on either branch of the select always yields the same value.
1039 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1040 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
1043 // If the operation is with the result of a phi instruction, check whether
1044 // operating on all incoming values of the phi always yields the same value.
1045 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1046 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
1052 /// SimplifyShlInst - Given operands for an Shl, see if we can
1053 /// fold the result. If not, this returns null.
1054 static Value
*SimplifyShlInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
1055 const TargetData
*TD
, const DominatorTree
*DT
,
1056 unsigned MaxRecurse
) {
1057 if (Value
*V
= SimplifyShift(Instruction::Shl
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
1061 if (match(Op0
, m_Undef()))
1062 return Constant::getNullValue(Op0
->getType());
1064 // (X >> A) << A -> X
1066 if (match(Op0
, m_Shr(m_Value(X
), m_Specific(Op1
))) &&
1067 cast
<PossiblyExactOperator
>(Op0
)->isExact())
1072 Value
*llvm::SimplifyShlInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
1073 const TargetData
*TD
, const DominatorTree
*DT
) {
1074 return ::SimplifyShlInst(Op0
, Op1
, isNSW
, isNUW
, TD
, DT
, RecursionLimit
);
1077 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1078 /// fold the result. If not, this returns null.
1079 static Value
*SimplifyLShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1080 const TargetData
*TD
, const DominatorTree
*DT
,
1081 unsigned MaxRecurse
) {
1082 if (Value
*V
= SimplifyShift(Instruction::LShr
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
1086 if (match(Op0
, m_Undef()))
1087 return Constant::getNullValue(Op0
->getType());
1089 // (X << A) >> A -> X
1091 if (match(Op0
, m_Shl(m_Value(X
), m_Specific(Op1
))) &&
1092 cast
<OverflowingBinaryOperator
>(Op0
)->hasNoUnsignedWrap())
1098 Value
*llvm::SimplifyLShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1099 const TargetData
*TD
, const DominatorTree
*DT
) {
1100 return ::SimplifyLShrInst(Op0
, Op1
, isExact
, TD
, DT
, RecursionLimit
);
1103 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1104 /// fold the result. If not, this returns null.
1105 static Value
*SimplifyAShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1106 const TargetData
*TD
, const DominatorTree
*DT
,
1107 unsigned MaxRecurse
) {
1108 if (Value
*V
= SimplifyShift(Instruction::AShr
, Op0
, Op1
, TD
, DT
, MaxRecurse
))
1111 // all ones >>a X -> all ones
1112 if (match(Op0
, m_AllOnes()))
1115 // undef >>a X -> all ones
1116 if (match(Op0
, m_Undef()))
1117 return Constant::getAllOnesValue(Op0
->getType());
1119 // (X << A) >> A -> X
1121 if (match(Op0
, m_Shl(m_Value(X
), m_Specific(Op1
))) &&
1122 cast
<OverflowingBinaryOperator
>(Op0
)->hasNoSignedWrap())
1128 Value
*llvm::SimplifyAShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1129 const TargetData
*TD
, const DominatorTree
*DT
) {
1130 return ::SimplifyAShrInst(Op0
, Op1
, isExact
, TD
, DT
, RecursionLimit
);
1133 /// SimplifyAndInst - Given operands for an And, see if we can
1134 /// fold the result. If not, this returns null.
1135 static Value
*SimplifyAndInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
1136 const DominatorTree
*DT
, unsigned MaxRecurse
) {
1137 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
1138 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
1139 Constant
*Ops
[] = { CLHS
, CRHS
};
1140 return ConstantFoldInstOperands(Instruction::And
, CLHS
->getType(),
1144 // Canonicalize the constant to the RHS.
1145 std::swap(Op0
, Op1
);
1149 if (match(Op1
, m_Undef()))
1150 return Constant::getNullValue(Op0
->getType());
1157 if (match(Op1
, m_Zero()))
1161 if (match(Op1
, m_AllOnes()))
1164 // A & ~A = ~A & A = 0
1165 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
1166 match(Op1
, m_Not(m_Specific(Op0
))))
1167 return Constant::getNullValue(Op0
->getType());
1170 Value
*A
= 0, *B
= 0;
1171 if (match(Op0
, m_Or(m_Value(A
), m_Value(B
))) &&
1172 (A
== Op1
|| B
== Op1
))
1176 if (match(Op1
, m_Or(m_Value(A
), m_Value(B
))) &&
1177 (A
== Op0
|| B
== Op0
))
1180 // Try some generic simplifications for associative operations.
1181 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::And
, Op0
, Op1
, TD
, DT
,
1185 // And distributes over Or. Try some generic simplifications based on this.
1186 if (Value
*V
= ExpandBinOp(Instruction::And
, Op0
, Op1
, Instruction::Or
,
1187 TD
, DT
, MaxRecurse
))
1190 // And distributes over Xor. Try some generic simplifications based on this.
1191 if (Value
*V
= ExpandBinOp(Instruction::And
, Op0
, Op1
, Instruction::Xor
,
1192 TD
, DT
, MaxRecurse
))
1195 // Or distributes over And. Try some generic simplifications based on this.
1196 if (Value
*V
= FactorizeBinOp(Instruction::And
, Op0
, Op1
, Instruction::Or
,
1197 TD
, DT
, MaxRecurse
))
1200 // If the operation is with the result of a select instruction, check whether
1201 // operating on either branch of the select always yields the same value.
1202 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1203 if (Value
*V
= ThreadBinOpOverSelect(Instruction::And
, Op0
, Op1
, TD
, DT
,
1207 // If the operation is with the result of a phi instruction, check whether
1208 // operating on all incoming values of the phi always yields the same value.
1209 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1210 if (Value
*V
= ThreadBinOpOverPHI(Instruction::And
, Op0
, Op1
, TD
, DT
,
1217 Value
*llvm::SimplifyAndInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
1218 const DominatorTree
*DT
) {
1219 return ::SimplifyAndInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
1222 /// SimplifyOrInst - Given operands for an Or, see if we can
1223 /// fold the result. If not, this returns null.
1224 static Value
*SimplifyOrInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
1225 const DominatorTree
*DT
, unsigned MaxRecurse
) {
1226 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
1227 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
1228 Constant
*Ops
[] = { CLHS
, CRHS
};
1229 return ConstantFoldInstOperands(Instruction::Or
, CLHS
->getType(),
1233 // Canonicalize the constant to the RHS.
1234 std::swap(Op0
, Op1
);
1238 if (match(Op1
, m_Undef()))
1239 return Constant::getAllOnesValue(Op0
->getType());
1246 if (match(Op1
, m_Zero()))
1250 if (match(Op1
, m_AllOnes()))
1253 // A | ~A = ~A | A = -1
1254 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
1255 match(Op1
, m_Not(m_Specific(Op0
))))
1256 return Constant::getAllOnesValue(Op0
->getType());
1259 Value
*A
= 0, *B
= 0;
1260 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
1261 (A
== Op1
|| B
== Op1
))
1265 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))) &&
1266 (A
== Op0
|| B
== Op0
))
1269 // ~(A & ?) | A = -1
1270 if (match(Op0
, m_Not(m_And(m_Value(A
), m_Value(B
)))) &&
1271 (A
== Op1
|| B
== Op1
))
1272 return Constant::getAllOnesValue(Op1
->getType());
1274 // A | ~(A & ?) = -1
1275 if (match(Op1
, m_Not(m_And(m_Value(A
), m_Value(B
)))) &&
1276 (A
== Op0
|| B
== Op0
))
1277 return Constant::getAllOnesValue(Op0
->getType());
1279 // Try some generic simplifications for associative operations.
1280 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Or
, Op0
, Op1
, TD
, DT
,
1284 // Or distributes over And. Try some generic simplifications based on this.
1285 if (Value
*V
= ExpandBinOp(Instruction::Or
, Op0
, Op1
, Instruction::And
,
1286 TD
, DT
, MaxRecurse
))
1289 // And distributes over Or. Try some generic simplifications based on this.
1290 if (Value
*V
= FactorizeBinOp(Instruction::Or
, Op0
, Op1
, Instruction::And
,
1291 TD
, DT
, MaxRecurse
))
1294 // If the operation is with the result of a select instruction, check whether
1295 // operating on either branch of the select always yields the same value.
1296 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1297 if (Value
*V
= ThreadBinOpOverSelect(Instruction::Or
, Op0
, Op1
, TD
, DT
,
1301 // If the operation is with the result of a phi instruction, check whether
1302 // operating on all incoming values of the phi always yields the same value.
1303 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1304 if (Value
*V
= ThreadBinOpOverPHI(Instruction::Or
, Op0
, Op1
, TD
, DT
,
1311 Value
*llvm::SimplifyOrInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
1312 const DominatorTree
*DT
) {
1313 return ::SimplifyOrInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
1316 /// SimplifyXorInst - Given operands for a Xor, see if we can
1317 /// fold the result. If not, this returns null.
1318 static Value
*SimplifyXorInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
1319 const DominatorTree
*DT
, unsigned MaxRecurse
) {
1320 if (Constant
*CLHS
= dyn_cast
<Constant
>(Op0
)) {
1321 if (Constant
*CRHS
= dyn_cast
<Constant
>(Op1
)) {
1322 Constant
*Ops
[] = { CLHS
, CRHS
};
1323 return ConstantFoldInstOperands(Instruction::Xor
, CLHS
->getType(),
1327 // Canonicalize the constant to the RHS.
1328 std::swap(Op0
, Op1
);
1331 // A ^ undef -> undef
1332 if (match(Op1
, m_Undef()))
1336 if (match(Op1
, m_Zero()))
1341 return Constant::getNullValue(Op0
->getType());
1343 // A ^ ~A = ~A ^ A = -1
1344 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
1345 match(Op1
, m_Not(m_Specific(Op0
))))
1346 return Constant::getAllOnesValue(Op0
->getType());
1348 // Try some generic simplifications for associative operations.
1349 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Xor
, Op0
, Op1
, TD
, DT
,
1353 // And distributes over Xor. Try some generic simplifications based on this.
1354 if (Value
*V
= FactorizeBinOp(Instruction::Xor
, Op0
, Op1
, Instruction::And
,
1355 TD
, DT
, MaxRecurse
))
1358 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1359 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1360 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1361 // only if B and C are equal. If B and C are equal then (since we assume
1362 // that operands have already been simplified) "select(cond, B, C)" should
1363 // have been simplified to the common value of B and C already. Analysing
1364 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1365 // for threading over phi nodes.
1370 Value
*llvm::SimplifyXorInst(Value
*Op0
, Value
*Op1
, const TargetData
*TD
,
1371 const DominatorTree
*DT
) {
1372 return ::SimplifyXorInst(Op0
, Op1
, TD
, DT
, RecursionLimit
);
1375 static const Type
*GetCompareTy(Value
*Op
) {
1376 return CmpInst::makeCmpResultType(Op
->getType());
1379 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1380 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1381 /// otherwise return null. Helper function for analyzing max/min idioms.
1382 static Value
*ExtractEquivalentCondition(Value
*V
, CmpInst::Predicate Pred
,
1383 Value
*LHS
, Value
*RHS
) {
1384 SelectInst
*SI
= dyn_cast
<SelectInst
>(V
);
1387 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
1390 Value
*CmpLHS
= Cmp
->getOperand(0), *CmpRHS
= Cmp
->getOperand(1);
1391 if (Pred
== Cmp
->getPredicate() && LHS
== CmpLHS
&& RHS
== CmpRHS
)
1393 if (Pred
== CmpInst::getSwappedPredicate(Cmp
->getPredicate()) &&
1394 LHS
== CmpRHS
&& RHS
== CmpLHS
)
1399 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1400 /// fold the result. If not, this returns null.
1401 static Value
*SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
1402 const TargetData
*TD
, const DominatorTree
*DT
,
1403 unsigned MaxRecurse
) {
1404 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
1405 assert(CmpInst::isIntPredicate(Pred
) && "Not an integer compare!");
1407 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
1408 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
1409 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, TD
);
1411 // If we have a constant, make sure it is on the RHS.
1412 std::swap(LHS
, RHS
);
1413 Pred
= CmpInst::getSwappedPredicate(Pred
);
1416 const Type
*ITy
= GetCompareTy(LHS
); // The return type.
1417 const Type
*OpTy
= LHS
->getType(); // The operand type.
1419 // icmp X, X -> true/false
1420 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1421 // because X could be 0.
1422 if (LHS
== RHS
|| isa
<UndefValue
>(RHS
))
1423 return ConstantInt::get(ITy
, CmpInst::isTrueWhenEqual(Pred
));
1425 // Special case logic when the operands have i1 type.
1426 if (OpTy
->isIntegerTy(1) || (OpTy
->isVectorTy() &&
1427 cast
<VectorType
>(OpTy
)->getElementType()->isIntegerTy(1))) {
1430 case ICmpInst::ICMP_EQ
:
1432 if (match(RHS
, m_One()))
1435 case ICmpInst::ICMP_NE
:
1437 if (match(RHS
, m_Zero()))
1440 case ICmpInst::ICMP_UGT
:
1442 if (match(RHS
, m_Zero()))
1445 case ICmpInst::ICMP_UGE
:
1447 if (match(RHS
, m_One()))
1450 case ICmpInst::ICMP_SLT
:
1452 if (match(RHS
, m_Zero()))
1455 case ICmpInst::ICMP_SLE
:
1457 if (match(RHS
, m_One()))
1463 // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1464 // different addresses, and what's more the address of a stack variable is
1465 // never null or equal to the address of a global. Note that generalizing
1466 // to the case where LHS is a global variable address or null is pointless,
1467 // since if both LHS and RHS are constants then we already constant folded
1468 // the compare, and if only one of them is then we moved it to RHS already.
1469 if (isa
<AllocaInst
>(LHS
) && (isa
<GlobalValue
>(RHS
) || isa
<AllocaInst
>(RHS
) ||
1470 isa
<ConstantPointerNull
>(RHS
)))
1471 // We already know that LHS != RHS.
1472 return ConstantInt::get(ITy
, CmpInst::isFalseWhenEqual(Pred
));
1474 // If we are comparing with zero then try hard since this is a common case.
1475 if (match(RHS
, m_Zero())) {
1476 bool LHSKnownNonNegative
, LHSKnownNegative
;
1479 assert(false && "Unknown ICmp predicate!");
1480 case ICmpInst::ICMP_ULT
:
1481 // getNullValue also works for vectors, unlike getFalse.
1482 return Constant::getNullValue(ITy
);
1483 case ICmpInst::ICMP_UGE
:
1484 // getAllOnesValue also works for vectors, unlike getTrue.
1485 return ConstantInt::getAllOnesValue(ITy
);
1486 case ICmpInst::ICMP_EQ
:
1487 case ICmpInst::ICMP_ULE
:
1488 if (isKnownNonZero(LHS
, TD
))
1489 return Constant::getNullValue(ITy
);
1491 case ICmpInst::ICMP_NE
:
1492 case ICmpInst::ICMP_UGT
:
1493 if (isKnownNonZero(LHS
, TD
))
1494 return ConstantInt::getAllOnesValue(ITy
);
1496 case ICmpInst::ICMP_SLT
:
1497 ComputeSignBit(LHS
, LHSKnownNonNegative
, LHSKnownNegative
, TD
);
1498 if (LHSKnownNegative
)
1499 return ConstantInt::getAllOnesValue(ITy
);
1500 if (LHSKnownNonNegative
)
1501 return Constant::getNullValue(ITy
);
1503 case ICmpInst::ICMP_SLE
:
1504 ComputeSignBit(LHS
, LHSKnownNonNegative
, LHSKnownNegative
, TD
);
1505 if (LHSKnownNegative
)
1506 return ConstantInt::getAllOnesValue(ITy
);
1507 if (LHSKnownNonNegative
&& isKnownNonZero(LHS
, TD
))
1508 return Constant::getNullValue(ITy
);
1510 case ICmpInst::ICMP_SGE
:
1511 ComputeSignBit(LHS
, LHSKnownNonNegative
, LHSKnownNegative
, TD
);
1512 if (LHSKnownNegative
)
1513 return Constant::getNullValue(ITy
);
1514 if (LHSKnownNonNegative
)
1515 return ConstantInt::getAllOnesValue(ITy
);
1517 case ICmpInst::ICMP_SGT
:
1518 ComputeSignBit(LHS
, LHSKnownNonNegative
, LHSKnownNegative
, TD
);
1519 if (LHSKnownNegative
)
1520 return Constant::getNullValue(ITy
);
1521 if (LHSKnownNonNegative
&& isKnownNonZero(LHS
, TD
))
1522 return ConstantInt::getAllOnesValue(ITy
);
1527 // See if we are doing a comparison with a constant integer.
1528 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
1529 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1530 ConstantRange RHS_CR
= ICmpInst::makeConstantRange(Pred
, CI
->getValue());
1531 if (RHS_CR
.isEmptySet())
1532 return ConstantInt::getFalse(CI
->getContext());
1533 if (RHS_CR
.isFullSet())
1534 return ConstantInt::getTrue(CI
->getContext());
1536 // Many binary operators with constant RHS have easy to compute constant
1537 // range. Use them to check whether the comparison is a tautology.
1538 uint32_t Width
= CI
->getBitWidth();
1539 APInt Lower
= APInt(Width
, 0);
1540 APInt Upper
= APInt(Width
, 0);
1542 if (match(LHS
, m_URem(m_Value(), m_ConstantInt(CI2
)))) {
1543 // 'urem x, CI2' produces [0, CI2).
1544 Upper
= CI2
->getValue();
1545 } else if (match(LHS
, m_SRem(m_Value(), m_ConstantInt(CI2
)))) {
1546 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1547 Upper
= CI2
->getValue().abs();
1548 Lower
= (-Upper
) + 1;
1549 } else if (match(LHS
, m_UDiv(m_Value(), m_ConstantInt(CI2
)))) {
1550 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1551 APInt NegOne
= APInt::getAllOnesValue(Width
);
1553 Upper
= NegOne
.udiv(CI2
->getValue()) + 1;
1554 } else if (match(LHS
, m_SDiv(m_Value(), m_ConstantInt(CI2
)))) {
1555 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1556 APInt IntMin
= APInt::getSignedMinValue(Width
);
1557 APInt IntMax
= APInt::getSignedMaxValue(Width
);
1558 APInt Val
= CI2
->getValue().abs();
1559 if (!Val
.isMinValue()) {
1560 Lower
= IntMin
.sdiv(Val
);
1561 Upper
= IntMax
.sdiv(Val
) + 1;
1563 } else if (match(LHS
, m_LShr(m_Value(), m_ConstantInt(CI2
)))) {
1564 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1565 APInt NegOne
= APInt::getAllOnesValue(Width
);
1566 if (CI2
->getValue().ult(Width
))
1567 Upper
= NegOne
.lshr(CI2
->getValue()) + 1;
1568 } else if (match(LHS
, m_AShr(m_Value(), m_ConstantInt(CI2
)))) {
1569 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1570 APInt IntMin
= APInt::getSignedMinValue(Width
);
1571 APInt IntMax
= APInt::getSignedMaxValue(Width
);
1572 if (CI2
->getValue().ult(Width
)) {
1573 Lower
= IntMin
.ashr(CI2
->getValue());
1574 Upper
= IntMax
.ashr(CI2
->getValue()) + 1;
1576 } else if (match(LHS
, m_Or(m_Value(), m_ConstantInt(CI2
)))) {
1577 // 'or x, CI2' produces [CI2, UINT_MAX].
1578 Lower
= CI2
->getValue();
1579 } else if (match(LHS
, m_And(m_Value(), m_ConstantInt(CI2
)))) {
1580 // 'and x, CI2' produces [0, CI2].
1581 Upper
= CI2
->getValue() + 1;
1583 if (Lower
!= Upper
) {
1584 ConstantRange LHS_CR
= ConstantRange(Lower
, Upper
);
1585 if (RHS_CR
.contains(LHS_CR
))
1586 return ConstantInt::getTrue(RHS
->getContext());
1587 if (RHS_CR
.inverse().contains(LHS_CR
))
1588 return ConstantInt::getFalse(RHS
->getContext());
1592 // Compare of cast, for example (zext X) != 0 -> X != 0
1593 if (isa
<CastInst
>(LHS
) && (isa
<Constant
>(RHS
) || isa
<CastInst
>(RHS
))) {
1594 Instruction
*LI
= cast
<CastInst
>(LHS
);
1595 Value
*SrcOp
= LI
->getOperand(0);
1596 const Type
*SrcTy
= SrcOp
->getType();
1597 const Type
*DstTy
= LI
->getType();
1599 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1600 // if the integer type is the same size as the pointer type.
1601 if (MaxRecurse
&& TD
&& isa
<PtrToIntInst
>(LI
) &&
1602 TD
->getPointerSizeInBits() == DstTy
->getPrimitiveSizeInBits()) {
1603 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
1604 // Transfer the cast to the constant.
1605 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
,
1606 ConstantExpr::getIntToPtr(RHSC
, SrcTy
),
1607 TD
, DT
, MaxRecurse
-1))
1609 } else if (PtrToIntInst
*RI
= dyn_cast
<PtrToIntInst
>(RHS
)) {
1610 if (RI
->getOperand(0)->getType() == SrcTy
)
1611 // Compare without the cast.
1612 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0),
1613 TD
, DT
, MaxRecurse
-1))
1618 if (isa
<ZExtInst
>(LHS
)) {
1619 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1621 if (ZExtInst
*RI
= dyn_cast
<ZExtInst
>(RHS
)) {
1622 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
1623 // Compare X and Y. Note that signed predicates become unsigned.
1624 if (Value
*V
= SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
),
1625 SrcOp
, RI
->getOperand(0), TD
, DT
,
1629 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1630 // too. If not, then try to deduce the result of the comparison.
1631 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
1632 // Compute the constant that would happen if we truncated to SrcTy then
1633 // reextended to DstTy.
1634 Constant
*Trunc
= ConstantExpr::getTrunc(CI
, SrcTy
);
1635 Constant
*RExt
= ConstantExpr::getCast(CastInst::ZExt
, Trunc
, DstTy
);
1637 // If the re-extended constant didn't change then this is effectively
1638 // also a case of comparing two zero-extended values.
1639 if (RExt
== CI
&& MaxRecurse
)
1640 if (Value
*V
= SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
),
1641 SrcOp
, Trunc
, TD
, DT
, MaxRecurse
-1))
1644 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1645 // there. Use this to work out the result of the comparison.
1649 assert(false && "Unknown ICmp predicate!");
1651 case ICmpInst::ICMP_EQ
:
1652 case ICmpInst::ICMP_UGT
:
1653 case ICmpInst::ICMP_UGE
:
1654 return ConstantInt::getFalse(CI
->getContext());
1656 case ICmpInst::ICMP_NE
:
1657 case ICmpInst::ICMP_ULT
:
1658 case ICmpInst::ICMP_ULE
:
1659 return ConstantInt::getTrue(CI
->getContext());
1661 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1662 // is non-negative then LHS <s RHS.
1663 case ICmpInst::ICMP_SGT
:
1664 case ICmpInst::ICMP_SGE
:
1665 return CI
->getValue().isNegative() ?
1666 ConstantInt::getTrue(CI
->getContext()) :
1667 ConstantInt::getFalse(CI
->getContext());
1669 case ICmpInst::ICMP_SLT
:
1670 case ICmpInst::ICMP_SLE
:
1671 return CI
->getValue().isNegative() ?
1672 ConstantInt::getFalse(CI
->getContext()) :
1673 ConstantInt::getTrue(CI
->getContext());
1679 if (isa
<SExtInst
>(LHS
)) {
1680 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1682 if (SExtInst
*RI
= dyn_cast
<SExtInst
>(RHS
)) {
1683 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
1684 // Compare X and Y. Note that the predicate does not change.
1685 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0),
1686 TD
, DT
, MaxRecurse
-1))
1689 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1690 // too. If not, then try to deduce the result of the comparison.
1691 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
1692 // Compute the constant that would happen if we truncated to SrcTy then
1693 // reextended to DstTy.
1694 Constant
*Trunc
= ConstantExpr::getTrunc(CI
, SrcTy
);
1695 Constant
*RExt
= ConstantExpr::getCast(CastInst::SExt
, Trunc
, DstTy
);
1697 // If the re-extended constant didn't change then this is effectively
1698 // also a case of comparing two sign-extended values.
1699 if (RExt
== CI
&& MaxRecurse
)
1700 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, Trunc
, TD
, DT
,
1704 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1705 // bits there. Use this to work out the result of the comparison.
1709 assert(false && "Unknown ICmp predicate!");
1710 case ICmpInst::ICMP_EQ
:
1711 return ConstantInt::getFalse(CI
->getContext());
1712 case ICmpInst::ICMP_NE
:
1713 return ConstantInt::getTrue(CI
->getContext());
1715 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1717 case ICmpInst::ICMP_SGT
:
1718 case ICmpInst::ICMP_SGE
:
1719 return CI
->getValue().isNegative() ?
1720 ConstantInt::getTrue(CI
->getContext()) :
1721 ConstantInt::getFalse(CI
->getContext());
1722 case ICmpInst::ICMP_SLT
:
1723 case ICmpInst::ICMP_SLE
:
1724 return CI
->getValue().isNegative() ?
1725 ConstantInt::getFalse(CI
->getContext()) :
1726 ConstantInt::getTrue(CI
->getContext());
1728 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
1730 case ICmpInst::ICMP_UGT
:
1731 case ICmpInst::ICMP_UGE
:
1732 // Comparison is true iff the LHS <s 0.
1734 if (Value
*V
= SimplifyICmpInst(ICmpInst::ICMP_SLT
, SrcOp
,
1735 Constant::getNullValue(SrcTy
),
1736 TD
, DT
, MaxRecurse
-1))
1739 case ICmpInst::ICMP_ULT
:
1740 case ICmpInst::ICMP_ULE
:
1741 // Comparison is true iff the LHS >=s 0.
1743 if (Value
*V
= SimplifyICmpInst(ICmpInst::ICMP_SGE
, SrcOp
,
1744 Constant::getNullValue(SrcTy
),
1745 TD
, DT
, MaxRecurse
-1))
1754 // Special logic for binary operators.
1755 BinaryOperator
*LBO
= dyn_cast
<BinaryOperator
>(LHS
);
1756 BinaryOperator
*RBO
= dyn_cast
<BinaryOperator
>(RHS
);
1757 if (MaxRecurse
&& (LBO
|| RBO
)) {
1758 // Analyze the case when either LHS or RHS is an add instruction.
1759 Value
*A
= 0, *B
= 0, *C
= 0, *D
= 0;
1760 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1761 bool NoLHSWrapProblem
= false, NoRHSWrapProblem
= false;
1762 if (LBO
&& LBO
->getOpcode() == Instruction::Add
) {
1763 A
= LBO
->getOperand(0); B
= LBO
->getOperand(1);
1764 NoLHSWrapProblem
= ICmpInst::isEquality(Pred
) ||
1765 (CmpInst::isUnsigned(Pred
) && LBO
->hasNoUnsignedWrap()) ||
1766 (CmpInst::isSigned(Pred
) && LBO
->hasNoSignedWrap());
1768 if (RBO
&& RBO
->getOpcode() == Instruction::Add
) {
1769 C
= RBO
->getOperand(0); D
= RBO
->getOperand(1);
1770 NoRHSWrapProblem
= ICmpInst::isEquality(Pred
) ||
1771 (CmpInst::isUnsigned(Pred
) && RBO
->hasNoUnsignedWrap()) ||
1772 (CmpInst::isSigned(Pred
) && RBO
->hasNoSignedWrap());
1775 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1776 if ((A
== RHS
|| B
== RHS
) && NoLHSWrapProblem
)
1777 if (Value
*V
= SimplifyICmpInst(Pred
, A
== RHS
? B
: A
,
1778 Constant::getNullValue(RHS
->getType()),
1779 TD
, DT
, MaxRecurse
-1))
1782 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1783 if ((C
== LHS
|| D
== LHS
) && NoRHSWrapProblem
)
1784 if (Value
*V
= SimplifyICmpInst(Pred
,
1785 Constant::getNullValue(LHS
->getType()),
1786 C
== LHS
? D
: C
, TD
, DT
, MaxRecurse
-1))
1789 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1790 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) &&
1791 NoLHSWrapProblem
&& NoRHSWrapProblem
) {
1792 // Determine Y and Z in the form icmp (X+Y), (X+Z).
1793 Value
*Y
= (A
== C
|| A
== D
) ? B
: A
;
1794 Value
*Z
= (C
== A
|| C
== B
) ? D
: C
;
1795 if (Value
*V
= SimplifyICmpInst(Pred
, Y
, Z
, TD
, DT
, MaxRecurse
-1))
1800 if (LBO
&& match(LBO
, m_URem(m_Value(), m_Specific(RHS
)))) {
1801 bool KnownNonNegative
, KnownNegative
;
1805 case ICmpInst::ICMP_SGT
:
1806 case ICmpInst::ICMP_SGE
:
1807 ComputeSignBit(LHS
, KnownNonNegative
, KnownNegative
, TD
);
1808 if (!KnownNonNegative
)
1811 case ICmpInst::ICMP_EQ
:
1812 case ICmpInst::ICMP_UGT
:
1813 case ICmpInst::ICMP_UGE
:
1814 // getNullValue also works for vectors, unlike getFalse.
1815 return Constant::getNullValue(ITy
);
1816 case ICmpInst::ICMP_SLT
:
1817 case ICmpInst::ICMP_SLE
:
1818 ComputeSignBit(LHS
, KnownNonNegative
, KnownNegative
, TD
);
1819 if (!KnownNonNegative
)
1822 case ICmpInst::ICMP_NE
:
1823 case ICmpInst::ICMP_ULT
:
1824 case ICmpInst::ICMP_ULE
:
1825 // getAllOnesValue also works for vectors, unlike getTrue.
1826 return Constant::getAllOnesValue(ITy
);
1829 if (RBO
&& match(RBO
, m_URem(m_Value(), m_Specific(LHS
)))) {
1830 bool KnownNonNegative
, KnownNegative
;
1834 case ICmpInst::ICMP_SGT
:
1835 case ICmpInst::ICMP_SGE
:
1836 ComputeSignBit(RHS
, KnownNonNegative
, KnownNegative
, TD
);
1837 if (!KnownNonNegative
)
1840 case ICmpInst::ICMP_NE
:
1841 case ICmpInst::ICMP_UGT
:
1842 case ICmpInst::ICMP_UGE
:
1843 // getAllOnesValue also works for vectors, unlike getTrue.
1844 return Constant::getAllOnesValue(ITy
);
1845 case ICmpInst::ICMP_SLT
:
1846 case ICmpInst::ICMP_SLE
:
1847 ComputeSignBit(RHS
, KnownNonNegative
, KnownNegative
, TD
);
1848 if (!KnownNonNegative
)
1851 case ICmpInst::ICMP_EQ
:
1852 case ICmpInst::ICMP_ULT
:
1853 case ICmpInst::ICMP_ULE
:
1854 // getNullValue also works for vectors, unlike getFalse.
1855 return Constant::getNullValue(ITy
);
1859 if (MaxRecurse
&& LBO
&& RBO
&& LBO
->getOpcode() == RBO
->getOpcode() &&
1860 LBO
->getOperand(1) == RBO
->getOperand(1)) {
1861 switch (LBO
->getOpcode()) {
1863 case Instruction::UDiv
:
1864 case Instruction::LShr
:
1865 if (ICmpInst::isSigned(Pred
))
1868 case Instruction::SDiv
:
1869 case Instruction::AShr
:
1870 if (!LBO
->isExact() || !RBO
->isExact())
1872 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
1873 RBO
->getOperand(0), TD
, DT
, MaxRecurse
-1))
1876 case Instruction::Shl
: {
1877 bool NUW
= LBO
->hasNoUnsignedWrap() && LBO
->hasNoUnsignedWrap();
1878 bool NSW
= LBO
->hasNoSignedWrap() && RBO
->hasNoSignedWrap();
1881 if (!NSW
&& ICmpInst::isSigned(Pred
))
1883 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
1884 RBO
->getOperand(0), TD
, DT
, MaxRecurse
-1))
1891 // Simplify comparisons involving max/min.
1893 CmpInst::Predicate P
= CmpInst::BAD_ICMP_PREDICATE
;
1894 CmpInst::Predicate EqP
; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
1896 // Signed variants on "max(a,b)>=a -> true".
1897 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
1898 if (A
!= RHS
) std::swap(A
, B
); // smax(A, B) pred A.
1899 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
1900 // We analyze this as smax(A, B) pred A.
1902 } else if (match(RHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
1903 (A
== LHS
|| B
== LHS
)) {
1904 if (A
!= LHS
) std::swap(A
, B
); // A pred smax(A, B).
1905 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
1906 // We analyze this as smax(A, B) swapped-pred A.
1907 P
= CmpInst::getSwappedPredicate(Pred
);
1908 } else if (match(LHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
1909 (A
== RHS
|| B
== RHS
)) {
1910 if (A
!= RHS
) std::swap(A
, B
); // smin(A, B) pred A.
1911 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
1912 // We analyze this as smax(-A, -B) swapped-pred -A.
1913 // Note that we do not need to actually form -A or -B thanks to EqP.
1914 P
= CmpInst::getSwappedPredicate(Pred
);
1915 } else if (match(RHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
1916 (A
== LHS
|| B
== LHS
)) {
1917 if (A
!= LHS
) std::swap(A
, B
); // A pred smin(A, B).
1918 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
1919 // We analyze this as smax(-A, -B) pred -A.
1920 // Note that we do not need to actually form -A or -B thanks to EqP.
1923 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
1924 // Cases correspond to "max(A, B) p A".
1928 case CmpInst::ICMP_EQ
:
1929 case CmpInst::ICMP_SLE
:
1930 // Equivalent to "A EqP B". This may be the same as the condition tested
1931 // in the max/min; if so, we can just return that.
1932 if (Value
*V
= ExtractEquivalentCondition(LHS
, EqP
, A
, B
))
1934 if (Value
*V
= ExtractEquivalentCondition(RHS
, EqP
, A
, B
))
1936 // Otherwise, see if "A EqP B" simplifies.
1938 if (Value
*V
= SimplifyICmpInst(EqP
, A
, B
, TD
, DT
, MaxRecurse
-1))
1941 case CmpInst::ICMP_NE
:
1942 case CmpInst::ICMP_SGT
: {
1943 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
1944 // Equivalent to "A InvEqP B". This may be the same as the condition
1945 // tested in the max/min; if so, we can just return that.
1946 if (Value
*V
= ExtractEquivalentCondition(LHS
, InvEqP
, A
, B
))
1948 if (Value
*V
= ExtractEquivalentCondition(RHS
, InvEqP
, A
, B
))
1950 // Otherwise, see if "A InvEqP B" simplifies.
1952 if (Value
*V
= SimplifyICmpInst(InvEqP
, A
, B
, TD
, DT
, MaxRecurse
-1))
1956 case CmpInst::ICMP_SGE
:
1958 return Constant::getAllOnesValue(ITy
);
1959 case CmpInst::ICMP_SLT
:
1961 return Constant::getNullValue(ITy
);
1965 // Unsigned variants on "max(a,b)>=a -> true".
1966 P
= CmpInst::BAD_ICMP_PREDICATE
;
1967 if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
1968 if (A
!= RHS
) std::swap(A
, B
); // umax(A, B) pred A.
1969 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
1970 // We analyze this as umax(A, B) pred A.
1972 } else if (match(RHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
1973 (A
== LHS
|| B
== LHS
)) {
1974 if (A
!= LHS
) std::swap(A
, B
); // A pred umax(A, B).
1975 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
1976 // We analyze this as umax(A, B) swapped-pred A.
1977 P
= CmpInst::getSwappedPredicate(Pred
);
1978 } else if (match(LHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
1979 (A
== RHS
|| B
== RHS
)) {
1980 if (A
!= RHS
) std::swap(A
, B
); // umin(A, B) pred A.
1981 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
1982 // We analyze this as umax(-A, -B) swapped-pred -A.
1983 // Note that we do not need to actually form -A or -B thanks to EqP.
1984 P
= CmpInst::getSwappedPredicate(Pred
);
1985 } else if (match(RHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
1986 (A
== LHS
|| B
== LHS
)) {
1987 if (A
!= LHS
) std::swap(A
, B
); // A pred umin(A, B).
1988 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
1989 // We analyze this as umax(-A, -B) pred -A.
1990 // Note that we do not need to actually form -A or -B thanks to EqP.
1993 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
1994 // Cases correspond to "max(A, B) p A".
1998 case CmpInst::ICMP_EQ
:
1999 case CmpInst::ICMP_ULE
:
2000 // Equivalent to "A EqP B". This may be the same as the condition tested
2001 // in the max/min; if so, we can just return that.
2002 if (Value
*V
= ExtractEquivalentCondition(LHS
, EqP
, A
, B
))
2004 if (Value
*V
= ExtractEquivalentCondition(RHS
, EqP
, A
, B
))
2006 // Otherwise, see if "A EqP B" simplifies.
2008 if (Value
*V
= SimplifyICmpInst(EqP
, A
, B
, TD
, DT
, MaxRecurse
-1))
2011 case CmpInst::ICMP_NE
:
2012 case CmpInst::ICMP_UGT
: {
2013 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
2014 // Equivalent to "A InvEqP B". This may be the same as the condition
2015 // tested in the max/min; if so, we can just return that.
2016 if (Value
*V
= ExtractEquivalentCondition(LHS
, InvEqP
, A
, B
))
2018 if (Value
*V
= ExtractEquivalentCondition(RHS
, InvEqP
, A
, B
))
2020 // Otherwise, see if "A InvEqP B" simplifies.
2022 if (Value
*V
= SimplifyICmpInst(InvEqP
, A
, B
, TD
, DT
, MaxRecurse
-1))
2026 case CmpInst::ICMP_UGE
:
2028 return Constant::getAllOnesValue(ITy
);
2029 case CmpInst::ICMP_ULT
:
2031 return Constant::getNullValue(ITy
);
2035 // Variants on "max(x,y) >= min(x,z)".
2037 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
2038 match(RHS
, m_SMin(m_Value(C
), m_Value(D
))) &&
2039 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
2040 // max(x, ?) pred min(x, ?).
2041 if (Pred
== CmpInst::ICMP_SGE
)
2043 return Constant::getAllOnesValue(ITy
);
2044 if (Pred
== CmpInst::ICMP_SLT
)
2046 return Constant::getNullValue(ITy
);
2047 } else if (match(LHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
2048 match(RHS
, m_SMax(m_Value(C
), m_Value(D
))) &&
2049 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
2050 // min(x, ?) pred max(x, ?).
2051 if (Pred
== CmpInst::ICMP_SLE
)
2053 return Constant::getAllOnesValue(ITy
);
2054 if (Pred
== CmpInst::ICMP_SGT
)
2056 return Constant::getNullValue(ITy
);
2057 } else if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
2058 match(RHS
, m_UMin(m_Value(C
), m_Value(D
))) &&
2059 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
2060 // max(x, ?) pred min(x, ?).
2061 if (Pred
== CmpInst::ICMP_UGE
)
2063 return Constant::getAllOnesValue(ITy
);
2064 if (Pred
== CmpInst::ICMP_ULT
)
2066 return Constant::getNullValue(ITy
);
2067 } else if (match(LHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
2068 match(RHS
, m_UMax(m_Value(C
), m_Value(D
))) &&
2069 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
2070 // min(x, ?) pred max(x, ?).
2071 if (Pred
== CmpInst::ICMP_ULE
)
2073 return Constant::getAllOnesValue(ITy
);
2074 if (Pred
== CmpInst::ICMP_UGT
)
2076 return Constant::getNullValue(ITy
);
2079 // If the comparison is with the result of a select instruction, check whether
2080 // comparing with either branch of the select always yields the same value.
2081 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
2082 if (Value
*V
= ThreadCmpOverSelect(Pred
, LHS
, RHS
, TD
, DT
, MaxRecurse
))
2085 // If the comparison is with the result of a phi instruction, check whether
2086 // doing the compare with each incoming phi value yields a common result.
2087 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
2088 if (Value
*V
= ThreadCmpOverPHI(Pred
, LHS
, RHS
, TD
, DT
, MaxRecurse
))
2094 Value
*llvm::SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
2095 const TargetData
*TD
, const DominatorTree
*DT
) {
2096 return ::SimplifyICmpInst(Predicate
, LHS
, RHS
, TD
, DT
, RecursionLimit
);
2099 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2100 /// fold the result. If not, this returns null.
2101 static Value
*SimplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
2102 const TargetData
*TD
, const DominatorTree
*DT
,
2103 unsigned MaxRecurse
) {
2104 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
2105 assert(CmpInst::isFPPredicate(Pred
) && "Not an FP compare!");
2107 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
2108 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
2109 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, TD
);
2111 // If we have a constant, make sure it is on the RHS.
2112 std::swap(LHS
, RHS
);
2113 Pred
= CmpInst::getSwappedPredicate(Pred
);
2116 // Fold trivial predicates.
2117 if (Pred
== FCmpInst::FCMP_FALSE
)
2118 return ConstantInt::get(GetCompareTy(LHS
), 0);
2119 if (Pred
== FCmpInst::FCMP_TRUE
)
2120 return ConstantInt::get(GetCompareTy(LHS
), 1);
2122 if (isa
<UndefValue
>(RHS
)) // fcmp pred X, undef -> undef
2123 return UndefValue::get(GetCompareTy(LHS
));
2125 // fcmp x,x -> true/false. Not all compares are foldable.
2127 if (CmpInst::isTrueWhenEqual(Pred
))
2128 return ConstantInt::get(GetCompareTy(LHS
), 1);
2129 if (CmpInst::isFalseWhenEqual(Pred
))
2130 return ConstantInt::get(GetCompareTy(LHS
), 0);
2133 // Handle fcmp with constant RHS
2134 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
2135 // If the constant is a nan, see if we can fold the comparison based on it.
2136 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(RHSC
)) {
2137 if (CFP
->getValueAPF().isNaN()) {
2138 if (FCmpInst::isOrdered(Pred
)) // True "if ordered and foo"
2139 return ConstantInt::getFalse(CFP
->getContext());
2140 assert(FCmpInst::isUnordered(Pred
) &&
2141 "Comparison must be either ordered or unordered!");
2142 // True if unordered.
2143 return ConstantInt::getTrue(CFP
->getContext());
2145 // Check whether the constant is an infinity.
2146 if (CFP
->getValueAPF().isInfinity()) {
2147 if (CFP
->getValueAPF().isNegative()) {
2149 case FCmpInst::FCMP_OLT
:
2150 // No value is ordered and less than negative infinity.
2151 return ConstantInt::getFalse(CFP
->getContext());
2152 case FCmpInst::FCMP_UGE
:
2153 // All values are unordered with or at least negative infinity.
2154 return ConstantInt::getTrue(CFP
->getContext());
2160 case FCmpInst::FCMP_OGT
:
2161 // No value is ordered and greater than infinity.
2162 return ConstantInt::getFalse(CFP
->getContext());
2163 case FCmpInst::FCMP_ULE
:
2164 // All values are unordered with and at most infinity.
2165 return ConstantInt::getTrue(CFP
->getContext());
2174 // If the comparison is with the result of a select instruction, check whether
2175 // comparing with either branch of the select always yields the same value.
2176 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
2177 if (Value
*V
= ThreadCmpOverSelect(Pred
, LHS
, RHS
, TD
, DT
, MaxRecurse
))
2180 // If the comparison is with the result of a phi instruction, check whether
2181 // doing the compare with each incoming phi value yields a common result.
2182 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
2183 if (Value
*V
= ThreadCmpOverPHI(Pred
, LHS
, RHS
, TD
, DT
, MaxRecurse
))
2189 Value
*llvm::SimplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
2190 const TargetData
*TD
, const DominatorTree
*DT
) {
2191 return ::SimplifyFCmpInst(Predicate
, LHS
, RHS
, TD
, DT
, RecursionLimit
);
2194 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2195 /// the result. If not, this returns null.
2196 Value
*llvm::SimplifySelectInst(Value
*CondVal
, Value
*TrueVal
, Value
*FalseVal
,
2197 const TargetData
*TD
, const DominatorTree
*) {
2198 // select true, X, Y -> X
2199 // select false, X, Y -> Y
2200 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(CondVal
))
2201 return CB
->getZExtValue() ? TrueVal
: FalseVal
;
2203 // select C, X, X -> X
2204 if (TrueVal
== FalseVal
)
2207 if (isa
<UndefValue
>(CondVal
)) { // select undef, X, Y -> X or Y
2208 if (isa
<Constant
>(TrueVal
))
2212 if (isa
<UndefValue
>(TrueVal
)) // select C, undef, X -> X
2214 if (isa
<UndefValue
>(FalseVal
)) // select C, X, undef -> X
2220 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2221 /// fold the result. If not, this returns null.
2222 Value
*llvm::SimplifyGEPInst(Value
*const *Ops
, unsigned NumOps
,
2223 const TargetData
*TD
, const DominatorTree
*) {
2224 // The type of the GEP pointer operand.
2225 const PointerType
*PtrTy
= cast
<PointerType
>(Ops
[0]->getType());
2227 // getelementptr P -> P.
2231 if (isa
<UndefValue
>(Ops
[0])) {
2232 // Compute the (pointer) type returned by the GEP instruction.
2233 const Type
*LastType
= GetElementPtrInst::getIndexedType(PtrTy
, &Ops
[1],
2235 const Type
*GEPTy
= PointerType::get(LastType
, PtrTy
->getAddressSpace());
2236 return UndefValue::get(GEPTy
);
2240 // getelementptr P, 0 -> P.
2241 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Ops
[1]))
2244 // getelementptr P, N -> P if P points to a type of zero size.
2246 const Type
*Ty
= PtrTy
->getElementType();
2247 if (Ty
->isSized() && TD
->getTypeAllocSize(Ty
) == 0)
2252 // Check to see if this is constant foldable.
2253 for (unsigned i
= 0; i
!= NumOps
; ++i
)
2254 if (!isa
<Constant
>(Ops
[i
]))
2257 return ConstantExpr::getGetElementPtr(cast
<Constant
>(Ops
[0]),
2258 (Constant
*const*)Ops
+1, NumOps
-1);
2261 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
2262 static Value
*SimplifyPHINode(PHINode
*PN
, const DominatorTree
*DT
) {
2263 // If all of the PHI's incoming values are the same then replace the PHI node
2264 // with the common value.
2265 Value
*CommonValue
= 0;
2266 bool HasUndefInput
= false;
2267 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
2268 Value
*Incoming
= PN
->getIncomingValue(i
);
2269 // If the incoming value is the phi node itself, it can safely be skipped.
2270 if (Incoming
== PN
) continue;
2271 if (isa
<UndefValue
>(Incoming
)) {
2272 // Remember that we saw an undef value, but otherwise ignore them.
2273 HasUndefInput
= true;
2276 if (CommonValue
&& Incoming
!= CommonValue
)
2277 return 0; // Not the same, bail out.
2278 CommonValue
= Incoming
;
2281 // If CommonValue is null then all of the incoming values were either undef or
2282 // equal to the phi node itself.
2284 return UndefValue::get(PN
->getType());
2286 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2287 // instruction, we cannot return X as the result of the PHI node unless it
2288 // dominates the PHI block.
2290 return ValueDominatesPHI(CommonValue
, PN
, DT
) ? CommonValue
: 0;
2296 //=== Helper functions for higher up the class hierarchy.
2298 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2299 /// fold the result. If not, this returns null.
2300 static Value
*SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
2301 const TargetData
*TD
, const DominatorTree
*DT
,
2302 unsigned MaxRecurse
) {
2304 case Instruction::Add
:
2305 return SimplifyAddInst(LHS
, RHS
, /*isNSW*/false, /*isNUW*/false,
2306 TD
, DT
, MaxRecurse
);
2307 case Instruction::Sub
:
2308 return SimplifySubInst(LHS
, RHS
, /*isNSW*/false, /*isNUW*/false,
2309 TD
, DT
, MaxRecurse
);
2310 case Instruction::Mul
: return SimplifyMulInst (LHS
, RHS
, TD
, DT
, MaxRecurse
);
2311 case Instruction::SDiv
: return SimplifySDivInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2312 case Instruction::UDiv
: return SimplifyUDivInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2313 case Instruction::FDiv
: return SimplifyFDivInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2314 case Instruction::SRem
: return SimplifySRemInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2315 case Instruction::URem
: return SimplifyURemInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2316 case Instruction::FRem
: return SimplifyFRemInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2317 case Instruction::Shl
:
2318 return SimplifyShlInst(LHS
, RHS
, /*isNSW*/false, /*isNUW*/false,
2319 TD
, DT
, MaxRecurse
);
2320 case Instruction::LShr
:
2321 return SimplifyLShrInst(LHS
, RHS
, /*isExact*/false, TD
, DT
, MaxRecurse
);
2322 case Instruction::AShr
:
2323 return SimplifyAShrInst(LHS
, RHS
, /*isExact*/false, TD
, DT
, MaxRecurse
);
2324 case Instruction::And
: return SimplifyAndInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2325 case Instruction::Or
: return SimplifyOrInst (LHS
, RHS
, TD
, DT
, MaxRecurse
);
2326 case Instruction::Xor
: return SimplifyXorInst(LHS
, RHS
, TD
, DT
, MaxRecurse
);
2328 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
))
2329 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
)) {
2330 Constant
*COps
[] = {CLHS
, CRHS
};
2331 return ConstantFoldInstOperands(Opcode
, LHS
->getType(), COps
, 2, TD
);
2334 // If the operation is associative, try some generic simplifications.
2335 if (Instruction::isAssociative(Opcode
))
2336 if (Value
*V
= SimplifyAssociativeBinOp(Opcode
, LHS
, RHS
, TD
, DT
,
2340 // If the operation is with the result of a select instruction, check whether
2341 // operating on either branch of the select always yields the same value.
2342 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
2343 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, LHS
, RHS
, TD
, DT
,
2347 // If the operation is with the result of a phi instruction, check whether
2348 // operating on all incoming values of the phi always yields the same value.
2349 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
2350 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, LHS
, RHS
, TD
, DT
, MaxRecurse
))
2357 Value
*llvm::SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
2358 const TargetData
*TD
, const DominatorTree
*DT
) {
2359 return ::SimplifyBinOp(Opcode
, LHS
, RHS
, TD
, DT
, RecursionLimit
);
2362 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2363 /// fold the result.
2364 static Value
*SimplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
2365 const TargetData
*TD
, const DominatorTree
*DT
,
2366 unsigned MaxRecurse
) {
2367 if (CmpInst::isIntPredicate((CmpInst::Predicate
)Predicate
))
2368 return SimplifyICmpInst(Predicate
, LHS
, RHS
, TD
, DT
, MaxRecurse
);
2369 return SimplifyFCmpInst(Predicate
, LHS
, RHS
, TD
, DT
, MaxRecurse
);
2372 Value
*llvm::SimplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
2373 const TargetData
*TD
, const DominatorTree
*DT
) {
2374 return ::SimplifyCmpInst(Predicate
, LHS
, RHS
, TD
, DT
, RecursionLimit
);
2377 /// SimplifyInstruction - See if we can compute a simplified version of this
2378 /// instruction. If not, this returns null.
2379 Value
*llvm::SimplifyInstruction(Instruction
*I
, const TargetData
*TD
,
2380 const DominatorTree
*DT
) {
2383 switch (I
->getOpcode()) {
2385 Result
= ConstantFoldInstruction(I
, TD
);
2387 case Instruction::Add
:
2388 Result
= SimplifyAddInst(I
->getOperand(0), I
->getOperand(1),
2389 cast
<BinaryOperator
>(I
)->hasNoSignedWrap(),
2390 cast
<BinaryOperator
>(I
)->hasNoUnsignedWrap(),
2393 case Instruction::Sub
:
2394 Result
= SimplifySubInst(I
->getOperand(0), I
->getOperand(1),
2395 cast
<BinaryOperator
>(I
)->hasNoSignedWrap(),
2396 cast
<BinaryOperator
>(I
)->hasNoUnsignedWrap(),
2399 case Instruction::Mul
:
2400 Result
= SimplifyMulInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2402 case Instruction::SDiv
:
2403 Result
= SimplifySDivInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2405 case Instruction::UDiv
:
2406 Result
= SimplifyUDivInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2408 case Instruction::FDiv
:
2409 Result
= SimplifyFDivInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2411 case Instruction::SRem
:
2412 Result
= SimplifySRemInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2414 case Instruction::URem
:
2415 Result
= SimplifyURemInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2417 case Instruction::FRem
:
2418 Result
= SimplifyFRemInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2420 case Instruction::Shl
:
2421 Result
= SimplifyShlInst(I
->getOperand(0), I
->getOperand(1),
2422 cast
<BinaryOperator
>(I
)->hasNoSignedWrap(),
2423 cast
<BinaryOperator
>(I
)->hasNoUnsignedWrap(),
2426 case Instruction::LShr
:
2427 Result
= SimplifyLShrInst(I
->getOperand(0), I
->getOperand(1),
2428 cast
<BinaryOperator
>(I
)->isExact(),
2431 case Instruction::AShr
:
2432 Result
= SimplifyAShrInst(I
->getOperand(0), I
->getOperand(1),
2433 cast
<BinaryOperator
>(I
)->isExact(),
2436 case Instruction::And
:
2437 Result
= SimplifyAndInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2439 case Instruction::Or
:
2440 Result
= SimplifyOrInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2442 case Instruction::Xor
:
2443 Result
= SimplifyXorInst(I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2445 case Instruction::ICmp
:
2446 Result
= SimplifyICmpInst(cast
<ICmpInst
>(I
)->getPredicate(),
2447 I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2449 case Instruction::FCmp
:
2450 Result
= SimplifyFCmpInst(cast
<FCmpInst
>(I
)->getPredicate(),
2451 I
->getOperand(0), I
->getOperand(1), TD
, DT
);
2453 case Instruction::Select
:
2454 Result
= SimplifySelectInst(I
->getOperand(0), I
->getOperand(1),
2455 I
->getOperand(2), TD
, DT
);
2457 case Instruction::GetElementPtr
: {
2458 SmallVector
<Value
*, 8> Ops(I
->op_begin(), I
->op_end());
2459 Result
= SimplifyGEPInst(&Ops
[0], Ops
.size(), TD
, DT
);
2462 case Instruction::PHI
:
2463 Result
= SimplifyPHINode(cast
<PHINode
>(I
), DT
);
2467 /// If called on unreachable code, the above logic may report that the
2468 /// instruction simplified to itself. Make life easier for users by
2469 /// detecting that case here, returning a safe value instead.
2470 return Result
== I
? UndefValue::get(I
->getType()) : Result
;
2473 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2474 /// delete the From instruction. In addition to a basic RAUW, this does a
2475 /// recursive simplification of the newly formed instructions. This catches
2476 /// things where one simplification exposes other opportunities. This only
2477 /// simplifies and deletes scalar operations, it does not change the CFG.
2479 void llvm::ReplaceAndSimplifyAllUses(Instruction
*From
, Value
*To
,
2480 const TargetData
*TD
,
2481 const DominatorTree
*DT
) {
2482 assert(From
!= To
&& "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2484 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2485 // we can know if it gets deleted out from under us or replaced in a
2486 // recursive simplification.
2487 WeakVH
FromHandle(From
);
2488 WeakVH
ToHandle(To
);
2490 while (!From
->use_empty()) {
2491 // Update the instruction to use the new value.
2492 Use
&TheUse
= From
->use_begin().getUse();
2493 Instruction
*User
= cast
<Instruction
>(TheUse
.getUser());
2496 // Check to see if the instruction can be folded due to the operand
2497 // replacement. For example changing (or X, Y) into (or X, -1) can replace
2498 // the 'or' with -1.
2499 Value
*SimplifiedVal
;
2501 // Sanity check to make sure 'User' doesn't dangle across
2502 // SimplifyInstruction.
2503 AssertingVH
<> UserHandle(User
);
2505 SimplifiedVal
= SimplifyInstruction(User
, TD
, DT
);
2506 if (SimplifiedVal
== 0) continue;
2509 // Recursively simplify this user to the new value.
2510 ReplaceAndSimplifyAllUses(User
, SimplifiedVal
, TD
, DT
);
2511 From
= dyn_cast_or_null
<Instruction
>((Value
*)FromHandle
);
2514 assert(ToHandle
&& "To value deleted by recursive simplification?");
2516 // If the recursive simplification ended up revisiting and deleting
2517 // 'From' then we're done.
2522 // If 'From' has value handles referring to it, do a real RAUW to update them.
2523 From
->replaceAllUsesWith(To
);
2525 From
->eraseFromParent();