Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Analysis / InstructionSimplify.cpp
blob8709f6bf9d2602818d92b96ae8161f2754edeaae
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "instsimplify"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Support/ConstantRange.h"
28 #include "llvm/Support/PatternMatch.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/Target/TargetData.h"
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
34 enum { RecursionLimit = 3 };
36 STATISTIC(NumExpand, "Number of expansions");
37 STATISTIC(NumFactor , "Number of factorizations");
38 STATISTIC(NumReassoc, "Number of reassociations");
40 static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
41 const DominatorTree *, unsigned);
42 static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
43 const DominatorTree *, unsigned);
44 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
45 const DominatorTree *, unsigned);
46 static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
47 const DominatorTree *, unsigned);
48 static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
49 const DominatorTree *, unsigned);
51 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
52 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
53 Instruction *I = dyn_cast<Instruction>(V);
54 if (!I)
55 // Arguments and constants dominate all instructions.
56 return true;
58 // If we have a DominatorTree then do a precise test.
59 if (DT)
60 return DT->dominates(I, P);
62 // Otherwise, if the instruction is in the entry block, and is not an invoke,
63 // then it obviously dominates all phi nodes.
64 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
65 !isa<InvokeInst>(I))
66 return true;
68 return false;
71 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
72 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
73 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
74 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
75 /// Returns the simplified value, or null if no simplification was performed.
76 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
77 unsigned OpcToExpand, const TargetData *TD,
78 const DominatorTree *DT, unsigned MaxRecurse) {
79 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
80 // Recursion is always used, so bail out at once if we already hit the limit.
81 if (!MaxRecurse--)
82 return 0;
84 // Check whether the expression has the form "(A op' B) op C".
85 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
86 if (Op0->getOpcode() == OpcodeToExpand) {
87 // It does! Try turning it into "(A op C) op' (B op C)".
88 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
89 // Do "A op C" and "B op C" both simplify?
90 if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
91 if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
92 // They do! Return "L op' R" if it simplifies or is already available.
93 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
94 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
95 && L == B && R == A)) {
96 ++NumExpand;
97 return LHS;
99 // Otherwise return "L op' R" if it simplifies.
100 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
101 MaxRecurse)) {
102 ++NumExpand;
103 return V;
108 // Check whether the expression has the form "A op (B op' C)".
109 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
110 if (Op1->getOpcode() == OpcodeToExpand) {
111 // It does! Try turning it into "(A op B) op' (A op C)".
112 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
113 // Do "A op B" and "A op C" both simplify?
114 if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
115 if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
116 // They do! Return "L op' R" if it simplifies or is already available.
117 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
118 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
119 && L == C && R == B)) {
120 ++NumExpand;
121 return RHS;
123 // Otherwise return "L op' R" if it simplifies.
124 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
125 MaxRecurse)) {
126 ++NumExpand;
127 return V;
132 return 0;
135 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
136 /// using the operation OpCodeToExtract. For example, when Opcode is Add and
137 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
138 /// Returns the simplified value, or null if no simplification was performed.
139 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
140 unsigned OpcToExtract, const TargetData *TD,
141 const DominatorTree *DT, unsigned MaxRecurse) {
142 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
143 // Recursion is always used, so bail out at once if we already hit the limit.
144 if (!MaxRecurse--)
145 return 0;
147 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
148 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
150 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
151 !Op1 || Op1->getOpcode() != OpcodeToExtract)
152 return 0;
154 // The expression has the form "(A op' B) op (C op' D)".
155 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
156 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
158 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
159 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
160 // commutative case, "(A op' B) op (C op' A)"?
161 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
162 Value *DD = A == C ? D : C;
163 // Form "A op' (B op DD)" if it simplifies completely.
164 // Does "B op DD" simplify?
165 if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
166 // It does! Return "A op' V" if it simplifies or is already available.
167 // If V equals B then "A op' V" is just the LHS. If V equals DD then
168 // "A op' V" is just the RHS.
169 if (V == B || V == DD) {
170 ++NumFactor;
171 return V == B ? LHS : RHS;
173 // Otherwise return "A op' V" if it simplifies.
174 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
175 ++NumFactor;
176 return W;
181 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
182 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
183 // commutative case, "(A op' B) op (B op' D)"?
184 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
185 Value *CC = B == D ? C : D;
186 // Form "(A op CC) op' B" if it simplifies completely..
187 // Does "A op CC" simplify?
188 if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
189 // It does! Return "V op' B" if it simplifies or is already available.
190 // If V equals A then "V op' B" is just the LHS. If V equals CC then
191 // "V op' B" is just the RHS.
192 if (V == A || V == CC) {
193 ++NumFactor;
194 return V == A ? LHS : RHS;
196 // Otherwise return "V op' B" if it simplifies.
197 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
198 ++NumFactor;
199 return W;
204 return 0;
207 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
208 /// operations. Returns the simpler value, or null if none was found.
209 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
210 const TargetData *TD,
211 const DominatorTree *DT,
212 unsigned MaxRecurse) {
213 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
214 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
216 // Recursion is always used, so bail out at once if we already hit the limit.
217 if (!MaxRecurse--)
218 return 0;
220 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
221 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
223 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
224 if (Op0 && Op0->getOpcode() == Opcode) {
225 Value *A = Op0->getOperand(0);
226 Value *B = Op0->getOperand(1);
227 Value *C = RHS;
229 // Does "B op C" simplify?
230 if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
231 // It does! Return "A op V" if it simplifies or is already available.
232 // If V equals B then "A op V" is just the LHS.
233 if (V == B) return LHS;
234 // Otherwise return "A op V" if it simplifies.
235 if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
236 ++NumReassoc;
237 return W;
242 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
243 if (Op1 && Op1->getOpcode() == Opcode) {
244 Value *A = LHS;
245 Value *B = Op1->getOperand(0);
246 Value *C = Op1->getOperand(1);
248 // Does "A op B" simplify?
249 if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
250 // It does! Return "V op C" if it simplifies or is already available.
251 // If V equals B then "V op C" is just the RHS.
252 if (V == B) return RHS;
253 // Otherwise return "V op C" if it simplifies.
254 if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
255 ++NumReassoc;
256 return W;
261 // The remaining transforms require commutativity as well as associativity.
262 if (!Instruction::isCommutative(Opcode))
263 return 0;
265 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
266 if (Op0 && Op0->getOpcode() == Opcode) {
267 Value *A = Op0->getOperand(0);
268 Value *B = Op0->getOperand(1);
269 Value *C = RHS;
271 // Does "C op A" simplify?
272 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
273 // It does! Return "V op B" if it simplifies or is already available.
274 // If V equals A then "V op B" is just the LHS.
275 if (V == A) return LHS;
276 // Otherwise return "V op B" if it simplifies.
277 if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
278 ++NumReassoc;
279 return W;
284 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
285 if (Op1 && Op1->getOpcode() == Opcode) {
286 Value *A = LHS;
287 Value *B = Op1->getOperand(0);
288 Value *C = Op1->getOperand(1);
290 // Does "C op A" simplify?
291 if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
292 // It does! Return "B op V" if it simplifies or is already available.
293 // If V equals C then "B op V" is just the RHS.
294 if (V == C) return RHS;
295 // Otherwise return "B op V" if it simplifies.
296 if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
297 ++NumReassoc;
298 return W;
303 return 0;
306 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
307 /// instruction as an operand, try to simplify the binop by seeing whether
308 /// evaluating it on both branches of the select results in the same value.
309 /// Returns the common value if so, otherwise returns null.
310 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
311 const TargetData *TD,
312 const DominatorTree *DT,
313 unsigned MaxRecurse) {
314 // Recursion is always used, so bail out at once if we already hit the limit.
315 if (!MaxRecurse--)
316 return 0;
318 SelectInst *SI;
319 if (isa<SelectInst>(LHS)) {
320 SI = cast<SelectInst>(LHS);
321 } else {
322 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
323 SI = cast<SelectInst>(RHS);
326 // Evaluate the BinOp on the true and false branches of the select.
327 Value *TV;
328 Value *FV;
329 if (SI == LHS) {
330 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
331 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
332 } else {
333 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
334 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
337 // If they simplified to the same value, then return the common value.
338 // If they both failed to simplify then return null.
339 if (TV == FV)
340 return TV;
342 // If one branch simplified to undef, return the other one.
343 if (TV && isa<UndefValue>(TV))
344 return FV;
345 if (FV && isa<UndefValue>(FV))
346 return TV;
348 // If applying the operation did not change the true and false select values,
349 // then the result of the binop is the select itself.
350 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
351 return SI;
353 // If one branch simplified and the other did not, and the simplified
354 // value is equal to the unsimplified one, return the simplified value.
355 // For example, select (cond, X, X & Z) & Z -> X & Z.
356 if ((FV && !TV) || (TV && !FV)) {
357 // Check that the simplified value has the form "X op Y" where "op" is the
358 // same as the original operation.
359 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
360 if (Simplified && Simplified->getOpcode() == Opcode) {
361 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
362 // We already know that "op" is the same as for the simplified value. See
363 // if the operands match too. If so, return the simplified value.
364 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
365 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
366 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
367 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
368 Simplified->getOperand(1) == UnsimplifiedRHS)
369 return Simplified;
370 if (Simplified->isCommutative() &&
371 Simplified->getOperand(1) == UnsimplifiedLHS &&
372 Simplified->getOperand(0) == UnsimplifiedRHS)
373 return Simplified;
377 return 0;
380 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
381 /// try to simplify the comparison by seeing whether both branches of the select
382 /// result in the same value. Returns the common value if so, otherwise returns
383 /// null.
384 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
385 Value *RHS, const TargetData *TD,
386 const DominatorTree *DT,
387 unsigned MaxRecurse) {
388 // Recursion is always used, so bail out at once if we already hit the limit.
389 if (!MaxRecurse--)
390 return 0;
392 // Make sure the select is on the LHS.
393 if (!isa<SelectInst>(LHS)) {
394 std::swap(LHS, RHS);
395 Pred = CmpInst::getSwappedPredicate(Pred);
397 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
398 SelectInst *SI = cast<SelectInst>(LHS);
400 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
401 // Does "cmp TV, RHS" simplify?
402 if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
403 MaxRecurse)) {
404 // It does! Does "cmp FV, RHS" simplify?
405 if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
406 MaxRecurse)) {
407 // It does! If they simplified to the same value, then use it as the
408 // result of the original comparison.
409 if (TCmp == FCmp)
410 return TCmp;
411 Value *Cond = SI->getCondition();
412 // If the false value simplified to false, then the result of the compare
413 // is equal to "Cond && TCmp". This also catches the case when the false
414 // value simplified to false and the true value to true, returning "Cond".
415 if (match(FCmp, m_Zero()))
416 if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
417 return V;
418 // If the true value simplified to true, then the result of the compare
419 // is equal to "Cond || FCmp".
420 if (match(TCmp, m_One()))
421 if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
422 return V;
423 // Finally, if the false value simplified to true and the true value to
424 // false, then the result of the compare is equal to "!Cond".
425 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
426 if (Value *V =
427 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
428 TD, DT, MaxRecurse))
429 return V;
433 return 0;
436 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
437 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
438 /// it on the incoming phi values yields the same result for every value. If so
439 /// returns the common value, otherwise returns null.
440 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
441 const TargetData *TD, const DominatorTree *DT,
442 unsigned MaxRecurse) {
443 // Recursion is always used, so bail out at once if we already hit the limit.
444 if (!MaxRecurse--)
445 return 0;
447 PHINode *PI;
448 if (isa<PHINode>(LHS)) {
449 PI = cast<PHINode>(LHS);
450 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
451 if (!ValueDominatesPHI(RHS, PI, DT))
452 return 0;
453 } else {
454 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
455 PI = cast<PHINode>(RHS);
456 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
457 if (!ValueDominatesPHI(LHS, PI, DT))
458 return 0;
461 // Evaluate the BinOp on the incoming phi values.
462 Value *CommonValue = 0;
463 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
464 Value *Incoming = PI->getIncomingValue(i);
465 // If the incoming value is the phi node itself, it can safely be skipped.
466 if (Incoming == PI) continue;
467 Value *V = PI == LHS ?
468 SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
469 SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
470 // If the operation failed to simplify, or simplified to a different value
471 // to previously, then give up.
472 if (!V || (CommonValue && V != CommonValue))
473 return 0;
474 CommonValue = V;
477 return CommonValue;
480 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
481 /// try to simplify the comparison by seeing whether comparing with all of the
482 /// incoming phi values yields the same result every time. If so returns the
483 /// common result, otherwise returns null.
484 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
485 const TargetData *TD, const DominatorTree *DT,
486 unsigned MaxRecurse) {
487 // Recursion is always used, so bail out at once if we already hit the limit.
488 if (!MaxRecurse--)
489 return 0;
491 // Make sure the phi is on the LHS.
492 if (!isa<PHINode>(LHS)) {
493 std::swap(LHS, RHS);
494 Pred = CmpInst::getSwappedPredicate(Pred);
496 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
497 PHINode *PI = cast<PHINode>(LHS);
499 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
500 if (!ValueDominatesPHI(RHS, PI, DT))
501 return 0;
503 // Evaluate the BinOp on the incoming phi values.
504 Value *CommonValue = 0;
505 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
506 Value *Incoming = PI->getIncomingValue(i);
507 // If the incoming value is the phi node itself, it can safely be skipped.
508 if (Incoming == PI) continue;
509 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
510 // If the operation failed to simplify, or simplified to a different value
511 // to previously, then give up.
512 if (!V || (CommonValue && V != CommonValue))
513 return 0;
514 CommonValue = V;
517 return CommonValue;
520 /// SimplifyAddInst - Given operands for an Add, see if we can
521 /// fold the result. If not, this returns null.
522 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
523 const TargetData *TD, const DominatorTree *DT,
524 unsigned MaxRecurse) {
525 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
526 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
527 Constant *Ops[] = { CLHS, CRHS };
528 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
529 Ops, 2, TD);
532 // Canonicalize the constant to the RHS.
533 std::swap(Op0, Op1);
536 // X + undef -> undef
537 if (match(Op1, m_Undef()))
538 return Op1;
540 // X + 0 -> X
541 if (match(Op1, m_Zero()))
542 return Op0;
544 // X + (Y - X) -> Y
545 // (Y - X) + X -> Y
546 // Eg: X + -X -> 0
547 Value *Y = 0;
548 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
549 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
550 return Y;
552 // X + ~X -> -1 since ~X = -X-1
553 if (match(Op0, m_Not(m_Specific(Op1))) ||
554 match(Op1, m_Not(m_Specific(Op0))))
555 return Constant::getAllOnesValue(Op0->getType());
557 /// i1 add -> xor.
558 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
559 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
560 return V;
562 // Try some generic simplifications for associative operations.
563 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
564 MaxRecurse))
565 return V;
567 // Mul distributes over Add. Try some generic simplifications based on this.
568 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
569 TD, DT, MaxRecurse))
570 return V;
572 // Threading Add over selects and phi nodes is pointless, so don't bother.
573 // Threading over the select in "A + select(cond, B, C)" means evaluating
574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
575 // only if B and C are equal. If B and C are equal then (since we assume
576 // that operands have already been simplified) "select(cond, B, C)" should
577 // have been simplified to the common value of B and C already. Analysing
578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
579 // for threading over phi nodes.
581 return 0;
584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
585 const TargetData *TD, const DominatorTree *DT) {
586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
589 /// SimplifySubInst - Given operands for a Sub, see if we can
590 /// fold the result. If not, this returns null.
591 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
592 const TargetData *TD, const DominatorTree *DT,
593 unsigned MaxRecurse) {
594 if (Constant *CLHS = dyn_cast<Constant>(Op0))
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
597 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
598 Ops, 2, TD);
601 // X - undef -> undef
602 // undef - X -> undef
603 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
604 return UndefValue::get(Op0->getType());
606 // X - 0 -> X
607 if (match(Op1, m_Zero()))
608 return Op0;
610 // X - X -> 0
611 if (Op0 == Op1)
612 return Constant::getNullValue(Op0->getType());
614 // (X*2) - X -> X
615 // (X<<1) - X -> X
616 Value *X = 0;
617 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
618 match(Op0, m_Shl(m_Specific(Op1), m_One())))
619 return Op1;
621 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
622 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
623 Value *Y = 0, *Z = Op1;
624 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
625 // See if "V === Y - Z" simplifies.
626 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
627 // It does! Now see if "X + V" simplifies.
628 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
629 MaxRecurse-1)) {
630 // It does, we successfully reassociated!
631 ++NumReassoc;
632 return W;
634 // See if "V === X - Z" simplifies.
635 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
636 // It does! Now see if "Y + V" simplifies.
637 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
638 MaxRecurse-1)) {
639 // It does, we successfully reassociated!
640 ++NumReassoc;
641 return W;
645 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
646 // For example, X - (X + 1) -> -1
647 X = Op0;
648 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
649 // See if "V === X - Y" simplifies.
650 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
651 // It does! Now see if "V - Z" simplifies.
652 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
653 MaxRecurse-1)) {
654 // It does, we successfully reassociated!
655 ++NumReassoc;
656 return W;
658 // See if "V === X - Z" simplifies.
659 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
660 // It does! Now see if "V - Y" simplifies.
661 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
662 MaxRecurse-1)) {
663 // It does, we successfully reassociated!
664 ++NumReassoc;
665 return W;
669 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
670 // For example, X - (X - Y) -> Y.
671 Z = Op0;
672 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
673 // See if "V === Z - X" simplifies.
674 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
675 // It does! Now see if "V + Y" simplifies.
676 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
677 MaxRecurse-1)) {
678 // It does, we successfully reassociated!
679 ++NumReassoc;
680 return W;
683 // Mul distributes over Sub. Try some generic simplifications based on this.
684 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
685 TD, DT, MaxRecurse))
686 return V;
688 // i1 sub -> xor.
689 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
690 if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
691 return V;
693 // Threading Sub over selects and phi nodes is pointless, so don't bother.
694 // Threading over the select in "A - select(cond, B, C)" means evaluating
695 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
696 // only if B and C are equal. If B and C are equal then (since we assume
697 // that operands have already been simplified) "select(cond, B, C)" should
698 // have been simplified to the common value of B and C already. Analysing
699 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
700 // for threading over phi nodes.
702 return 0;
705 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
706 const TargetData *TD, const DominatorTree *DT) {
707 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
710 /// SimplifyMulInst - Given operands for a Mul, see if we can
711 /// fold the result. If not, this returns null.
712 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
713 const DominatorTree *DT, unsigned MaxRecurse) {
714 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
715 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
716 Constant *Ops[] = { CLHS, CRHS };
717 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
718 Ops, 2, TD);
721 // Canonicalize the constant to the RHS.
722 std::swap(Op0, Op1);
725 // X * undef -> 0
726 if (match(Op1, m_Undef()))
727 return Constant::getNullValue(Op0->getType());
729 // X * 0 -> 0
730 if (match(Op1, m_Zero()))
731 return Op1;
733 // X * 1 -> X
734 if (match(Op1, m_One()))
735 return Op0;
737 // (X / Y) * Y -> X if the division is exact.
738 Value *X = 0, *Y = 0;
739 if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
740 (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
741 BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
742 if (Div->isExact())
743 return X;
746 // i1 mul -> and.
747 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
748 if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
749 return V;
751 // Try some generic simplifications for associative operations.
752 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
753 MaxRecurse))
754 return V;
756 // Mul distributes over Add. Try some generic simplifications based on this.
757 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
758 TD, DT, MaxRecurse))
759 return V;
761 // If the operation is with the result of a select instruction, check whether
762 // operating on either branch of the select always yields the same value.
763 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
764 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
765 MaxRecurse))
766 return V;
768 // If the operation is with the result of a phi instruction, check whether
769 // operating on all incoming values of the phi always yields the same value.
770 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
771 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
772 MaxRecurse))
773 return V;
775 return 0;
778 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
779 const DominatorTree *DT) {
780 return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
783 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
784 /// fold the result. If not, this returns null.
785 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
786 const TargetData *TD, const DominatorTree *DT,
787 unsigned MaxRecurse) {
788 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
789 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
790 Constant *Ops[] = { C0, C1 };
791 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
795 bool isSigned = Opcode == Instruction::SDiv;
797 // X / undef -> undef
798 if (match(Op1, m_Undef()))
799 return Op1;
801 // undef / X -> 0
802 if (match(Op0, m_Undef()))
803 return Constant::getNullValue(Op0->getType());
805 // 0 / X -> 0, we don't need to preserve faults!
806 if (match(Op0, m_Zero()))
807 return Op0;
809 // X / 1 -> X
810 if (match(Op1, m_One()))
811 return Op0;
813 if (Op0->getType()->isIntegerTy(1))
814 // It can't be division by zero, hence it must be division by one.
815 return Op0;
817 // X / X -> 1
818 if (Op0 == Op1)
819 return ConstantInt::get(Op0->getType(), 1);
821 // (X * Y) / Y -> X if the multiplication does not overflow.
822 Value *X = 0, *Y = 0;
823 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
824 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
825 BinaryOperator *Mul = cast<BinaryOperator>(Op0);
826 // If the Mul knows it does not overflow, then we are good to go.
827 if ((isSigned && Mul->hasNoSignedWrap()) ||
828 (!isSigned && Mul->hasNoUnsignedWrap()))
829 return X;
830 // If X has the form X = A / Y then X * Y cannot overflow.
831 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
832 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
833 return X;
836 // (X rem Y) / Y -> 0
837 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
838 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
839 return Constant::getNullValue(Op0->getType());
841 // If the operation is with the result of a select instruction, check whether
842 // operating on either branch of the select always yields the same value.
843 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
844 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
845 return V;
847 // If the operation is with the result of a phi instruction, check whether
848 // operating on all incoming values of the phi always yields the same value.
849 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
850 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
851 return V;
853 return 0;
856 /// SimplifySDivInst - Given operands for an SDiv, see if we can
857 /// fold the result. If not, this returns null.
858 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
859 const DominatorTree *DT, unsigned MaxRecurse) {
860 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
861 return V;
863 return 0;
866 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
867 const DominatorTree *DT) {
868 return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
871 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
872 /// fold the result. If not, this returns null.
873 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
874 const DominatorTree *DT, unsigned MaxRecurse) {
875 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
876 return V;
878 return 0;
881 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
882 const DominatorTree *DT) {
883 return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
886 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
887 const DominatorTree *, unsigned) {
888 // undef / X -> undef (the undef could be a snan).
889 if (match(Op0, m_Undef()))
890 return Op0;
892 // X / undef -> undef
893 if (match(Op1, m_Undef()))
894 return Op1;
896 return 0;
899 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
900 const DominatorTree *DT) {
901 return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
904 /// SimplifyRem - Given operands for an SRem or URem, see if we can
905 /// fold the result. If not, this returns null.
906 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
907 const TargetData *TD, const DominatorTree *DT,
908 unsigned MaxRecurse) {
909 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
910 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
911 Constant *Ops[] = { C0, C1 };
912 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
916 // X % undef -> undef
917 if (match(Op1, m_Undef()))
918 return Op1;
920 // undef % X -> 0
921 if (match(Op0, m_Undef()))
922 return Constant::getNullValue(Op0->getType());
924 // 0 % X -> 0, we don't need to preserve faults!
925 if (match(Op0, m_Zero()))
926 return Op0;
928 // X % 0 -> undef, we don't need to preserve faults!
929 if (match(Op1, m_Zero()))
930 return UndefValue::get(Op0->getType());
932 // X % 1 -> 0
933 if (match(Op1, m_One()))
934 return Constant::getNullValue(Op0->getType());
936 if (Op0->getType()->isIntegerTy(1))
937 // It can't be remainder by zero, hence it must be remainder by one.
938 return Constant::getNullValue(Op0->getType());
940 // X % X -> 0
941 if (Op0 == Op1)
942 return Constant::getNullValue(Op0->getType());
944 // If the operation is with the result of a select instruction, check whether
945 // operating on either branch of the select always yields the same value.
946 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
947 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
948 return V;
950 // If the operation is with the result of a phi instruction, check whether
951 // operating on all incoming values of the phi always yields the same value.
952 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
953 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
954 return V;
956 return 0;
959 /// SimplifySRemInst - Given operands for an SRem, see if we can
960 /// fold the result. If not, this returns null.
961 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
962 const DominatorTree *DT, unsigned MaxRecurse) {
963 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
964 return V;
966 return 0;
969 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
970 const DominatorTree *DT) {
971 return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
974 /// SimplifyURemInst - Given operands for a URem, see if we can
975 /// fold the result. If not, this returns null.
976 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
977 const DominatorTree *DT, unsigned MaxRecurse) {
978 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
979 return V;
981 return 0;
984 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
985 const DominatorTree *DT) {
986 return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
989 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
990 const DominatorTree *, unsigned) {
991 // undef % X -> undef (the undef could be a snan).
992 if (match(Op0, m_Undef()))
993 return Op0;
995 // X % undef -> undef
996 if (match(Op1, m_Undef()))
997 return Op1;
999 return 0;
1002 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1003 const DominatorTree *DT) {
1004 return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
1007 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1008 /// fold the result. If not, this returns null.
1009 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1010 const TargetData *TD, const DominatorTree *DT,
1011 unsigned MaxRecurse) {
1012 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1013 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1014 Constant *Ops[] = { C0, C1 };
1015 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
1019 // 0 shift by X -> 0
1020 if (match(Op0, m_Zero()))
1021 return Op0;
1023 // X shift by 0 -> X
1024 if (match(Op1, m_Zero()))
1025 return Op0;
1027 // X shift by undef -> undef because it may shift by the bitwidth.
1028 if (match(Op1, m_Undef()))
1029 return Op1;
1031 // Shifting by the bitwidth or more is undefined.
1032 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1033 if (CI->getValue().getLimitedValue() >=
1034 Op0->getType()->getScalarSizeInBits())
1035 return UndefValue::get(Op0->getType());
1037 // If the operation is with the result of a select instruction, check whether
1038 // operating on either branch of the select always yields the same value.
1039 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1040 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1041 return V;
1043 // If the operation is with the result of a phi instruction, check whether
1044 // operating on all incoming values of the phi always yields the same value.
1045 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1046 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
1047 return V;
1049 return 0;
1052 /// SimplifyShlInst - Given operands for an Shl, see if we can
1053 /// fold the result. If not, this returns null.
1054 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1055 const TargetData *TD, const DominatorTree *DT,
1056 unsigned MaxRecurse) {
1057 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
1058 return V;
1060 // undef << X -> 0
1061 if (match(Op0, m_Undef()))
1062 return Constant::getNullValue(Op0->getType());
1064 // (X >> A) << A -> X
1065 Value *X;
1066 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
1067 cast<PossiblyExactOperator>(Op0)->isExact())
1068 return X;
1069 return 0;
1072 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1073 const TargetData *TD, const DominatorTree *DT) {
1074 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
1077 /// SimplifyLShrInst - Given operands for an LShr, see if we can
1078 /// fold the result. If not, this returns null.
1079 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1080 const TargetData *TD, const DominatorTree *DT,
1081 unsigned MaxRecurse) {
1082 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
1083 return V;
1085 // undef >>l X -> 0
1086 if (match(Op0, m_Undef()))
1087 return Constant::getNullValue(Op0->getType());
1089 // (X << A) >> A -> X
1090 Value *X;
1091 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1092 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1093 return X;
1095 return 0;
1098 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1099 const TargetData *TD, const DominatorTree *DT) {
1100 return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1103 /// SimplifyAShrInst - Given operands for an AShr, see if we can
1104 /// fold the result. If not, this returns null.
1105 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1106 const TargetData *TD, const DominatorTree *DT,
1107 unsigned MaxRecurse) {
1108 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
1109 return V;
1111 // all ones >>a X -> all ones
1112 if (match(Op0, m_AllOnes()))
1113 return Op0;
1115 // undef >>a X -> all ones
1116 if (match(Op0, m_Undef()))
1117 return Constant::getAllOnesValue(Op0->getType());
1119 // (X << A) >> A -> X
1120 Value *X;
1121 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1122 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1123 return X;
1125 return 0;
1128 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1129 const TargetData *TD, const DominatorTree *DT) {
1130 return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
1133 /// SimplifyAndInst - Given operands for an And, see if we can
1134 /// fold the result. If not, this returns null.
1135 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1136 const DominatorTree *DT, unsigned MaxRecurse) {
1137 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1138 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1139 Constant *Ops[] = { CLHS, CRHS };
1140 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1141 Ops, 2, TD);
1144 // Canonicalize the constant to the RHS.
1145 std::swap(Op0, Op1);
1148 // X & undef -> 0
1149 if (match(Op1, m_Undef()))
1150 return Constant::getNullValue(Op0->getType());
1152 // X & X = X
1153 if (Op0 == Op1)
1154 return Op0;
1156 // X & 0 = 0
1157 if (match(Op1, m_Zero()))
1158 return Op1;
1160 // X & -1 = X
1161 if (match(Op1, m_AllOnes()))
1162 return Op0;
1164 // A & ~A = ~A & A = 0
1165 if (match(Op0, m_Not(m_Specific(Op1))) ||
1166 match(Op1, m_Not(m_Specific(Op0))))
1167 return Constant::getNullValue(Op0->getType());
1169 // (A | ?) & A = A
1170 Value *A = 0, *B = 0;
1171 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1172 (A == Op1 || B == Op1))
1173 return Op1;
1175 // A & (A | ?) = A
1176 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1177 (A == Op0 || B == Op0))
1178 return Op0;
1180 // Try some generic simplifications for associative operations.
1181 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1182 MaxRecurse))
1183 return V;
1185 // And distributes over Or. Try some generic simplifications based on this.
1186 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1187 TD, DT, MaxRecurse))
1188 return V;
1190 // And distributes over Xor. Try some generic simplifications based on this.
1191 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1192 TD, DT, MaxRecurse))
1193 return V;
1195 // Or distributes over And. Try some generic simplifications based on this.
1196 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1197 TD, DT, MaxRecurse))
1198 return V;
1200 // If the operation is with the result of a select instruction, check whether
1201 // operating on either branch of the select always yields the same value.
1202 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1203 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
1204 MaxRecurse))
1205 return V;
1207 // If the operation is with the result of a phi instruction, check whether
1208 // operating on all incoming values of the phi always yields the same value.
1209 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1210 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
1211 MaxRecurse))
1212 return V;
1214 return 0;
1217 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1218 const DominatorTree *DT) {
1219 return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
1222 /// SimplifyOrInst - Given operands for an Or, see if we can
1223 /// fold the result. If not, this returns null.
1224 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1225 const DominatorTree *DT, unsigned MaxRecurse) {
1226 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1227 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1228 Constant *Ops[] = { CLHS, CRHS };
1229 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1230 Ops, 2, TD);
1233 // Canonicalize the constant to the RHS.
1234 std::swap(Op0, Op1);
1237 // X | undef -> -1
1238 if (match(Op1, m_Undef()))
1239 return Constant::getAllOnesValue(Op0->getType());
1241 // X | X = X
1242 if (Op0 == Op1)
1243 return Op0;
1245 // X | 0 = X
1246 if (match(Op1, m_Zero()))
1247 return Op0;
1249 // X | -1 = -1
1250 if (match(Op1, m_AllOnes()))
1251 return Op1;
1253 // A | ~A = ~A | A = -1
1254 if (match(Op0, m_Not(m_Specific(Op1))) ||
1255 match(Op1, m_Not(m_Specific(Op0))))
1256 return Constant::getAllOnesValue(Op0->getType());
1258 // (A & ?) | A = A
1259 Value *A = 0, *B = 0;
1260 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1261 (A == Op1 || B == Op1))
1262 return Op1;
1264 // A | (A & ?) = A
1265 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1266 (A == Op0 || B == Op0))
1267 return Op0;
1269 // ~(A & ?) | A = -1
1270 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1271 (A == Op1 || B == Op1))
1272 return Constant::getAllOnesValue(Op1->getType());
1274 // A | ~(A & ?) = -1
1275 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1276 (A == Op0 || B == Op0))
1277 return Constant::getAllOnesValue(Op0->getType());
1279 // Try some generic simplifications for associative operations.
1280 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1281 MaxRecurse))
1282 return V;
1284 // Or distributes over And. Try some generic simplifications based on this.
1285 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1286 TD, DT, MaxRecurse))
1287 return V;
1289 // And distributes over Or. Try some generic simplifications based on this.
1290 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1291 TD, DT, MaxRecurse))
1292 return V;
1294 // If the operation is with the result of a select instruction, check whether
1295 // operating on either branch of the select always yields the same value.
1296 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1297 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
1298 MaxRecurse))
1299 return V;
1301 // If the operation is with the result of a phi instruction, check whether
1302 // operating on all incoming values of the phi always yields the same value.
1303 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1304 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
1305 MaxRecurse))
1306 return V;
1308 return 0;
1311 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1312 const DominatorTree *DT) {
1313 return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
1316 /// SimplifyXorInst - Given operands for a Xor, see if we can
1317 /// fold the result. If not, this returns null.
1318 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1319 const DominatorTree *DT, unsigned MaxRecurse) {
1320 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1321 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1322 Constant *Ops[] = { CLHS, CRHS };
1323 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1324 Ops, 2, TD);
1327 // Canonicalize the constant to the RHS.
1328 std::swap(Op0, Op1);
1331 // A ^ undef -> undef
1332 if (match(Op1, m_Undef()))
1333 return Op1;
1335 // A ^ 0 = A
1336 if (match(Op1, m_Zero()))
1337 return Op0;
1339 // A ^ A = 0
1340 if (Op0 == Op1)
1341 return Constant::getNullValue(Op0->getType());
1343 // A ^ ~A = ~A ^ A = -1
1344 if (match(Op0, m_Not(m_Specific(Op1))) ||
1345 match(Op1, m_Not(m_Specific(Op0))))
1346 return Constant::getAllOnesValue(Op0->getType());
1348 // Try some generic simplifications for associative operations.
1349 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1350 MaxRecurse))
1351 return V;
1353 // And distributes over Xor. Try some generic simplifications based on this.
1354 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1355 TD, DT, MaxRecurse))
1356 return V;
1358 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1359 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1360 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1361 // only if B and C are equal. If B and C are equal then (since we assume
1362 // that operands have already been simplified) "select(cond, B, C)" should
1363 // have been simplified to the common value of B and C already. Analysing
1364 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1365 // for threading over phi nodes.
1367 return 0;
1370 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1371 const DominatorTree *DT) {
1372 return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1375 static const Type *GetCompareTy(Value *Op) {
1376 return CmpInst::makeCmpResultType(Op->getType());
1379 /// ExtractEquivalentCondition - Rummage around inside V looking for something
1380 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1381 /// otherwise return null. Helper function for analyzing max/min idioms.
1382 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1383 Value *LHS, Value *RHS) {
1384 SelectInst *SI = dyn_cast<SelectInst>(V);
1385 if (!SI)
1386 return 0;
1387 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1388 if (!Cmp)
1389 return 0;
1390 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1391 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1392 return Cmp;
1393 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1394 LHS == CmpRHS && RHS == CmpLHS)
1395 return Cmp;
1396 return 0;
1399 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1400 /// fold the result. If not, this returns null.
1401 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1402 const TargetData *TD, const DominatorTree *DT,
1403 unsigned MaxRecurse) {
1404 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1405 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1407 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1408 if (Constant *CRHS = dyn_cast<Constant>(RHS))
1409 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1411 // If we have a constant, make sure it is on the RHS.
1412 std::swap(LHS, RHS);
1413 Pred = CmpInst::getSwappedPredicate(Pred);
1416 const Type *ITy = GetCompareTy(LHS); // The return type.
1417 const Type *OpTy = LHS->getType(); // The operand type.
1419 // icmp X, X -> true/false
1420 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1421 // because X could be 0.
1422 if (LHS == RHS || isa<UndefValue>(RHS))
1423 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1425 // Special case logic when the operands have i1 type.
1426 if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1427 cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1428 switch (Pred) {
1429 default: break;
1430 case ICmpInst::ICMP_EQ:
1431 // X == 1 -> X
1432 if (match(RHS, m_One()))
1433 return LHS;
1434 break;
1435 case ICmpInst::ICMP_NE:
1436 // X != 0 -> X
1437 if (match(RHS, m_Zero()))
1438 return LHS;
1439 break;
1440 case ICmpInst::ICMP_UGT:
1441 // X >u 0 -> X
1442 if (match(RHS, m_Zero()))
1443 return LHS;
1444 break;
1445 case ICmpInst::ICMP_UGE:
1446 // X >=u 1 -> X
1447 if (match(RHS, m_One()))
1448 return LHS;
1449 break;
1450 case ICmpInst::ICMP_SLT:
1451 // X <s 0 -> X
1452 if (match(RHS, m_Zero()))
1453 return LHS;
1454 break;
1455 case ICmpInst::ICMP_SLE:
1456 // X <=s -1 -> X
1457 if (match(RHS, m_One()))
1458 return LHS;
1459 break;
1463 // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1464 // different addresses, and what's more the address of a stack variable is
1465 // never null or equal to the address of a global. Note that generalizing
1466 // to the case where LHS is a global variable address or null is pointless,
1467 // since if both LHS and RHS are constants then we already constant folded
1468 // the compare, and if only one of them is then we moved it to RHS already.
1469 if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1470 isa<ConstantPointerNull>(RHS)))
1471 // We already know that LHS != RHS.
1472 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1474 // If we are comparing with zero then try hard since this is a common case.
1475 if (match(RHS, m_Zero())) {
1476 bool LHSKnownNonNegative, LHSKnownNegative;
1477 switch (Pred) {
1478 default:
1479 assert(false && "Unknown ICmp predicate!");
1480 case ICmpInst::ICMP_ULT:
1481 // getNullValue also works for vectors, unlike getFalse.
1482 return Constant::getNullValue(ITy);
1483 case ICmpInst::ICMP_UGE:
1484 // getAllOnesValue also works for vectors, unlike getTrue.
1485 return ConstantInt::getAllOnesValue(ITy);
1486 case ICmpInst::ICMP_EQ:
1487 case ICmpInst::ICMP_ULE:
1488 if (isKnownNonZero(LHS, TD))
1489 return Constant::getNullValue(ITy);
1490 break;
1491 case ICmpInst::ICMP_NE:
1492 case ICmpInst::ICMP_UGT:
1493 if (isKnownNonZero(LHS, TD))
1494 return ConstantInt::getAllOnesValue(ITy);
1495 break;
1496 case ICmpInst::ICMP_SLT:
1497 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1498 if (LHSKnownNegative)
1499 return ConstantInt::getAllOnesValue(ITy);
1500 if (LHSKnownNonNegative)
1501 return Constant::getNullValue(ITy);
1502 break;
1503 case ICmpInst::ICMP_SLE:
1504 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1505 if (LHSKnownNegative)
1506 return ConstantInt::getAllOnesValue(ITy);
1507 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1508 return Constant::getNullValue(ITy);
1509 break;
1510 case ICmpInst::ICMP_SGE:
1511 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1512 if (LHSKnownNegative)
1513 return Constant::getNullValue(ITy);
1514 if (LHSKnownNonNegative)
1515 return ConstantInt::getAllOnesValue(ITy);
1516 break;
1517 case ICmpInst::ICMP_SGT:
1518 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1519 if (LHSKnownNegative)
1520 return Constant::getNullValue(ITy);
1521 if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1522 return ConstantInt::getAllOnesValue(ITy);
1523 break;
1527 // See if we are doing a comparison with a constant integer.
1528 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1529 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1530 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1531 if (RHS_CR.isEmptySet())
1532 return ConstantInt::getFalse(CI->getContext());
1533 if (RHS_CR.isFullSet())
1534 return ConstantInt::getTrue(CI->getContext());
1536 // Many binary operators with constant RHS have easy to compute constant
1537 // range. Use them to check whether the comparison is a tautology.
1538 uint32_t Width = CI->getBitWidth();
1539 APInt Lower = APInt(Width, 0);
1540 APInt Upper = APInt(Width, 0);
1541 ConstantInt *CI2;
1542 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1543 // 'urem x, CI2' produces [0, CI2).
1544 Upper = CI2->getValue();
1545 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1546 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1547 Upper = CI2->getValue().abs();
1548 Lower = (-Upper) + 1;
1549 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1550 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1551 APInt NegOne = APInt::getAllOnesValue(Width);
1552 if (!CI2->isZero())
1553 Upper = NegOne.udiv(CI2->getValue()) + 1;
1554 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1555 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1556 APInt IntMin = APInt::getSignedMinValue(Width);
1557 APInt IntMax = APInt::getSignedMaxValue(Width);
1558 APInt Val = CI2->getValue().abs();
1559 if (!Val.isMinValue()) {
1560 Lower = IntMin.sdiv(Val);
1561 Upper = IntMax.sdiv(Val) + 1;
1563 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1564 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1565 APInt NegOne = APInt::getAllOnesValue(Width);
1566 if (CI2->getValue().ult(Width))
1567 Upper = NegOne.lshr(CI2->getValue()) + 1;
1568 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1569 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1570 APInt IntMin = APInt::getSignedMinValue(Width);
1571 APInt IntMax = APInt::getSignedMaxValue(Width);
1572 if (CI2->getValue().ult(Width)) {
1573 Lower = IntMin.ashr(CI2->getValue());
1574 Upper = IntMax.ashr(CI2->getValue()) + 1;
1576 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1577 // 'or x, CI2' produces [CI2, UINT_MAX].
1578 Lower = CI2->getValue();
1579 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1580 // 'and x, CI2' produces [0, CI2].
1581 Upper = CI2->getValue() + 1;
1583 if (Lower != Upper) {
1584 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1585 if (RHS_CR.contains(LHS_CR))
1586 return ConstantInt::getTrue(RHS->getContext());
1587 if (RHS_CR.inverse().contains(LHS_CR))
1588 return ConstantInt::getFalse(RHS->getContext());
1592 // Compare of cast, for example (zext X) != 0 -> X != 0
1593 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1594 Instruction *LI = cast<CastInst>(LHS);
1595 Value *SrcOp = LI->getOperand(0);
1596 const Type *SrcTy = SrcOp->getType();
1597 const Type *DstTy = LI->getType();
1599 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1600 // if the integer type is the same size as the pointer type.
1601 if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1602 TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1603 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1604 // Transfer the cast to the constant.
1605 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1606 ConstantExpr::getIntToPtr(RHSC, SrcTy),
1607 TD, DT, MaxRecurse-1))
1608 return V;
1609 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1610 if (RI->getOperand(0)->getType() == SrcTy)
1611 // Compare without the cast.
1612 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1613 TD, DT, MaxRecurse-1))
1614 return V;
1618 if (isa<ZExtInst>(LHS)) {
1619 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1620 // same type.
1621 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1622 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1623 // Compare X and Y. Note that signed predicates become unsigned.
1624 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1625 SrcOp, RI->getOperand(0), TD, DT,
1626 MaxRecurse-1))
1627 return V;
1629 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1630 // too. If not, then try to deduce the result of the comparison.
1631 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1632 // Compute the constant that would happen if we truncated to SrcTy then
1633 // reextended to DstTy.
1634 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1635 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1637 // If the re-extended constant didn't change then this is effectively
1638 // also a case of comparing two zero-extended values.
1639 if (RExt == CI && MaxRecurse)
1640 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1641 SrcOp, Trunc, TD, DT, MaxRecurse-1))
1642 return V;
1644 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1645 // there. Use this to work out the result of the comparison.
1646 if (RExt != CI) {
1647 switch (Pred) {
1648 default:
1649 assert(false && "Unknown ICmp predicate!");
1650 // LHS <u RHS.
1651 case ICmpInst::ICMP_EQ:
1652 case ICmpInst::ICMP_UGT:
1653 case ICmpInst::ICMP_UGE:
1654 return ConstantInt::getFalse(CI->getContext());
1656 case ICmpInst::ICMP_NE:
1657 case ICmpInst::ICMP_ULT:
1658 case ICmpInst::ICMP_ULE:
1659 return ConstantInt::getTrue(CI->getContext());
1661 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1662 // is non-negative then LHS <s RHS.
1663 case ICmpInst::ICMP_SGT:
1664 case ICmpInst::ICMP_SGE:
1665 return CI->getValue().isNegative() ?
1666 ConstantInt::getTrue(CI->getContext()) :
1667 ConstantInt::getFalse(CI->getContext());
1669 case ICmpInst::ICMP_SLT:
1670 case ICmpInst::ICMP_SLE:
1671 return CI->getValue().isNegative() ?
1672 ConstantInt::getFalse(CI->getContext()) :
1673 ConstantInt::getTrue(CI->getContext());
1679 if (isa<SExtInst>(LHS)) {
1680 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1681 // same type.
1682 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1683 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1684 // Compare X and Y. Note that the predicate does not change.
1685 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1686 TD, DT, MaxRecurse-1))
1687 return V;
1689 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1690 // too. If not, then try to deduce the result of the comparison.
1691 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1692 // Compute the constant that would happen if we truncated to SrcTy then
1693 // reextended to DstTy.
1694 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1695 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1697 // If the re-extended constant didn't change then this is effectively
1698 // also a case of comparing two sign-extended values.
1699 if (RExt == CI && MaxRecurse)
1700 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1701 MaxRecurse-1))
1702 return V;
1704 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1705 // bits there. Use this to work out the result of the comparison.
1706 if (RExt != CI) {
1707 switch (Pred) {
1708 default:
1709 assert(false && "Unknown ICmp predicate!");
1710 case ICmpInst::ICMP_EQ:
1711 return ConstantInt::getFalse(CI->getContext());
1712 case ICmpInst::ICMP_NE:
1713 return ConstantInt::getTrue(CI->getContext());
1715 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1716 // LHS >s RHS.
1717 case ICmpInst::ICMP_SGT:
1718 case ICmpInst::ICMP_SGE:
1719 return CI->getValue().isNegative() ?
1720 ConstantInt::getTrue(CI->getContext()) :
1721 ConstantInt::getFalse(CI->getContext());
1722 case ICmpInst::ICMP_SLT:
1723 case ICmpInst::ICMP_SLE:
1724 return CI->getValue().isNegative() ?
1725 ConstantInt::getFalse(CI->getContext()) :
1726 ConstantInt::getTrue(CI->getContext());
1728 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
1729 // LHS >u RHS.
1730 case ICmpInst::ICMP_UGT:
1731 case ICmpInst::ICMP_UGE:
1732 // Comparison is true iff the LHS <s 0.
1733 if (MaxRecurse)
1734 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1735 Constant::getNullValue(SrcTy),
1736 TD, DT, MaxRecurse-1))
1737 return V;
1738 break;
1739 case ICmpInst::ICMP_ULT:
1740 case ICmpInst::ICMP_ULE:
1741 // Comparison is true iff the LHS >=s 0.
1742 if (MaxRecurse)
1743 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1744 Constant::getNullValue(SrcTy),
1745 TD, DT, MaxRecurse-1))
1746 return V;
1747 break;
1754 // Special logic for binary operators.
1755 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1756 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1757 if (MaxRecurse && (LBO || RBO)) {
1758 // Analyze the case when either LHS or RHS is an add instruction.
1759 Value *A = 0, *B = 0, *C = 0, *D = 0;
1760 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1761 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1762 if (LBO && LBO->getOpcode() == Instruction::Add) {
1763 A = LBO->getOperand(0); B = LBO->getOperand(1);
1764 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1765 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1766 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1768 if (RBO && RBO->getOpcode() == Instruction::Add) {
1769 C = RBO->getOperand(0); D = RBO->getOperand(1);
1770 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1771 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1772 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1775 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1776 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1777 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1778 Constant::getNullValue(RHS->getType()),
1779 TD, DT, MaxRecurse-1))
1780 return V;
1782 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1783 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1784 if (Value *V = SimplifyICmpInst(Pred,
1785 Constant::getNullValue(LHS->getType()),
1786 C == LHS ? D : C, TD, DT, MaxRecurse-1))
1787 return V;
1789 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1790 if (A && C && (A == C || A == D || B == C || B == D) &&
1791 NoLHSWrapProblem && NoRHSWrapProblem) {
1792 // Determine Y and Z in the form icmp (X+Y), (X+Z).
1793 Value *Y = (A == C || A == D) ? B : A;
1794 Value *Z = (C == A || C == B) ? D : C;
1795 if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
1796 return V;
1800 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
1801 bool KnownNonNegative, KnownNegative;
1802 switch (Pred) {
1803 default:
1804 break;
1805 case ICmpInst::ICMP_SGT:
1806 case ICmpInst::ICMP_SGE:
1807 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1808 if (!KnownNonNegative)
1809 break;
1810 // fall-through
1811 case ICmpInst::ICMP_EQ:
1812 case ICmpInst::ICMP_UGT:
1813 case ICmpInst::ICMP_UGE:
1814 // getNullValue also works for vectors, unlike getFalse.
1815 return Constant::getNullValue(ITy);
1816 case ICmpInst::ICMP_SLT:
1817 case ICmpInst::ICMP_SLE:
1818 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1819 if (!KnownNonNegative)
1820 break;
1821 // fall-through
1822 case ICmpInst::ICMP_NE:
1823 case ICmpInst::ICMP_ULT:
1824 case ICmpInst::ICMP_ULE:
1825 // getAllOnesValue also works for vectors, unlike getTrue.
1826 return Constant::getAllOnesValue(ITy);
1829 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
1830 bool KnownNonNegative, KnownNegative;
1831 switch (Pred) {
1832 default:
1833 break;
1834 case ICmpInst::ICMP_SGT:
1835 case ICmpInst::ICMP_SGE:
1836 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1837 if (!KnownNonNegative)
1838 break;
1839 // fall-through
1840 case ICmpInst::ICMP_NE:
1841 case ICmpInst::ICMP_UGT:
1842 case ICmpInst::ICMP_UGE:
1843 // getAllOnesValue also works for vectors, unlike getTrue.
1844 return Constant::getAllOnesValue(ITy);
1845 case ICmpInst::ICMP_SLT:
1846 case ICmpInst::ICMP_SLE:
1847 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1848 if (!KnownNonNegative)
1849 break;
1850 // fall-through
1851 case ICmpInst::ICMP_EQ:
1852 case ICmpInst::ICMP_ULT:
1853 case ICmpInst::ICMP_ULE:
1854 // getNullValue also works for vectors, unlike getFalse.
1855 return Constant::getNullValue(ITy);
1859 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
1860 LBO->getOperand(1) == RBO->getOperand(1)) {
1861 switch (LBO->getOpcode()) {
1862 default: break;
1863 case Instruction::UDiv:
1864 case Instruction::LShr:
1865 if (ICmpInst::isSigned(Pred))
1866 break;
1867 // fall-through
1868 case Instruction::SDiv:
1869 case Instruction::AShr:
1870 if (!LBO->isExact() || !RBO->isExact())
1871 break;
1872 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1873 RBO->getOperand(0), TD, DT, MaxRecurse-1))
1874 return V;
1875 break;
1876 case Instruction::Shl: {
1877 bool NUW = LBO->hasNoUnsignedWrap() && LBO->hasNoUnsignedWrap();
1878 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
1879 if (!NUW && !NSW)
1880 break;
1881 if (!NSW && ICmpInst::isSigned(Pred))
1882 break;
1883 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
1884 RBO->getOperand(0), TD, DT, MaxRecurse-1))
1885 return V;
1886 break;
1891 // Simplify comparisons involving max/min.
1892 Value *A, *B;
1893 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
1894 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
1896 // Signed variants on "max(a,b)>=a -> true".
1897 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1898 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
1899 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1900 // We analyze this as smax(A, B) pred A.
1901 P = Pred;
1902 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
1903 (A == LHS || B == LHS)) {
1904 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
1905 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
1906 // We analyze this as smax(A, B) swapped-pred A.
1907 P = CmpInst::getSwappedPredicate(Pred);
1908 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
1909 (A == RHS || B == RHS)) {
1910 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
1911 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1912 // We analyze this as smax(-A, -B) swapped-pred -A.
1913 // Note that we do not need to actually form -A or -B thanks to EqP.
1914 P = CmpInst::getSwappedPredicate(Pred);
1915 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
1916 (A == LHS || B == LHS)) {
1917 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
1918 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
1919 // We analyze this as smax(-A, -B) pred -A.
1920 // Note that we do not need to actually form -A or -B thanks to EqP.
1921 P = Pred;
1923 if (P != CmpInst::BAD_ICMP_PREDICATE) {
1924 // Cases correspond to "max(A, B) p A".
1925 switch (P) {
1926 default:
1927 break;
1928 case CmpInst::ICMP_EQ:
1929 case CmpInst::ICMP_SLE:
1930 // Equivalent to "A EqP B". This may be the same as the condition tested
1931 // in the max/min; if so, we can just return that.
1932 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
1933 return V;
1934 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
1935 return V;
1936 // Otherwise, see if "A EqP B" simplifies.
1937 if (MaxRecurse)
1938 if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
1939 return V;
1940 break;
1941 case CmpInst::ICMP_NE:
1942 case CmpInst::ICMP_SGT: {
1943 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
1944 // Equivalent to "A InvEqP B". This may be the same as the condition
1945 // tested in the max/min; if so, we can just return that.
1946 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
1947 return V;
1948 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
1949 return V;
1950 // Otherwise, see if "A InvEqP B" simplifies.
1951 if (MaxRecurse)
1952 if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
1953 return V;
1954 break;
1956 case CmpInst::ICMP_SGE:
1957 // Always true.
1958 return Constant::getAllOnesValue(ITy);
1959 case CmpInst::ICMP_SLT:
1960 // Always false.
1961 return Constant::getNullValue(ITy);
1965 // Unsigned variants on "max(a,b)>=a -> true".
1966 P = CmpInst::BAD_ICMP_PREDICATE;
1967 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
1968 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
1969 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1970 // We analyze this as umax(A, B) pred A.
1971 P = Pred;
1972 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
1973 (A == LHS || B == LHS)) {
1974 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
1975 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
1976 // We analyze this as umax(A, B) swapped-pred A.
1977 P = CmpInst::getSwappedPredicate(Pred);
1978 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
1979 (A == RHS || B == RHS)) {
1980 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
1981 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
1982 // We analyze this as umax(-A, -B) swapped-pred -A.
1983 // Note that we do not need to actually form -A or -B thanks to EqP.
1984 P = CmpInst::getSwappedPredicate(Pred);
1985 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
1986 (A == LHS || B == LHS)) {
1987 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
1988 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
1989 // We analyze this as umax(-A, -B) pred -A.
1990 // Note that we do not need to actually form -A or -B thanks to EqP.
1991 P = Pred;
1993 if (P != CmpInst::BAD_ICMP_PREDICATE) {
1994 // Cases correspond to "max(A, B) p A".
1995 switch (P) {
1996 default:
1997 break;
1998 case CmpInst::ICMP_EQ:
1999 case CmpInst::ICMP_ULE:
2000 // Equivalent to "A EqP B". This may be the same as the condition tested
2001 // in the max/min; if so, we can just return that.
2002 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2003 return V;
2004 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2005 return V;
2006 // Otherwise, see if "A EqP B" simplifies.
2007 if (MaxRecurse)
2008 if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
2009 return V;
2010 break;
2011 case CmpInst::ICMP_NE:
2012 case CmpInst::ICMP_UGT: {
2013 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2014 // Equivalent to "A InvEqP B". This may be the same as the condition
2015 // tested in the max/min; if so, we can just return that.
2016 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2017 return V;
2018 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2019 return V;
2020 // Otherwise, see if "A InvEqP B" simplifies.
2021 if (MaxRecurse)
2022 if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
2023 return V;
2024 break;
2026 case CmpInst::ICMP_UGE:
2027 // Always true.
2028 return Constant::getAllOnesValue(ITy);
2029 case CmpInst::ICMP_ULT:
2030 // Always false.
2031 return Constant::getNullValue(ITy);
2035 // Variants on "max(x,y) >= min(x,z)".
2036 Value *C, *D;
2037 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2038 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2039 (A == C || A == D || B == C || B == D)) {
2040 // max(x, ?) pred min(x, ?).
2041 if (Pred == CmpInst::ICMP_SGE)
2042 // Always true.
2043 return Constant::getAllOnesValue(ITy);
2044 if (Pred == CmpInst::ICMP_SLT)
2045 // Always false.
2046 return Constant::getNullValue(ITy);
2047 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2048 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2049 (A == C || A == D || B == C || B == D)) {
2050 // min(x, ?) pred max(x, ?).
2051 if (Pred == CmpInst::ICMP_SLE)
2052 // Always true.
2053 return Constant::getAllOnesValue(ITy);
2054 if (Pred == CmpInst::ICMP_SGT)
2055 // Always false.
2056 return Constant::getNullValue(ITy);
2057 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2058 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2059 (A == C || A == D || B == C || B == D)) {
2060 // max(x, ?) pred min(x, ?).
2061 if (Pred == CmpInst::ICMP_UGE)
2062 // Always true.
2063 return Constant::getAllOnesValue(ITy);
2064 if (Pred == CmpInst::ICMP_ULT)
2065 // Always false.
2066 return Constant::getNullValue(ITy);
2067 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2068 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2069 (A == C || A == D || B == C || B == D)) {
2070 // min(x, ?) pred max(x, ?).
2071 if (Pred == CmpInst::ICMP_ULE)
2072 // Always true.
2073 return Constant::getAllOnesValue(ITy);
2074 if (Pred == CmpInst::ICMP_UGT)
2075 // Always false.
2076 return Constant::getNullValue(ITy);
2079 // If the comparison is with the result of a select instruction, check whether
2080 // comparing with either branch of the select always yields the same value.
2081 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2082 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2083 return V;
2085 // If the comparison is with the result of a phi instruction, check whether
2086 // doing the compare with each incoming phi value yields a common result.
2087 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2088 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2089 return V;
2091 return 0;
2094 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2095 const TargetData *TD, const DominatorTree *DT) {
2096 return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2099 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2100 /// fold the result. If not, this returns null.
2101 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2102 const TargetData *TD, const DominatorTree *DT,
2103 unsigned MaxRecurse) {
2104 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2105 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2107 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2108 if (Constant *CRHS = dyn_cast<Constant>(RHS))
2109 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
2111 // If we have a constant, make sure it is on the RHS.
2112 std::swap(LHS, RHS);
2113 Pred = CmpInst::getSwappedPredicate(Pred);
2116 // Fold trivial predicates.
2117 if (Pred == FCmpInst::FCMP_FALSE)
2118 return ConstantInt::get(GetCompareTy(LHS), 0);
2119 if (Pred == FCmpInst::FCMP_TRUE)
2120 return ConstantInt::get(GetCompareTy(LHS), 1);
2122 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2123 return UndefValue::get(GetCompareTy(LHS));
2125 // fcmp x,x -> true/false. Not all compares are foldable.
2126 if (LHS == RHS) {
2127 if (CmpInst::isTrueWhenEqual(Pred))
2128 return ConstantInt::get(GetCompareTy(LHS), 1);
2129 if (CmpInst::isFalseWhenEqual(Pred))
2130 return ConstantInt::get(GetCompareTy(LHS), 0);
2133 // Handle fcmp with constant RHS
2134 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2135 // If the constant is a nan, see if we can fold the comparison based on it.
2136 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2137 if (CFP->getValueAPF().isNaN()) {
2138 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2139 return ConstantInt::getFalse(CFP->getContext());
2140 assert(FCmpInst::isUnordered(Pred) &&
2141 "Comparison must be either ordered or unordered!");
2142 // True if unordered.
2143 return ConstantInt::getTrue(CFP->getContext());
2145 // Check whether the constant is an infinity.
2146 if (CFP->getValueAPF().isInfinity()) {
2147 if (CFP->getValueAPF().isNegative()) {
2148 switch (Pred) {
2149 case FCmpInst::FCMP_OLT:
2150 // No value is ordered and less than negative infinity.
2151 return ConstantInt::getFalse(CFP->getContext());
2152 case FCmpInst::FCMP_UGE:
2153 // All values are unordered with or at least negative infinity.
2154 return ConstantInt::getTrue(CFP->getContext());
2155 default:
2156 break;
2158 } else {
2159 switch (Pred) {
2160 case FCmpInst::FCMP_OGT:
2161 // No value is ordered and greater than infinity.
2162 return ConstantInt::getFalse(CFP->getContext());
2163 case FCmpInst::FCMP_ULE:
2164 // All values are unordered with and at most infinity.
2165 return ConstantInt::getTrue(CFP->getContext());
2166 default:
2167 break;
2174 // If the comparison is with the result of a select instruction, check whether
2175 // comparing with either branch of the select always yields the same value.
2176 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2177 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
2178 return V;
2180 // If the comparison is with the result of a phi instruction, check whether
2181 // doing the compare with each incoming phi value yields a common result.
2182 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2183 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
2184 return V;
2186 return 0;
2189 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2190 const TargetData *TD, const DominatorTree *DT) {
2191 return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2194 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2195 /// the result. If not, this returns null.
2196 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
2197 const TargetData *TD, const DominatorTree *) {
2198 // select true, X, Y -> X
2199 // select false, X, Y -> Y
2200 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2201 return CB->getZExtValue() ? TrueVal : FalseVal;
2203 // select C, X, X -> X
2204 if (TrueVal == FalseVal)
2205 return TrueVal;
2207 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2208 if (isa<Constant>(TrueVal))
2209 return TrueVal;
2210 return FalseVal;
2212 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2213 return FalseVal;
2214 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2215 return TrueVal;
2217 return 0;
2220 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2221 /// fold the result. If not, this returns null.
2222 Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
2223 const TargetData *TD, const DominatorTree *) {
2224 // The type of the GEP pointer operand.
2225 const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
2227 // getelementptr P -> P.
2228 if (NumOps == 1)
2229 return Ops[0];
2231 if (isa<UndefValue>(Ops[0])) {
2232 // Compute the (pointer) type returned by the GEP instruction.
2233 const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
2234 NumOps-1);
2235 const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2236 return UndefValue::get(GEPTy);
2239 if (NumOps == 2) {
2240 // getelementptr P, 0 -> P.
2241 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2242 if (C->isZero())
2243 return Ops[0];
2244 // getelementptr P, N -> P if P points to a type of zero size.
2245 if (TD) {
2246 const Type *Ty = PtrTy->getElementType();
2247 if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
2248 return Ops[0];
2252 // Check to see if this is constant foldable.
2253 for (unsigned i = 0; i != NumOps; ++i)
2254 if (!isa<Constant>(Ops[i]))
2255 return 0;
2257 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
2258 (Constant *const*)Ops+1, NumOps-1);
2261 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
2262 static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
2263 // If all of the PHI's incoming values are the same then replace the PHI node
2264 // with the common value.
2265 Value *CommonValue = 0;
2266 bool HasUndefInput = false;
2267 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2268 Value *Incoming = PN->getIncomingValue(i);
2269 // If the incoming value is the phi node itself, it can safely be skipped.
2270 if (Incoming == PN) continue;
2271 if (isa<UndefValue>(Incoming)) {
2272 // Remember that we saw an undef value, but otherwise ignore them.
2273 HasUndefInput = true;
2274 continue;
2276 if (CommonValue && Incoming != CommonValue)
2277 return 0; // Not the same, bail out.
2278 CommonValue = Incoming;
2281 // If CommonValue is null then all of the incoming values were either undef or
2282 // equal to the phi node itself.
2283 if (!CommonValue)
2284 return UndefValue::get(PN->getType());
2286 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2287 // instruction, we cannot return X as the result of the PHI node unless it
2288 // dominates the PHI block.
2289 if (HasUndefInput)
2290 return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
2292 return CommonValue;
2296 //=== Helper functions for higher up the class hierarchy.
2298 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2299 /// fold the result. If not, this returns null.
2300 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2301 const TargetData *TD, const DominatorTree *DT,
2302 unsigned MaxRecurse) {
2303 switch (Opcode) {
2304 case Instruction::Add:
2305 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2306 TD, DT, MaxRecurse);
2307 case Instruction::Sub:
2308 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2309 TD, DT, MaxRecurse);
2310 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
2311 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
2312 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
2313 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
2314 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
2315 case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
2316 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
2317 case Instruction::Shl:
2318 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2319 TD, DT, MaxRecurse);
2320 case Instruction::LShr:
2321 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2322 case Instruction::AShr:
2323 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
2324 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
2325 case Instruction::Or: return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
2326 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
2327 default:
2328 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2329 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2330 Constant *COps[] = {CLHS, CRHS};
2331 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
2334 // If the operation is associative, try some generic simplifications.
2335 if (Instruction::isAssociative(Opcode))
2336 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
2337 MaxRecurse))
2338 return V;
2340 // If the operation is with the result of a select instruction, check whether
2341 // operating on either branch of the select always yields the same value.
2342 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2343 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
2344 MaxRecurse))
2345 return V;
2347 // If the operation is with the result of a phi instruction, check whether
2348 // operating on all incoming values of the phi always yields the same value.
2349 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2350 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
2351 return V;
2353 return 0;
2357 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2358 const TargetData *TD, const DominatorTree *DT) {
2359 return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
2362 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2363 /// fold the result.
2364 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2365 const TargetData *TD, const DominatorTree *DT,
2366 unsigned MaxRecurse) {
2367 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2368 return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2369 return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
2372 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2373 const TargetData *TD, const DominatorTree *DT) {
2374 return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
2377 /// SimplifyInstruction - See if we can compute a simplified version of this
2378 /// instruction. If not, this returns null.
2379 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2380 const DominatorTree *DT) {
2381 Value *Result;
2383 switch (I->getOpcode()) {
2384 default:
2385 Result = ConstantFoldInstruction(I, TD);
2386 break;
2387 case Instruction::Add:
2388 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2389 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2390 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2391 TD, DT);
2392 break;
2393 case Instruction::Sub:
2394 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2395 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2396 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2397 TD, DT);
2398 break;
2399 case Instruction::Mul:
2400 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
2401 break;
2402 case Instruction::SDiv:
2403 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2404 break;
2405 case Instruction::UDiv:
2406 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2407 break;
2408 case Instruction::FDiv:
2409 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
2410 break;
2411 case Instruction::SRem:
2412 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2413 break;
2414 case Instruction::URem:
2415 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2416 break;
2417 case Instruction::FRem:
2418 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
2419 break;
2420 case Instruction::Shl:
2421 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2422 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2423 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2424 TD, DT);
2425 break;
2426 case Instruction::LShr:
2427 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2428 cast<BinaryOperator>(I)->isExact(),
2429 TD, DT);
2430 break;
2431 case Instruction::AShr:
2432 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2433 cast<BinaryOperator>(I)->isExact(),
2434 TD, DT);
2435 break;
2436 case Instruction::And:
2437 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
2438 break;
2439 case Instruction::Or:
2440 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
2441 break;
2442 case Instruction::Xor:
2443 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
2444 break;
2445 case Instruction::ICmp:
2446 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2447 I->getOperand(0), I->getOperand(1), TD, DT);
2448 break;
2449 case Instruction::FCmp:
2450 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2451 I->getOperand(0), I->getOperand(1), TD, DT);
2452 break;
2453 case Instruction::Select:
2454 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2455 I->getOperand(2), TD, DT);
2456 break;
2457 case Instruction::GetElementPtr: {
2458 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2459 Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
2460 break;
2462 case Instruction::PHI:
2463 Result = SimplifyPHINode(cast<PHINode>(I), DT);
2464 break;
2467 /// If called on unreachable code, the above logic may report that the
2468 /// instruction simplified to itself. Make life easier for users by
2469 /// detecting that case here, returning a safe value instead.
2470 return Result == I ? UndefValue::get(I->getType()) : Result;
2473 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2474 /// delete the From instruction. In addition to a basic RAUW, this does a
2475 /// recursive simplification of the newly formed instructions. This catches
2476 /// things where one simplification exposes other opportunities. This only
2477 /// simplifies and deletes scalar operations, it does not change the CFG.
2479 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2480 const TargetData *TD,
2481 const DominatorTree *DT) {
2482 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2484 // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2485 // we can know if it gets deleted out from under us or replaced in a
2486 // recursive simplification.
2487 WeakVH FromHandle(From);
2488 WeakVH ToHandle(To);
2490 while (!From->use_empty()) {
2491 // Update the instruction to use the new value.
2492 Use &TheUse = From->use_begin().getUse();
2493 Instruction *User = cast<Instruction>(TheUse.getUser());
2494 TheUse = To;
2496 // Check to see if the instruction can be folded due to the operand
2497 // replacement. For example changing (or X, Y) into (or X, -1) can replace
2498 // the 'or' with -1.
2499 Value *SimplifiedVal;
2501 // Sanity check to make sure 'User' doesn't dangle across
2502 // SimplifyInstruction.
2503 AssertingVH<> UserHandle(User);
2505 SimplifiedVal = SimplifyInstruction(User, TD, DT);
2506 if (SimplifiedVal == 0) continue;
2509 // Recursively simplify this user to the new value.
2510 ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
2511 From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2512 To = ToHandle;
2514 assert(ToHandle && "To value deleted by recursive simplification?");
2516 // If the recursive simplification ended up revisiting and deleting
2517 // 'From' then we're done.
2518 if (From == 0)
2519 return;
2522 // If 'From' has value handles referring to it, do a real RAUW to update them.
2523 From->replaceAllUsesWith(To);
2525 From->eraseFromParent();