Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Analysis / Lint.cpp
blobf130f30c49daec77947e1d2b245769bab2723f44
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
37 #include "llvm/Analysis/Passes.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Analysis/InstructionSimplify.h"
40 #include "llvm/Analysis/ConstantFolding.h"
41 #include "llvm/Analysis/Dominators.h"
42 #include "llvm/Analysis/Lint.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/Assembly/Writer.h"
46 #include "llvm/Target/TargetData.h"
47 #include "llvm/Pass.h"
48 #include "llvm/PassManager.h"
49 #include "llvm/IntrinsicInst.h"
50 #include "llvm/Function.h"
51 #include "llvm/Support/CallSite.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/InstVisitor.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/ADT/STLExtras.h"
56 using namespace llvm;
58 namespace {
59 namespace MemRef {
60 static unsigned Read = 1;
61 static unsigned Write = 2;
62 static unsigned Callee = 4;
63 static unsigned Branchee = 8;
66 class Lint : public FunctionPass, public InstVisitor<Lint> {
67 friend class InstVisitor<Lint>;
69 void visitFunction(Function &F);
71 void visitCallSite(CallSite CS);
72 void visitMemoryReference(Instruction &I, Value *Ptr,
73 uint64_t Size, unsigned Align,
74 const Type *Ty, unsigned Flags);
76 void visitCallInst(CallInst &I);
77 void visitInvokeInst(InvokeInst &I);
78 void visitReturnInst(ReturnInst &I);
79 void visitLoadInst(LoadInst &I);
80 void visitStoreInst(StoreInst &I);
81 void visitXor(BinaryOperator &I);
82 void visitSub(BinaryOperator &I);
83 void visitLShr(BinaryOperator &I);
84 void visitAShr(BinaryOperator &I);
85 void visitShl(BinaryOperator &I);
86 void visitSDiv(BinaryOperator &I);
87 void visitUDiv(BinaryOperator &I);
88 void visitSRem(BinaryOperator &I);
89 void visitURem(BinaryOperator &I);
90 void visitAllocaInst(AllocaInst &I);
91 void visitVAArgInst(VAArgInst &I);
92 void visitIndirectBrInst(IndirectBrInst &I);
93 void visitExtractElementInst(ExtractElementInst &I);
94 void visitInsertElementInst(InsertElementInst &I);
95 void visitUnreachableInst(UnreachableInst &I);
97 Value *findValue(Value *V, bool OffsetOk) const;
98 Value *findValueImpl(Value *V, bool OffsetOk,
99 SmallPtrSet<Value *, 4> &Visited) const;
101 public:
102 Module *Mod;
103 AliasAnalysis *AA;
104 DominatorTree *DT;
105 TargetData *TD;
107 std::string Messages;
108 raw_string_ostream MessagesStr;
110 static char ID; // Pass identification, replacement for typeid
111 Lint() : FunctionPass(ID), MessagesStr(Messages) {
112 initializeLintPass(*PassRegistry::getPassRegistry());
115 virtual bool runOnFunction(Function &F);
117 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
118 AU.setPreservesAll();
119 AU.addRequired<AliasAnalysis>();
120 AU.addRequired<DominatorTree>();
122 virtual void print(raw_ostream &O, const Module *M) const {}
124 void WriteValue(const Value *V) {
125 if (!V) return;
126 if (isa<Instruction>(V)) {
127 MessagesStr << *V << '\n';
128 } else {
129 WriteAsOperand(MessagesStr, V, true, Mod);
130 MessagesStr << '\n';
134 // CheckFailed - A check failed, so print out the condition and the message
135 // that failed. This provides a nice place to put a breakpoint if you want
136 // to see why something is not correct.
137 void CheckFailed(const Twine &Message,
138 const Value *V1 = 0, const Value *V2 = 0,
139 const Value *V3 = 0, const Value *V4 = 0) {
140 MessagesStr << Message.str() << "\n";
141 WriteValue(V1);
142 WriteValue(V2);
143 WriteValue(V3);
144 WriteValue(V4);
149 char Lint::ID = 0;
150 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
151 false, true)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
153 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
154 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
155 false, true)
157 // Assert - We know that cond should be true, if not print an error message.
158 #define Assert(C, M) \
159 do { if (!(C)) { CheckFailed(M); return; } } while (0)
160 #define Assert1(C, M, V1) \
161 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
162 #define Assert2(C, M, V1, V2) \
163 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
164 #define Assert3(C, M, V1, V2, V3) \
165 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
166 #define Assert4(C, M, V1, V2, V3, V4) \
167 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
169 // Lint::run - This is the main Analysis entry point for a
170 // function.
172 bool Lint::runOnFunction(Function &F) {
173 Mod = F.getParent();
174 AA = &getAnalysis<AliasAnalysis>();
175 DT = &getAnalysis<DominatorTree>();
176 TD = getAnalysisIfAvailable<TargetData>();
177 visit(F);
178 dbgs() << MessagesStr.str();
179 Messages.clear();
180 return false;
183 void Lint::visitFunction(Function &F) {
184 // This isn't undefined behavior, it's just a little unusual, and it's a
185 // fairly common mistake to neglect to name a function.
186 Assert1(F.hasName() || F.hasLocalLinkage(),
187 "Unusual: Unnamed function with non-local linkage", &F);
189 // TODO: Check for irreducible control flow.
192 void Lint::visitCallSite(CallSite CS) {
193 Instruction &I = *CS.getInstruction();
194 Value *Callee = CS.getCalledValue();
196 visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
197 0, 0, MemRef::Callee);
199 if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
200 Assert1(CS.getCallingConv() == F->getCallingConv(),
201 "Undefined behavior: Caller and callee calling convention differ",
202 &I);
204 const FunctionType *FT = F->getFunctionType();
205 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
207 Assert1(FT->isVarArg() ?
208 FT->getNumParams() <= NumActualArgs :
209 FT->getNumParams() == NumActualArgs,
210 "Undefined behavior: Call argument count mismatches callee "
211 "argument count", &I);
213 Assert1(FT->getReturnType() == I.getType(),
214 "Undefined behavior: Call return type mismatches "
215 "callee return type", &I);
217 // Check argument types (in case the callee was casted) and attributes.
218 // TODO: Verify that caller and callee attributes are compatible.
219 Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
220 CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
221 for (; AI != AE; ++AI) {
222 Value *Actual = *AI;
223 if (PI != PE) {
224 Argument *Formal = PI++;
225 Assert1(Formal->getType() == Actual->getType(),
226 "Undefined behavior: Call argument type mismatches "
227 "callee parameter type", &I);
229 // Check that noalias arguments don't alias other arguments. This is
230 // not fully precise because we don't know the sizes of the dereferenced
231 // memory regions.
232 if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
233 for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
234 if (AI != BI && (*BI)->getType()->isPointerTy()) {
235 AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
236 Assert1(Result != AliasAnalysis::MustAlias &&
237 Result != AliasAnalysis::PartialAlias,
238 "Unusual: noalias argument aliases another argument", &I);
241 // Check that an sret argument points to valid memory.
242 if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
243 const Type *Ty =
244 cast<PointerType>(Formal->getType())->getElementType();
245 visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
246 TD ? TD->getABITypeAlignment(Ty) : 0,
247 Ty, MemRef::Read | MemRef::Write);
253 if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
254 for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
255 AI != AE; ++AI) {
256 Value *Obj = findValue(*AI, /*OffsetOk=*/true);
257 Assert1(!isa<AllocaInst>(Obj),
258 "Undefined behavior: Call with \"tail\" keyword references "
259 "alloca", &I);
263 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
264 switch (II->getIntrinsicID()) {
265 default: break;
267 // TODO: Check more intrinsics
269 case Intrinsic::memcpy: {
270 MemCpyInst *MCI = cast<MemCpyInst>(&I);
271 // TODO: If the size is known, use it.
272 visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
273 MCI->getAlignment(), 0,
274 MemRef::Write);
275 visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
276 MCI->getAlignment(), 0,
277 MemRef::Read);
279 // Check that the memcpy arguments don't overlap. The AliasAnalysis API
280 // isn't expressive enough for what we really want to do. Known partial
281 // overlap is not distinguished from the case where nothing is known.
282 uint64_t Size = 0;
283 if (const ConstantInt *Len =
284 dyn_cast<ConstantInt>(findValue(MCI->getLength(),
285 /*OffsetOk=*/false)))
286 if (Len->getValue().isIntN(32))
287 Size = Len->getValue().getZExtValue();
288 Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
289 AliasAnalysis::MustAlias,
290 "Undefined behavior: memcpy source and destination overlap", &I);
291 break;
293 case Intrinsic::memmove: {
294 MemMoveInst *MMI = cast<MemMoveInst>(&I);
295 // TODO: If the size is known, use it.
296 visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
297 MMI->getAlignment(), 0,
298 MemRef::Write);
299 visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
300 MMI->getAlignment(), 0,
301 MemRef::Read);
302 break;
304 case Intrinsic::memset: {
305 MemSetInst *MSI = cast<MemSetInst>(&I);
306 // TODO: If the size is known, use it.
307 visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
308 MSI->getAlignment(), 0,
309 MemRef::Write);
310 break;
313 case Intrinsic::vastart:
314 Assert1(I.getParent()->getParent()->isVarArg(),
315 "Undefined behavior: va_start called in a non-varargs function",
316 &I);
318 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
319 0, 0, MemRef::Read | MemRef::Write);
320 break;
321 case Intrinsic::vacopy:
322 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
323 0, 0, MemRef::Write);
324 visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
325 0, 0, MemRef::Read);
326 break;
327 case Intrinsic::vaend:
328 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
329 0, 0, MemRef::Read | MemRef::Write);
330 break;
332 case Intrinsic::stackrestore:
333 // Stackrestore doesn't read or write memory, but it sets the
334 // stack pointer, which the compiler may read from or write to
335 // at any time, so check it for both readability and writeability.
336 visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
337 0, 0, MemRef::Read | MemRef::Write);
338 break;
342 void Lint::visitCallInst(CallInst &I) {
343 return visitCallSite(&I);
346 void Lint::visitInvokeInst(InvokeInst &I) {
347 return visitCallSite(&I);
350 void Lint::visitReturnInst(ReturnInst &I) {
351 Function *F = I.getParent()->getParent();
352 Assert1(!F->doesNotReturn(),
353 "Unusual: Return statement in function with noreturn attribute",
354 &I);
356 if (Value *V = I.getReturnValue()) {
357 Value *Obj = findValue(V, /*OffsetOk=*/true);
358 Assert1(!isa<AllocaInst>(Obj),
359 "Unusual: Returning alloca value", &I);
363 // TODO: Check that the reference is in bounds.
364 // TODO: Check readnone/readonly function attributes.
365 void Lint::visitMemoryReference(Instruction &I,
366 Value *Ptr, uint64_t Size, unsigned Align,
367 const Type *Ty, unsigned Flags) {
368 // If no memory is being referenced, it doesn't matter if the pointer
369 // is valid.
370 if (Size == 0)
371 return;
373 Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
374 Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
375 "Undefined behavior: Null pointer dereference", &I);
376 Assert1(!isa<UndefValue>(UnderlyingObject),
377 "Undefined behavior: Undef pointer dereference", &I);
378 Assert1(!isa<ConstantInt>(UnderlyingObject) ||
379 !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
380 "Unusual: All-ones pointer dereference", &I);
381 Assert1(!isa<ConstantInt>(UnderlyingObject) ||
382 !cast<ConstantInt>(UnderlyingObject)->isOne(),
383 "Unusual: Address one pointer dereference", &I);
385 if (Flags & MemRef::Write) {
386 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
387 Assert1(!GV->isConstant(),
388 "Undefined behavior: Write to read-only memory", &I);
389 Assert1(!isa<Function>(UnderlyingObject) &&
390 !isa<BlockAddress>(UnderlyingObject),
391 "Undefined behavior: Write to text section", &I);
393 if (Flags & MemRef::Read) {
394 Assert1(!isa<Function>(UnderlyingObject),
395 "Unusual: Load from function body", &I);
396 Assert1(!isa<BlockAddress>(UnderlyingObject),
397 "Undefined behavior: Load from block address", &I);
399 if (Flags & MemRef::Callee) {
400 Assert1(!isa<BlockAddress>(UnderlyingObject),
401 "Undefined behavior: Call to block address", &I);
403 if (Flags & MemRef::Branchee) {
404 Assert1(!isa<Constant>(UnderlyingObject) ||
405 isa<BlockAddress>(UnderlyingObject),
406 "Undefined behavior: Branch to non-blockaddress", &I);
409 if (TD) {
410 if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty);
412 if (Align != 0) {
413 unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType());
414 APInt Mask = APInt::getAllOnesValue(BitWidth),
415 KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
416 ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD);
417 Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))),
418 "Undefined behavior: Memory reference address is misaligned", &I);
423 void Lint::visitLoadInst(LoadInst &I) {
424 visitMemoryReference(I, I.getPointerOperand(),
425 AA->getTypeStoreSize(I.getType()), I.getAlignment(),
426 I.getType(), MemRef::Read);
429 void Lint::visitStoreInst(StoreInst &I) {
430 visitMemoryReference(I, I.getPointerOperand(),
431 AA->getTypeStoreSize(I.getOperand(0)->getType()),
432 I.getAlignment(),
433 I.getOperand(0)->getType(), MemRef::Write);
436 void Lint::visitXor(BinaryOperator &I) {
437 Assert1(!isa<UndefValue>(I.getOperand(0)) ||
438 !isa<UndefValue>(I.getOperand(1)),
439 "Undefined result: xor(undef, undef)", &I);
442 void Lint::visitSub(BinaryOperator &I) {
443 Assert1(!isa<UndefValue>(I.getOperand(0)) ||
444 !isa<UndefValue>(I.getOperand(1)),
445 "Undefined result: sub(undef, undef)", &I);
448 void Lint::visitLShr(BinaryOperator &I) {
449 if (ConstantInt *CI =
450 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
451 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
452 "Undefined result: Shift count out of range", &I);
455 void Lint::visitAShr(BinaryOperator &I) {
456 if (ConstantInt *CI =
457 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
458 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
459 "Undefined result: Shift count out of range", &I);
462 void Lint::visitShl(BinaryOperator &I) {
463 if (ConstantInt *CI =
464 dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
465 Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
466 "Undefined result: Shift count out of range", &I);
469 static bool isZero(Value *V, TargetData *TD) {
470 // Assume undef could be zero.
471 if (isa<UndefValue>(V)) return true;
473 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
474 APInt Mask = APInt::getAllOnesValue(BitWidth),
475 KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
476 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
477 return KnownZero.isAllOnesValue();
480 void Lint::visitSDiv(BinaryOperator &I) {
481 Assert1(!isZero(I.getOperand(1), TD),
482 "Undefined behavior: Division by zero", &I);
485 void Lint::visitUDiv(BinaryOperator &I) {
486 Assert1(!isZero(I.getOperand(1), TD),
487 "Undefined behavior: Division by zero", &I);
490 void Lint::visitSRem(BinaryOperator &I) {
491 Assert1(!isZero(I.getOperand(1), TD),
492 "Undefined behavior: Division by zero", &I);
495 void Lint::visitURem(BinaryOperator &I) {
496 Assert1(!isZero(I.getOperand(1), TD),
497 "Undefined behavior: Division by zero", &I);
500 void Lint::visitAllocaInst(AllocaInst &I) {
501 if (isa<ConstantInt>(I.getArraySize()))
502 // This isn't undefined behavior, it's just an obvious pessimization.
503 Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
504 "Pessimization: Static alloca outside of entry block", &I);
506 // TODO: Check for an unusual size (MSB set?)
509 void Lint::visitVAArgInst(VAArgInst &I) {
510 visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
511 MemRef::Read | MemRef::Write);
514 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
515 visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
516 MemRef::Branchee);
518 Assert1(I.getNumDestinations() != 0,
519 "Undefined behavior: indirectbr with no destinations", &I);
522 void Lint::visitExtractElementInst(ExtractElementInst &I) {
523 if (ConstantInt *CI =
524 dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
525 /*OffsetOk=*/false)))
526 Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
527 "Undefined result: extractelement index out of range", &I);
530 void Lint::visitInsertElementInst(InsertElementInst &I) {
531 if (ConstantInt *CI =
532 dyn_cast<ConstantInt>(findValue(I.getOperand(2),
533 /*OffsetOk=*/false)))
534 Assert1(CI->getValue().ult(I.getType()->getNumElements()),
535 "Undefined result: insertelement index out of range", &I);
538 void Lint::visitUnreachableInst(UnreachableInst &I) {
539 // This isn't undefined behavior, it's merely suspicious.
540 Assert1(&I == I.getParent()->begin() ||
541 prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
542 "Unusual: unreachable immediately preceded by instruction without "
543 "side effects", &I);
546 /// findValue - Look through bitcasts and simple memory reference patterns
547 /// to identify an equivalent, but more informative, value. If OffsetOk
548 /// is true, look through getelementptrs with non-zero offsets too.
550 /// Most analysis passes don't require this logic, because instcombine
551 /// will simplify most of these kinds of things away. But it's a goal of
552 /// this Lint pass to be useful even on non-optimized IR.
553 Value *Lint::findValue(Value *V, bool OffsetOk) const {
554 SmallPtrSet<Value *, 4> Visited;
555 return findValueImpl(V, OffsetOk, Visited);
558 /// findValueImpl - Implementation helper for findValue.
559 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
560 SmallPtrSet<Value *, 4> &Visited) const {
561 // Detect self-referential values.
562 if (!Visited.insert(V))
563 return UndefValue::get(V->getType());
565 // TODO: Look through sext or zext cast, when the result is known to
566 // be interpreted as signed or unsigned, respectively.
567 // TODO: Look through eliminable cast pairs.
568 // TODO: Look through calls with unique return values.
569 // TODO: Look through vector insert/extract/shuffle.
570 V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
571 if (LoadInst *L = dyn_cast<LoadInst>(V)) {
572 BasicBlock::iterator BBI = L;
573 BasicBlock *BB = L->getParent();
574 SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
575 for (;;) {
576 if (!VisitedBlocks.insert(BB)) break;
577 if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
578 BB, BBI, 6, AA))
579 return findValueImpl(U, OffsetOk, Visited);
580 if (BBI != BB->begin()) break;
581 BB = BB->getUniquePredecessor();
582 if (!BB) break;
583 BBI = BB->end();
585 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
586 if (Value *W = PN->hasConstantValue())
587 if (W != V)
588 return findValueImpl(W, OffsetOk, Visited);
589 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
590 if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
591 Type::getInt64Ty(V->getContext())))
592 return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
593 } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
594 if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
595 Ex->idx_begin(),
596 Ex->idx_end()))
597 if (W != V)
598 return findValueImpl(W, OffsetOk, Visited);
599 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
600 // Same as above, but for ConstantExpr instead of Instruction.
601 if (Instruction::isCast(CE->getOpcode())) {
602 if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
603 CE->getOperand(0)->getType(),
604 CE->getType(),
605 TD ? TD->getIntPtrType(V->getContext()) :
606 Type::getInt64Ty(V->getContext())))
607 return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
608 } else if (CE->getOpcode() == Instruction::ExtractValue) {
609 ArrayRef<unsigned> Indices = CE->getIndices();
610 if (Value *W = FindInsertedValue(CE->getOperand(0),
611 Indices.begin(),
612 Indices.end()))
613 if (W != V)
614 return findValueImpl(W, OffsetOk, Visited);
618 // As a last resort, try SimplifyInstruction or constant folding.
619 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
620 if (Value *W = SimplifyInstruction(Inst, TD, DT))
621 return findValueImpl(W, OffsetOk, Visited);
622 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
623 if (Value *W = ConstantFoldConstantExpression(CE, TD))
624 if (W != V)
625 return findValueImpl(W, OffsetOk, Visited);
628 return V;
631 //===----------------------------------------------------------------------===//
632 // Implement the public interfaces to this file...
633 //===----------------------------------------------------------------------===//
635 FunctionPass *llvm::createLintPass() {
636 return new Lint();
639 /// lintFunction - Check a function for errors, printing messages on stderr.
641 void llvm::lintFunction(const Function &f) {
642 Function &F = const_cast<Function&>(f);
643 assert(!F.isDeclaration() && "Cannot lint external functions");
645 FunctionPassManager FPM(F.getParent());
646 Lint *V = new Lint();
647 FPM.add(V);
648 FPM.run(F);
651 /// lintModule - Check a module for errors, printing messages on stderr.
653 void llvm::lintModule(const Module &M) {
654 PassManager PM;
655 Lint *V = new Lint();
656 PM.add(V);
657 PM.run(const_cast<Module&>(M));