Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
blobbba4482f4da57b12e39e1e76d2f2b77863cefba4
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "memdep"
18 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/Function.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/PHITransAddr.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/PredIteratorCache.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetData.h"
35 using namespace llvm;
37 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
38 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
39 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
41 STATISTIC(NumCacheNonLocalPtr,
42 "Number of fully cached non-local ptr responses");
43 STATISTIC(NumCacheDirtyNonLocalPtr,
44 "Number of cached, but dirty, non-local ptr responses");
45 STATISTIC(NumUncacheNonLocalPtr,
46 "Number of uncached non-local ptr responses");
47 STATISTIC(NumCacheCompleteNonLocalPtr,
48 "Number of block queries that were completely cached");
50 // Limit for the number of instructions to scan in a block.
51 // FIXME: Figure out what a sane value is for this.
52 // (500 is relatively insane.)
53 static const int BlockScanLimit = 500;
55 char MemoryDependenceAnalysis::ID = 0;
57 // Register this pass...
58 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
59 "Memory Dependence Analysis", false, true)
60 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
61 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
62 "Memory Dependence Analysis", false, true)
64 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
65 : FunctionPass(ID), PredCache(0) {
66 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
68 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
71 /// Clean up memory in between runs
72 void MemoryDependenceAnalysis::releaseMemory() {
73 LocalDeps.clear();
74 NonLocalDeps.clear();
75 NonLocalPointerDeps.clear();
76 ReverseLocalDeps.clear();
77 ReverseNonLocalDeps.clear();
78 ReverseNonLocalPtrDeps.clear();
79 PredCache->clear();
84 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
85 ///
86 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.setPreservesAll();
88 AU.addRequiredTransitive<AliasAnalysis>();
91 bool MemoryDependenceAnalysis::runOnFunction(Function &) {
92 AA = &getAnalysis<AliasAnalysis>();
93 TD = getAnalysisIfAvailable<TargetData>();
94 if (PredCache == 0)
95 PredCache.reset(new PredIteratorCache());
96 return false;
99 /// RemoveFromReverseMap - This is a helper function that removes Val from
100 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
101 template <typename KeyTy>
102 static void RemoveFromReverseMap(DenseMap<Instruction*,
103 SmallPtrSet<KeyTy, 4> > &ReverseMap,
104 Instruction *Inst, KeyTy Val) {
105 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
106 InstIt = ReverseMap.find(Inst);
107 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
108 bool Found = InstIt->second.erase(Val);
109 assert(Found && "Invalid reverse map!"); (void)Found;
110 if (InstIt->second.empty())
111 ReverseMap.erase(InstIt);
114 /// GetLocation - If the given instruction references a specific memory
115 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
116 /// Return a ModRefInfo value describing the general behavior of the
117 /// instruction.
118 static
119 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
120 AliasAnalysis::Location &Loc,
121 AliasAnalysis *AA) {
122 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
123 if (LI->isVolatile()) {
124 Loc = AliasAnalysis::Location();
125 return AliasAnalysis::ModRef;
127 Loc = AA->getLocation(LI);
128 return AliasAnalysis::Ref;
131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132 if (SI->isVolatile()) {
133 Loc = AliasAnalysis::Location();
134 return AliasAnalysis::ModRef;
136 Loc = AA->getLocation(SI);
137 return AliasAnalysis::Mod;
140 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
141 Loc = AA->getLocation(V);
142 return AliasAnalysis::ModRef;
145 if (const CallInst *CI = isFreeCall(Inst)) {
146 // calls to free() deallocate the entire structure
147 Loc = AliasAnalysis::Location(CI->getArgOperand(0));
148 return AliasAnalysis::Mod;
151 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
152 switch (II->getIntrinsicID()) {
153 case Intrinsic::lifetime_start:
154 case Intrinsic::lifetime_end:
155 case Intrinsic::invariant_start:
156 Loc = AliasAnalysis::Location(II->getArgOperand(1),
157 cast<ConstantInt>(II->getArgOperand(0))
158 ->getZExtValue(),
159 II->getMetadata(LLVMContext::MD_tbaa));
160 // These intrinsics don't really modify the memory, but returning Mod
161 // will allow them to be handled conservatively.
162 return AliasAnalysis::Mod;
163 case Intrinsic::invariant_end:
164 Loc = AliasAnalysis::Location(II->getArgOperand(2),
165 cast<ConstantInt>(II->getArgOperand(1))
166 ->getZExtValue(),
167 II->getMetadata(LLVMContext::MD_tbaa));
168 // These intrinsics don't really modify the memory, but returning Mod
169 // will allow them to be handled conservatively.
170 return AliasAnalysis::Mod;
171 default:
172 break;
175 // Otherwise, just do the coarse-grained thing that always works.
176 if (Inst->mayWriteToMemory())
177 return AliasAnalysis::ModRef;
178 if (Inst->mayReadFromMemory())
179 return AliasAnalysis::Ref;
180 return AliasAnalysis::NoModRef;
183 /// getCallSiteDependencyFrom - Private helper for finding the local
184 /// dependencies of a call site.
185 MemDepResult MemoryDependenceAnalysis::
186 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
187 BasicBlock::iterator ScanIt, BasicBlock *BB) {
188 unsigned Limit = BlockScanLimit;
190 // Walk backwards through the block, looking for dependencies
191 while (ScanIt != BB->begin()) {
192 // Limit the amount of scanning we do so we don't end up with quadratic
193 // running time on extreme testcases.
194 --Limit;
195 if (!Limit)
196 return MemDepResult::getUnknown();
198 Instruction *Inst = --ScanIt;
200 // If this inst is a memory op, get the pointer it accessed
201 AliasAnalysis::Location Loc;
202 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
203 if (Loc.Ptr) {
204 // A simple instruction.
205 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
206 return MemDepResult::getClobber(Inst);
207 continue;
210 if (CallSite InstCS = cast<Value>(Inst)) {
211 // Debug intrinsics don't cause dependences.
212 if (isa<DbgInfoIntrinsic>(Inst)) continue;
213 // If these two calls do not interfere, look past it.
214 switch (AA->getModRefInfo(CS, InstCS)) {
215 case AliasAnalysis::NoModRef:
216 // If the two calls are the same, return InstCS as a Def, so that
217 // CS can be found redundant and eliminated.
218 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
219 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
220 return MemDepResult::getDef(Inst);
222 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
223 // keep scanning.
224 break;
225 default:
226 return MemDepResult::getClobber(Inst);
231 // No dependence found. If this is the entry block of the function, it is
232 // unknown, otherwise it is non-local.
233 if (BB != &BB->getParent()->getEntryBlock())
234 return MemDepResult::getNonLocal();
235 return MemDepResult::getUnknown();
238 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
239 /// would fully overlap MemLoc if done as a wider legal integer load.
241 /// MemLocBase, MemLocOffset are lazily computed here the first time the
242 /// base/offs of memloc is needed.
243 static bool
244 isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
245 const Value *&MemLocBase,
246 int64_t &MemLocOffs,
247 const LoadInst *LI,
248 const TargetData *TD) {
249 // If we have no target data, we can't do this.
250 if (TD == 0) return false;
252 // If we haven't already computed the base/offset of MemLoc, do so now.
253 if (MemLocBase == 0)
254 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, *TD);
256 unsigned Size = MemoryDependenceAnalysis::
257 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
258 LI, *TD);
259 return Size != 0;
262 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
263 /// looks at a memory location for a load (specified by MemLocBase, Offs,
264 /// and Size) and compares it against a load. If the specified load could
265 /// be safely widened to a larger integer load that is 1) still efficient,
266 /// 2) safe for the target, and 3) would provide the specified memory
267 /// location value, then this function returns the size in bytes of the
268 /// load width to use. If not, this returns zero.
269 unsigned MemoryDependenceAnalysis::
270 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
271 unsigned MemLocSize, const LoadInst *LI,
272 const TargetData &TD) {
273 // We can only extend non-volatile integer loads.
274 if (!isa<IntegerType>(LI->getType()) || LI->isVolatile()) return 0;
276 // Get the base of this load.
277 int64_t LIOffs = 0;
278 const Value *LIBase =
279 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, TD);
281 // If the two pointers are not based on the same pointer, we can't tell that
282 // they are related.
283 if (LIBase != MemLocBase) return 0;
285 // Okay, the two values are based on the same pointer, but returned as
286 // no-alias. This happens when we have things like two byte loads at "P+1"
287 // and "P+3". Check to see if increasing the size of the "LI" load up to its
288 // alignment (or the largest native integer type) will allow us to load all
289 // the bits required by MemLoc.
291 // If MemLoc is before LI, then no widening of LI will help us out.
292 if (MemLocOffs < LIOffs) return 0;
294 // Get the alignment of the load in bytes. We assume that it is safe to load
295 // any legal integer up to this size without a problem. For example, if we're
296 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
297 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
298 // to i16.
299 unsigned LoadAlign = LI->getAlignment();
301 int64_t MemLocEnd = MemLocOffs+MemLocSize;
303 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
304 if (LIOffs+LoadAlign < MemLocEnd) return 0;
306 // This is the size of the load to try. Start with the next larger power of
307 // two.
308 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
309 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
311 while (1) {
312 // If this load size is bigger than our known alignment or would not fit
313 // into a native integer register, then we fail.
314 if (NewLoadByteSize > LoadAlign ||
315 !TD.fitsInLegalInteger(NewLoadByteSize*8))
316 return 0;
318 // If a load of this width would include all of MemLoc, then we succeed.
319 if (LIOffs+NewLoadByteSize >= MemLocEnd)
320 return NewLoadByteSize;
322 NewLoadByteSize <<= 1;
325 return 0;
328 /// getPointerDependencyFrom - Return the instruction on which a memory
329 /// location depends. If isLoad is true, this routine ignores may-aliases with
330 /// read-only operations. If isLoad is false, this routine ignores may-aliases
331 /// with reads from read-only locations.
332 MemDepResult MemoryDependenceAnalysis::
333 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
334 BasicBlock::iterator ScanIt, BasicBlock *BB) {
336 const Value *MemLocBase = 0;
337 int64_t MemLocOffset = 0;
339 unsigned Limit = BlockScanLimit;
341 // Walk backwards through the basic block, looking for dependencies.
342 while (ScanIt != BB->begin()) {
343 // Limit the amount of scanning we do so we don't end up with quadratic
344 // running time on extreme testcases.
345 --Limit;
346 if (!Limit)
347 return MemDepResult::getUnknown();
349 Instruction *Inst = --ScanIt;
351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
352 // Debug intrinsics don't (and can't) cause dependences.
353 if (isa<DbgInfoIntrinsic>(II)) continue;
355 // If we reach a lifetime begin or end marker, then the query ends here
356 // because the value is undefined.
357 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
358 // FIXME: This only considers queries directly on the invariant-tagged
359 // pointer, not on query pointers that are indexed off of them. It'd
360 // be nice to handle that at some point (the right approach is to use
361 // GetPointerBaseWithConstantOffset).
362 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
363 MemLoc))
364 return MemDepResult::getDef(II);
365 continue;
369 // Values depend on loads if the pointers are must aliased. This means that
370 // a load depends on another must aliased load from the same value.
371 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
372 AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
374 // If we found a pointer, check if it could be the same as our pointer.
375 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
377 if (isLoad) {
378 if (R == AliasAnalysis::NoAlias) {
379 // If this is an over-aligned integer load (for example,
380 // "load i8* %P, align 4") see if it would obviously overlap with the
381 // queried location if widened to a larger load (e.g. if the queried
382 // location is 1 byte at P+1). If so, return it as a load/load
383 // clobber result, allowing the client to decide to widen the load if
384 // it wants to.
385 if (const IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
386 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
387 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
388 MemLocOffset, LI, TD))
389 return MemDepResult::getClobber(Inst);
391 continue;
394 // Must aliased loads are defs of each other.
395 if (R == AliasAnalysis::MustAlias)
396 return MemDepResult::getDef(Inst);
398 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
399 // in terms of clobbering loads, but since it does this by looking
400 // at the clobbering load directly, it doesn't know about any
401 // phi translation that may have happened along the way.
403 // If we have a partial alias, then return this as a clobber for the
404 // client to handle.
405 if (R == AliasAnalysis::PartialAlias)
406 return MemDepResult::getClobber(Inst);
407 #endif
409 // Random may-alias loads don't depend on each other without a
410 // dependence.
411 continue;
414 // Stores don't depend on other no-aliased accesses.
415 if (R == AliasAnalysis::NoAlias)
416 continue;
418 // Stores don't alias loads from read-only memory.
419 if (AA->pointsToConstantMemory(LoadLoc))
420 continue;
422 // Stores depend on may/must aliased loads.
423 return MemDepResult::getDef(Inst);
426 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
427 // If alias analysis can tell that this store is guaranteed to not modify
428 // the query pointer, ignore it. Use getModRefInfo to handle cases where
429 // the query pointer points to constant memory etc.
430 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
431 continue;
433 // Ok, this store might clobber the query pointer. Check to see if it is
434 // a must alias: in this case, we want to return this as a def.
435 AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
437 // If we found a pointer, check if it could be the same as our pointer.
438 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
440 if (R == AliasAnalysis::NoAlias)
441 continue;
442 if (R == AliasAnalysis::MustAlias)
443 return MemDepResult::getDef(Inst);
444 return MemDepResult::getClobber(Inst);
447 // If this is an allocation, and if we know that the accessed pointer is to
448 // the allocation, return Def. This means that there is no dependence and
449 // the access can be optimized based on that. For example, a load could
450 // turn into undef.
451 // Note: Only determine this to be a malloc if Inst is the malloc call, not
452 // a subsequent bitcast of the malloc call result. There can be stores to
453 // the malloced memory between the malloc call and its bitcast uses, and we
454 // need to continue scanning until the malloc call.
455 if (isa<AllocaInst>(Inst) ||
456 (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
457 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
459 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
460 return MemDepResult::getDef(Inst);
461 continue;
464 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
465 switch (AA->getModRefInfo(Inst, MemLoc)) {
466 case AliasAnalysis::NoModRef:
467 // If the call has no effect on the queried pointer, just ignore it.
468 continue;
469 case AliasAnalysis::Mod:
470 return MemDepResult::getClobber(Inst);
471 case AliasAnalysis::Ref:
472 // If the call is known to never store to the pointer, and if this is a
473 // load query, we can safely ignore it (scan past it).
474 if (isLoad)
475 continue;
476 default:
477 // Otherwise, there is a potential dependence. Return a clobber.
478 return MemDepResult::getClobber(Inst);
482 // No dependence found. If this is the entry block of the function, it is
483 // unknown, otherwise it is non-local.
484 if (BB != &BB->getParent()->getEntryBlock())
485 return MemDepResult::getNonLocal();
486 return MemDepResult::getUnknown();
489 /// getDependency - Return the instruction on which a memory operation
490 /// depends.
491 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
492 Instruction *ScanPos = QueryInst;
494 // Check for a cached result
495 MemDepResult &LocalCache = LocalDeps[QueryInst];
497 // If the cached entry is non-dirty, just return it. Note that this depends
498 // on MemDepResult's default constructing to 'dirty'.
499 if (!LocalCache.isDirty())
500 return LocalCache;
502 // Otherwise, if we have a dirty entry, we know we can start the scan at that
503 // instruction, which may save us some work.
504 if (Instruction *Inst = LocalCache.getInst()) {
505 ScanPos = Inst;
507 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
510 BasicBlock *QueryParent = QueryInst->getParent();
512 // Do the scan.
513 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
514 // No dependence found. If this is the entry block of the function, it is
515 // unknown, otherwise it is non-local.
516 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
517 LocalCache = MemDepResult::getNonLocal();
518 else
519 LocalCache = MemDepResult::getUnknown();
520 } else {
521 AliasAnalysis::Location MemLoc;
522 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
523 if (MemLoc.Ptr) {
524 // If we can do a pointer scan, make it happen.
525 bool isLoad = !(MR & AliasAnalysis::Mod);
526 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
527 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
529 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
530 QueryParent);
531 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
532 CallSite QueryCS(QueryInst);
533 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
534 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
535 QueryParent);
536 } else
537 // Non-memory instruction.
538 LocalCache = MemDepResult::getUnknown();
541 // Remember the result!
542 if (Instruction *I = LocalCache.getInst())
543 ReverseLocalDeps[I].insert(QueryInst);
545 return LocalCache;
548 #ifndef NDEBUG
549 /// AssertSorted - This method is used when -debug is specified to verify that
550 /// cache arrays are properly kept sorted.
551 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
552 int Count = -1) {
553 if (Count == -1) Count = Cache.size();
554 if (Count == 0) return;
556 for (unsigned i = 1; i != unsigned(Count); ++i)
557 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
559 #endif
561 /// getNonLocalCallDependency - Perform a full dependency query for the
562 /// specified call, returning the set of blocks that the value is
563 /// potentially live across. The returned set of results will include a
564 /// "NonLocal" result for all blocks where the value is live across.
566 /// This method assumes the instruction returns a "NonLocal" dependency
567 /// within its own block.
569 /// This returns a reference to an internal data structure that may be
570 /// invalidated on the next non-local query or when an instruction is
571 /// removed. Clients must copy this data if they want it around longer than
572 /// that.
573 const MemoryDependenceAnalysis::NonLocalDepInfo &
574 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
575 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
576 "getNonLocalCallDependency should only be used on calls with non-local deps!");
577 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
578 NonLocalDepInfo &Cache = CacheP.first;
580 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
581 /// the cached case, this can happen due to instructions being deleted etc. In
582 /// the uncached case, this starts out as the set of predecessors we care
583 /// about.
584 SmallVector<BasicBlock*, 32> DirtyBlocks;
586 if (!Cache.empty()) {
587 // Okay, we have a cache entry. If we know it is not dirty, just return it
588 // with no computation.
589 if (!CacheP.second) {
590 ++NumCacheNonLocal;
591 return Cache;
594 // If we already have a partially computed set of results, scan them to
595 // determine what is dirty, seeding our initial DirtyBlocks worklist.
596 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
597 I != E; ++I)
598 if (I->getResult().isDirty())
599 DirtyBlocks.push_back(I->getBB());
601 // Sort the cache so that we can do fast binary search lookups below.
602 std::sort(Cache.begin(), Cache.end());
604 ++NumCacheDirtyNonLocal;
605 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
606 // << Cache.size() << " cached: " << *QueryInst;
607 } else {
608 // Seed DirtyBlocks with each of the preds of QueryInst's block.
609 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
610 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
611 DirtyBlocks.push_back(*PI);
612 ++NumUncacheNonLocal;
615 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
616 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
618 SmallPtrSet<BasicBlock*, 64> Visited;
620 unsigned NumSortedEntries = Cache.size();
621 DEBUG(AssertSorted(Cache));
623 // Iterate while we still have blocks to update.
624 while (!DirtyBlocks.empty()) {
625 BasicBlock *DirtyBB = DirtyBlocks.back();
626 DirtyBlocks.pop_back();
628 // Already processed this block?
629 if (!Visited.insert(DirtyBB))
630 continue;
632 // Do a binary search to see if we already have an entry for this block in
633 // the cache set. If so, find it.
634 DEBUG(AssertSorted(Cache, NumSortedEntries));
635 NonLocalDepInfo::iterator Entry =
636 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
637 NonLocalDepEntry(DirtyBB));
638 if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
639 --Entry;
641 NonLocalDepEntry *ExistingResult = 0;
642 if (Entry != Cache.begin()+NumSortedEntries &&
643 Entry->getBB() == DirtyBB) {
644 // If we already have an entry, and if it isn't already dirty, the block
645 // is done.
646 if (!Entry->getResult().isDirty())
647 continue;
649 // Otherwise, remember this slot so we can update the value.
650 ExistingResult = &*Entry;
653 // If the dirty entry has a pointer, start scanning from it so we don't have
654 // to rescan the entire block.
655 BasicBlock::iterator ScanPos = DirtyBB->end();
656 if (ExistingResult) {
657 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
658 ScanPos = Inst;
659 // We're removing QueryInst's use of Inst.
660 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
661 QueryCS.getInstruction());
665 // Find out if this block has a local dependency for QueryInst.
666 MemDepResult Dep;
668 if (ScanPos != DirtyBB->begin()) {
669 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
670 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
671 // No dependence found. If this is the entry block of the function, it is
672 // a clobber, otherwise it is unknown.
673 Dep = MemDepResult::getNonLocal();
674 } else {
675 Dep = MemDepResult::getUnknown();
678 // If we had a dirty entry for the block, update it. Otherwise, just add
679 // a new entry.
680 if (ExistingResult)
681 ExistingResult->setResult(Dep);
682 else
683 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
685 // If the block has a dependency (i.e. it isn't completely transparent to
686 // the value), remember the association!
687 if (!Dep.isNonLocal()) {
688 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
689 // update this when we remove instructions.
690 if (Instruction *Inst = Dep.getInst())
691 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
692 } else {
694 // If the block *is* completely transparent to the load, we need to check
695 // the predecessors of this block. Add them to our worklist.
696 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
697 DirtyBlocks.push_back(*PI);
701 return Cache;
704 /// getNonLocalPointerDependency - Perform a full dependency query for an
705 /// access to the specified (non-volatile) memory location, returning the
706 /// set of instructions that either define or clobber the value.
708 /// This method assumes the pointer has a "NonLocal" dependency within its
709 /// own block.
711 void MemoryDependenceAnalysis::
712 getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
713 BasicBlock *FromBB,
714 SmallVectorImpl<NonLocalDepResult> &Result) {
715 assert(Loc.Ptr->getType()->isPointerTy() &&
716 "Can't get pointer deps of a non-pointer!");
717 Result.clear();
719 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
721 // This is the set of blocks we've inspected, and the pointer we consider in
722 // each block. Because of critical edges, we currently bail out if querying
723 // a block with multiple different pointers. This can happen during PHI
724 // translation.
725 DenseMap<BasicBlock*, Value*> Visited;
726 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
727 Result, Visited, true))
728 return;
729 Result.clear();
730 Result.push_back(NonLocalDepResult(FromBB,
731 MemDepResult::getUnknown(),
732 const_cast<Value *>(Loc.Ptr)));
735 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
736 /// Pointer/PointeeSize using either cached information in Cache or by doing a
737 /// lookup (which may use dirty cache info if available). If we do a lookup,
738 /// add the result to the cache.
739 MemDepResult MemoryDependenceAnalysis::
740 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
741 bool isLoad, BasicBlock *BB,
742 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
744 // Do a binary search to see if we already have an entry for this block in
745 // the cache set. If so, find it.
746 NonLocalDepInfo::iterator Entry =
747 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
748 NonLocalDepEntry(BB));
749 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
750 --Entry;
752 NonLocalDepEntry *ExistingResult = 0;
753 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
754 ExistingResult = &*Entry;
756 // If we have a cached entry, and it is non-dirty, use it as the value for
757 // this dependency.
758 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
759 ++NumCacheNonLocalPtr;
760 return ExistingResult->getResult();
763 // Otherwise, we have to scan for the value. If we have a dirty cache
764 // entry, start scanning from its position, otherwise we scan from the end
765 // of the block.
766 BasicBlock::iterator ScanPos = BB->end();
767 if (ExistingResult && ExistingResult->getResult().getInst()) {
768 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
769 "Instruction invalidated?");
770 ++NumCacheDirtyNonLocalPtr;
771 ScanPos = ExistingResult->getResult().getInst();
773 // Eliminating the dirty entry from 'Cache', so update the reverse info.
774 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
775 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
776 } else {
777 ++NumUncacheNonLocalPtr;
780 // Scan the block for the dependency.
781 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
783 // If we had a dirty entry for the block, update it. Otherwise, just add
784 // a new entry.
785 if (ExistingResult)
786 ExistingResult->setResult(Dep);
787 else
788 Cache->push_back(NonLocalDepEntry(BB, Dep));
790 // If the block has a dependency (i.e. it isn't completely transparent to
791 // the value), remember the reverse association because we just added it
792 // to Cache!
793 if (Dep.isNonLocal() || Dep.isUnknown())
794 return Dep;
796 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
797 // update MemDep when we remove instructions.
798 Instruction *Inst = Dep.getInst();
799 assert(Inst && "Didn't depend on anything?");
800 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
801 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
802 return Dep;
805 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
806 /// number of elements in the array that are already properly ordered. This is
807 /// optimized for the case when only a few entries are added.
808 static void
809 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
810 unsigned NumSortedEntries) {
811 switch (Cache.size() - NumSortedEntries) {
812 case 0:
813 // done, no new entries.
814 break;
815 case 2: {
816 // Two new entries, insert the last one into place.
817 NonLocalDepEntry Val = Cache.back();
818 Cache.pop_back();
819 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
820 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
821 Cache.insert(Entry, Val);
822 // FALL THROUGH.
824 case 1:
825 // One new entry, Just insert the new value at the appropriate position.
826 if (Cache.size() != 1) {
827 NonLocalDepEntry Val = Cache.back();
828 Cache.pop_back();
829 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
830 std::upper_bound(Cache.begin(), Cache.end(), Val);
831 Cache.insert(Entry, Val);
833 break;
834 default:
835 // Added many values, do a full scale sort.
836 std::sort(Cache.begin(), Cache.end());
837 break;
841 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
842 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
843 /// results to the results vector and keep track of which blocks are visited in
844 /// 'Visited'.
846 /// This has special behavior for the first block queries (when SkipFirstBlock
847 /// is true). In this special case, it ignores the contents of the specified
848 /// block and starts returning dependence info for its predecessors.
850 /// This function returns false on success, or true to indicate that it could
851 /// not compute dependence information for some reason. This should be treated
852 /// as a clobber dependence on the first instruction in the predecessor block.
853 bool MemoryDependenceAnalysis::
854 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
855 const AliasAnalysis::Location &Loc,
856 bool isLoad, BasicBlock *StartBB,
857 SmallVectorImpl<NonLocalDepResult> &Result,
858 DenseMap<BasicBlock*, Value*> &Visited,
859 bool SkipFirstBlock) {
861 // Look up the cached info for Pointer.
862 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
864 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
865 // CacheKey, this value will be inserted as the associated value. Otherwise,
866 // it'll be ignored, and we'll have to check to see if the cached size and
867 // tbaa tag are consistent with the current query.
868 NonLocalPointerInfo InitialNLPI;
869 InitialNLPI.Size = Loc.Size;
870 InitialNLPI.TBAATag = Loc.TBAATag;
872 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
873 // already have one.
874 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
875 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
876 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
878 // If we already have a cache entry for this CacheKey, we may need to do some
879 // work to reconcile the cache entry and the current query.
880 if (!Pair.second) {
881 if (CacheInfo->Size < Loc.Size) {
882 // The query's Size is greater than the cached one. Throw out the
883 // cached data and procede with the query at the greater size.
884 CacheInfo->Pair = BBSkipFirstBlockPair();
885 CacheInfo->Size = Loc.Size;
886 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
887 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
888 if (Instruction *Inst = DI->getResult().getInst())
889 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
890 CacheInfo->NonLocalDeps.clear();
891 } else if (CacheInfo->Size > Loc.Size) {
892 // This query's Size is less than the cached one. Conservatively restart
893 // the query using the greater size.
894 return getNonLocalPointerDepFromBB(Pointer,
895 Loc.getWithNewSize(CacheInfo->Size),
896 isLoad, StartBB, Result, Visited,
897 SkipFirstBlock);
900 // If the query's TBAATag is inconsistent with the cached one,
901 // conservatively throw out the cached data and restart the query with
902 // no tag if needed.
903 if (CacheInfo->TBAATag != Loc.TBAATag) {
904 if (CacheInfo->TBAATag) {
905 CacheInfo->Pair = BBSkipFirstBlockPair();
906 CacheInfo->TBAATag = 0;
907 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
908 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
909 if (Instruction *Inst = DI->getResult().getInst())
910 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
911 CacheInfo->NonLocalDeps.clear();
913 if (Loc.TBAATag)
914 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
915 isLoad, StartBB, Result, Visited,
916 SkipFirstBlock);
920 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
922 // If we have valid cached information for exactly the block we are
923 // investigating, just return it with no recomputation.
924 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
925 // We have a fully cached result for this query then we can just return the
926 // cached results and populate the visited set. However, we have to verify
927 // that we don't already have conflicting results for these blocks. Check
928 // to ensure that if a block in the results set is in the visited set that
929 // it was for the same pointer query.
930 if (!Visited.empty()) {
931 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
932 I != E; ++I) {
933 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
934 if (VI == Visited.end() || VI->second == Pointer.getAddr())
935 continue;
937 // We have a pointer mismatch in a block. Just return clobber, saying
938 // that something was clobbered in this result. We could also do a
939 // non-fully cached query, but there is little point in doing this.
940 return true;
944 Value *Addr = Pointer.getAddr();
945 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
946 I != E; ++I) {
947 Visited.insert(std::make_pair(I->getBB(), Addr));
948 if (!I->getResult().isNonLocal())
949 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
951 ++NumCacheCompleteNonLocalPtr;
952 return false;
955 // Otherwise, either this is a new block, a block with an invalid cache
956 // pointer or one that we're about to invalidate by putting more info into it
957 // than its valid cache info. If empty, the result will be valid cache info,
958 // otherwise it isn't.
959 if (Cache->empty())
960 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
961 else
962 CacheInfo->Pair = BBSkipFirstBlockPair();
964 SmallVector<BasicBlock*, 32> Worklist;
965 Worklist.push_back(StartBB);
967 // PredList used inside loop.
968 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
970 // Keep track of the entries that we know are sorted. Previously cached
971 // entries will all be sorted. The entries we add we only sort on demand (we
972 // don't insert every element into its sorted position). We know that we
973 // won't get any reuse from currently inserted values, because we don't
974 // revisit blocks after we insert info for them.
975 unsigned NumSortedEntries = Cache->size();
976 DEBUG(AssertSorted(*Cache));
978 while (!Worklist.empty()) {
979 BasicBlock *BB = Worklist.pop_back_val();
981 // Skip the first block if we have it.
982 if (!SkipFirstBlock) {
983 // Analyze the dependency of *Pointer in FromBB. See if we already have
984 // been here.
985 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
987 // Get the dependency info for Pointer in BB. If we have cached
988 // information, we will use it, otherwise we compute it.
989 DEBUG(AssertSorted(*Cache, NumSortedEntries));
990 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
991 NumSortedEntries);
993 // If we got a Def or Clobber, add this to the list of results.
994 if (!Dep.isNonLocal()) {
995 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
996 continue;
1000 // If 'Pointer' is an instruction defined in this block, then we need to do
1001 // phi translation to change it into a value live in the predecessor block.
1002 // If not, we just add the predecessors to the worklist and scan them with
1003 // the same Pointer.
1004 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1005 SkipFirstBlock = false;
1006 SmallVector<BasicBlock*, 16> NewBlocks;
1007 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1008 // Verify that we haven't looked at this block yet.
1009 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1010 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1011 if (InsertRes.second) {
1012 // First time we've looked at *PI.
1013 NewBlocks.push_back(*PI);
1014 continue;
1017 // If we have seen this block before, but it was with a different
1018 // pointer then we have a phi translation failure and we have to treat
1019 // this as a clobber.
1020 if (InsertRes.first->second != Pointer.getAddr()) {
1021 // Make sure to clean up the Visited map before continuing on to
1022 // PredTranslationFailure.
1023 for (unsigned i = 0; i < NewBlocks.size(); i++)
1024 Visited.erase(NewBlocks[i]);
1025 goto PredTranslationFailure;
1028 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1029 continue;
1032 // We do need to do phi translation, if we know ahead of time we can't phi
1033 // translate this value, don't even try.
1034 if (!Pointer.IsPotentiallyPHITranslatable())
1035 goto PredTranslationFailure;
1037 // We may have added values to the cache list before this PHI translation.
1038 // If so, we haven't done anything to ensure that the cache remains sorted.
1039 // Sort it now (if needed) so that recursive invocations of
1040 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1041 // value will only see properly sorted cache arrays.
1042 if (Cache && NumSortedEntries != Cache->size()) {
1043 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1044 NumSortedEntries = Cache->size();
1046 Cache = 0;
1048 PredList.clear();
1049 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1050 BasicBlock *Pred = *PI;
1051 PredList.push_back(std::make_pair(Pred, Pointer));
1053 // Get the PHI translated pointer in this predecessor. This can fail if
1054 // not translatable, in which case the getAddr() returns null.
1055 PHITransAddr &PredPointer = PredList.back().second;
1056 PredPointer.PHITranslateValue(BB, Pred, 0);
1058 Value *PredPtrVal = PredPointer.getAddr();
1060 // Check to see if we have already visited this pred block with another
1061 // pointer. If so, we can't do this lookup. This failure can occur
1062 // with PHI translation when a critical edge exists and the PHI node in
1063 // the successor translates to a pointer value different than the
1064 // pointer the block was first analyzed with.
1065 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1066 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1068 if (!InsertRes.second) {
1069 // We found the pred; take it off the list of preds to visit.
1070 PredList.pop_back();
1072 // If the predecessor was visited with PredPtr, then we already did
1073 // the analysis and can ignore it.
1074 if (InsertRes.first->second == PredPtrVal)
1075 continue;
1077 // Otherwise, the block was previously analyzed with a different
1078 // pointer. We can't represent the result of this case, so we just
1079 // treat this as a phi translation failure.
1081 // Make sure to clean up the Visited map before continuing on to
1082 // PredTranslationFailure.
1083 for (unsigned i = 0; i < PredList.size(); i++)
1084 Visited.erase(PredList[i].first);
1086 goto PredTranslationFailure;
1090 // Actually process results here; this need to be a separate loop to avoid
1091 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1092 // any results for. (getNonLocalPointerDepFromBB will modify our
1093 // datastructures in ways the code after the PredTranslationFailure label
1094 // doesn't expect.)
1095 for (unsigned i = 0; i < PredList.size(); i++) {
1096 BasicBlock *Pred = PredList[i].first;
1097 PHITransAddr &PredPointer = PredList[i].second;
1098 Value *PredPtrVal = PredPointer.getAddr();
1100 bool CanTranslate = true;
1101 // If PHI translation was unable to find an available pointer in this
1102 // predecessor, then we have to assume that the pointer is clobbered in
1103 // that predecessor. We can still do PRE of the load, which would insert
1104 // a computation of the pointer in this predecessor.
1105 if (PredPtrVal == 0)
1106 CanTranslate = false;
1108 // FIXME: it is entirely possible that PHI translating will end up with
1109 // the same value. Consider PHI translating something like:
1110 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1111 // to recurse here, pedantically speaking.
1113 // If getNonLocalPointerDepFromBB fails here, that means the cached
1114 // result conflicted with the Visited list; we have to conservatively
1115 // assume it is unknown, but this also does not block PRE of the load.
1116 if (!CanTranslate ||
1117 getNonLocalPointerDepFromBB(PredPointer,
1118 Loc.getWithNewPtr(PredPtrVal),
1119 isLoad, Pred,
1120 Result, Visited)) {
1121 // Add the entry to the Result list.
1122 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1123 Result.push_back(Entry);
1125 // Since we had a phi translation failure, the cache for CacheKey won't
1126 // include all of the entries that we need to immediately satisfy future
1127 // queries. Mark this in NonLocalPointerDeps by setting the
1128 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1129 // cached value to do more work but not miss the phi trans failure.
1130 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1131 NLPI.Pair = BBSkipFirstBlockPair();
1132 continue;
1136 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1137 CacheInfo = &NonLocalPointerDeps[CacheKey];
1138 Cache = &CacheInfo->NonLocalDeps;
1139 NumSortedEntries = Cache->size();
1141 // Since we did phi translation, the "Cache" set won't contain all of the
1142 // results for the query. This is ok (we can still use it to accelerate
1143 // specific block queries) but we can't do the fastpath "return all
1144 // results from the set" Clear out the indicator for this.
1145 CacheInfo->Pair = BBSkipFirstBlockPair();
1146 SkipFirstBlock = false;
1147 continue;
1149 PredTranslationFailure:
1150 // The following code is "failure"; we can't produce a sane translation
1151 // for the given block. It assumes that we haven't modified any of
1152 // our datastructures while processing the current block.
1154 if (Cache == 0) {
1155 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1156 CacheInfo = &NonLocalPointerDeps[CacheKey];
1157 Cache = &CacheInfo->NonLocalDeps;
1158 NumSortedEntries = Cache->size();
1161 // Since we failed phi translation, the "Cache" set won't contain all of the
1162 // results for the query. This is ok (we can still use it to accelerate
1163 // specific block queries) but we can't do the fastpath "return all
1164 // results from the set". Clear out the indicator for this.
1165 CacheInfo->Pair = BBSkipFirstBlockPair();
1167 // If *nothing* works, mark the pointer as unknown.
1169 // If this is the magic first block, return this as a clobber of the whole
1170 // incoming value. Since we can't phi translate to one of the predecessors,
1171 // we have to bail out.
1172 if (SkipFirstBlock)
1173 return true;
1175 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1176 assert(I != Cache->rend() && "Didn't find current block??");
1177 if (I->getBB() != BB)
1178 continue;
1180 assert(I->getResult().isNonLocal() &&
1181 "Should only be here with transparent block");
1182 I->setResult(MemDepResult::getUnknown());
1183 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1184 Pointer.getAddr()));
1185 break;
1189 // Okay, we're done now. If we added new values to the cache, re-sort it.
1190 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1191 DEBUG(AssertSorted(*Cache));
1192 return false;
1195 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1196 /// CachedNonLocalPointerInfo, remove it.
1197 void MemoryDependenceAnalysis::
1198 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1199 CachedNonLocalPointerInfo::iterator It =
1200 NonLocalPointerDeps.find(P);
1201 if (It == NonLocalPointerDeps.end()) return;
1203 // Remove all of the entries in the BB->val map. This involves removing
1204 // instructions from the reverse map.
1205 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1207 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1208 Instruction *Target = PInfo[i].getResult().getInst();
1209 if (Target == 0) continue; // Ignore non-local dep results.
1210 assert(Target->getParent() == PInfo[i].getBB());
1212 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1213 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1216 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1217 NonLocalPointerDeps.erase(It);
1221 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1222 /// information about the specified pointer, because it may be too
1223 /// conservative in memdep. This is an optional call that can be used when
1224 /// the client detects an equivalence between the pointer and some other
1225 /// value and replaces the other value with ptr. This can make Ptr available
1226 /// in more places that cached info does not necessarily keep.
1227 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1228 // If Ptr isn't really a pointer, just ignore it.
1229 if (!Ptr->getType()->isPointerTy()) return;
1230 // Flush store info for the pointer.
1231 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1232 // Flush load info for the pointer.
1233 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1236 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1237 /// This needs to be done when the CFG changes, e.g., due to splitting
1238 /// critical edges.
1239 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1240 PredCache->clear();
1243 /// removeInstruction - Remove an instruction from the dependence analysis,
1244 /// updating the dependence of instructions that previously depended on it.
1245 /// This method attempts to keep the cache coherent using the reverse map.
1246 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1247 // Walk through the Non-local dependencies, removing this one as the value
1248 // for any cached queries.
1249 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1250 if (NLDI != NonLocalDeps.end()) {
1251 NonLocalDepInfo &BlockMap = NLDI->second.first;
1252 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1253 DI != DE; ++DI)
1254 if (Instruction *Inst = DI->getResult().getInst())
1255 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1256 NonLocalDeps.erase(NLDI);
1259 // If we have a cached local dependence query for this instruction, remove it.
1261 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1262 if (LocalDepEntry != LocalDeps.end()) {
1263 // Remove us from DepInst's reverse set now that the local dep info is gone.
1264 if (Instruction *Inst = LocalDepEntry->second.getInst())
1265 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1267 // Remove this local dependency info.
1268 LocalDeps.erase(LocalDepEntry);
1271 // If we have any cached pointer dependencies on this instruction, remove
1272 // them. If the instruction has non-pointer type, then it can't be a pointer
1273 // base.
1275 // Remove it from both the load info and the store info. The instruction
1276 // can't be in either of these maps if it is non-pointer.
1277 if (RemInst->getType()->isPointerTy()) {
1278 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1279 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1282 // Loop over all of the things that depend on the instruction we're removing.
1284 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1286 // If we find RemInst as a clobber or Def in any of the maps for other values,
1287 // we need to replace its entry with a dirty version of the instruction after
1288 // it. If RemInst is a terminator, we use a null dirty value.
1290 // Using a dirty version of the instruction after RemInst saves having to scan
1291 // the entire block to get to this point.
1292 MemDepResult NewDirtyVal;
1293 if (!RemInst->isTerminator())
1294 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1296 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1297 if (ReverseDepIt != ReverseLocalDeps.end()) {
1298 SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1299 // RemInst can't be the terminator if it has local stuff depending on it.
1300 assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1301 "Nothing can locally depend on a terminator");
1303 for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1304 E = ReverseDeps.end(); I != E; ++I) {
1305 Instruction *InstDependingOnRemInst = *I;
1306 assert(InstDependingOnRemInst != RemInst &&
1307 "Already removed our local dep info");
1309 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1311 // Make sure to remember that new things depend on NewDepInst.
1312 assert(NewDirtyVal.getInst() && "There is no way something else can have "
1313 "a local dep on this if it is a terminator!");
1314 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1315 InstDependingOnRemInst));
1318 ReverseLocalDeps.erase(ReverseDepIt);
1320 // Add new reverse deps after scanning the set, to avoid invalidating the
1321 // 'ReverseDeps' reference.
1322 while (!ReverseDepsToAdd.empty()) {
1323 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1324 .insert(ReverseDepsToAdd.back().second);
1325 ReverseDepsToAdd.pop_back();
1329 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1330 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1331 SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1332 for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1333 I != E; ++I) {
1334 assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1336 PerInstNLInfo &INLD = NonLocalDeps[*I];
1337 // The information is now dirty!
1338 INLD.second = true;
1340 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1341 DE = INLD.first.end(); DI != DE; ++DI) {
1342 if (DI->getResult().getInst() != RemInst) continue;
1344 // Convert to a dirty entry for the subsequent instruction.
1345 DI->setResult(NewDirtyVal);
1347 if (Instruction *NextI = NewDirtyVal.getInst())
1348 ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1352 ReverseNonLocalDeps.erase(ReverseDepIt);
1354 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1355 while (!ReverseDepsToAdd.empty()) {
1356 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1357 .insert(ReverseDepsToAdd.back().second);
1358 ReverseDepsToAdd.pop_back();
1362 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1363 // value in the NonLocalPointerDeps info.
1364 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1365 ReverseNonLocalPtrDeps.find(RemInst);
1366 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1367 SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1368 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1370 for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1371 E = Set.end(); I != E; ++I) {
1372 ValueIsLoadPair P = *I;
1373 assert(P.getPointer() != RemInst &&
1374 "Already removed NonLocalPointerDeps info for RemInst");
1376 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1378 // The cache is not valid for any specific block anymore.
1379 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1381 // Update any entries for RemInst to use the instruction after it.
1382 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1383 DI != DE; ++DI) {
1384 if (DI->getResult().getInst() != RemInst) continue;
1386 // Convert to a dirty entry for the subsequent instruction.
1387 DI->setResult(NewDirtyVal);
1389 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1390 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1393 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1394 // subsequent value may invalidate the sortedness.
1395 std::sort(NLPDI.begin(), NLPDI.end());
1398 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1400 while (!ReversePtrDepsToAdd.empty()) {
1401 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1402 .insert(ReversePtrDepsToAdd.back().second);
1403 ReversePtrDepsToAdd.pop_back();
1408 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1409 AA->deleteValue(RemInst);
1410 DEBUG(verifyRemoved(RemInst));
1412 /// verifyRemoved - Verify that the specified instruction does not occur
1413 /// in our internal data structures.
1414 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1415 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1416 E = LocalDeps.end(); I != E; ++I) {
1417 assert(I->first != D && "Inst occurs in data structures");
1418 assert(I->second.getInst() != D &&
1419 "Inst occurs in data structures");
1422 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1423 E = NonLocalPointerDeps.end(); I != E; ++I) {
1424 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1425 const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1426 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1427 II != E; ++II)
1428 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1431 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1432 E = NonLocalDeps.end(); I != E; ++I) {
1433 assert(I->first != D && "Inst occurs in data structures");
1434 const PerInstNLInfo &INLD = I->second;
1435 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1436 EE = INLD.first.end(); II != EE; ++II)
1437 assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1440 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1441 E = ReverseLocalDeps.end(); I != E; ++I) {
1442 assert(I->first != D && "Inst occurs in data structures");
1443 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1444 EE = I->second.end(); II != EE; ++II)
1445 assert(*II != D && "Inst occurs in data structures");
1448 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1449 E = ReverseNonLocalDeps.end();
1450 I != E; ++I) {
1451 assert(I->first != D && "Inst occurs in data structures");
1452 for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1453 EE = I->second.end(); II != EE; ++II)
1454 assert(*II != D && "Inst occurs in data structures");
1457 for (ReverseNonLocalPtrDepTy::const_iterator
1458 I = ReverseNonLocalPtrDeps.begin(),
1459 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1460 assert(I->first != D && "Inst occurs in rev NLPD map");
1462 for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1463 E = I->second.end(); II != E; ++II)
1464 assert(*II != ValueIsLoadPair(D, false) &&
1465 *II != ValueIsLoadPair(D, true) &&
1466 "Inst occurs in ReverseNonLocalPtrDeps map");