1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Target/TargetData.h"
21 #include "llvm/ADT/STLExtras.h"
24 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
25 /// reusing an existing cast if a suitable one exists, moving an existing
26 /// cast if a suitable one exists but isn't in the right place, or
27 /// creating a new one.
28 Value
*SCEVExpander::ReuseOrCreateCast(Value
*V
, const Type
*Ty
,
29 Instruction::CastOps Op
,
30 BasicBlock::iterator IP
) {
31 // Check to see if there is already a cast!
32 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end();
35 if (U
->getType() == Ty
)
36 if (CastInst
*CI
= dyn_cast
<CastInst
>(U
))
37 if (CI
->getOpcode() == Op
) {
38 // If the cast isn't where we want it, fix it.
39 if (BasicBlock::iterator(CI
) != IP
) {
40 // Create a new cast, and leave the old cast in place in case
41 // it is being used as an insert point. Clear its operand
42 // so that it doesn't hold anything live.
43 Instruction
*NewCI
= CastInst::Create(Op
, V
, Ty
, "", IP
);
45 CI
->replaceAllUsesWith(NewCI
);
46 CI
->setOperand(0, UndefValue::get(V
->getType()));
47 rememberInstruction(NewCI
);
50 rememberInstruction(CI
);
56 Instruction
*I
= CastInst::Create(Op
, V
, Ty
, V
->getName(), IP
);
57 rememberInstruction(I
);
61 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
62 /// which must be possible with a noop cast, doing what we can to share
64 Value
*SCEVExpander::InsertNoopCastOfTo(Value
*V
, const Type
*Ty
) {
65 Instruction::CastOps Op
= CastInst::getCastOpcode(V
, false, Ty
, false);
66 assert((Op
== Instruction::BitCast
||
67 Op
== Instruction::PtrToInt
||
68 Op
== Instruction::IntToPtr
) &&
69 "InsertNoopCastOfTo cannot perform non-noop casts!");
70 assert(SE
.getTypeSizeInBits(V
->getType()) == SE
.getTypeSizeInBits(Ty
) &&
71 "InsertNoopCastOfTo cannot change sizes!");
73 // Short-circuit unnecessary bitcasts.
74 if (Op
== Instruction::BitCast
&& V
->getType() == Ty
)
77 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
78 if ((Op
== Instruction::PtrToInt
|| Op
== Instruction::IntToPtr
) &&
79 SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(V
->getType())) {
80 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
))
81 if ((CI
->getOpcode() == Instruction::PtrToInt
||
82 CI
->getOpcode() == Instruction::IntToPtr
) &&
83 SE
.getTypeSizeInBits(CI
->getType()) ==
84 SE
.getTypeSizeInBits(CI
->getOperand(0)->getType()))
85 return CI
->getOperand(0);
86 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
87 if ((CE
->getOpcode() == Instruction::PtrToInt
||
88 CE
->getOpcode() == Instruction::IntToPtr
) &&
89 SE
.getTypeSizeInBits(CE
->getType()) ==
90 SE
.getTypeSizeInBits(CE
->getOperand(0)->getType()))
91 return CE
->getOperand(0);
94 // Fold a cast of a constant.
95 if (Constant
*C
= dyn_cast
<Constant
>(V
))
96 return ConstantExpr::getCast(Op
, C
, Ty
);
98 // Cast the argument at the beginning of the entry block, after
99 // any bitcasts of other arguments.
100 if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
101 BasicBlock::iterator IP
= A
->getParent()->getEntryBlock().begin();
102 while ((isa
<BitCastInst
>(IP
) &&
103 isa
<Argument
>(cast
<BitCastInst
>(IP
)->getOperand(0)) &&
104 cast
<BitCastInst
>(IP
)->getOperand(0) != A
) ||
105 isa
<DbgInfoIntrinsic
>(IP
))
107 return ReuseOrCreateCast(A
, Ty
, Op
, IP
);
110 // Cast the instruction immediately after the instruction.
111 Instruction
*I
= cast
<Instruction
>(V
);
112 BasicBlock::iterator IP
= I
; ++IP
;
113 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(I
))
114 IP
= II
->getNormalDest()->begin();
115 while (isa
<PHINode
>(IP
) || isa
<DbgInfoIntrinsic
>(IP
)) ++IP
;
116 return ReuseOrCreateCast(I
, Ty
, Op
, IP
);
119 /// InsertBinop - Insert the specified binary operator, doing a small amount
120 /// of work to avoid inserting an obviously redundant operation.
121 Value
*SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode
,
122 Value
*LHS
, Value
*RHS
) {
123 // Fold a binop with constant operands.
124 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
))
125 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
126 return ConstantExpr::get(Opcode
, CLHS
, CRHS
);
128 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
129 unsigned ScanLimit
= 6;
130 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
131 // Scanning starts from the last instruction before the insertion point.
132 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
133 if (IP
!= BlockBegin
) {
135 for (; ScanLimit
; --IP
, --ScanLimit
) {
136 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
138 if (isa
<DbgInfoIntrinsic
>(IP
))
140 if (IP
->getOpcode() == (unsigned)Opcode
&& IP
->getOperand(0) == LHS
&&
141 IP
->getOperand(1) == RHS
)
143 if (IP
== BlockBegin
) break;
147 // Save the original insertion point so we can restore it when we're done.
148 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
149 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
151 // Move the insertion point out of as many loops as we can.
152 while (const Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock())) {
153 if (!L
->isLoopInvariant(LHS
) || !L
->isLoopInvariant(RHS
)) break;
154 BasicBlock
*Preheader
= L
->getLoopPreheader();
155 if (!Preheader
) break;
157 // Ok, move up a level.
158 Builder
.SetInsertPoint(Preheader
, Preheader
->getTerminator());
161 // If we haven't found this binop, insert it.
162 Instruction
*BO
= cast
<Instruction
>(Builder
.CreateBinOp(Opcode
, LHS
, RHS
, "tmp"));
163 BO
->setDebugLoc(SaveInsertPt
->getDebugLoc());
164 rememberInstruction(BO
);
166 // Restore the original insert point.
168 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
173 /// FactorOutConstant - Test if S is divisible by Factor, using signed
174 /// division. If so, update S with Factor divided out and return true.
175 /// S need not be evenly divisible if a reasonable remainder can be
177 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
178 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
179 /// check to see if the divide was folded.
180 static bool FactorOutConstant(const SCEV
*&S
,
181 const SCEV
*&Remainder
,
184 const TargetData
*TD
) {
185 // Everything is divisible by one.
191 S
= SE
.getConstant(S
->getType(), 1);
195 // For a Constant, check for a multiple of the given factor.
196 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
200 // Check for divisibility.
201 if (const SCEVConstant
*FC
= dyn_cast
<SCEVConstant
>(Factor
)) {
203 ConstantInt::get(SE
.getContext(),
204 C
->getValue()->getValue().sdiv(
205 FC
->getValue()->getValue()));
206 // If the quotient is zero and the remainder is non-zero, reject
207 // the value at this scale. It will be considered for subsequent
210 const SCEV
*Div
= SE
.getConstant(CI
);
213 SE
.getAddExpr(Remainder
,
214 SE
.getConstant(C
->getValue()->getValue().srem(
215 FC
->getValue()->getValue())));
221 // In a Mul, check if there is a constant operand which is a multiple
222 // of the given factor.
223 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
225 // With TargetData, the size is known. Check if there is a constant
226 // operand which is a multiple of the given factor. If so, we can
228 const SCEVConstant
*FC
= cast
<SCEVConstant
>(Factor
);
229 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(M
->getOperand(0)))
230 if (!C
->getValue()->getValue().srem(FC
->getValue()->getValue())) {
231 SmallVector
<const SCEV
*, 4> NewMulOps(M
->op_begin(), M
->op_end());
233 SE
.getConstant(C
->getValue()->getValue().sdiv(
234 FC
->getValue()->getValue()));
235 S
= SE
.getMulExpr(NewMulOps
);
239 // Without TargetData, check if Factor can be factored out of any of the
240 // Mul's operands. If so, we can just remove it.
241 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
242 const SCEV
*SOp
= M
->getOperand(i
);
243 const SCEV
*Remainder
= SE
.getConstant(SOp
->getType(), 0);
244 if (FactorOutConstant(SOp
, Remainder
, Factor
, SE
, TD
) &&
245 Remainder
->isZero()) {
246 SmallVector
<const SCEV
*, 4> NewMulOps(M
->op_begin(), M
->op_end());
248 S
= SE
.getMulExpr(NewMulOps
);
255 // In an AddRec, check if both start and step are divisible.
256 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
257 const SCEV
*Step
= A
->getStepRecurrence(SE
);
258 const SCEV
*StepRem
= SE
.getConstant(Step
->getType(), 0);
259 if (!FactorOutConstant(Step
, StepRem
, Factor
, SE
, TD
))
261 if (!StepRem
->isZero())
263 const SCEV
*Start
= A
->getStart();
264 if (!FactorOutConstant(Start
, Remainder
, Factor
, SE
, TD
))
266 // FIXME: can use A->getNoWrapFlags(FlagNW)
267 S
= SE
.getAddRecExpr(Start
, Step
, A
->getLoop(), SCEV::FlagAnyWrap
);
274 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
275 /// is the number of SCEVAddRecExprs present, which are kept at the end of
278 static void SimplifyAddOperands(SmallVectorImpl
<const SCEV
*> &Ops
,
280 ScalarEvolution
&SE
) {
281 unsigned NumAddRecs
= 0;
282 for (unsigned i
= Ops
.size(); i
> 0 && isa
<SCEVAddRecExpr
>(Ops
[i
-1]); --i
)
284 // Group Ops into non-addrecs and addrecs.
285 SmallVector
<const SCEV
*, 8> NoAddRecs(Ops
.begin(), Ops
.end() - NumAddRecs
);
286 SmallVector
<const SCEV
*, 8> AddRecs(Ops
.end() - NumAddRecs
, Ops
.end());
287 // Let ScalarEvolution sort and simplify the non-addrecs list.
288 const SCEV
*Sum
= NoAddRecs
.empty() ?
289 SE
.getConstant(Ty
, 0) :
290 SE
.getAddExpr(NoAddRecs
);
291 // If it returned an add, use the operands. Otherwise it simplified
292 // the sum into a single value, so just use that.
294 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Sum
))
295 Ops
.append(Add
->op_begin(), Add
->op_end());
296 else if (!Sum
->isZero())
298 // Then append the addrecs.
299 Ops
.append(AddRecs
.begin(), AddRecs
.end());
302 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
303 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
304 /// This helps expose more opportunities for folding parts of the expressions
305 /// into GEP indices.
307 static void SplitAddRecs(SmallVectorImpl
<const SCEV
*> &Ops
,
309 ScalarEvolution
&SE
) {
311 SmallVector
<const SCEV
*, 8> AddRecs
;
312 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
313 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Ops
[i
])) {
314 const SCEV
*Start
= A
->getStart();
315 if (Start
->isZero()) break;
316 const SCEV
*Zero
= SE
.getConstant(Ty
, 0);
317 AddRecs
.push_back(SE
.getAddRecExpr(Zero
,
318 A
->getStepRecurrence(SE
),
320 // FIXME: A->getNoWrapFlags(FlagNW)
322 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Start
)) {
324 Ops
.append(Add
->op_begin(), Add
->op_end());
325 e
+= Add
->getNumOperands();
330 if (!AddRecs
.empty()) {
331 // Add the addrecs onto the end of the list.
332 Ops
.append(AddRecs
.begin(), AddRecs
.end());
333 // Resort the operand list, moving any constants to the front.
334 SimplifyAddOperands(Ops
, Ty
, SE
);
338 /// expandAddToGEP - Expand an addition expression with a pointer type into
339 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
340 /// BasicAliasAnalysis and other passes analyze the result. See the rules
341 /// for getelementptr vs. inttoptr in
342 /// http://llvm.org/docs/LangRef.html#pointeraliasing
345 /// Design note: The correctness of using getelementptr here depends on
346 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
347 /// they may introduce pointer arithmetic which may not be safely converted
348 /// into getelementptr.
350 /// Design note: It might seem desirable for this function to be more
351 /// loop-aware. If some of the indices are loop-invariant while others
352 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
353 /// loop-invariant portions of the overall computation outside the loop.
354 /// However, there are a few reasons this is not done here. Hoisting simple
355 /// arithmetic is a low-level optimization that often isn't very
356 /// important until late in the optimization process. In fact, passes
357 /// like InstructionCombining will combine GEPs, even if it means
358 /// pushing loop-invariant computation down into loops, so even if the
359 /// GEPs were split here, the work would quickly be undone. The
360 /// LoopStrengthReduction pass, which is usually run quite late (and
361 /// after the last InstructionCombining pass), takes care of hoisting
362 /// loop-invariant portions of expressions, after considering what
363 /// can be folded using target addressing modes.
365 Value
*SCEVExpander::expandAddToGEP(const SCEV
*const *op_begin
,
366 const SCEV
*const *op_end
,
367 const PointerType
*PTy
,
370 const Type
*ElTy
= PTy
->getElementType();
371 SmallVector
<Value
*, 4> GepIndices
;
372 SmallVector
<const SCEV
*, 8> Ops(op_begin
, op_end
);
373 bool AnyNonZeroIndices
= false;
375 // Split AddRecs up into parts as either of the parts may be usable
376 // without the other.
377 SplitAddRecs(Ops
, Ty
, SE
);
379 // Descend down the pointer's type and attempt to convert the other
380 // operands into GEP indices, at each level. The first index in a GEP
381 // indexes into the array implied by the pointer operand; the rest of
382 // the indices index into the element or field type selected by the
385 // If the scale size is not 0, attempt to factor out a scale for
387 SmallVector
<const SCEV
*, 8> ScaledOps
;
388 if (ElTy
->isSized()) {
389 const SCEV
*ElSize
= SE
.getSizeOfExpr(ElTy
);
390 if (!ElSize
->isZero()) {
391 SmallVector
<const SCEV
*, 8> NewOps
;
392 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
393 const SCEV
*Op
= Ops
[i
];
394 const SCEV
*Remainder
= SE
.getConstant(Ty
, 0);
395 if (FactorOutConstant(Op
, Remainder
, ElSize
, SE
, SE
.TD
)) {
396 // Op now has ElSize factored out.
397 ScaledOps
.push_back(Op
);
398 if (!Remainder
->isZero())
399 NewOps
.push_back(Remainder
);
400 AnyNonZeroIndices
= true;
402 // The operand was not divisible, so add it to the list of operands
403 // we'll scan next iteration.
404 NewOps
.push_back(Ops
[i
]);
407 // If we made any changes, update Ops.
408 if (!ScaledOps
.empty()) {
410 SimplifyAddOperands(Ops
, Ty
, SE
);
415 // Record the scaled array index for this level of the type. If
416 // we didn't find any operands that could be factored, tentatively
417 // assume that element zero was selected (since the zero offset
418 // would obviously be folded away).
419 Value
*Scaled
= ScaledOps
.empty() ?
420 Constant::getNullValue(Ty
) :
421 expandCodeFor(SE
.getAddExpr(ScaledOps
), Ty
);
422 GepIndices
.push_back(Scaled
);
424 // Collect struct field index operands.
425 while (const StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
426 bool FoundFieldNo
= false;
427 // An empty struct has no fields.
428 if (STy
->getNumElements() == 0) break;
430 // With TargetData, field offsets are known. See if a constant offset
431 // falls within any of the struct fields.
432 if (Ops
.empty()) break;
433 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[0]))
434 if (SE
.getTypeSizeInBits(C
->getType()) <= 64) {
435 const StructLayout
&SL
= *SE
.TD
->getStructLayout(STy
);
436 uint64_t FullOffset
= C
->getValue()->getZExtValue();
437 if (FullOffset
< SL
.getSizeInBytes()) {
438 unsigned ElIdx
= SL
.getElementContainingOffset(FullOffset
);
439 GepIndices
.push_back(
440 ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), ElIdx
));
441 ElTy
= STy
->getTypeAtIndex(ElIdx
);
443 SE
.getConstant(Ty
, FullOffset
- SL
.getElementOffset(ElIdx
));
444 AnyNonZeroIndices
= true;
449 // Without TargetData, just check for an offsetof expression of the
450 // appropriate struct type.
451 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
452 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(Ops
[i
])) {
455 if (U
->isOffsetOf(CTy
, FieldNo
) && CTy
== STy
) {
456 GepIndices
.push_back(FieldNo
);
458 STy
->getTypeAtIndex(cast
<ConstantInt
>(FieldNo
)->getZExtValue());
459 Ops
[i
] = SE
.getConstant(Ty
, 0);
460 AnyNonZeroIndices
= true;
466 // If no struct field offsets were found, tentatively assume that
467 // field zero was selected (since the zero offset would obviously
470 ElTy
= STy
->getTypeAtIndex(0u);
471 GepIndices
.push_back(
472 Constant::getNullValue(Type::getInt32Ty(Ty
->getContext())));
476 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(ElTy
))
477 ElTy
= ATy
->getElementType();
482 // If none of the operands were convertible to proper GEP indices, cast
483 // the base to i8* and do an ugly getelementptr with that. It's still
484 // better than ptrtoint+arithmetic+inttoptr at least.
485 if (!AnyNonZeroIndices
) {
486 // Cast the base to i8*.
487 V
= InsertNoopCastOfTo(V
,
488 Type::getInt8PtrTy(Ty
->getContext(), PTy
->getAddressSpace()));
490 // Expand the operands for a plain byte offset.
491 Value
*Idx
= expandCodeFor(SE
.getAddExpr(Ops
), Ty
);
493 // Fold a GEP with constant operands.
494 if (Constant
*CLHS
= dyn_cast
<Constant
>(V
))
495 if (Constant
*CRHS
= dyn_cast
<Constant
>(Idx
))
496 return ConstantExpr::getGetElementPtr(CLHS
, &CRHS
, 1);
498 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
499 unsigned ScanLimit
= 6;
500 BasicBlock::iterator BlockBegin
= Builder
.GetInsertBlock()->begin();
501 // Scanning starts from the last instruction before the insertion point.
502 BasicBlock::iterator IP
= Builder
.GetInsertPoint();
503 if (IP
!= BlockBegin
) {
505 for (; ScanLimit
; --IP
, --ScanLimit
) {
506 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
508 if (isa
<DbgInfoIntrinsic
>(IP
))
510 if (IP
->getOpcode() == Instruction::GetElementPtr
&&
511 IP
->getOperand(0) == V
&& IP
->getOperand(1) == Idx
)
513 if (IP
== BlockBegin
) break;
517 // Save the original insertion point so we can restore it when we're done.
518 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
519 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
521 // Move the insertion point out of as many loops as we can.
522 while (const Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock())) {
523 if (!L
->isLoopInvariant(V
) || !L
->isLoopInvariant(Idx
)) break;
524 BasicBlock
*Preheader
= L
->getLoopPreheader();
525 if (!Preheader
) break;
527 // Ok, move up a level.
528 Builder
.SetInsertPoint(Preheader
, Preheader
->getTerminator());
532 Value
*GEP
= Builder
.CreateGEP(V
, Idx
, "uglygep");
533 rememberInstruction(GEP
);
535 // Restore the original insert point.
537 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
542 // Save the original insertion point so we can restore it when we're done.
543 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
544 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
546 // Move the insertion point out of as many loops as we can.
547 while (const Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock())) {
548 if (!L
->isLoopInvariant(V
)) break;
550 bool AnyIndexNotLoopInvariant
= false;
551 for (SmallVectorImpl
<Value
*>::const_iterator I
= GepIndices
.begin(),
552 E
= GepIndices
.end(); I
!= E
; ++I
)
553 if (!L
->isLoopInvariant(*I
)) {
554 AnyIndexNotLoopInvariant
= true;
557 if (AnyIndexNotLoopInvariant
)
560 BasicBlock
*Preheader
= L
->getLoopPreheader();
561 if (!Preheader
) break;
563 // Ok, move up a level.
564 Builder
.SetInsertPoint(Preheader
, Preheader
->getTerminator());
567 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
568 // because ScalarEvolution may have changed the address arithmetic to
569 // compute a value which is beyond the end of the allocated object.
571 if (V
->getType() != PTy
)
572 Casted
= InsertNoopCastOfTo(Casted
, PTy
);
573 Value
*GEP
= Builder
.CreateGEP(Casted
,
577 Ops
.push_back(SE
.getUnknown(GEP
));
578 rememberInstruction(GEP
);
580 // Restore the original insert point.
582 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
584 return expand(SE
.getAddExpr(Ops
));
587 /// isNonConstantNegative - Return true if the specified scev is negated, but
589 static bool isNonConstantNegative(const SCEV
*F
) {
590 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(F
);
591 if (!Mul
) return false;
593 // If there is a constant factor, it will be first.
594 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
595 if (!SC
) return false;
597 // Return true if the value is negative, this matches things like (-42 * V).
598 return SC
->getValue()->getValue().isNegative();
601 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
602 /// SCEV expansion. If they are nested, this is the most nested. If they are
603 /// neighboring, pick the later.
604 static const Loop
*PickMostRelevantLoop(const Loop
*A
, const Loop
*B
,
608 if (A
->contains(B
)) return B
;
609 if (B
->contains(A
)) return A
;
610 if (DT
.dominates(A
->getHeader(), B
->getHeader())) return B
;
611 if (DT
.dominates(B
->getHeader(), A
->getHeader())) return A
;
612 return A
; // Arbitrarily break the tie.
615 /// getRelevantLoop - Get the most relevant loop associated with the given
616 /// expression, according to PickMostRelevantLoop.
617 const Loop
*SCEVExpander::getRelevantLoop(const SCEV
*S
) {
618 // Test whether we've already computed the most relevant loop for this SCEV.
619 std::pair
<DenseMap
<const SCEV
*, const Loop
*>::iterator
, bool> Pair
=
620 RelevantLoops
.insert(std::make_pair(S
, static_cast<const Loop
*>(0)));
622 return Pair
.first
->second
;
624 if (isa
<SCEVConstant
>(S
))
625 // A constant has no relevant loops.
627 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
628 if (const Instruction
*I
= dyn_cast
<Instruction
>(U
->getValue()))
629 return Pair
.first
->second
= SE
.LI
->getLoopFor(I
->getParent());
630 // A non-instruction has no relevant loops.
633 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
)) {
635 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
637 for (SCEVNAryExpr::op_iterator I
= N
->op_begin(), E
= N
->op_end();
639 L
= PickMostRelevantLoop(L
, getRelevantLoop(*I
), *SE
.DT
);
640 return RelevantLoops
[N
] = L
;
642 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
)) {
643 const Loop
*Result
= getRelevantLoop(C
->getOperand());
644 return RelevantLoops
[C
] = Result
;
646 if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
648 PickMostRelevantLoop(getRelevantLoop(D
->getLHS()),
649 getRelevantLoop(D
->getRHS()),
651 return RelevantLoops
[D
] = Result
;
653 llvm_unreachable("Unexpected SCEV type!");
659 /// LoopCompare - Compare loops by PickMostRelevantLoop.
663 explicit LoopCompare(DominatorTree
&dt
) : DT(dt
) {}
665 bool operator()(std::pair
<const Loop
*, const SCEV
*> LHS
,
666 std::pair
<const Loop
*, const SCEV
*> RHS
) const {
667 // Keep pointer operands sorted at the end.
668 if (LHS
.second
->getType()->isPointerTy() !=
669 RHS
.second
->getType()->isPointerTy())
670 return LHS
.second
->getType()->isPointerTy();
672 // Compare loops with PickMostRelevantLoop.
673 if (LHS
.first
!= RHS
.first
)
674 return PickMostRelevantLoop(LHS
.first
, RHS
.first
, DT
) != LHS
.first
;
676 // If one operand is a non-constant negative and the other is not,
677 // put the non-constant negative on the right so that a sub can
678 // be used instead of a negate and add.
679 if (isNonConstantNegative(LHS
.second
)) {
680 if (!isNonConstantNegative(RHS
.second
))
682 } else if (isNonConstantNegative(RHS
.second
))
685 // Otherwise they are equivalent according to this comparison.
692 Value
*SCEVExpander::visitAddExpr(const SCEVAddExpr
*S
) {
693 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
695 // Collect all the add operands in a loop, along with their associated loops.
696 // Iterate in reverse so that constants are emitted last, all else equal, and
697 // so that pointer operands are inserted first, which the code below relies on
698 // to form more involved GEPs.
699 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
700 for (std::reverse_iterator
<SCEVAddExpr::op_iterator
> I(S
->op_end()),
701 E(S
->op_begin()); I
!= E
; ++I
)
702 OpsAndLoops
.push_back(std::make_pair(getRelevantLoop(*I
), *I
));
704 // Sort by loop. Use a stable sort so that constants follow non-constants and
705 // pointer operands precede non-pointer operands.
706 std::stable_sort(OpsAndLoops
.begin(), OpsAndLoops
.end(), LoopCompare(*SE
.DT
));
708 // Emit instructions to add all the operands. Hoist as much as possible
709 // out of loops, and form meaningful getelementptrs where possible.
711 for (SmallVectorImpl
<std::pair
<const Loop
*, const SCEV
*> >::iterator
712 I
= OpsAndLoops
.begin(), E
= OpsAndLoops
.end(); I
!= E
; ) {
713 const Loop
*CurLoop
= I
->first
;
714 const SCEV
*Op
= I
->second
;
716 // This is the first operand. Just expand it.
719 } else if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Sum
->getType())) {
720 // The running sum expression is a pointer. Try to form a getelementptr
721 // at this level with that as the base.
722 SmallVector
<const SCEV
*, 4> NewOps
;
723 for (; I
!= E
&& I
->first
== CurLoop
; ++I
) {
724 // If the operand is SCEVUnknown and not instructions, peek through
725 // it, to enable more of it to be folded into the GEP.
726 const SCEV
*X
= I
->second
;
727 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(X
))
728 if (!isa
<Instruction
>(U
->getValue()))
729 X
= SE
.getSCEV(U
->getValue());
732 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, Sum
);
733 } else if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Op
->getType())) {
734 // The running sum is an integer, and there's a pointer at this level.
735 // Try to form a getelementptr. If the running sum is instructions,
736 // use a SCEVUnknown to avoid re-analyzing them.
737 SmallVector
<const SCEV
*, 4> NewOps
;
738 NewOps
.push_back(isa
<Instruction
>(Sum
) ? SE
.getUnknown(Sum
) :
740 for (++I
; I
!= E
&& I
->first
== CurLoop
; ++I
)
741 NewOps
.push_back(I
->second
);
742 Sum
= expandAddToGEP(NewOps
.begin(), NewOps
.end(), PTy
, Ty
, expand(Op
));
743 } else if (isNonConstantNegative(Op
)) {
744 // Instead of doing a negate and add, just do a subtract.
745 Value
*W
= expandCodeFor(SE
.getNegativeSCEV(Op
), Ty
);
746 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
747 Sum
= InsertBinop(Instruction::Sub
, Sum
, W
);
751 Value
*W
= expandCodeFor(Op
, Ty
);
752 Sum
= InsertNoopCastOfTo(Sum
, Ty
);
753 // Canonicalize a constant to the RHS.
754 if (isa
<Constant
>(Sum
)) std::swap(Sum
, W
);
755 Sum
= InsertBinop(Instruction::Add
, Sum
, W
);
763 Value
*SCEVExpander::visitMulExpr(const SCEVMulExpr
*S
) {
764 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
766 // Collect all the mul operands in a loop, along with their associated loops.
767 // Iterate in reverse so that constants are emitted last, all else equal.
768 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 8> OpsAndLoops
;
769 for (std::reverse_iterator
<SCEVMulExpr::op_iterator
> I(S
->op_end()),
770 E(S
->op_begin()); I
!= E
; ++I
)
771 OpsAndLoops
.push_back(std::make_pair(getRelevantLoop(*I
), *I
));
773 // Sort by loop. Use a stable sort so that constants follow non-constants.
774 std::stable_sort(OpsAndLoops
.begin(), OpsAndLoops
.end(), LoopCompare(*SE
.DT
));
776 // Emit instructions to mul all the operands. Hoist as much as possible
779 for (SmallVectorImpl
<std::pair
<const Loop
*, const SCEV
*> >::iterator
780 I
= OpsAndLoops
.begin(), E
= OpsAndLoops
.end(); I
!= E
; ) {
781 const SCEV
*Op
= I
->second
;
783 // This is the first operand. Just expand it.
786 } else if (Op
->isAllOnesValue()) {
787 // Instead of doing a multiply by negative one, just do a negate.
788 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
789 Prod
= InsertBinop(Instruction::Sub
, Constant::getNullValue(Ty
), Prod
);
793 Value
*W
= expandCodeFor(Op
, Ty
);
794 Prod
= InsertNoopCastOfTo(Prod
, Ty
);
795 // Canonicalize a constant to the RHS.
796 if (isa
<Constant
>(Prod
)) std::swap(Prod
, W
);
797 Prod
= InsertBinop(Instruction::Mul
, Prod
, W
);
805 Value
*SCEVExpander::visitUDivExpr(const SCEVUDivExpr
*S
) {
806 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
808 Value
*LHS
= expandCodeFor(S
->getLHS(), Ty
);
809 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(S
->getRHS())) {
810 const APInt
&RHS
= SC
->getValue()->getValue();
811 if (RHS
.isPowerOf2())
812 return InsertBinop(Instruction::LShr
, LHS
,
813 ConstantInt::get(Ty
, RHS
.logBase2()));
816 Value
*RHS
= expandCodeFor(S
->getRHS(), Ty
);
817 return InsertBinop(Instruction::UDiv
, LHS
, RHS
);
820 /// Move parts of Base into Rest to leave Base with the minimal
821 /// expression that provides a pointer operand suitable for a
823 static void ExposePointerBase(const SCEV
*&Base
, const SCEV
*&Rest
,
824 ScalarEvolution
&SE
) {
825 while (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(Base
)) {
826 Base
= A
->getStart();
827 Rest
= SE
.getAddExpr(Rest
,
828 SE
.getAddRecExpr(SE
.getConstant(A
->getType(), 0),
829 A
->getStepRecurrence(SE
),
831 // FIXME: A->getNoWrapFlags(FlagNW)
834 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(Base
)) {
835 Base
= A
->getOperand(A
->getNumOperands()-1);
836 SmallVector
<const SCEV
*, 8> NewAddOps(A
->op_begin(), A
->op_end());
837 NewAddOps
.back() = Rest
;
838 Rest
= SE
.getAddExpr(NewAddOps
);
839 ExposePointerBase(Base
, Rest
, SE
);
843 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
844 /// the base addrec, which is the addrec without any non-loop-dominating
845 /// values, and return the PHI.
847 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr
*Normalized
,
849 const Type
*ExpandTy
,
851 // Reuse a previously-inserted PHI, if present.
852 for (BasicBlock::iterator I
= L
->getHeader()->begin();
853 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
854 if (SE
.isSCEVable(PN
->getType()) &&
855 (SE
.getEffectiveSCEVType(PN
->getType()) ==
856 SE
.getEffectiveSCEVType(Normalized
->getType())) &&
857 SE
.getSCEV(PN
) == Normalized
)
858 if (BasicBlock
*LatchBlock
= L
->getLoopLatch()) {
860 cast
<Instruction
>(PN
->getIncomingValueForBlock(LatchBlock
));
862 // Determine if this is a well-behaved chain of instructions leading
863 // back to the PHI. It probably will be, if we're scanning an inner
864 // loop already visited by LSR for example, but it wouldn't have
867 if (IncV
->getNumOperands() == 0 || isa
<PHINode
>(IncV
) ||
868 (isa
<CastInst
>(IncV
) && !isa
<BitCastInst
>(IncV
))) {
872 // If any of the operands don't dominate the insert position, bail.
873 // Addrec operands are always loop-invariant, so this can only happen
874 // if there are instructions which haven't been hoisted.
875 for (User::op_iterator OI
= IncV
->op_begin()+1,
876 OE
= IncV
->op_end(); OI
!= OE
; ++OI
)
877 if (Instruction
*OInst
= dyn_cast
<Instruction
>(OI
))
878 if (!SE
.DT
->dominates(OInst
, IVIncInsertPos
)) {
884 // Advance to the next instruction.
885 IncV
= dyn_cast
<Instruction
>(IncV
->getOperand(0));
888 if (IncV
->mayHaveSideEffects()) {
892 } while (IncV
!= PN
);
895 // Ok, the add recurrence looks usable.
896 // Remember this PHI, even in post-inc mode.
897 InsertedValues
.insert(PN
);
898 // Remember the increment.
899 IncV
= cast
<Instruction
>(PN
->getIncomingValueForBlock(LatchBlock
));
900 rememberInstruction(IncV
);
901 if (L
== IVIncInsertLoop
)
903 if (SE
.DT
->dominates(IncV
, IVIncInsertPos
))
905 // Make sure the increment is where we want it. But don't move it
906 // down past a potential existing post-inc user.
907 IncV
->moveBefore(IVIncInsertPos
);
908 IVIncInsertPos
= IncV
;
909 IncV
= cast
<Instruction
>(IncV
->getOperand(0));
910 } while (IncV
!= PN
);
915 // Save the original insertion point so we can restore it when we're done.
916 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
917 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
919 // Expand code for the start value.
920 Value
*StartV
= expandCodeFor(Normalized
->getStart(), ExpandTy
,
921 L
->getHeader()->begin());
923 // Expand code for the step value. Insert instructions right before the
924 // terminator corresponding to the back-edge. Do this before creating the PHI
925 // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
926 // negative, insert a sub instead of an add for the increment (unless it's a
927 // constant, because subtracts of constants are canonicalized to adds).
928 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
929 bool isPointer
= ExpandTy
->isPointerTy();
930 bool isNegative
= !isPointer
&& isNonConstantNegative(Step
);
932 Step
= SE
.getNegativeSCEV(Step
);
933 Value
*StepV
= expandCodeFor(Step
, IntTy
, L
->getHeader()->begin());
936 BasicBlock
*Header
= L
->getHeader();
937 Builder
.SetInsertPoint(Header
, Header
->begin());
938 pred_iterator HPB
= pred_begin(Header
), HPE
= pred_end(Header
);
939 PHINode
*PN
= Builder
.CreatePHI(ExpandTy
, std::distance(HPB
, HPE
),
940 Twine(IVName
) + ".iv");
941 rememberInstruction(PN
);
943 // Create the step instructions and populate the PHI.
944 for (pred_iterator HPI
= HPB
; HPI
!= HPE
; ++HPI
) {
945 BasicBlock
*Pred
= *HPI
;
947 // Add a start value.
948 if (!L
->contains(Pred
)) {
949 PN
->addIncoming(StartV
, Pred
);
953 // Create a step value and add it to the PHI. If IVIncInsertLoop is
954 // non-null and equal to the addrec's loop, insert the instructions
955 // at IVIncInsertPos.
956 Instruction
*InsertPos
= L
== IVIncInsertLoop
?
957 IVIncInsertPos
: Pred
->getTerminator();
958 Builder
.SetInsertPoint(InsertPos
);
960 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
962 const PointerType
*GEPPtrTy
= cast
<PointerType
>(ExpandTy
);
963 // If the step isn't constant, don't use an implicitly scaled GEP, because
964 // that would require a multiply inside the loop.
965 if (!isa
<ConstantInt
>(StepV
))
966 GEPPtrTy
= PointerType::get(Type::getInt1Ty(SE
.getContext()),
967 GEPPtrTy
->getAddressSpace());
968 const SCEV
*const StepArray
[1] = { SE
.getSCEV(StepV
) };
969 IncV
= expandAddToGEP(StepArray
, StepArray
+1, GEPPtrTy
, IntTy
, PN
);
970 if (IncV
->getType() != PN
->getType()) {
971 IncV
= Builder
.CreateBitCast(IncV
, PN
->getType(), "tmp");
972 rememberInstruction(IncV
);
976 Builder
.CreateSub(PN
, StepV
, Twine(IVName
) + ".iv.next") :
977 Builder
.CreateAdd(PN
, StepV
, Twine(IVName
) + ".iv.next");
978 rememberInstruction(IncV
);
980 PN
->addIncoming(IncV
, Pred
);
983 // Restore the original insert point.
985 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
987 // Remember this PHI, even in post-inc mode.
988 InsertedValues
.insert(PN
);
993 Value
*SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr
*S
) {
994 const Type
*STy
= S
->getType();
995 const Type
*IntTy
= SE
.getEffectiveSCEVType(STy
);
996 const Loop
*L
= S
->getLoop();
998 // Determine a normalized form of this expression, which is the expression
999 // before any post-inc adjustment is made.
1000 const SCEVAddRecExpr
*Normalized
= S
;
1001 if (PostIncLoops
.count(L
)) {
1002 PostIncLoopSet Loops
;
1005 cast
<SCEVAddRecExpr
>(TransformForPostIncUse(Normalize
, S
, 0, 0,
1006 Loops
, SE
, *SE
.DT
));
1009 // Strip off any non-loop-dominating component from the addrec start.
1010 const SCEV
*Start
= Normalized
->getStart();
1011 const SCEV
*PostLoopOffset
= 0;
1012 if (!SE
.properlyDominates(Start
, L
->getHeader())) {
1013 PostLoopOffset
= Start
;
1014 Start
= SE
.getConstant(Normalized
->getType(), 0);
1015 Normalized
= cast
<SCEVAddRecExpr
>(
1016 SE
.getAddRecExpr(Start
, Normalized
->getStepRecurrence(SE
),
1017 Normalized
->getLoop(),
1018 // FIXME: Normalized->getNoWrapFlags(FlagNW)
1019 SCEV::FlagAnyWrap
));
1022 // Strip off any non-loop-dominating component from the addrec step.
1023 const SCEV
*Step
= Normalized
->getStepRecurrence(SE
);
1024 const SCEV
*PostLoopScale
= 0;
1025 if (!SE
.dominates(Step
, L
->getHeader())) {
1026 PostLoopScale
= Step
;
1027 Step
= SE
.getConstant(Normalized
->getType(), 1);
1029 cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(Start
, Step
,
1030 Normalized
->getLoop(),
1031 // FIXME: Normalized
1032 // ->getNoWrapFlags(FlagNW)
1033 SCEV::FlagAnyWrap
));
1036 // Expand the core addrec. If we need post-loop scaling, force it to
1037 // expand to an integer type to avoid the need for additional casting.
1038 const Type
*ExpandTy
= PostLoopScale
? IntTy
: STy
;
1039 PHINode
*PN
= getAddRecExprPHILiterally(Normalized
, L
, ExpandTy
, IntTy
);
1041 // Accommodate post-inc mode, if necessary.
1043 if (!PostIncLoops
.count(L
))
1046 // In PostInc mode, use the post-incremented value.
1047 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1048 assert(LatchBlock
&& "PostInc mode requires a unique loop latch!");
1049 Result
= PN
->getIncomingValueForBlock(LatchBlock
);
1052 // Re-apply any non-loop-dominating scale.
1053 if (PostLoopScale
) {
1054 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1055 Result
= Builder
.CreateMul(Result
,
1056 expandCodeFor(PostLoopScale
, IntTy
));
1057 rememberInstruction(Result
);
1060 // Re-apply any non-loop-dominating offset.
1061 if (PostLoopOffset
) {
1062 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(ExpandTy
)) {
1063 const SCEV
*const OffsetArray
[1] = { PostLoopOffset
};
1064 Result
= expandAddToGEP(OffsetArray
, OffsetArray
+1, PTy
, IntTy
, Result
);
1066 Result
= InsertNoopCastOfTo(Result
, IntTy
);
1067 Result
= Builder
.CreateAdd(Result
,
1068 expandCodeFor(PostLoopOffset
, IntTy
));
1069 rememberInstruction(Result
);
1076 Value
*SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr
*S
) {
1077 if (!CanonicalMode
) return expandAddRecExprLiterally(S
);
1079 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1080 const Loop
*L
= S
->getLoop();
1082 // First check for an existing canonical IV in a suitable type.
1083 PHINode
*CanonicalIV
= 0;
1084 if (PHINode
*PN
= L
->getCanonicalInductionVariable())
1085 if (SE
.getTypeSizeInBits(PN
->getType()) >= SE
.getTypeSizeInBits(Ty
))
1088 // Rewrite an AddRec in terms of the canonical induction variable, if
1089 // its type is more narrow.
1091 SE
.getTypeSizeInBits(CanonicalIV
->getType()) >
1092 SE
.getTypeSizeInBits(Ty
)) {
1093 SmallVector
<const SCEV
*, 4> NewOps(S
->getNumOperands());
1094 for (unsigned i
= 0, e
= S
->getNumOperands(); i
!= e
; ++i
)
1095 NewOps
[i
] = SE
.getAnyExtendExpr(S
->op_begin()[i
], CanonicalIV
->getType());
1096 Value
*V
= expand(SE
.getAddRecExpr(NewOps
, S
->getLoop(),
1097 // FIXME: S->getNoWrapFlags(FlagNW)
1098 SCEV::FlagAnyWrap
));
1099 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
1100 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
1101 BasicBlock::iterator NewInsertPt
=
1102 llvm::next(BasicBlock::iterator(cast
<Instruction
>(V
)));
1103 while (isa
<PHINode
>(NewInsertPt
) || isa
<DbgInfoIntrinsic
>(NewInsertPt
))
1105 V
= expandCodeFor(SE
.getTruncateExpr(SE
.getUnknown(V
), Ty
), 0,
1107 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
1111 // {X,+,F} --> X + {0,+,F}
1112 if (!S
->getStart()->isZero()) {
1113 SmallVector
<const SCEV
*, 4> NewOps(S
->op_begin(), S
->op_end());
1114 NewOps
[0] = SE
.getConstant(Ty
, 0);
1115 // FIXME: can use S->getNoWrapFlags()
1116 const SCEV
*Rest
= SE
.getAddRecExpr(NewOps
, L
, SCEV::FlagAnyWrap
);
1118 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1119 // comments on expandAddToGEP for details.
1120 const SCEV
*Base
= S
->getStart();
1121 const SCEV
*RestArray
[1] = { Rest
};
1122 // Dig into the expression to find the pointer base for a GEP.
1123 ExposePointerBase(Base
, RestArray
[0], SE
);
1124 // If we found a pointer, expand the AddRec with a GEP.
1125 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Base
->getType())) {
1126 // Make sure the Base isn't something exotic, such as a multiplied
1127 // or divided pointer value. In those cases, the result type isn't
1128 // actually a pointer type.
1129 if (!isa
<SCEVMulExpr
>(Base
) && !isa
<SCEVUDivExpr
>(Base
)) {
1130 Value
*StartV
= expand(Base
);
1131 assert(StartV
->getType() == PTy
&& "Pointer type mismatch for GEP!");
1132 return expandAddToGEP(RestArray
, RestArray
+1, PTy
, Ty
, StartV
);
1136 // Just do a normal add. Pre-expand the operands to suppress folding.
1137 return expand(SE
.getAddExpr(SE
.getUnknown(expand(S
->getStart())),
1138 SE
.getUnknown(expand(Rest
))));
1141 // If we don't yet have a canonical IV, create one.
1143 // Create and insert the PHI node for the induction variable in the
1145 BasicBlock
*Header
= L
->getHeader();
1146 pred_iterator HPB
= pred_begin(Header
), HPE
= pred_end(Header
);
1147 CanonicalIV
= PHINode::Create(Ty
, std::distance(HPB
, HPE
), "indvar",
1149 rememberInstruction(CanonicalIV
);
1151 Constant
*One
= ConstantInt::get(Ty
, 1);
1152 for (pred_iterator HPI
= HPB
; HPI
!= HPE
; ++HPI
) {
1153 BasicBlock
*HP
= *HPI
;
1154 if (L
->contains(HP
)) {
1155 // Insert a unit add instruction right before the terminator
1156 // corresponding to the back-edge.
1157 Instruction
*Add
= BinaryOperator::CreateAdd(CanonicalIV
, One
,
1159 HP
->getTerminator());
1160 Add
->setDebugLoc(HP
->getTerminator()->getDebugLoc());
1161 rememberInstruction(Add
);
1162 CanonicalIV
->addIncoming(Add
, HP
);
1164 CanonicalIV
->addIncoming(Constant::getNullValue(Ty
), HP
);
1169 // {0,+,1} --> Insert a canonical induction variable into the loop!
1170 if (S
->isAffine() && S
->getOperand(1)->isOne()) {
1171 assert(Ty
== SE
.getEffectiveSCEVType(CanonicalIV
->getType()) &&
1172 "IVs with types different from the canonical IV should "
1173 "already have been handled!");
1177 // {0,+,F} --> {0,+,1} * F
1179 // If this is a simple linear addrec, emit it now as a special case.
1180 if (S
->isAffine()) // {0,+,F} --> i*F
1182 expand(SE
.getTruncateOrNoop(
1183 SE
.getMulExpr(SE
.getUnknown(CanonicalIV
),
1184 SE
.getNoopOrAnyExtend(S
->getOperand(1),
1185 CanonicalIV
->getType())),
1188 // If this is a chain of recurrences, turn it into a closed form, using the
1189 // folders, then expandCodeFor the closed form. This allows the folders to
1190 // simplify the expression without having to build a bunch of special code
1191 // into this folder.
1192 const SCEV
*IH
= SE
.getUnknown(CanonicalIV
); // Get I as a "symbolic" SCEV.
1194 // Promote S up to the canonical IV type, if the cast is foldable.
1195 const SCEV
*NewS
= S
;
1196 const SCEV
*Ext
= SE
.getNoopOrAnyExtend(S
, CanonicalIV
->getType());
1197 if (isa
<SCEVAddRecExpr
>(Ext
))
1200 const SCEV
*V
= cast
<SCEVAddRecExpr
>(NewS
)->evaluateAtIteration(IH
, SE
);
1201 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1203 // Truncate the result down to the original type, if needed.
1204 const SCEV
*T
= SE
.getTruncateOrNoop(V
, Ty
);
1208 Value
*SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr
*S
) {
1209 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1210 Value
*V
= expandCodeFor(S
->getOperand(),
1211 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1212 Value
*I
= Builder
.CreateTrunc(V
, Ty
, "tmp");
1213 rememberInstruction(I
);
1217 Value
*SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr
*S
) {
1218 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1219 Value
*V
= expandCodeFor(S
->getOperand(),
1220 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1221 Value
*I
= Builder
.CreateZExt(V
, Ty
, "tmp");
1222 rememberInstruction(I
);
1226 Value
*SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr
*S
) {
1227 const Type
*Ty
= SE
.getEffectiveSCEVType(S
->getType());
1228 Value
*V
= expandCodeFor(S
->getOperand(),
1229 SE
.getEffectiveSCEVType(S
->getOperand()->getType()));
1230 Value
*I
= Builder
.CreateSExt(V
, Ty
, "tmp");
1231 rememberInstruction(I
);
1235 Value
*SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr
*S
) {
1236 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1237 const Type
*Ty
= LHS
->getType();
1238 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1239 // In the case of mixed integer and pointer types, do the
1240 // rest of the comparisons as integer.
1241 if (S
->getOperand(i
)->getType() != Ty
) {
1242 Ty
= SE
.getEffectiveSCEVType(Ty
);
1243 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1245 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1246 Value
*ICmp
= Builder
.CreateICmpSGT(LHS
, RHS
, "tmp");
1247 rememberInstruction(ICmp
);
1248 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "smax");
1249 rememberInstruction(Sel
);
1252 // In the case of mixed integer and pointer types, cast the
1253 // final result back to the pointer type.
1254 if (LHS
->getType() != S
->getType())
1255 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1259 Value
*SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr
*S
) {
1260 Value
*LHS
= expand(S
->getOperand(S
->getNumOperands()-1));
1261 const Type
*Ty
= LHS
->getType();
1262 for (int i
= S
->getNumOperands()-2; i
>= 0; --i
) {
1263 // In the case of mixed integer and pointer types, do the
1264 // rest of the comparisons as integer.
1265 if (S
->getOperand(i
)->getType() != Ty
) {
1266 Ty
= SE
.getEffectiveSCEVType(Ty
);
1267 LHS
= InsertNoopCastOfTo(LHS
, Ty
);
1269 Value
*RHS
= expandCodeFor(S
->getOperand(i
), Ty
);
1270 Value
*ICmp
= Builder
.CreateICmpUGT(LHS
, RHS
, "tmp");
1271 rememberInstruction(ICmp
);
1272 Value
*Sel
= Builder
.CreateSelect(ICmp
, LHS
, RHS
, "umax");
1273 rememberInstruction(Sel
);
1276 // In the case of mixed integer and pointer types, cast the
1277 // final result back to the pointer type.
1278 if (LHS
->getType() != S
->getType())
1279 LHS
= InsertNoopCastOfTo(LHS
, S
->getType());
1283 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, const Type
*Ty
,
1285 BasicBlock::iterator IP
= I
;
1286 while (isInsertedInstruction(IP
) || isa
<DbgInfoIntrinsic
>(IP
))
1288 Builder
.SetInsertPoint(IP
->getParent(), IP
);
1289 return expandCodeFor(SH
, Ty
);
1292 Value
*SCEVExpander::expandCodeFor(const SCEV
*SH
, const Type
*Ty
) {
1293 // Expand the code for this SCEV.
1294 Value
*V
= expand(SH
);
1296 assert(SE
.getTypeSizeInBits(Ty
) == SE
.getTypeSizeInBits(SH
->getType()) &&
1297 "non-trivial casts should be done with the SCEVs directly!");
1298 V
= InsertNoopCastOfTo(V
, Ty
);
1303 Value
*SCEVExpander::expand(const SCEV
*S
) {
1304 // Compute an insertion point for this SCEV object. Hoist the instructions
1305 // as far out in the loop nest as possible.
1306 Instruction
*InsertPt
= Builder
.GetInsertPoint();
1307 for (Loop
*L
= SE
.LI
->getLoopFor(Builder
.GetInsertBlock()); ;
1308 L
= L
->getParentLoop())
1309 if (SE
.isLoopInvariant(S
, L
)) {
1311 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
1312 InsertPt
= Preheader
->getTerminator();
1314 // If the SCEV is computable at this level, insert it into the header
1315 // after the PHIs (and after any other instructions that we've inserted
1316 // there) so that it is guaranteed to dominate any user inside the loop.
1317 if (L
&& SE
.hasComputableLoopEvolution(S
, L
) && !PostIncLoops
.count(L
))
1318 InsertPt
= L
->getHeader()->getFirstNonPHI();
1319 while (isInsertedInstruction(InsertPt
) || isa
<DbgInfoIntrinsic
>(InsertPt
))
1320 InsertPt
= llvm::next(BasicBlock::iterator(InsertPt
));
1324 // Check to see if we already expanded this here.
1325 std::map
<std::pair
<const SCEV
*, Instruction
*>,
1326 AssertingVH
<Value
> >::iterator I
=
1327 InsertedExpressions
.find(std::make_pair(S
, InsertPt
));
1328 if (I
!= InsertedExpressions
.end())
1331 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
1332 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
1333 Builder
.SetInsertPoint(InsertPt
->getParent(), InsertPt
);
1335 // Expand the expression into instructions.
1336 Value
*V
= visit(S
);
1338 // Remember the expanded value for this SCEV at this location.
1339 if (PostIncLoops
.empty())
1340 InsertedExpressions
[std::make_pair(S
, InsertPt
)] = V
;
1342 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);
1346 void SCEVExpander::rememberInstruction(Value
*I
) {
1347 if (!PostIncLoops
.empty())
1348 InsertedPostIncValues
.insert(I
);
1350 InsertedValues
.insert(I
);
1352 // If we just claimed an existing instruction and that instruction had
1353 // been the insert point, adjust the insert point forward so that
1354 // subsequently inserted code will be dominated.
1355 if (Builder
.GetInsertPoint() == I
) {
1356 BasicBlock::iterator It
= cast
<Instruction
>(I
);
1357 do { ++It
; } while (isInsertedInstruction(It
) ||
1358 isa
<DbgInfoIntrinsic
>(It
));
1359 Builder
.SetInsertPoint(Builder
.GetInsertBlock(), It
);
1363 void SCEVExpander::restoreInsertPoint(BasicBlock
*BB
, BasicBlock::iterator I
) {
1364 // If we acquired more instructions since the old insert point was saved,
1365 // advance past them.
1366 while (isInsertedInstruction(I
) || isa
<DbgInfoIntrinsic
>(I
)) ++I
;
1368 Builder
.SetInsertPoint(BB
, I
);
1371 /// getOrInsertCanonicalInductionVariable - This method returns the
1372 /// canonical induction variable of the specified type for the specified
1373 /// loop (inserting one if there is none). A canonical induction variable
1374 /// starts at zero and steps by one on each iteration.
1376 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop
*L
,
1378 assert(Ty
->isIntegerTy() && "Can only insert integer induction variables!");
1380 // Build a SCEV for {0,+,1}<L>.
1381 // Conservatively use FlagAnyWrap for now.
1382 const SCEV
*H
= SE
.getAddRecExpr(SE
.getConstant(Ty
, 0),
1383 SE
.getConstant(Ty
, 1), L
, SCEV::FlagAnyWrap
);
1385 // Emit code for it.
1386 BasicBlock
*SaveInsertBB
= Builder
.GetInsertBlock();
1387 BasicBlock::iterator SaveInsertPt
= Builder
.GetInsertPoint();
1388 PHINode
*V
= cast
<PHINode
>(expandCodeFor(H
, 0, L
->getHeader()->begin()));
1390 restoreInsertPoint(SaveInsertBB
, SaveInsertPt
);