Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / CodeGen / RegAllocGreedy.cpp
blobd79573c205b4da54519299e99b0499d84ee719c1
1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "AllocationOrder.h"
17 #include "InterferenceCache.h"
18 #include "LiveDebugVariables.h"
19 #include "LiveRangeEdit.h"
20 #include "RegAllocBase.h"
21 #include "Spiller.h"
22 #include "SpillPlacement.h"
23 #include "SplitKit.h"
24 #include "VirtRegMap.h"
25 #include "RegisterCoalescer.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Function.h"
29 #include "llvm/PassAnalysisSupport.h"
30 #include "llvm/CodeGen/CalcSpillWeights.h"
31 #include "llvm/CodeGen/EdgeBundles.h"
32 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
33 #include "llvm/CodeGen/LiveStackAnalysis.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineLoopRanges.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/RegAllocRegistry.h"
41 #include "llvm/Target/TargetOptions.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Support/Timer.h"
47 #include <queue>
49 using namespace llvm;
51 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
52 STATISTIC(NumLocalSplits, "Number of split local live ranges");
53 STATISTIC(NumEvicted, "Number of interferences evicted");
55 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
56 createGreedyRegisterAllocator);
58 namespace {
59 class RAGreedy : public MachineFunctionPass,
60 public RegAllocBase,
61 private LiveRangeEdit::Delegate {
63 // context
64 MachineFunction *MF;
66 // analyses
67 SlotIndexes *Indexes;
68 LiveStacks *LS;
69 MachineDominatorTree *DomTree;
70 MachineLoopInfo *Loops;
71 MachineLoopRanges *LoopRanges;
72 EdgeBundles *Bundles;
73 SpillPlacement *SpillPlacer;
74 LiveDebugVariables *DebugVars;
76 // state
77 std::auto_ptr<Spiller> SpillerInstance;
78 std::priority_queue<std::pair<unsigned, unsigned> > Queue;
79 unsigned NextCascade;
81 // Live ranges pass through a number of stages as we try to allocate them.
82 // Some of the stages may also create new live ranges:
84 // - Region splitting.
85 // - Per-block splitting.
86 // - Local splitting.
87 // - Spilling.
89 // Ranges produced by one of the stages skip the previous stages when they are
90 // dequeued. This improves performance because we can skip interference checks
91 // that are unlikely to give any results. It also guarantees that the live
92 // range splitting algorithm terminates, something that is otherwise hard to
93 // ensure.
94 enum LiveRangeStage {
95 RS_New, ///< Never seen before.
96 RS_First, ///< First time in the queue.
97 RS_Second, ///< Second time in the queue.
98 RS_Global, ///< Produced by global splitting.
99 RS_Local, ///< Produced by local splitting.
100 RS_Spill ///< Produced by spilling.
103 static const char *const StageName[];
105 // RegInfo - Keep additional information about each live range.
106 struct RegInfo {
107 LiveRangeStage Stage;
109 // Cascade - Eviction loop prevention. See canEvictInterference().
110 unsigned Cascade;
112 RegInfo() : Stage(RS_New), Cascade(0) {}
115 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
117 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
118 return ExtraRegInfo[VirtReg.reg].Stage;
121 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
122 ExtraRegInfo.resize(MRI->getNumVirtRegs());
123 ExtraRegInfo[VirtReg.reg].Stage = Stage;
126 template<typename Iterator>
127 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
128 ExtraRegInfo.resize(MRI->getNumVirtRegs());
129 for (;Begin != End; ++Begin) {
130 unsigned Reg = (*Begin)->reg;
131 if (ExtraRegInfo[Reg].Stage == RS_New)
132 ExtraRegInfo[Reg].Stage = NewStage;
136 /// Cost of evicting interference.
137 struct EvictionCost {
138 unsigned BrokenHints; ///< Total number of broken hints.
139 float MaxWeight; ///< Maximum spill weight evicted.
141 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
143 bool operator<(const EvictionCost &O) const {
144 if (BrokenHints != O.BrokenHints)
145 return BrokenHints < O.BrokenHints;
146 return MaxWeight < O.MaxWeight;
150 // splitting state.
151 std::auto_ptr<SplitAnalysis> SA;
152 std::auto_ptr<SplitEditor> SE;
154 /// Cached per-block interference maps
155 InterferenceCache IntfCache;
157 /// All basic blocks where the current register has uses.
158 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
160 /// Global live range splitting candidate info.
161 struct GlobalSplitCandidate {
162 unsigned PhysReg;
163 BitVector LiveBundles;
164 SmallVector<unsigned, 8> ActiveBlocks;
166 void reset(unsigned Reg) {
167 PhysReg = Reg;
168 LiveBundles.clear();
169 ActiveBlocks.clear();
173 /// Candidate info for for each PhysReg in AllocationOrder.
174 /// This vector never shrinks, but grows to the size of the largest register
175 /// class.
176 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
178 public:
179 RAGreedy();
181 /// Return the pass name.
182 virtual const char* getPassName() const {
183 return "Greedy Register Allocator";
186 /// RAGreedy analysis usage.
187 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
188 virtual void releaseMemory();
189 virtual Spiller &spiller() { return *SpillerInstance; }
190 virtual void enqueue(LiveInterval *LI);
191 virtual LiveInterval *dequeue();
192 virtual unsigned selectOrSplit(LiveInterval&,
193 SmallVectorImpl<LiveInterval*>&);
195 /// Perform register allocation.
196 virtual bool runOnMachineFunction(MachineFunction &mf);
198 static char ID;
200 private:
201 void LRE_WillEraseInstruction(MachineInstr*);
202 bool LRE_CanEraseVirtReg(unsigned);
203 void LRE_WillShrinkVirtReg(unsigned);
204 void LRE_DidCloneVirtReg(unsigned, unsigned);
206 float calcSpillCost();
207 bool addSplitConstraints(InterferenceCache::Cursor, float&);
208 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
209 void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
210 float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
211 void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
212 SmallVectorImpl<LiveInterval*>&);
213 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
214 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
215 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
216 void evictInterference(LiveInterval&, unsigned,
217 SmallVectorImpl<LiveInterval*>&);
219 unsigned tryAssign(LiveInterval&, AllocationOrder&,
220 SmallVectorImpl<LiveInterval*>&);
221 unsigned tryEvict(LiveInterval&, AllocationOrder&,
222 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
223 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
224 SmallVectorImpl<LiveInterval*>&);
225 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
226 SmallVectorImpl<LiveInterval*>&);
227 unsigned trySplit(LiveInterval&, AllocationOrder&,
228 SmallVectorImpl<LiveInterval*>&);
230 } // end anonymous namespace
232 char RAGreedy::ID = 0;
234 #ifndef NDEBUG
235 const char *const RAGreedy::StageName[] = {
236 "RS_New",
237 "RS_First",
238 "RS_Second",
239 "RS_Global",
240 "RS_Local",
241 "RS_Spill"
243 #endif
245 // Hysteresis to use when comparing floats.
246 // This helps stabilize decisions based on float comparisons.
247 const float Hysteresis = 0.98f;
250 FunctionPass* llvm::createGreedyRegisterAllocator() {
251 return new RAGreedy();
254 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
255 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
256 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
257 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
258 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
259 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
260 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
261 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
262 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
263 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
264 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
265 initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
266 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
267 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
268 initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
271 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
272 AU.setPreservesCFG();
273 AU.addRequired<AliasAnalysis>();
274 AU.addPreserved<AliasAnalysis>();
275 AU.addRequired<LiveIntervals>();
276 AU.addRequired<SlotIndexes>();
277 AU.addPreserved<SlotIndexes>();
278 AU.addRequired<LiveDebugVariables>();
279 AU.addPreserved<LiveDebugVariables>();
280 if (StrongPHIElim)
281 AU.addRequiredID(StrongPHIEliminationID);
282 AU.addRequiredTransitive<RegisterCoalescer>();
283 AU.addRequired<CalculateSpillWeights>();
284 AU.addRequired<LiveStacks>();
285 AU.addPreserved<LiveStacks>();
286 AU.addRequired<MachineDominatorTree>();
287 AU.addPreserved<MachineDominatorTree>();
288 AU.addRequired<MachineLoopInfo>();
289 AU.addPreserved<MachineLoopInfo>();
290 AU.addRequired<MachineLoopRanges>();
291 AU.addPreserved<MachineLoopRanges>();
292 AU.addRequired<VirtRegMap>();
293 AU.addPreserved<VirtRegMap>();
294 AU.addRequired<EdgeBundles>();
295 AU.addRequired<SpillPlacement>();
296 MachineFunctionPass::getAnalysisUsage(AU);
300 //===----------------------------------------------------------------------===//
301 // LiveRangeEdit delegate methods
302 //===----------------------------------------------------------------------===//
304 void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
305 // LRE itself will remove from SlotIndexes and parent basic block.
306 VRM->RemoveMachineInstrFromMaps(MI);
309 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
310 if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
311 unassign(LIS->getInterval(VirtReg), PhysReg);
312 return true;
314 // Unassigned virtreg is probably in the priority queue.
315 // RegAllocBase will erase it after dequeueing.
316 return false;
319 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
320 unsigned PhysReg = VRM->getPhys(VirtReg);
321 if (!PhysReg)
322 return;
324 // Register is assigned, put it back on the queue for reassignment.
325 LiveInterval &LI = LIS->getInterval(VirtReg);
326 unassign(LI, PhysReg);
327 enqueue(&LI);
330 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
331 // LRE may clone a virtual register because dead code elimination causes it to
332 // be split into connected components. Ensure that the new register gets the
333 // same stage as the parent.
334 ExtraRegInfo.grow(New);
335 ExtraRegInfo[New] = ExtraRegInfo[Old];
338 void RAGreedy::releaseMemory() {
339 SpillerInstance.reset(0);
340 ExtraRegInfo.clear();
341 GlobalCand.clear();
342 RegAllocBase::releaseMemory();
345 void RAGreedy::enqueue(LiveInterval *LI) {
346 // Prioritize live ranges by size, assigning larger ranges first.
347 // The queue holds (size, reg) pairs.
348 const unsigned Size = LI->getSize();
349 const unsigned Reg = LI->reg;
350 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
351 "Can only enqueue virtual registers");
352 unsigned Prio;
354 ExtraRegInfo.grow(Reg);
355 if (ExtraRegInfo[Reg].Stage == RS_New)
356 ExtraRegInfo[Reg].Stage = RS_First;
358 if (ExtraRegInfo[Reg].Stage == RS_Second)
359 // Unsplit ranges that couldn't be allocated immediately are deferred until
360 // everything else has been allocated. Long ranges are allocated last so
361 // they are split against realistic interference.
362 Prio = (1u << 31) - Size;
363 else {
364 // Everything else is allocated in long->short order. Long ranges that don't
365 // fit should be spilled ASAP so they don't create interference.
366 Prio = (1u << 31) + Size;
368 // Boost ranges that have a physical register hint.
369 if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
370 Prio |= (1u << 30);
373 Queue.push(std::make_pair(Prio, Reg));
376 LiveInterval *RAGreedy::dequeue() {
377 if (Queue.empty())
378 return 0;
379 LiveInterval *LI = &LIS->getInterval(Queue.top().second);
380 Queue.pop();
381 return LI;
385 //===----------------------------------------------------------------------===//
386 // Direct Assignment
387 //===----------------------------------------------------------------------===//
389 /// tryAssign - Try to assign VirtReg to an available register.
390 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
391 AllocationOrder &Order,
392 SmallVectorImpl<LiveInterval*> &NewVRegs) {
393 Order.rewind();
394 unsigned PhysReg;
395 while ((PhysReg = Order.next()))
396 if (!checkPhysRegInterference(VirtReg, PhysReg))
397 break;
398 if (!PhysReg || Order.isHint(PhysReg))
399 return PhysReg;
401 // PhysReg is available, but there may be a better choice.
403 // If we missed a simple hint, try to cheaply evict interference from the
404 // preferred register.
405 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
406 if (Order.isHint(Hint)) {
407 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
408 EvictionCost MaxCost(1);
409 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
410 evictInterference(VirtReg, Hint, NewVRegs);
411 return Hint;
415 // Try to evict interference from a cheaper alternative.
416 unsigned Cost = TRI->getCostPerUse(PhysReg);
418 // Most registers have 0 additional cost.
419 if (!Cost)
420 return PhysReg;
422 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
423 << '\n');
424 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
425 return CheapReg ? CheapReg : PhysReg;
429 //===----------------------------------------------------------------------===//
430 // Interference eviction
431 //===----------------------------------------------------------------------===//
433 /// shouldEvict - determine if A should evict the assigned live range B. The
434 /// eviction policy defined by this function together with the allocation order
435 /// defined by enqueue() decides which registers ultimately end up being split
436 /// and spilled.
438 /// Cascade numbers are used to prevent infinite loops if this function is a
439 /// cyclic relation.
441 /// @param A The live range to be assigned.
442 /// @param IsHint True when A is about to be assigned to its preferred
443 /// register.
444 /// @param B The live range to be evicted.
445 /// @param BreaksHint True when B is already assigned to its preferred register.
446 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
447 LiveInterval &B, bool BreaksHint) {
448 bool CanSplit = getStage(B) <= RS_Second;
450 // Be fairly aggressive about following hints as long as the evictee can be
451 // split.
452 if (CanSplit && IsHint && !BreaksHint)
453 return true;
455 return A.weight > B.weight;
458 /// canEvictInterference - Return true if all interferences between VirtReg and
459 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything
461 /// @param VirtReg Live range that is about to be assigned.
462 /// @param PhysReg Desired register for assignment.
463 /// @prarm IsHint True when PhysReg is VirtReg's preferred register.
464 /// @param MaxCost Only look for cheaper candidates and update with new cost
465 /// when returning true.
466 /// @returns True when interference can be evicted cheaper than MaxCost.
467 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
468 bool IsHint, EvictionCost &MaxCost) {
469 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
470 // involved in an eviction before. If a cascade number was assigned, deny
471 // evicting anything with the same or a newer cascade number. This prevents
472 // infinite eviction loops.
474 // This works out so a register without a cascade number is allowed to evict
475 // anything, and it can be evicted by anything.
476 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
477 if (!Cascade)
478 Cascade = NextCascade;
480 EvictionCost Cost;
481 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
482 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
483 // If there is 10 or more interferences, chances are one is heavier.
484 if (Q.collectInterferingVRegs(10) >= 10)
485 return false;
487 // Check if any interfering live range is heavier than MaxWeight.
488 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
489 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
490 if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
491 return false;
492 // Never evict spill products. They cannot split or spill.
493 if (getStage(*Intf) == RS_Spill)
494 return false;
495 // Once a live range becomes small enough, it is urgent that we find a
496 // register for it. This is indicated by an infinite spill weight. These
497 // urgent live ranges get to evict almost anything.
498 bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable();
499 // Only evict older cascades or live ranges without a cascade.
500 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
501 if (Cascade <= IntfCascade) {
502 if (!Urgent)
503 return false;
504 // We permit breaking cascades for urgent evictions. It should be the
505 // last resort, though, so make it really expensive.
506 Cost.BrokenHints += 10;
508 // Would this break a satisfied hint?
509 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
510 // Update eviction cost.
511 Cost.BrokenHints += BreaksHint;
512 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
513 // Abort if this would be too expensive.
514 if (!(Cost < MaxCost))
515 return false;
516 // Finally, apply the eviction policy for non-urgent evictions.
517 if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
518 return false;
521 MaxCost = Cost;
522 return true;
525 /// evictInterference - Evict any interferring registers that prevent VirtReg
526 /// from being assigned to Physreg. This assumes that canEvictInterference
527 /// returned true.
528 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
529 SmallVectorImpl<LiveInterval*> &NewVRegs) {
530 // Make sure that VirtReg has a cascade number, and assign that cascade
531 // number to every evicted register. These live ranges than then only be
532 // evicted by a newer cascade, preventing infinite loops.
533 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
534 if (!Cascade)
535 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
537 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
538 << " interference: Cascade " << Cascade << '\n');
539 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
540 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
541 assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
542 for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
543 LiveInterval *Intf = Q.interferingVRegs()[i];
544 unassign(*Intf, VRM->getPhys(Intf->reg));
545 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
546 VirtReg.isSpillable() < Intf->isSpillable()) &&
547 "Cannot decrease cascade number, illegal eviction");
548 ExtraRegInfo[Intf->reg].Cascade = Cascade;
549 ++NumEvicted;
550 NewVRegs.push_back(Intf);
555 /// tryEvict - Try to evict all interferences for a physreg.
556 /// @param VirtReg Currently unassigned virtual register.
557 /// @param Order Physregs to try.
558 /// @return Physreg to assign VirtReg, or 0.
559 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
560 AllocationOrder &Order,
561 SmallVectorImpl<LiveInterval*> &NewVRegs,
562 unsigned CostPerUseLimit) {
563 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
565 // Keep track of the cheapest interference seen so far.
566 EvictionCost BestCost(~0u);
567 unsigned BestPhys = 0;
569 // When we are just looking for a reduced cost per use, don't break any
570 // hints, and only evict smaller spill weights.
571 if (CostPerUseLimit < ~0u) {
572 BestCost.BrokenHints = 0;
573 BestCost.MaxWeight = VirtReg.weight;
576 Order.rewind();
577 while (unsigned PhysReg = Order.next()) {
578 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
579 continue;
580 // The first use of a callee-saved register in a function has cost 1.
581 // Don't start using a CSR when the CostPerUseLimit is low.
582 if (CostPerUseLimit == 1)
583 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
584 if (!MRI->isPhysRegUsed(CSR)) {
585 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
586 << PrintReg(CSR, TRI) << '\n');
587 continue;
590 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
591 continue;
593 // Best so far.
594 BestPhys = PhysReg;
596 // Stop if the hint can be used.
597 if (Order.isHint(PhysReg))
598 break;
601 if (!BestPhys)
602 return 0;
604 evictInterference(VirtReg, BestPhys, NewVRegs);
605 return BestPhys;
609 //===----------------------------------------------------------------------===//
610 // Region Splitting
611 //===----------------------------------------------------------------------===//
613 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
614 /// interference pattern in Physreg and its aliases. Add the constraints to
615 /// SpillPlacement and return the static cost of this split in Cost, assuming
616 /// that all preferences in SplitConstraints are met.
617 /// Return false if there are no bundles with positive bias.
618 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
619 float &Cost) {
620 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
622 // Reset interference dependent info.
623 SplitConstraints.resize(UseBlocks.size());
624 float StaticCost = 0;
625 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
626 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
627 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
629 BC.Number = BI.MBB->getNumber();
630 Intf.moveToBlock(BC.Number);
631 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
632 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
634 if (!Intf.hasInterference())
635 continue;
637 // Number of spill code instructions to insert.
638 unsigned Ins = 0;
640 // Interference for the live-in value.
641 if (BI.LiveIn) {
642 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
643 BC.Entry = SpillPlacement::MustSpill, ++Ins;
644 else if (Intf.first() < BI.FirstUse)
645 BC.Entry = SpillPlacement::PrefSpill, ++Ins;
646 else if (Intf.first() < BI.LastUse)
647 ++Ins;
650 // Interference for the live-out value.
651 if (BI.LiveOut) {
652 if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
653 BC.Exit = SpillPlacement::MustSpill, ++Ins;
654 else if (Intf.last() > BI.LastUse)
655 BC.Exit = SpillPlacement::PrefSpill, ++Ins;
656 else if (Intf.last() > BI.FirstUse)
657 ++Ins;
660 // Accumulate the total frequency of inserted spill code.
661 if (Ins)
662 StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
664 Cost = StaticCost;
666 // Add constraints for use-blocks. Note that these are the only constraints
667 // that may add a positive bias, it is downhill from here.
668 SpillPlacer->addConstraints(SplitConstraints);
669 return SpillPlacer->scanActiveBundles();
673 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
674 /// live-through blocks in Blocks.
675 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
676 ArrayRef<unsigned> Blocks) {
677 const unsigned GroupSize = 8;
678 SpillPlacement::BlockConstraint BCS[GroupSize];
679 unsigned TBS[GroupSize];
680 unsigned B = 0, T = 0;
682 for (unsigned i = 0; i != Blocks.size(); ++i) {
683 unsigned Number = Blocks[i];
684 Intf.moveToBlock(Number);
686 if (!Intf.hasInterference()) {
687 assert(T < GroupSize && "Array overflow");
688 TBS[T] = Number;
689 if (++T == GroupSize) {
690 SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
691 T = 0;
693 continue;
696 assert(B < GroupSize && "Array overflow");
697 BCS[B].Number = Number;
699 // Interference for the live-in value.
700 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
701 BCS[B].Entry = SpillPlacement::MustSpill;
702 else
703 BCS[B].Entry = SpillPlacement::PrefSpill;
705 // Interference for the live-out value.
706 if (Intf.last() >= SA->getLastSplitPoint(Number))
707 BCS[B].Exit = SpillPlacement::MustSpill;
708 else
709 BCS[B].Exit = SpillPlacement::PrefSpill;
711 if (++B == GroupSize) {
712 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
713 SpillPlacer->addConstraints(Array);
714 B = 0;
718 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
719 SpillPlacer->addConstraints(Array);
720 SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
723 void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
724 InterferenceCache::Cursor Intf) {
725 // Keep track of through blocks that have not been added to SpillPlacer.
726 BitVector Todo = SA->getThroughBlocks();
727 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
728 unsigned AddedTo = 0;
729 #ifndef NDEBUG
730 unsigned Visited = 0;
731 #endif
733 for (;;) {
734 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
735 // Find new through blocks in the periphery of PrefRegBundles.
736 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
737 unsigned Bundle = NewBundles[i];
738 // Look at all blocks connected to Bundle in the full graph.
739 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
740 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
741 I != E; ++I) {
742 unsigned Block = *I;
743 if (!Todo.test(Block))
744 continue;
745 Todo.reset(Block);
746 // This is a new through block. Add it to SpillPlacer later.
747 ActiveBlocks.push_back(Block);
748 #ifndef NDEBUG
749 ++Visited;
750 #endif
753 // Any new blocks to add?
754 if (ActiveBlocks.size() == AddedTo)
755 break;
756 addThroughConstraints(Intf,
757 ArrayRef<unsigned>(ActiveBlocks).slice(AddedTo));
758 AddedTo = ActiveBlocks.size();
760 // Perhaps iterating can enable more bundles?
761 SpillPlacer->iterate();
763 DEBUG(dbgs() << ", v=" << Visited);
766 /// calcSpillCost - Compute how expensive it would be to split the live range in
767 /// SA around all use blocks instead of forming bundle regions.
768 float RAGreedy::calcSpillCost() {
769 float Cost = 0;
770 const LiveInterval &LI = SA->getParent();
771 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
772 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
773 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
774 unsigned Number = BI.MBB->getNumber();
775 // We normally only need one spill instruction - a load or a store.
776 Cost += SpillPlacer->getBlockFrequency(Number);
778 // Unless the value is redefined in the block.
779 if (BI.LiveIn && BI.LiveOut) {
780 SlotIndex Start, Stop;
781 tie(Start, Stop) = Indexes->getMBBRange(Number);
782 LiveInterval::const_iterator I = LI.find(Start);
783 assert(I != LI.end() && "Expected live-in value");
784 // Is there a different live-out value? If so, we need an extra spill
785 // instruction.
786 if (I->end < Stop)
787 Cost += SpillPlacer->getBlockFrequency(Number);
790 return Cost;
793 /// calcGlobalSplitCost - Return the global split cost of following the split
794 /// pattern in LiveBundles. This cost should be added to the local cost of the
795 /// interference pattern in SplitConstraints.
797 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
798 InterferenceCache::Cursor Intf) {
799 float GlobalCost = 0;
800 const BitVector &LiveBundles = Cand.LiveBundles;
801 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
802 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
803 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
804 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
805 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
806 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
807 unsigned Ins = 0;
809 if (BI.LiveIn)
810 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
811 if (BI.LiveOut)
812 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
813 if (Ins)
814 GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
817 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
818 unsigned Number = Cand.ActiveBlocks[i];
819 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
820 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
821 if (!RegIn && !RegOut)
822 continue;
823 if (RegIn && RegOut) {
824 // We need double spill code if this block has interference.
825 Intf.moveToBlock(Number);
826 if (Intf.hasInterference())
827 GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
828 continue;
830 // live-in / stack-out or stack-in live-out.
831 GlobalCost += SpillPlacer->getBlockFrequency(Number);
833 return GlobalCost;
836 /// splitAroundRegion - Split VirtReg around the region determined by
837 /// LiveBundles. Make an effort to avoid interference from PhysReg.
839 /// The 'register' interval is going to contain as many uses as possible while
840 /// avoiding interference. The 'stack' interval is the complement constructed by
841 /// SplitEditor. It will contain the rest.
843 void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
844 GlobalSplitCandidate &Cand,
845 SmallVectorImpl<LiveInterval*> &NewVRegs) {
846 const BitVector &LiveBundles = Cand.LiveBundles;
848 DEBUG({
849 dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
850 << " with bundles";
851 for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
852 dbgs() << " EB#" << i;
853 dbgs() << ".\n";
856 InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
857 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
858 SE->reset(LREdit);
860 // Create the main cross-block interval.
861 const unsigned MainIntv = SE->openIntv();
863 // First handle all the blocks with uses.
864 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
865 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
866 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
867 bool RegIn = BI.LiveIn &&
868 LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
869 bool RegOut = BI.LiveOut &&
870 LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
872 // Create separate intervals for isolated blocks with multiple uses.
874 // |---o---o---| Enter and leave on the stack.
875 // ____-----____ Create local interval for uses.
877 // | o---o---| Defined in block, leave on stack.
878 // -----____ Create local interval for uses.
880 // |---o---x | Enter on stack, killed in block.
881 // ____----- Create local interval for uses.
883 if (!RegIn && !RegOut) {
884 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
885 if (!BI.isOneInstr()) {
886 SE->splitSingleBlock(BI);
887 SE->selectIntv(MainIntv);
889 continue;
892 SlotIndex Start, Stop;
893 tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
894 Intf.moveToBlock(BI.MBB->getNumber());
895 DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
896 << (BI.LiveIn ? (RegIn ? " => " : " -> ") : " ")
897 << "BB#" << BI.MBB->getNumber()
898 << (BI.LiveOut ? (RegOut ? " => " : " -> ") : " ")
899 << " EB#" << Bundles->getBundle(BI.MBB->getNumber(), 1)
900 << " [" << Start << ';'
901 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
902 << ") uses [" << BI.FirstUse << ';' << BI.LastUse
903 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
905 // The interference interval should either be invalid or overlap MBB.
906 assert((!Intf.hasInterference() || Intf.first() < Stop)
907 && "Bad interference");
908 assert((!Intf.hasInterference() || Intf.last() > Start)
909 && "Bad interference");
911 // We are now ready to decide where to split in the current block. There
912 // are many variables guiding the decision:
914 // - RegIn / RegOut: The global splitting algorithm's decisions for our
915 // ingoing and outgoing bundles.
917 // - BI.BlockIn / BI.BlockOut: Is the live range live-in and/or live-out
918 // from this block.
920 // - Intf.hasInterference(): Is there interference in this block.
922 // - Intf.first() / Inft.last(): The range of interference.
924 // The live range should be split such that MainIntv is live-in when RegIn
925 // is set, and live-out when RegOut is set. MainIntv should never overlap
926 // the interference, and the stack interval should never have more than one
927 // use per block.
929 // No splits can be inserted after LastSplitPoint, overlap instead.
930 SlotIndex LastSplitPoint = Stop;
931 if (BI.LiveOut)
932 LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
934 // At this point, we know that either RegIn or RegOut is set. We dealt with
935 // the all-stack case above.
937 // Blocks without interference are relatively easy.
938 if (!Intf.hasInterference()) {
939 DEBUG(dbgs() << ", no interference.\n");
940 SE->selectIntv(MainIntv);
941 // The easiest case has MainIntv live through.
943 // |---o---o---| Live-in, live-out.
944 // ============= Use MainIntv everywhere.
946 SlotIndex From = Start, To = Stop;
948 // Block entry. Reload before the first use if MainIntv is not live-in.
950 // |---o-- Enter on stack.
951 // ____=== Reload before first use.
953 // | o-- Defined in block.
954 // === Use MainIntv from def.
956 if (!RegIn)
957 From = SE->enterIntvBefore(BI.FirstUse);
959 // Block exit. Handle cases where MainIntv is not live-out.
960 if (!BI.LiveOut)
962 // --x | Killed in block.
963 // === Use MainIntv up to kill.
965 To = SE->leaveIntvAfter(BI.LastUse);
966 else if (!RegOut) {
968 // --o---| Live-out on stack.
969 // ===____ Use MainIntv up to last use, switch to stack.
971 // -----o| Live-out on stack, last use after last split point.
972 // ====== Extend MainIntv to last use, overlapping.
973 // \____ Copy to stack interval before last split point.
975 if (BI.LastUse < LastSplitPoint)
976 To = SE->leaveIntvAfter(BI.LastUse);
977 else {
978 // The last use is after the last split point, it is probably an
979 // indirect branch.
980 To = SE->leaveIntvBefore(LastSplitPoint);
981 // Run a double interval from the split to the last use. This makes
982 // it possible to spill the complement without affecting the indirect
983 // branch.
984 SE->overlapIntv(To, BI.LastUse);
988 // Paint in MainIntv liveness for this block.
989 SE->useIntv(From, To);
990 continue;
993 // We are now looking at a block with interference, and we know that either
994 // RegIn or RegOut is set.
995 assert(Intf.hasInterference() && (RegIn || RegOut) && "Bad invariant");
997 // If the live range is not live through the block, it is possible that the
998 // interference doesn't even overlap. Deal with those cases first. Since
999 // no copy instructions are required, we can tolerate interference starting
1000 // or ending at the same instruction that kills or defines our live range.
1002 // Live-in, killed before interference.
1004 // ~~~ Interference after kill.
1005 // |---o---x | Killed in block.
1006 // ========= Use MainIntv everywhere.
1008 if (RegIn && !BI.LiveOut && BI.LastUse <= Intf.first()) {
1009 DEBUG(dbgs() << ", live-in, killed before interference.\n");
1010 SE->selectIntv(MainIntv);
1011 SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
1012 SE->useIntv(Start, To);
1013 continue;
1016 // Live-out, defined after interference.
1018 // ~~~ Interference before def.
1019 // | o---o---| Defined in block.
1020 // ========= Use MainIntv everywhere.
1022 if (RegOut && !BI.LiveIn && BI.FirstUse >= Intf.last()) {
1023 DEBUG(dbgs() << ", live-out, defined after interference.\n");
1024 SE->selectIntv(MainIntv);
1025 SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
1026 SE->useIntv(From, Stop);
1027 continue;
1030 // The interference is now known to overlap the live range, but it may
1031 // still be easy to avoid if all the interference is on one side of the
1032 // uses, and we enter or leave on the stack.
1034 // Live-out on stack, interference after last use.
1036 // ~~~ Interference after last use.
1037 // |---o---o---| Live-out on stack.
1038 // =========____ Leave MainIntv after last use.
1040 // ~ Interference after last use.
1041 // |---o---o--o| Live-out on stack, late last use.
1042 // ============ Copy to stack after LSP, overlap MainIntv.
1043 // \_____ Stack interval is live-out.
1045 if (!RegOut && Intf.first() > BI.LastUse.getBoundaryIndex()) {
1046 assert(RegIn && "Stack-in, stack-out should already be handled");
1047 if (BI.LastUse < LastSplitPoint) {
1048 DEBUG(dbgs() << ", live-in, stack-out, interference after last use.\n");
1049 SE->selectIntv(MainIntv);
1050 SlotIndex To = SE->leaveIntvAfter(BI.LastUse);
1051 assert(To <= Intf.first() && "Expected to avoid interference");
1052 SE->useIntv(Start, To);
1053 } else {
1054 DEBUG(dbgs() << ", live-in, stack-out, avoid last split point\n");
1055 SE->selectIntv(MainIntv);
1056 SlotIndex To = SE->leaveIntvBefore(LastSplitPoint);
1057 assert(To <= Intf.first() && "Expected to avoid interference");
1058 SE->overlapIntv(To, BI.LastUse);
1059 SE->useIntv(Start, To);
1061 continue;
1064 // Live-in on stack, interference before first use.
1066 // ~~~ Interference before first use.
1067 // |---o---o---| Live-in on stack.
1068 // ____========= Enter MainIntv before first use.
1070 if (!RegIn && Intf.last() < BI.FirstUse.getBaseIndex()) {
1071 assert(RegOut && "Stack-in, stack-out should already be handled");
1072 DEBUG(dbgs() << ", stack-in, interference before first use.\n");
1073 SE->selectIntv(MainIntv);
1074 SlotIndex From = SE->enterIntvBefore(BI.FirstUse);
1075 assert(From >= Intf.last() && "Expected to avoid interference");
1076 SE->useIntv(From, Stop);
1077 continue;
1080 // The interference is overlapping somewhere we wanted to use MainIntv. That
1081 // means we need to create a local interval that can be allocated a
1082 // different register.
1083 unsigned LocalIntv = SE->openIntv();
1084 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1086 // We may be creating copies directly between MainIntv and LocalIntv,
1087 // bypassing the stack interval. When we do that, we should never use the
1088 // leaveIntv* methods as they define values in the stack interval. By
1089 // starting from the end of the block and working our way backwards, we can
1090 // get by with only enterIntv* methods.
1092 // When selecting split points, we generally try to maximize the stack
1093 // interval as long at it contains no uses, maximize the main interval as
1094 // long as it doesn't overlap interference, and minimize the local interval
1095 // that we don't know how to allocate yet.
1097 // Handle the block exit, set Pos to the first handled slot.
1098 SlotIndex Pos = BI.LastUse;
1099 if (RegOut) {
1100 assert(Intf.last() < LastSplitPoint && "Cannot be live-out in register");
1101 // Create a snippet of MainIntv that is live-out.
1103 // ~~~ Interference overlapping uses.
1104 // --o---| Live-out in MainIntv.
1105 // ----=== Switch from LocalIntv to MainIntv after interference.
1107 SE->selectIntv(MainIntv);
1108 Pos = SE->enterIntvAfter(Intf.last());
1109 assert(Pos >= Intf.last() && "Expected to avoid interference");
1110 SE->useIntv(Pos, Stop);
1111 SE->selectIntv(LocalIntv);
1112 } else if (BI.LiveOut) {
1113 if (BI.LastUse < LastSplitPoint) {
1114 // Live-out on the stack.
1116 // ~~~ Interference overlapping uses.
1117 // --o---| Live-out on stack.
1118 // ---____ Switch from LocalIntv to stack after last use.
1120 Pos = SE->leaveIntvAfter(BI.LastUse);
1121 } else {
1122 // Live-out on the stack, last use after last split point.
1124 // ~~~ Interference overlapping uses.
1125 // --o--o| Live-out on stack, late use.
1126 // ------ Copy to stack before LSP, overlap LocalIntv.
1127 // \__
1129 Pos = SE->leaveIntvBefore(LastSplitPoint);
1130 // We need to overlap LocalIntv so it can reach LastUse.
1131 SE->overlapIntv(Pos, BI.LastUse);
1135 // When not live-out, leave Pos at LastUse. We have handled everything from
1136 // Pos to Stop. Find the starting point for LocalIntv.
1137 assert(SE->currentIntv() == LocalIntv && "Expecting local interval");
1139 if (RegIn) {
1140 assert(Start < Intf.first() && "Cannot be live-in with interference");
1141 // Live-in in MainIntv, only use LocalIntv for interference.
1143 // ~~~ Interference overlapping uses.
1144 // |---o-- Live-in in MainIntv.
1145 // ====--- Switch to LocalIntv before interference.
1147 SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, Intf.first()));
1148 assert(Switch <= Intf.first() && "Expected to avoid interference");
1149 SE->useIntv(Switch, Pos);
1150 SE->selectIntv(MainIntv);
1151 SE->useIntv(Start, Switch);
1152 } else {
1153 // Live-in on stack, enter LocalIntv before first use.
1155 // ~~~ Interference overlapping uses.
1156 // |---o-- Live-in in MainIntv.
1157 // ____--- Reload to LocalIntv before interference.
1159 // Defined in block.
1161 // ~~~ Interference overlapping uses.
1162 // | o-- Defined in block.
1163 // --- Begin LocalIntv at first use.
1165 SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, BI.FirstUse));
1166 SE->useIntv(Switch, Pos);
1170 // Handle live-through blocks.
1171 SE->selectIntv(MainIntv);
1172 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1173 unsigned Number = Cand.ActiveBlocks[i];
1174 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
1175 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1176 DEBUG(dbgs() << "Live through BB#" << Number << '\n');
1177 if (RegIn && RegOut) {
1178 Intf.moveToBlock(Number);
1179 if (!Intf.hasInterference()) {
1180 SE->useIntv(Indexes->getMBBStartIdx(Number),
1181 Indexes->getMBBEndIdx(Number));
1182 continue;
1185 MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1186 if (RegIn)
1187 SE->leaveIntvAtTop(*MBB);
1188 if (RegOut)
1189 SE->enterIntvAtEnd(*MBB);
1192 ++NumGlobalSplits;
1194 SmallVector<unsigned, 8> IntvMap;
1195 SE->finish(&IntvMap);
1196 DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1198 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1199 unsigned OrigBlocks = SA->getNumLiveBlocks();
1201 // Sort out the new intervals created by splitting. We get four kinds:
1202 // - Remainder intervals should not be split again.
1203 // - Candidate intervals can be assigned to Cand.PhysReg.
1204 // - Block-local splits are candidates for local splitting.
1205 // - DCE leftovers should go back on the queue.
1206 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1207 LiveInterval &Reg = *LREdit.get(i);
1209 // Ignore old intervals from DCE.
1210 if (getStage(Reg) != RS_New)
1211 continue;
1213 // Remainder interval. Don't try splitting again, spill if it doesn't
1214 // allocate.
1215 if (IntvMap[i] == 0) {
1216 setStage(Reg, RS_Global);
1217 continue;
1220 // Main interval. Allow repeated splitting as long as the number of live
1221 // blocks is strictly decreasing.
1222 if (IntvMap[i] == MainIntv) {
1223 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1224 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1225 << " blocks as original.\n");
1226 // Don't allow repeated splitting as a safe guard against looping.
1227 setStage(Reg, RS_Global);
1229 continue;
1232 // Other intervals are treated as new. This includes local intervals created
1233 // for blocks with multiple uses, and anything created by DCE.
1236 if (VerifyEnabled)
1237 MF->verify(this, "After splitting live range around region");
1240 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1241 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1242 float BestCost = Hysteresis * calcSpillCost();
1243 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1244 const unsigned NoCand = ~0u;
1245 unsigned BestCand = NoCand;
1247 Order.rewind();
1248 for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
1249 if (GlobalCand.size() <= Cand)
1250 GlobalCand.resize(Cand+1);
1251 GlobalCand[Cand].reset(PhysReg);
1253 SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
1254 float Cost;
1255 InterferenceCache::Cursor Intf(IntfCache, PhysReg);
1256 if (!addSplitConstraints(Intf, Cost)) {
1257 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1258 continue;
1260 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1261 if (Cost >= BestCost) {
1262 DEBUG({
1263 if (BestCand == NoCand)
1264 dbgs() << " worse than no bundles\n";
1265 else
1266 dbgs() << " worse than "
1267 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1269 continue;
1271 growRegion(GlobalCand[Cand], Intf);
1273 SpillPlacer->finish();
1275 // No live bundles, defer to splitSingleBlocks().
1276 if (!GlobalCand[Cand].LiveBundles.any()) {
1277 DEBUG(dbgs() << " no bundles.\n");
1278 continue;
1281 Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
1282 DEBUG({
1283 dbgs() << ", total = " << Cost << " with bundles";
1284 for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
1285 i = GlobalCand[Cand].LiveBundles.find_next(i))
1286 dbgs() << " EB#" << i;
1287 dbgs() << ".\n";
1289 if (Cost < BestCost) {
1290 BestCand = Cand;
1291 BestCost = Hysteresis * Cost; // Prevent rounding effects.
1295 if (BestCand == NoCand)
1296 return 0;
1298 splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1299 return 0;
1303 //===----------------------------------------------------------------------===//
1304 // Local Splitting
1305 //===----------------------------------------------------------------------===//
1308 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1309 /// in order to use PhysReg between two entries in SA->UseSlots.
1311 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1313 void RAGreedy::calcGapWeights(unsigned PhysReg,
1314 SmallVectorImpl<float> &GapWeight) {
1315 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1316 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1317 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1318 const unsigned NumGaps = Uses.size()-1;
1320 // Start and end points for the interference check.
1321 SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1322 SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1324 GapWeight.assign(NumGaps, 0.0f);
1326 // Add interference from each overlapping register.
1327 for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1328 if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1329 .checkInterference())
1330 continue;
1332 // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1333 // so we don't need InterferenceQuery.
1335 // Interference that overlaps an instruction is counted in both gaps
1336 // surrounding the instruction. The exception is interference before
1337 // StartIdx and after StopIdx.
1339 LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1340 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1341 // Skip the gaps before IntI.
1342 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1343 if (++Gap == NumGaps)
1344 break;
1345 if (Gap == NumGaps)
1346 break;
1348 // Update the gaps covered by IntI.
1349 const float weight = IntI.value()->weight;
1350 for (; Gap != NumGaps; ++Gap) {
1351 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1352 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1353 break;
1355 if (Gap == NumGaps)
1356 break;
1361 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1362 /// basic block.
1364 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1365 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1366 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1367 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1369 // Note that it is possible to have an interval that is live-in or live-out
1370 // while only covering a single block - A phi-def can use undef values from
1371 // predecessors, and the block could be a single-block loop.
1372 // We don't bother doing anything clever about such a case, we simply assume
1373 // that the interval is continuous from FirstUse to LastUse. We should make
1374 // sure that we don't do anything illegal to such an interval, though.
1376 const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1377 if (Uses.size() <= 2)
1378 return 0;
1379 const unsigned NumGaps = Uses.size()-1;
1381 DEBUG({
1382 dbgs() << "tryLocalSplit: ";
1383 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1384 dbgs() << ' ' << SA->UseSlots[i];
1385 dbgs() << '\n';
1388 // Since we allow local split results to be split again, there is a risk of
1389 // creating infinite loops. It is tempting to require that the new live
1390 // ranges have less instructions than the original. That would guarantee
1391 // convergence, but it is too strict. A live range with 3 instructions can be
1392 // split 2+3 (including the COPY), and we want to allow that.
1394 // Instead we use these rules:
1396 // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
1397 // noop split, of course).
1398 // 2. Require progress be made for ranges with getStage() >= RS_Local. All
1399 // the new ranges must have fewer instructions than before the split.
1400 // 3. New ranges with the same number of instructions are marked RS_Local,
1401 // smaller ranges are marked RS_New.
1403 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1404 // excessive splitting and infinite loops.
1406 bool ProgressRequired = getStage(VirtReg) >= RS_Local;
1408 // Best split candidate.
1409 unsigned BestBefore = NumGaps;
1410 unsigned BestAfter = 0;
1411 float BestDiff = 0;
1413 const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1414 SmallVector<float, 8> GapWeight;
1416 Order.rewind();
1417 while (unsigned PhysReg = Order.next()) {
1418 // Keep track of the largest spill weight that would need to be evicted in
1419 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1420 calcGapWeights(PhysReg, GapWeight);
1422 // Try to find the best sequence of gaps to close.
1423 // The new spill weight must be larger than any gap interference.
1425 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1426 unsigned SplitBefore = 0, SplitAfter = 1;
1428 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1429 // It is the spill weight that needs to be evicted.
1430 float MaxGap = GapWeight[0];
1432 for (;;) {
1433 // Live before/after split?
1434 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1435 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1437 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1438 << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1439 << " i=" << MaxGap);
1441 // Stop before the interval gets so big we wouldn't be making progress.
1442 if (!LiveBefore && !LiveAfter) {
1443 DEBUG(dbgs() << " all\n");
1444 break;
1446 // Should the interval be extended or shrunk?
1447 bool Shrink = true;
1449 // How many gaps would the new range have?
1450 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1452 // Legally, without causing looping?
1453 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1455 if (Legal && MaxGap < HUGE_VALF) {
1456 // Estimate the new spill weight. Each instruction reads or writes the
1457 // register. Conservatively assume there are no read-modify-write
1458 // instructions.
1460 // Try to guess the size of the new interval.
1461 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1462 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1463 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1464 // Would this split be possible to allocate?
1465 // Never allocate all gaps, we wouldn't be making progress.
1466 DEBUG(dbgs() << " w=" << EstWeight);
1467 if (EstWeight * Hysteresis >= MaxGap) {
1468 Shrink = false;
1469 float Diff = EstWeight - MaxGap;
1470 if (Diff > BestDiff) {
1471 DEBUG(dbgs() << " (best)");
1472 BestDiff = Hysteresis * Diff;
1473 BestBefore = SplitBefore;
1474 BestAfter = SplitAfter;
1479 // Try to shrink.
1480 if (Shrink) {
1481 if (++SplitBefore < SplitAfter) {
1482 DEBUG(dbgs() << " shrink\n");
1483 // Recompute the max when necessary.
1484 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1485 MaxGap = GapWeight[SplitBefore];
1486 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1487 MaxGap = std::max(MaxGap, GapWeight[i]);
1489 continue;
1491 MaxGap = 0;
1494 // Try to extend the interval.
1495 if (SplitAfter >= NumGaps) {
1496 DEBUG(dbgs() << " end\n");
1497 break;
1500 DEBUG(dbgs() << " extend\n");
1501 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1505 // Didn't find any candidates?
1506 if (BestBefore == NumGaps)
1507 return 0;
1509 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1510 << '-' << Uses[BestAfter] << ", " << BestDiff
1511 << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1513 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1514 SE->reset(LREdit);
1516 SE->openIntv();
1517 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1518 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1519 SE->useIntv(SegStart, SegStop);
1520 SmallVector<unsigned, 8> IntvMap;
1521 SE->finish(&IntvMap);
1522 DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1524 // If the new range has the same number of instructions as before, mark it as
1525 // RS_Local so the next split will be forced to make progress. Otherwise,
1526 // leave the new intervals as RS_New so they can compete.
1527 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1528 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1529 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1530 if (NewGaps >= NumGaps) {
1531 DEBUG(dbgs() << "Tagging non-progress ranges: ");
1532 assert(!ProgressRequired && "Didn't make progress when it was required.");
1533 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1534 if (IntvMap[i] == 1) {
1535 setStage(*LREdit.get(i), RS_Local);
1536 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1538 DEBUG(dbgs() << '\n');
1540 ++NumLocalSplits;
1542 return 0;
1545 //===----------------------------------------------------------------------===//
1546 // Live Range Splitting
1547 //===----------------------------------------------------------------------===//
1549 /// trySplit - Try to split VirtReg or one of its interferences, making it
1550 /// assignable.
1551 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1552 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1553 SmallVectorImpl<LiveInterval*>&NewVRegs) {
1554 // Local intervals are handled separately.
1555 if (LIS->intervalIsInOneMBB(VirtReg)) {
1556 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1557 SA->analyze(&VirtReg);
1558 return tryLocalSplit(VirtReg, Order, NewVRegs);
1561 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1563 // Don't iterate global splitting.
1564 // Move straight to spilling if this range was produced by a global split.
1565 if (getStage(VirtReg) >= RS_Global)
1566 return 0;
1568 SA->analyze(&VirtReg);
1570 // FIXME: SplitAnalysis may repair broken live ranges coming from the
1571 // coalescer. That may cause the range to become allocatable which means that
1572 // tryRegionSplit won't be making progress. This check should be replaced with
1573 // an assertion when the coalescer is fixed.
1574 if (SA->didRepairRange()) {
1575 // VirtReg has changed, so all cached queries are invalid.
1576 invalidateVirtRegs();
1577 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1578 return PhysReg;
1581 // First try to split around a region spanning multiple blocks.
1582 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1583 if (PhysReg || !NewVRegs.empty())
1584 return PhysReg;
1586 // Then isolate blocks with multiple uses.
1587 SplitAnalysis::BlockPtrSet Blocks;
1588 if (SA->getMultiUseBlocks(Blocks)) {
1589 LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1590 SE->reset(LREdit);
1591 SE->splitSingleBlocks(Blocks);
1592 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1593 if (VerifyEnabled)
1594 MF->verify(this, "After splitting live range around basic blocks");
1597 // Don't assign any physregs.
1598 return 0;
1602 //===----------------------------------------------------------------------===//
1603 // Main Entry Point
1604 //===----------------------------------------------------------------------===//
1606 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1607 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1608 // First try assigning a free register.
1609 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1610 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1611 return PhysReg;
1613 LiveRangeStage Stage = getStage(VirtReg);
1614 DEBUG(dbgs() << StageName[Stage]
1615 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1617 // Try to evict a less worthy live range, but only for ranges from the primary
1618 // queue. The RS_Second ranges already failed to do this, and they should not
1619 // get a second chance until they have been split.
1620 if (Stage != RS_Second)
1621 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1622 return PhysReg;
1624 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1626 // The first time we see a live range, don't try to split or spill.
1627 // Wait until the second time, when all smaller ranges have been allocated.
1628 // This gives a better picture of the interference to split around.
1629 if (Stage == RS_First) {
1630 setStage(VirtReg, RS_Second);
1631 DEBUG(dbgs() << "wait for second round\n");
1632 NewVRegs.push_back(&VirtReg);
1633 return 0;
1636 // If we couldn't allocate a register from spilling, there is probably some
1637 // invalid inline assembly. The base class wil report it.
1638 if (Stage >= RS_Spill || !VirtReg.isSpillable())
1639 return ~0u;
1641 // Try splitting VirtReg or interferences.
1642 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1643 if (PhysReg || !NewVRegs.empty())
1644 return PhysReg;
1646 // Finally spill VirtReg itself.
1647 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1648 LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1649 spiller().spill(LRE);
1650 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1652 if (VerifyEnabled)
1653 MF->verify(this, "After spilling");
1655 // The live virtual register requesting allocation was spilled, so tell
1656 // the caller not to allocate anything during this round.
1657 return 0;
1660 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1661 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1662 << "********** Function: "
1663 << ((Value*)mf.getFunction())->getName() << '\n');
1665 MF = &mf;
1666 if (VerifyEnabled)
1667 MF->verify(this, "Before greedy register allocator");
1669 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1670 Indexes = &getAnalysis<SlotIndexes>();
1671 DomTree = &getAnalysis<MachineDominatorTree>();
1672 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1673 Loops = &getAnalysis<MachineLoopInfo>();
1674 LoopRanges = &getAnalysis<MachineLoopRanges>();
1675 Bundles = &getAnalysis<EdgeBundles>();
1676 SpillPlacer = &getAnalysis<SpillPlacement>();
1677 DebugVars = &getAnalysis<LiveDebugVariables>();
1679 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1680 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1681 ExtraRegInfo.clear();
1682 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1683 NextCascade = 1;
1684 IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1686 allocatePhysRegs();
1687 addMBBLiveIns(MF);
1688 LIS->addKillFlags();
1690 // Run rewriter
1692 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1693 VRM->rewrite(Indexes);
1696 // Write out new DBG_VALUE instructions.
1697 DebugVars->emitDebugValues(VRM);
1699 // The pass output is in VirtRegMap. Release all the transient data.
1700 releaseMemory();
1702 return true;