Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / CodeGen / RegAllocLinearScan.cpp
blob0dd3c598c1543c028dfed632b384bcc33019827a
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
19 #include "RegisterClassInfo.h"
20 #include "Spiller.h"
21 #include "RegisterCoalescer.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Function.h"
24 #include "llvm/CodeGen/CalcSpillWeights.h"
25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/ADT/EquivalenceClasses.h"
37 #include "llvm/ADT/SmallSet.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <queue>
45 #include <memory>
46 #include <cmath>
48 using namespace llvm;
50 STATISTIC(NumIters , "Number of iterations performed");
51 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
52 STATISTIC(NumCoalesce, "Number of copies coalesced");
53 STATISTIC(NumDowngrade, "Number of registers downgraded");
55 static cl::opt<bool>
56 NewHeuristic("new-spilling-heuristic",
57 cl::desc("Use new spilling heuristic"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 TrivCoalesceEnds("trivial-coalesce-ends",
62 cl::desc("Attempt trivial coalescing of interval ends"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 AvoidWAWHazard("avoid-waw-hazard",
67 cl::desc("Avoid write-write hazards for some register classes"),
68 cl::init(false), cl::Hidden);
70 static RegisterRegAlloc
71 linearscanRegAlloc("linearscan", "linear scan register allocator",
72 createLinearScanRegisterAllocator);
74 namespace {
75 // When we allocate a register, add it to a fixed-size queue of
76 // registers to skip in subsequent allocations. This trades a small
77 // amount of register pressure and increased spills for flexibility in
78 // the post-pass scheduler.
80 // Note that in a the number of registers used for reloading spills
81 // will be one greater than the value of this option.
83 // One big limitation of this is that it doesn't differentiate between
84 // different register classes. So on x86-64, if there is xmm register
85 // pressure, it can caused fewer GPRs to be held in the queue.
86 static cl::opt<unsigned>
87 NumRecentlyUsedRegs("linearscan-skip-count",
88 cl::desc("Number of registers for linearscan to remember"
89 "to skip."),
90 cl::init(0),
91 cl::Hidden);
93 struct RALinScan : public MachineFunctionPass {
94 static char ID;
95 RALinScan() : MachineFunctionPass(ID) {
96 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
97 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
98 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
99 initializeRegisterCoalescerPass(
100 *PassRegistry::getPassRegistry());
101 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
102 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
103 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
104 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
105 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
106 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
108 // Initialize the queue to record recently-used registers.
109 if (NumRecentlyUsedRegs > 0)
110 RecentRegs.resize(NumRecentlyUsedRegs, 0);
111 RecentNext = RecentRegs.begin();
112 avoidWAW_ = 0;
115 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
116 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
117 private:
118 /// RelatedRegClasses - This structure is built the first time a function is
119 /// compiled, and keeps track of which register classes have registers that
120 /// belong to multiple classes or have aliases that are in other classes.
121 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
122 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
124 // NextReloadMap - For each register in the map, it maps to the another
125 // register which is defined by a reload from the same stack slot and
126 // both reloads are in the same basic block.
127 DenseMap<unsigned, unsigned> NextReloadMap;
129 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
130 // un-favored for allocation.
131 SmallSet<unsigned, 8> DowngradedRegs;
133 // DowngradeMap - A map from virtual registers to physical registers being
134 // downgraded for the virtual registers.
135 DenseMap<unsigned, unsigned> DowngradeMap;
137 MachineFunction* mf_;
138 MachineRegisterInfo* mri_;
139 const TargetMachine* tm_;
140 const TargetRegisterInfo* tri_;
141 const TargetInstrInfo* tii_;
142 BitVector allocatableRegs_;
143 BitVector reservedRegs_;
144 LiveIntervals* li_;
145 MachineLoopInfo *loopInfo;
146 RegisterClassInfo RegClassInfo;
148 /// handled_ - Intervals are added to the handled_ set in the order of their
149 /// start value. This is uses for backtracking.
150 std::vector<LiveInterval*> handled_;
152 /// fixed_ - Intervals that correspond to machine registers.
154 IntervalPtrs fixed_;
156 /// active_ - Intervals that are currently being processed, and which have a
157 /// live range active for the current point.
158 IntervalPtrs active_;
160 /// inactive_ - Intervals that are currently being processed, but which have
161 /// a hold at the current point.
162 IntervalPtrs inactive_;
164 typedef std::priority_queue<LiveInterval*,
165 SmallVector<LiveInterval*, 64>,
166 greater_ptr<LiveInterval> > IntervalHeap;
167 IntervalHeap unhandled_;
169 /// regUse_ - Tracks register usage.
170 SmallVector<unsigned, 32> regUse_;
171 SmallVector<unsigned, 32> regUseBackUp_;
173 /// vrm_ - Tracks register assignments.
174 VirtRegMap* vrm_;
176 std::auto_ptr<VirtRegRewriter> rewriter_;
178 std::auto_ptr<Spiller> spiller_;
180 // The queue of recently-used registers.
181 SmallVector<unsigned, 4> RecentRegs;
182 SmallVector<unsigned, 4>::iterator RecentNext;
184 // Last write-after-write register written.
185 unsigned avoidWAW_;
187 // Record that we just picked this register.
188 void recordRecentlyUsed(unsigned reg) {
189 assert(reg != 0 && "Recently used register is NOREG!");
190 if (!RecentRegs.empty()) {
191 *RecentNext++ = reg;
192 if (RecentNext == RecentRegs.end())
193 RecentNext = RecentRegs.begin();
197 public:
198 virtual const char* getPassName() const {
199 return "Linear Scan Register Allocator";
202 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
203 AU.setPreservesCFG();
204 AU.addRequired<AliasAnalysis>();
205 AU.addPreserved<AliasAnalysis>();
206 AU.addRequired<LiveIntervals>();
207 AU.addPreserved<SlotIndexes>();
208 if (StrongPHIElim)
209 AU.addRequiredID(StrongPHIEliminationID);
210 // Make sure PassManager knows which analyses to make available
211 // to coalescing and which analyses coalescing invalidates.
212 AU.addRequiredTransitive<RegisterCoalescer>();
213 AU.addRequired<CalculateSpillWeights>();
214 AU.addRequiredID(LiveStacksID);
215 AU.addPreservedID(LiveStacksID);
216 AU.addRequired<MachineLoopInfo>();
217 AU.addPreserved<MachineLoopInfo>();
218 AU.addRequired<VirtRegMap>();
219 AU.addPreserved<VirtRegMap>();
220 AU.addRequired<LiveDebugVariables>();
221 AU.addPreserved<LiveDebugVariables>();
222 AU.addRequiredID(MachineDominatorsID);
223 AU.addPreservedID(MachineDominatorsID);
224 MachineFunctionPass::getAnalysisUsage(AU);
227 /// runOnMachineFunction - register allocate the whole function
228 bool runOnMachineFunction(MachineFunction&);
230 // Determine if we skip this register due to its being recently used.
231 bool isRecentlyUsed(unsigned reg) const {
232 return reg == avoidWAW_ ||
233 std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
236 private:
237 /// linearScan - the linear scan algorithm
238 void linearScan();
240 /// initIntervalSets - initialize the interval sets.
242 void initIntervalSets();
244 /// processActiveIntervals - expire old intervals and move non-overlapping
245 /// ones to the inactive list.
246 void processActiveIntervals(SlotIndex CurPoint);
248 /// processInactiveIntervals - expire old intervals and move overlapping
249 /// ones to the active list.
250 void processInactiveIntervals(SlotIndex CurPoint);
252 /// hasNextReloadInterval - Return the next liveinterval that's being
253 /// defined by a reload from the same SS as the specified one.
254 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
256 /// DowngradeRegister - Downgrade a register for allocation.
257 void DowngradeRegister(LiveInterval *li, unsigned Reg);
259 /// UpgradeRegister - Upgrade a register for allocation.
260 void UpgradeRegister(unsigned Reg);
262 /// assignRegOrStackSlotAtInterval - assign a register if one
263 /// is available, or spill.
264 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
266 void updateSpillWeights(std::vector<float> &Weights,
267 unsigned reg, float weight,
268 const TargetRegisterClass *RC);
270 /// findIntervalsToSpill - Determine the intervals to spill for the
271 /// specified interval. It's passed the physical registers whose spill
272 /// weight is the lowest among all the registers whose live intervals
273 /// conflict with the interval.
274 void findIntervalsToSpill(LiveInterval *cur,
275 std::vector<std::pair<unsigned,float> > &Candidates,
276 unsigned NumCands,
277 SmallVector<LiveInterval*, 8> &SpillIntervals);
279 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
280 /// try to allocate the definition to the same register as the source,
281 /// if the register is not defined during the life time of the interval.
282 /// This eliminates a copy, and is used to coalesce copies which were not
283 /// coalesced away before allocation either due to dest and src being in
284 /// different register classes or because the coalescer was overly
285 /// conservative.
286 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
289 /// Register usage / availability tracking helpers.
292 void initRegUses() {
293 regUse_.resize(tri_->getNumRegs(), 0);
294 regUseBackUp_.resize(tri_->getNumRegs(), 0);
297 void finalizeRegUses() {
298 #ifndef NDEBUG
299 // Verify all the registers are "freed".
300 bool Error = false;
301 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
302 if (regUse_[i] != 0) {
303 dbgs() << tri_->getName(i) << " is still in use!\n";
304 Error = true;
307 if (Error)
308 llvm_unreachable(0);
309 #endif
310 regUse_.clear();
311 regUseBackUp_.clear();
314 void addRegUse(unsigned physReg) {
315 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
316 "should be physical register!");
317 ++regUse_[physReg];
318 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
319 ++regUse_[*as];
322 void delRegUse(unsigned physReg) {
323 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
324 "should be physical register!");
325 assert(regUse_[physReg] != 0);
326 --regUse_[physReg];
327 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
328 assert(regUse_[*as] != 0);
329 --regUse_[*as];
333 bool isRegAvail(unsigned physReg) const {
334 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
335 "should be physical register!");
336 return regUse_[physReg] == 0;
339 void backUpRegUses() {
340 regUseBackUp_ = regUse_;
343 void restoreRegUses() {
344 regUse_ = regUseBackUp_;
348 /// Register handling helpers.
351 /// getFreePhysReg - return a free physical register for this virtual
352 /// register interval if we have one, otherwise return 0.
353 unsigned getFreePhysReg(LiveInterval* cur);
354 unsigned getFreePhysReg(LiveInterval* cur,
355 const TargetRegisterClass *RC,
356 unsigned MaxInactiveCount,
357 SmallVector<unsigned, 256> &inactiveCounts,
358 bool SkipDGRegs);
360 /// getFirstNonReservedPhysReg - return the first non-reserved physical
361 /// register in the register class.
362 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
363 ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
364 assert(!O.empty() && "All registers reserved?!");
365 return O.front();
368 void ComputeRelatedRegClasses();
370 template <typename ItTy>
371 void printIntervals(const char* const str, ItTy i, ItTy e) const {
372 DEBUG({
373 if (str)
374 dbgs() << str << " intervals:\n";
376 for (; i != e; ++i) {
377 dbgs() << '\t' << *i->first << " -> ";
379 unsigned reg = i->first->reg;
380 if (TargetRegisterInfo::isVirtualRegister(reg))
381 reg = vrm_->getPhys(reg);
383 dbgs() << tri_->getName(reg) << '\n';
388 char RALinScan::ID = 0;
391 INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
392 "Linear Scan Register Allocator", false, false)
393 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
394 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
395 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
396 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
397 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
398 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
399 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
400 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
401 INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
402 "Linear Scan Register Allocator", false, false)
404 void RALinScan::ComputeRelatedRegClasses() {
405 // First pass, add all reg classes to the union, and determine at least one
406 // reg class that each register is in.
407 bool HasAliases = false;
408 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
409 E = tri_->regclass_end(); RCI != E; ++RCI) {
410 RelatedRegClasses.insert(*RCI);
411 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
412 I != E; ++I) {
413 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
415 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
416 if (PRC) {
417 // Already processed this register. Just make sure we know that
418 // multiple register classes share a register.
419 RelatedRegClasses.unionSets(PRC, *RCI);
420 } else {
421 PRC = *RCI;
426 // Second pass, now that we know conservatively what register classes each reg
427 // belongs to, add info about aliases. We don't need to do this for targets
428 // without register aliases.
429 if (HasAliases)
430 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
431 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
432 I != E; ++I)
433 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
434 const TargetRegisterClass *AliasClass =
435 OneClassForEachPhysReg.lookup(*AS);
436 if (AliasClass)
437 RelatedRegClasses.unionSets(I->second, AliasClass);
441 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
442 /// allocate the definition the same register as the source register if the
443 /// register is not defined during live time of the interval. If the interval is
444 /// killed by a copy, try to use the destination register. This eliminates a
445 /// copy. This is used to coalesce copies which were not coalesced away before
446 /// allocation either due to dest and src being in different register classes or
447 /// because the coalescer was overly conservative.
448 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
449 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
450 if ((Preference && Preference == Reg) || !cur.containsOneValue())
451 return Reg;
453 // We cannot handle complicated live ranges. Simple linear stuff only.
454 if (cur.ranges.size() != 1)
455 return Reg;
457 const LiveRange &range = cur.ranges.front();
459 VNInfo *vni = range.valno;
460 if (vni->isUnused() || !vni->def.isValid())
461 return Reg;
463 unsigned CandReg;
465 MachineInstr *CopyMI;
466 if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
467 // Defined by a copy, try to extend SrcReg forward
468 CandReg = CopyMI->getOperand(1).getReg();
469 else if (TrivCoalesceEnds &&
470 (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
471 CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
472 // Only used by a copy, try to extend DstReg backwards
473 CandReg = CopyMI->getOperand(0).getReg();
474 else
475 return Reg;
477 // If the target of the copy is a sub-register then don't coalesce.
478 if(CopyMI->getOperand(0).getSubReg())
479 return Reg;
482 if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
483 if (!vrm_->isAssignedReg(CandReg))
484 return Reg;
485 CandReg = vrm_->getPhys(CandReg);
487 if (Reg == CandReg)
488 return Reg;
490 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
491 if (!RC->contains(CandReg))
492 return Reg;
494 if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
495 return Reg;
497 // Try to coalesce.
498 DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
499 << '\n');
500 vrm_->clearVirt(cur.reg);
501 vrm_->assignVirt2Phys(cur.reg, CandReg);
503 ++NumCoalesce;
504 return CandReg;
507 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
508 mf_ = &fn;
509 mri_ = &fn.getRegInfo();
510 tm_ = &fn.getTarget();
511 tri_ = tm_->getRegisterInfo();
512 tii_ = tm_->getInstrInfo();
513 allocatableRegs_ = tri_->getAllocatableSet(fn);
514 reservedRegs_ = tri_->getReservedRegs(fn);
515 li_ = &getAnalysis<LiveIntervals>();
516 loopInfo = &getAnalysis<MachineLoopInfo>();
517 RegClassInfo.runOnMachineFunction(fn);
519 // We don't run the coalescer here because we have no reason to
520 // interact with it. If the coalescer requires interaction, it
521 // won't do anything. If it doesn't require interaction, we assume
522 // it was run as a separate pass.
524 // If this is the first function compiled, compute the related reg classes.
525 if (RelatedRegClasses.empty())
526 ComputeRelatedRegClasses();
528 // Also resize register usage trackers.
529 initRegUses();
531 vrm_ = &getAnalysis<VirtRegMap>();
532 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
534 spiller_.reset(createSpiller(*this, *mf_, *vrm_));
536 initIntervalSets();
538 linearScan();
540 // Rewrite spill code and update the PhysRegsUsed set.
541 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
543 // Write out new DBG_VALUE instructions.
544 getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
546 assert(unhandled_.empty() && "Unhandled live intervals remain!");
548 finalizeRegUses();
550 fixed_.clear();
551 active_.clear();
552 inactive_.clear();
553 handled_.clear();
554 NextReloadMap.clear();
555 DowngradedRegs.clear();
556 DowngradeMap.clear();
557 spiller_.reset(0);
559 return true;
562 /// initIntervalSets - initialize the interval sets.
564 void RALinScan::initIntervalSets()
566 assert(unhandled_.empty() && fixed_.empty() &&
567 active_.empty() && inactive_.empty() &&
568 "interval sets should be empty on initialization");
570 handled_.reserve(li_->getNumIntervals());
572 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
573 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
574 if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
575 mri_->setPhysRegUsed(i->second->reg);
576 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
578 } else {
579 if (i->second->empty()) {
580 assignRegOrStackSlotAtInterval(i->second);
582 else
583 unhandled_.push(i->second);
588 void RALinScan::linearScan() {
589 // linear scan algorithm
590 DEBUG({
591 dbgs() << "********** LINEAR SCAN **********\n"
592 << "********** Function: "
593 << mf_->getFunction()->getName() << '\n';
594 printIntervals("fixed", fixed_.begin(), fixed_.end());
597 while (!unhandled_.empty()) {
598 // pick the interval with the earliest start point
599 LiveInterval* cur = unhandled_.top();
600 unhandled_.pop();
601 ++NumIters;
602 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
604 assert(!cur->empty() && "Empty interval in unhandled set.");
606 processActiveIntervals(cur->beginIndex());
607 processInactiveIntervals(cur->beginIndex());
609 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
610 "Can only allocate virtual registers!");
612 // Allocating a virtual register. try to find a free
613 // physical register or spill an interval (possibly this one) in order to
614 // assign it one.
615 assignRegOrStackSlotAtInterval(cur);
617 DEBUG({
618 printIntervals("active", active_.begin(), active_.end());
619 printIntervals("inactive", inactive_.begin(), inactive_.end());
623 // Expire any remaining active intervals
624 while (!active_.empty()) {
625 IntervalPtr &IP = active_.back();
626 unsigned reg = IP.first->reg;
627 DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
628 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
629 "Can only allocate virtual registers!");
630 reg = vrm_->getPhys(reg);
631 delRegUse(reg);
632 active_.pop_back();
635 // Expire any remaining inactive intervals
636 DEBUG({
637 for (IntervalPtrs::reverse_iterator
638 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
639 dbgs() << "\tinterval " << *i->first << " expired\n";
641 inactive_.clear();
643 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
644 MachineFunction::iterator EntryMBB = mf_->begin();
645 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
646 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
647 LiveInterval &cur = *i->second;
648 unsigned Reg = 0;
649 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
650 if (isPhys)
651 Reg = cur.reg;
652 else if (vrm_->isAssignedReg(cur.reg))
653 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
654 if (!Reg)
655 continue;
656 // Ignore splited live intervals.
657 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
658 continue;
660 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
661 I != E; ++I) {
662 const LiveRange &LR = *I;
663 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
664 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
665 if (LiveInMBBs[i] != EntryMBB) {
666 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
667 "Adding a virtual register to livein set?");
668 LiveInMBBs[i]->addLiveIn(Reg);
670 LiveInMBBs.clear();
675 DEBUG(dbgs() << *vrm_);
677 // Look for physical registers that end up not being allocated even though
678 // register allocator had to spill other registers in its register class.
679 if (!vrm_->FindUnusedRegisters(li_))
680 return;
683 /// processActiveIntervals - expire old intervals and move non-overlapping ones
684 /// to the inactive list.
685 void RALinScan::processActiveIntervals(SlotIndex CurPoint)
687 DEBUG(dbgs() << "\tprocessing active intervals:\n");
689 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
690 LiveInterval *Interval = active_[i].first;
691 LiveInterval::iterator IntervalPos = active_[i].second;
692 unsigned reg = Interval->reg;
694 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
696 if (IntervalPos == Interval->end()) { // Remove expired intervals.
697 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
698 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
699 "Can only allocate virtual registers!");
700 reg = vrm_->getPhys(reg);
701 delRegUse(reg);
703 // Pop off the end of the list.
704 active_[i] = active_.back();
705 active_.pop_back();
706 --i; --e;
708 } else if (IntervalPos->start > CurPoint) {
709 // Move inactive intervals to inactive list.
710 DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
711 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
712 "Can only allocate virtual registers!");
713 reg = vrm_->getPhys(reg);
714 delRegUse(reg);
715 // add to inactive.
716 inactive_.push_back(std::make_pair(Interval, IntervalPos));
718 // Pop off the end of the list.
719 active_[i] = active_.back();
720 active_.pop_back();
721 --i; --e;
722 } else {
723 // Otherwise, just update the iterator position.
724 active_[i].second = IntervalPos;
729 /// processInactiveIntervals - expire old intervals and move overlapping
730 /// ones to the active list.
731 void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
733 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
735 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
736 LiveInterval *Interval = inactive_[i].first;
737 LiveInterval::iterator IntervalPos = inactive_[i].second;
738 unsigned reg = Interval->reg;
740 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
742 if (IntervalPos == Interval->end()) { // remove expired intervals.
743 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
745 // Pop off the end of the list.
746 inactive_[i] = inactive_.back();
747 inactive_.pop_back();
748 --i; --e;
749 } else if (IntervalPos->start <= CurPoint) {
750 // move re-activated intervals in active list
751 DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
752 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
753 "Can only allocate virtual registers!");
754 reg = vrm_->getPhys(reg);
755 addRegUse(reg);
756 // add to active
757 active_.push_back(std::make_pair(Interval, IntervalPos));
759 // Pop off the end of the list.
760 inactive_[i] = inactive_.back();
761 inactive_.pop_back();
762 --i; --e;
763 } else {
764 // Otherwise, just update the iterator position.
765 inactive_[i].second = IntervalPos;
770 /// updateSpillWeights - updates the spill weights of the specifed physical
771 /// register and its weight.
772 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
773 unsigned reg, float weight,
774 const TargetRegisterClass *RC) {
775 SmallSet<unsigned, 4> Processed;
776 SmallSet<unsigned, 4> SuperAdded;
777 SmallVector<unsigned, 4> Supers;
778 Weights[reg] += weight;
779 Processed.insert(reg);
780 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
781 Weights[*as] += weight;
782 Processed.insert(*as);
783 if (tri_->isSubRegister(*as, reg) &&
784 SuperAdded.insert(*as) &&
785 RC->contains(*as)) {
786 Supers.push_back(*as);
790 // If the alias is a super-register, and the super-register is in the
791 // register class we are trying to allocate. Then add the weight to all
792 // sub-registers of the super-register even if they are not aliases.
793 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
794 // bl should get the same spill weight otherwise it will be chosen
795 // as a spill candidate since spilling bh doesn't make ebx available.
796 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
797 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
798 if (!Processed.count(*sr))
799 Weights[*sr] += weight;
803 static
804 RALinScan::IntervalPtrs::iterator
805 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
806 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
807 I != E; ++I)
808 if (I->first == LI) return I;
809 return IP.end();
812 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
813 SlotIndex Point){
814 for (unsigned i = 0, e = V.size(); i != e; ++i) {
815 RALinScan::IntervalPtr &IP = V[i];
816 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
817 IP.second, Point);
818 if (I != IP.first->begin()) --I;
819 IP.second = I;
823 /// getConflictWeight - Return the number of conflicts between cur
824 /// live interval and defs and uses of Reg weighted by loop depthes.
825 static
826 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
827 MachineRegisterInfo *mri_,
828 MachineLoopInfo *loopInfo) {
829 float Conflicts = 0;
830 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
831 E = mri_->reg_end(); I != E; ++I) {
832 MachineInstr *MI = &*I;
833 if (cur->liveAt(li_->getInstructionIndex(MI))) {
834 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
835 Conflicts += std::pow(10.0f, (float)loopDepth);
838 return Conflicts;
841 /// findIntervalsToSpill - Determine the intervals to spill for the
842 /// specified interval. It's passed the physical registers whose spill
843 /// weight is the lowest among all the registers whose live intervals
844 /// conflict with the interval.
845 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
846 std::vector<std::pair<unsigned,float> > &Candidates,
847 unsigned NumCands,
848 SmallVector<LiveInterval*, 8> &SpillIntervals) {
849 // We have figured out the *best* register to spill. But there are other
850 // registers that are pretty good as well (spill weight within 3%). Spill
851 // the one that has fewest defs and uses that conflict with cur.
852 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
853 SmallVector<LiveInterval*, 8> SLIs[3];
855 DEBUG({
856 dbgs() << "\tConsidering " << NumCands << " candidates: ";
857 for (unsigned i = 0; i != NumCands; ++i)
858 dbgs() << tri_->getName(Candidates[i].first) << " ";
859 dbgs() << "\n";
862 // Calculate the number of conflicts of each candidate.
863 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
864 unsigned Reg = i->first->reg;
865 unsigned PhysReg = vrm_->getPhys(Reg);
866 if (!cur->overlapsFrom(*i->first, i->second))
867 continue;
868 for (unsigned j = 0; j < NumCands; ++j) {
869 unsigned Candidate = Candidates[j].first;
870 if (tri_->regsOverlap(PhysReg, Candidate)) {
871 if (NumCands > 1)
872 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
873 SLIs[j].push_back(i->first);
878 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
879 unsigned Reg = i->first->reg;
880 unsigned PhysReg = vrm_->getPhys(Reg);
881 if (!cur->overlapsFrom(*i->first, i->second-1))
882 continue;
883 for (unsigned j = 0; j < NumCands; ++j) {
884 unsigned Candidate = Candidates[j].first;
885 if (tri_->regsOverlap(PhysReg, Candidate)) {
886 if (NumCands > 1)
887 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
888 SLIs[j].push_back(i->first);
893 // Which is the best candidate?
894 unsigned BestCandidate = 0;
895 float MinConflicts = Conflicts[0];
896 for (unsigned i = 1; i != NumCands; ++i) {
897 if (Conflicts[i] < MinConflicts) {
898 BestCandidate = i;
899 MinConflicts = Conflicts[i];
903 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
904 std::back_inserter(SpillIntervals));
907 namespace {
908 struct WeightCompare {
909 private:
910 const RALinScan &Allocator;
912 public:
913 WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
915 typedef std::pair<unsigned, float> RegWeightPair;
916 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
917 return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
922 static bool weightsAreClose(float w1, float w2) {
923 if (!NewHeuristic)
924 return false;
926 float diff = w1 - w2;
927 if (diff <= 0.02f) // Within 0.02f
928 return true;
929 return (diff / w2) <= 0.05f; // Within 5%.
932 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
933 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
934 if (I == NextReloadMap.end())
935 return 0;
936 return &li_->getInterval(I->second);
939 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
940 for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
941 bool isNew = DowngradedRegs.insert(*AS);
942 (void)isNew; // Silence compiler warning.
943 assert(isNew && "Multiple reloads holding the same register?");
944 DowngradeMap.insert(std::make_pair(li->reg, *AS));
946 ++NumDowngrade;
949 void RALinScan::UpgradeRegister(unsigned Reg) {
950 if (Reg) {
951 DowngradedRegs.erase(Reg);
952 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
953 DowngradedRegs.erase(*AS);
957 namespace {
958 struct LISorter {
959 bool operator()(LiveInterval* A, LiveInterval* B) {
960 return A->beginIndex() < B->beginIndex();
965 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
966 /// spill.
967 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
968 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
969 DEBUG(dbgs() << "\tallocating current interval from "
970 << RC->getName() << ": ");
972 // This is an implicitly defined live interval, just assign any register.
973 if (cur->empty()) {
974 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
975 if (!physReg)
976 physReg = getFirstNonReservedPhysReg(RC);
977 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
978 // Note the register is not really in use.
979 vrm_->assignVirt2Phys(cur->reg, physReg);
980 return;
983 backUpRegUses();
985 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
986 SlotIndex StartPosition = cur->beginIndex();
987 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
989 // If start of this live interval is defined by a move instruction and its
990 // source is assigned a physical register that is compatible with the target
991 // register class, then we should try to assign it the same register.
992 // This can happen when the move is from a larger register class to a smaller
993 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
994 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
995 VNInfo *vni = cur->begin()->valno;
996 if (!vni->isUnused() && vni->def.isValid()) {
997 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
998 if (CopyMI && CopyMI->isCopy()) {
999 unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
1000 unsigned SrcReg = CopyMI->getOperand(1).getReg();
1001 unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
1002 unsigned Reg = 0;
1003 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1004 Reg = SrcReg;
1005 else if (vrm_->isAssignedReg(SrcReg))
1006 Reg = vrm_->getPhys(SrcReg);
1007 if (Reg) {
1008 if (SrcSubReg)
1009 Reg = tri_->getSubReg(Reg, SrcSubReg);
1010 if (DstSubReg)
1011 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
1012 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
1013 mri_->setRegAllocationHint(cur->reg, 0, Reg);
1019 // For every interval in inactive we overlap with, mark the
1020 // register as not free and update spill weights.
1021 for (IntervalPtrs::const_iterator i = inactive_.begin(),
1022 e = inactive_.end(); i != e; ++i) {
1023 unsigned Reg = i->first->reg;
1024 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
1025 "Can only allocate virtual registers!");
1026 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
1027 // If this is not in a related reg class to the register we're allocating,
1028 // don't check it.
1029 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1030 cur->overlapsFrom(*i->first, i->second-1)) {
1031 Reg = vrm_->getPhys(Reg);
1032 addRegUse(Reg);
1033 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
1037 // Speculatively check to see if we can get a register right now. If not,
1038 // we know we won't be able to by adding more constraints. If so, we can
1039 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1040 // is very bad (it contains all callee clobbered registers for any functions
1041 // with a call), so we want to avoid doing that if possible.
1042 unsigned physReg = getFreePhysReg(cur);
1043 unsigned BestPhysReg = physReg;
1044 if (physReg) {
1045 // We got a register. However, if it's in the fixed_ list, we might
1046 // conflict with it. Check to see if we conflict with it or any of its
1047 // aliases.
1048 SmallSet<unsigned, 8> RegAliases;
1049 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
1050 RegAliases.insert(*AS);
1052 bool ConflictsWithFixed = false;
1053 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1054 IntervalPtr &IP = fixed_[i];
1055 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
1056 // Okay, this reg is on the fixed list. Check to see if we actually
1057 // conflict.
1058 LiveInterval *I = IP.first;
1059 if (I->endIndex() > StartPosition) {
1060 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1061 IP.second = II;
1062 if (II != I->begin() && II->start > StartPosition)
1063 --II;
1064 if (cur->overlapsFrom(*I, II)) {
1065 ConflictsWithFixed = true;
1066 break;
1072 // Okay, the register picked by our speculative getFreePhysReg call turned
1073 // out to be in use. Actually add all of the conflicting fixed registers to
1074 // regUse_ so we can do an accurate query.
1075 if (ConflictsWithFixed) {
1076 // For every interval in fixed we overlap with, mark the register as not
1077 // free and update spill weights.
1078 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1079 IntervalPtr &IP = fixed_[i];
1080 LiveInterval *I = IP.first;
1082 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1083 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1084 I->endIndex() > StartPosition) {
1085 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1086 IP.second = II;
1087 if (II != I->begin() && II->start > StartPosition)
1088 --II;
1089 if (cur->overlapsFrom(*I, II)) {
1090 unsigned reg = I->reg;
1091 addRegUse(reg);
1092 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1097 // Using the newly updated regUse_ object, which includes conflicts in the
1098 // future, see if there are any registers available.
1099 physReg = getFreePhysReg(cur);
1103 // Restore the physical register tracker, removing information about the
1104 // future.
1105 restoreRegUses();
1107 // If we find a free register, we are done: assign this virtual to
1108 // the free physical register and add this interval to the active
1109 // list.
1110 if (physReg) {
1111 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
1112 assert(RC->contains(physReg) && "Invalid candidate");
1113 vrm_->assignVirt2Phys(cur->reg, physReg);
1114 addRegUse(physReg);
1115 active_.push_back(std::make_pair(cur, cur->begin()));
1116 handled_.push_back(cur);
1118 // Remember physReg for avoiding a write-after-write hazard in the next
1119 // instruction.
1120 if (AvoidWAWHazard &&
1121 tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
1122 avoidWAW_ = physReg;
1124 // "Upgrade" the physical register since it has been allocated.
1125 UpgradeRegister(physReg);
1126 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1127 // "Downgrade" physReg to try to keep physReg from being allocated until
1128 // the next reload from the same SS is allocated.
1129 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1130 DowngradeRegister(cur, physReg);
1132 return;
1134 DEBUG(dbgs() << "no free registers\n");
1136 // Compile the spill weights into an array that is better for scanning.
1137 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1138 for (std::vector<std::pair<unsigned, float> >::iterator
1139 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1140 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1142 // for each interval in active, update spill weights.
1143 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1144 i != e; ++i) {
1145 unsigned reg = i->first->reg;
1146 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1147 "Can only allocate virtual registers!");
1148 reg = vrm_->getPhys(reg);
1149 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1152 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1154 // Find a register to spill.
1155 float minWeight = HUGE_VALF;
1156 unsigned minReg = 0;
1158 bool Found = false;
1159 std::vector<std::pair<unsigned,float> > RegsWeights;
1160 ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
1161 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1162 for (unsigned i = 0; i != Order.size(); ++i) {
1163 unsigned reg = Order[i];
1164 float regWeight = SpillWeights[reg];
1165 // Skip recently allocated registers and reserved registers.
1166 if (minWeight > regWeight && !isRecentlyUsed(reg))
1167 Found = true;
1168 RegsWeights.push_back(std::make_pair(reg, regWeight));
1171 // If we didn't find a register that is spillable, try aliases?
1172 if (!Found) {
1173 for (unsigned i = 0; i != Order.size(); ++i) {
1174 unsigned reg = Order[i];
1175 // No need to worry about if the alias register size < regsize of RC.
1176 // We are going to spill all registers that alias it anyway.
1177 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1178 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1182 // Sort all potential spill candidates by weight.
1183 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
1184 minReg = RegsWeights[0].first;
1185 minWeight = RegsWeights[0].second;
1186 if (minWeight == HUGE_VALF) {
1187 // All registers must have inf weight. Just grab one!
1188 minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
1189 if (cur->weight == HUGE_VALF ||
1190 li_->getApproximateInstructionCount(*cur) == 0) {
1191 // Spill a physical register around defs and uses.
1192 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1193 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1194 // in fixed_. Reset them.
1195 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1196 IntervalPtr &IP = fixed_[i];
1197 LiveInterval *I = IP.first;
1198 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1199 IP.second = I->advanceTo(I->begin(), StartPosition);
1202 DowngradedRegs.clear();
1203 assignRegOrStackSlotAtInterval(cur);
1204 } else {
1205 assert(false && "Ran out of registers during register allocation!");
1206 report_fatal_error("Ran out of registers during register allocation!");
1208 return;
1212 // Find up to 3 registers to consider as spill candidates.
1213 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1214 while (LastCandidate > 1) {
1215 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1216 break;
1217 --LastCandidate;
1220 DEBUG({
1221 dbgs() << "\t\tregister(s) with min weight(s): ";
1223 for (unsigned i = 0; i != LastCandidate; ++i)
1224 dbgs() << tri_->getName(RegsWeights[i].first)
1225 << " (" << RegsWeights[i].second << ")\n";
1228 // If the current has the minimum weight, we need to spill it and
1229 // add any added intervals back to unhandled, and restart
1230 // linearscan.
1231 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1232 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
1233 SmallVector<LiveInterval*, 8> added;
1234 LiveRangeEdit LRE(*cur, added);
1235 spiller_->spill(LRE);
1237 std::sort(added.begin(), added.end(), LISorter());
1238 if (added.empty())
1239 return; // Early exit if all spills were folded.
1241 // Merge added with unhandled. Note that we have already sorted
1242 // intervals returned by addIntervalsForSpills by their starting
1243 // point.
1244 // This also update the NextReloadMap. That is, it adds mapping from a
1245 // register defined by a reload from SS to the next reload from SS in the
1246 // same basic block.
1247 MachineBasicBlock *LastReloadMBB = 0;
1248 LiveInterval *LastReload = 0;
1249 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1250 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1251 LiveInterval *ReloadLi = added[i];
1252 if (ReloadLi->weight == HUGE_VALF &&
1253 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1254 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1255 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1256 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1257 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1258 // Last reload of same SS is in the same MBB. We want to try to
1259 // allocate both reloads the same register and make sure the reg
1260 // isn't clobbered in between if at all possible.
1261 assert(LastReload->beginIndex() < ReloadIdx);
1262 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1264 LastReloadMBB = ReloadMBB;
1265 LastReload = ReloadLi;
1266 LastReloadSS = ReloadSS;
1268 unhandled_.push(ReloadLi);
1270 return;
1273 ++NumBacktracks;
1275 // Push the current interval back to unhandled since we are going
1276 // to re-run at least this iteration. Since we didn't modify it it
1277 // should go back right in the front of the list
1278 unhandled_.push(cur);
1280 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1281 "did not choose a register to spill?");
1283 // We spill all intervals aliasing the register with
1284 // minimum weight, rollback to the interval with the earliest
1285 // start point and let the linear scan algorithm run again
1286 SmallVector<LiveInterval*, 8> spillIs;
1288 // Determine which intervals have to be spilled.
1289 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1291 // Set of spilled vregs (used later to rollback properly)
1292 SmallSet<unsigned, 8> spilled;
1294 // The earliest start of a Spilled interval indicates up to where
1295 // in handled we need to roll back
1296 assert(!spillIs.empty() && "No spill intervals?");
1297 SlotIndex earliestStart = spillIs[0]->beginIndex();
1299 // Spill live intervals of virtual regs mapped to the physical register we
1300 // want to clear (and its aliases). We only spill those that overlap with the
1301 // current interval as the rest do not affect its allocation. we also keep
1302 // track of the earliest start of all spilled live intervals since this will
1303 // mark our rollback point.
1304 SmallVector<LiveInterval*, 8> added;
1305 while (!spillIs.empty()) {
1306 LiveInterval *sli = spillIs.back();
1307 spillIs.pop_back();
1308 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
1309 if (sli->beginIndex() < earliestStart)
1310 earliestStart = sli->beginIndex();
1311 LiveRangeEdit LRE(*sli, added, 0, &spillIs);
1312 spiller_->spill(LRE);
1313 spilled.insert(sli->reg);
1316 // Include any added intervals in earliestStart.
1317 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1318 SlotIndex SI = added[i]->beginIndex();
1319 if (SI < earliestStart)
1320 earliestStart = SI;
1323 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
1325 // Scan handled in reverse order up to the earliest start of a
1326 // spilled live interval and undo each one, restoring the state of
1327 // unhandled.
1328 while (!handled_.empty()) {
1329 LiveInterval* i = handled_.back();
1330 // If this interval starts before t we are done.
1331 if (!i->empty() && i->beginIndex() < earliestStart)
1332 break;
1333 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
1334 handled_.pop_back();
1336 // When undoing a live interval allocation we must know if it is active or
1337 // inactive to properly update regUse_ and the VirtRegMap.
1338 IntervalPtrs::iterator it;
1339 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1340 active_.erase(it);
1341 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1342 if (!spilled.count(i->reg))
1343 unhandled_.push(i);
1344 delRegUse(vrm_->getPhys(i->reg));
1345 vrm_->clearVirt(i->reg);
1346 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1347 inactive_.erase(it);
1348 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1349 if (!spilled.count(i->reg))
1350 unhandled_.push(i);
1351 vrm_->clearVirt(i->reg);
1352 } else {
1353 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1354 "Can only allocate virtual registers!");
1355 vrm_->clearVirt(i->reg);
1356 unhandled_.push(i);
1359 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1360 if (ii == DowngradeMap.end())
1361 // It interval has a preference, it must be defined by a copy. Clear the
1362 // preference now since the source interval allocation may have been
1363 // undone as well.
1364 mri_->setRegAllocationHint(i->reg, 0, 0);
1365 else {
1366 UpgradeRegister(ii->second);
1370 // Rewind the iterators in the active, inactive, and fixed lists back to the
1371 // point we reverted to.
1372 RevertVectorIteratorsTo(active_, earliestStart);
1373 RevertVectorIteratorsTo(inactive_, earliestStart);
1374 RevertVectorIteratorsTo(fixed_, earliestStart);
1376 // Scan the rest and undo each interval that expired after t and
1377 // insert it in active (the next iteration of the algorithm will
1378 // put it in inactive if required)
1379 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1380 LiveInterval *HI = handled_[i];
1381 if (!HI->expiredAt(earliestStart) &&
1382 HI->expiredAt(cur->beginIndex())) {
1383 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
1384 active_.push_back(std::make_pair(HI, HI->begin()));
1385 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1386 addRegUse(vrm_->getPhys(HI->reg));
1390 // Merge added with unhandled.
1391 // This also update the NextReloadMap. That is, it adds mapping from a
1392 // register defined by a reload from SS to the next reload from SS in the
1393 // same basic block.
1394 MachineBasicBlock *LastReloadMBB = 0;
1395 LiveInterval *LastReload = 0;
1396 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1397 std::sort(added.begin(), added.end(), LISorter());
1398 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1399 LiveInterval *ReloadLi = added[i];
1400 if (ReloadLi->weight == HUGE_VALF &&
1401 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1402 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1403 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1404 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1405 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1406 // Last reload of same SS is in the same MBB. We want to try to
1407 // allocate both reloads the same register and make sure the reg
1408 // isn't clobbered in between if at all possible.
1409 assert(LastReload->beginIndex() < ReloadIdx);
1410 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1412 LastReloadMBB = ReloadMBB;
1413 LastReload = ReloadLi;
1414 LastReloadSS = ReloadSS;
1416 unhandled_.push(ReloadLi);
1420 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1421 const TargetRegisterClass *RC,
1422 unsigned MaxInactiveCount,
1423 SmallVector<unsigned, 256> &inactiveCounts,
1424 bool SkipDGRegs) {
1425 unsigned FreeReg = 0;
1426 unsigned FreeRegInactiveCount = 0;
1428 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1429 // Resolve second part of the hint (if possible) given the current allocation.
1430 unsigned physReg = Hint.second;
1431 if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1432 physReg = vrm_->getPhys(physReg);
1434 ArrayRef<unsigned> Order;
1435 if (Hint.first)
1436 Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
1437 else
1438 Order = RegClassInfo.getOrder(RC);
1440 assert(!Order.empty() && "No allocatable register in this register class!");
1442 // Scan for the first available register.
1443 for (unsigned i = 0; i != Order.size(); ++i) {
1444 unsigned Reg = Order[i];
1445 // Ignore "downgraded" registers.
1446 if (SkipDGRegs && DowngradedRegs.count(Reg))
1447 continue;
1448 // Skip reserved registers.
1449 if (reservedRegs_.test(Reg))
1450 continue;
1451 // Skip recently allocated registers.
1452 if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1453 FreeReg = Reg;
1454 if (FreeReg < inactiveCounts.size())
1455 FreeRegInactiveCount = inactiveCounts[FreeReg];
1456 else
1457 FreeRegInactiveCount = 0;
1458 break;
1462 // If there are no free regs, or if this reg has the max inactive count,
1463 // return this register.
1464 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
1465 // Remember what register we picked so we can skip it next time.
1466 if (FreeReg != 0) recordRecentlyUsed(FreeReg);
1467 return FreeReg;
1470 // Continue scanning the registers, looking for the one with the highest
1471 // inactive count. Alkis found that this reduced register pressure very
1472 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1473 // reevaluated now.
1474 for (unsigned i = 0; i != Order.size(); ++i) {
1475 unsigned Reg = Order[i];
1476 // Ignore "downgraded" registers.
1477 if (SkipDGRegs && DowngradedRegs.count(Reg))
1478 continue;
1479 // Skip reserved registers.
1480 if (reservedRegs_.test(Reg))
1481 continue;
1482 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1483 FreeRegInactiveCount < inactiveCounts[Reg] &&
1484 (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1485 FreeReg = Reg;
1486 FreeRegInactiveCount = inactiveCounts[Reg];
1487 if (FreeRegInactiveCount == MaxInactiveCount)
1488 break; // We found the one with the max inactive count.
1492 // Remember what register we picked so we can skip it next time.
1493 recordRecentlyUsed(FreeReg);
1495 return FreeReg;
1498 /// getFreePhysReg - return a free physical register for this virtual register
1499 /// interval if we have one, otherwise return 0.
1500 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1501 SmallVector<unsigned, 256> inactiveCounts;
1502 unsigned MaxInactiveCount = 0;
1504 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1505 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1507 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1508 i != e; ++i) {
1509 unsigned reg = i->first->reg;
1510 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1511 "Can only allocate virtual registers!");
1513 // If this is not in a related reg class to the register we're allocating,
1514 // don't check it.
1515 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1516 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1517 reg = vrm_->getPhys(reg);
1518 if (inactiveCounts.size() <= reg)
1519 inactiveCounts.resize(reg+1);
1520 ++inactiveCounts[reg];
1521 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1525 // If copy coalescer has assigned a "preferred" register, check if it's
1526 // available first.
1527 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1528 if (Preference) {
1529 DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
1530 if (isRegAvail(Preference) &&
1531 RC->contains(Preference))
1532 return Preference;
1535 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1536 true);
1537 if (FreeReg)
1538 return FreeReg;
1539 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1542 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1543 return new RALinScan();