1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
19 #include "RegisterClassInfo.h"
21 #include "RegisterCoalescer.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Function.h"
24 #include "llvm/CodeGen/CalcSpillWeights.h"
25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/ADT/EquivalenceClasses.h"
37 #include "llvm/ADT/SmallSet.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
50 STATISTIC(NumIters
, "Number of iterations performed");
51 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
52 STATISTIC(NumCoalesce
, "Number of copies coalesced");
53 STATISTIC(NumDowngrade
, "Number of registers downgraded");
56 NewHeuristic("new-spilling-heuristic",
57 cl::desc("Use new spilling heuristic"),
58 cl::init(false), cl::Hidden
);
61 TrivCoalesceEnds("trivial-coalesce-ends",
62 cl::desc("Attempt trivial coalescing of interval ends"),
63 cl::init(false), cl::Hidden
);
66 AvoidWAWHazard("avoid-waw-hazard",
67 cl::desc("Avoid write-write hazards for some register classes"),
68 cl::init(false), cl::Hidden
);
70 static RegisterRegAlloc
71 linearscanRegAlloc("linearscan", "linear scan register allocator",
72 createLinearScanRegisterAllocator
);
75 // When we allocate a register, add it to a fixed-size queue of
76 // registers to skip in subsequent allocations. This trades a small
77 // amount of register pressure and increased spills for flexibility in
78 // the post-pass scheduler.
80 // Note that in a the number of registers used for reloading spills
81 // will be one greater than the value of this option.
83 // One big limitation of this is that it doesn't differentiate between
84 // different register classes. So on x86-64, if there is xmm register
85 // pressure, it can caused fewer GPRs to be held in the queue.
86 static cl::opt
<unsigned>
87 NumRecentlyUsedRegs("linearscan-skip-count",
88 cl::desc("Number of registers for linearscan to remember"
93 struct RALinScan
: public MachineFunctionPass
{
95 RALinScan() : MachineFunctionPass(ID
) {
96 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
97 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
98 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
99 initializeRegisterCoalescerPass(
100 *PassRegistry::getPassRegistry());
101 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
102 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
103 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
104 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
105 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
106 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
108 // Initialize the queue to record recently-used registers.
109 if (NumRecentlyUsedRegs
> 0)
110 RecentRegs
.resize(NumRecentlyUsedRegs
, 0);
111 RecentNext
= RecentRegs
.begin();
115 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
116 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
118 /// RelatedRegClasses - This structure is built the first time a function is
119 /// compiled, and keeps track of which register classes have registers that
120 /// belong to multiple classes or have aliases that are in other classes.
121 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
122 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
124 // NextReloadMap - For each register in the map, it maps to the another
125 // register which is defined by a reload from the same stack slot and
126 // both reloads are in the same basic block.
127 DenseMap
<unsigned, unsigned> NextReloadMap
;
129 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
130 // un-favored for allocation.
131 SmallSet
<unsigned, 8> DowngradedRegs
;
133 // DowngradeMap - A map from virtual registers to physical registers being
134 // downgraded for the virtual registers.
135 DenseMap
<unsigned, unsigned> DowngradeMap
;
137 MachineFunction
* mf_
;
138 MachineRegisterInfo
* mri_
;
139 const TargetMachine
* tm_
;
140 const TargetRegisterInfo
* tri_
;
141 const TargetInstrInfo
* tii_
;
142 BitVector allocatableRegs_
;
143 BitVector reservedRegs_
;
145 MachineLoopInfo
*loopInfo
;
146 RegisterClassInfo RegClassInfo
;
148 /// handled_ - Intervals are added to the handled_ set in the order of their
149 /// start value. This is uses for backtracking.
150 std::vector
<LiveInterval
*> handled_
;
152 /// fixed_ - Intervals that correspond to machine registers.
156 /// active_ - Intervals that are currently being processed, and which have a
157 /// live range active for the current point.
158 IntervalPtrs active_
;
160 /// inactive_ - Intervals that are currently being processed, but which have
161 /// a hold at the current point.
162 IntervalPtrs inactive_
;
164 typedef std::priority_queue
<LiveInterval
*,
165 SmallVector
<LiveInterval
*, 64>,
166 greater_ptr
<LiveInterval
> > IntervalHeap
;
167 IntervalHeap unhandled_
;
169 /// regUse_ - Tracks register usage.
170 SmallVector
<unsigned, 32> regUse_
;
171 SmallVector
<unsigned, 32> regUseBackUp_
;
173 /// vrm_ - Tracks register assignments.
176 std::auto_ptr
<VirtRegRewriter
> rewriter_
;
178 std::auto_ptr
<Spiller
> spiller_
;
180 // The queue of recently-used registers.
181 SmallVector
<unsigned, 4> RecentRegs
;
182 SmallVector
<unsigned, 4>::iterator RecentNext
;
184 // Last write-after-write register written.
187 // Record that we just picked this register.
188 void recordRecentlyUsed(unsigned reg
) {
189 assert(reg
!= 0 && "Recently used register is NOREG!");
190 if (!RecentRegs
.empty()) {
192 if (RecentNext
== RecentRegs
.end())
193 RecentNext
= RecentRegs
.begin();
198 virtual const char* getPassName() const {
199 return "Linear Scan Register Allocator";
202 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
203 AU
.setPreservesCFG();
204 AU
.addRequired
<AliasAnalysis
>();
205 AU
.addPreserved
<AliasAnalysis
>();
206 AU
.addRequired
<LiveIntervals
>();
207 AU
.addPreserved
<SlotIndexes
>();
209 AU
.addRequiredID(StrongPHIEliminationID
);
210 // Make sure PassManager knows which analyses to make available
211 // to coalescing and which analyses coalescing invalidates.
212 AU
.addRequiredTransitive
<RegisterCoalescer
>();
213 AU
.addRequired
<CalculateSpillWeights
>();
214 AU
.addRequiredID(LiveStacksID
);
215 AU
.addPreservedID(LiveStacksID
);
216 AU
.addRequired
<MachineLoopInfo
>();
217 AU
.addPreserved
<MachineLoopInfo
>();
218 AU
.addRequired
<VirtRegMap
>();
219 AU
.addPreserved
<VirtRegMap
>();
220 AU
.addRequired
<LiveDebugVariables
>();
221 AU
.addPreserved
<LiveDebugVariables
>();
222 AU
.addRequiredID(MachineDominatorsID
);
223 AU
.addPreservedID(MachineDominatorsID
);
224 MachineFunctionPass::getAnalysisUsage(AU
);
227 /// runOnMachineFunction - register allocate the whole function
228 bool runOnMachineFunction(MachineFunction
&);
230 // Determine if we skip this register due to its being recently used.
231 bool isRecentlyUsed(unsigned reg
) const {
232 return reg
== avoidWAW_
||
233 std::find(RecentRegs
.begin(), RecentRegs
.end(), reg
) != RecentRegs
.end();
237 /// linearScan - the linear scan algorithm
240 /// initIntervalSets - initialize the interval sets.
242 void initIntervalSets();
244 /// processActiveIntervals - expire old intervals and move non-overlapping
245 /// ones to the inactive list.
246 void processActiveIntervals(SlotIndex CurPoint
);
248 /// processInactiveIntervals - expire old intervals and move overlapping
249 /// ones to the active list.
250 void processInactiveIntervals(SlotIndex CurPoint
);
252 /// hasNextReloadInterval - Return the next liveinterval that's being
253 /// defined by a reload from the same SS as the specified one.
254 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
256 /// DowngradeRegister - Downgrade a register for allocation.
257 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
259 /// UpgradeRegister - Upgrade a register for allocation.
260 void UpgradeRegister(unsigned Reg
);
262 /// assignRegOrStackSlotAtInterval - assign a register if one
263 /// is available, or spill.
264 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
266 void updateSpillWeights(std::vector
<float> &Weights
,
267 unsigned reg
, float weight
,
268 const TargetRegisterClass
*RC
);
270 /// findIntervalsToSpill - Determine the intervals to spill for the
271 /// specified interval. It's passed the physical registers whose spill
272 /// weight is the lowest among all the registers whose live intervals
273 /// conflict with the interval.
274 void findIntervalsToSpill(LiveInterval
*cur
,
275 std::vector
<std::pair
<unsigned,float> > &Candidates
,
277 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
279 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
280 /// try to allocate the definition to the same register as the source,
281 /// if the register is not defined during the life time of the interval.
282 /// This eliminates a copy, and is used to coalesce copies which were not
283 /// coalesced away before allocation either due to dest and src being in
284 /// different register classes or because the coalescer was overly
286 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
289 /// Register usage / availability tracking helpers.
293 regUse_
.resize(tri_
->getNumRegs(), 0);
294 regUseBackUp_
.resize(tri_
->getNumRegs(), 0);
297 void finalizeRegUses() {
299 // Verify all the registers are "freed".
301 for (unsigned i
= 0, e
= tri_
->getNumRegs(); i
!= e
; ++i
) {
302 if (regUse_
[i
] != 0) {
303 dbgs() << tri_
->getName(i
) << " is still in use!\n";
311 regUseBackUp_
.clear();
314 void addRegUse(unsigned physReg
) {
315 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
316 "should be physical register!");
318 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
)
322 void delRegUse(unsigned physReg
) {
323 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
324 "should be physical register!");
325 assert(regUse_
[physReg
] != 0);
327 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
) {
328 assert(regUse_
[*as
] != 0);
333 bool isRegAvail(unsigned physReg
) const {
334 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
335 "should be physical register!");
336 return regUse_
[physReg
] == 0;
339 void backUpRegUses() {
340 regUseBackUp_
= regUse_
;
343 void restoreRegUses() {
344 regUse_
= regUseBackUp_
;
348 /// Register handling helpers.
351 /// getFreePhysReg - return a free physical register for this virtual
352 /// register interval if we have one, otherwise return 0.
353 unsigned getFreePhysReg(LiveInterval
* cur
);
354 unsigned getFreePhysReg(LiveInterval
* cur
,
355 const TargetRegisterClass
*RC
,
356 unsigned MaxInactiveCount
,
357 SmallVector
<unsigned, 256> &inactiveCounts
,
360 /// getFirstNonReservedPhysReg - return the first non-reserved physical
361 /// register in the register class.
362 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass
*RC
) {
363 ArrayRef
<unsigned> O
= RegClassInfo
.getOrder(RC
);
364 assert(!O
.empty() && "All registers reserved?!");
368 void ComputeRelatedRegClasses();
370 template <typename ItTy
>
371 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
374 dbgs() << str
<< " intervals:\n";
376 for (; i
!= e
; ++i
) {
377 dbgs() << '\t' << *i
->first
<< " -> ";
379 unsigned reg
= i
->first
->reg
;
380 if (TargetRegisterInfo::isVirtualRegister(reg
))
381 reg
= vrm_
->getPhys(reg
);
383 dbgs() << tri_
->getName(reg
) << '\n';
388 char RALinScan::ID
= 0;
391 INITIALIZE_PASS_BEGIN(RALinScan
, "linearscan-regalloc",
392 "Linear Scan Register Allocator", false, false)
393 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
394 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination
)
395 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights
)
396 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
397 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
398 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
399 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer
)
400 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
401 INITIALIZE_PASS_END(RALinScan
, "linearscan-regalloc",
402 "Linear Scan Register Allocator", false, false)
404 void RALinScan::ComputeRelatedRegClasses() {
405 // First pass, add all reg classes to the union, and determine at least one
406 // reg class that each register is in.
407 bool HasAliases
= false;
408 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
409 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
410 RelatedRegClasses
.insert(*RCI
);
411 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
413 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
415 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
417 // Already processed this register. Just make sure we know that
418 // multiple register classes share a register.
419 RelatedRegClasses
.unionSets(PRC
, *RCI
);
426 // Second pass, now that we know conservatively what register classes each reg
427 // belongs to, add info about aliases. We don't need to do this for targets
428 // without register aliases.
430 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
431 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
433 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
) {
434 const TargetRegisterClass
*AliasClass
=
435 OneClassForEachPhysReg
.lookup(*AS
);
437 RelatedRegClasses
.unionSets(I
->second
, AliasClass
);
441 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
442 /// allocate the definition the same register as the source register if the
443 /// register is not defined during live time of the interval. If the interval is
444 /// killed by a copy, try to use the destination register. This eliminates a
445 /// copy. This is used to coalesce copies which were not coalesced away before
446 /// allocation either due to dest and src being in different register classes or
447 /// because the coalescer was overly conservative.
448 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
449 unsigned Preference
= vrm_
->getRegAllocPref(cur
.reg
);
450 if ((Preference
&& Preference
== Reg
) || !cur
.containsOneValue())
453 // We cannot handle complicated live ranges. Simple linear stuff only.
454 if (cur
.ranges
.size() != 1)
457 const LiveRange
&range
= cur
.ranges
.front();
459 VNInfo
*vni
= range
.valno
;
460 if (vni
->isUnused() || !vni
->def
.isValid())
465 MachineInstr
*CopyMI
;
466 if ((CopyMI
= li_
->getInstructionFromIndex(vni
->def
)) && CopyMI
->isCopy())
467 // Defined by a copy, try to extend SrcReg forward
468 CandReg
= CopyMI
->getOperand(1).getReg();
469 else if (TrivCoalesceEnds
&&
470 (CopyMI
= li_
->getInstructionFromIndex(range
.end
.getBaseIndex())) &&
471 CopyMI
->isCopy() && cur
.reg
== CopyMI
->getOperand(1).getReg())
472 // Only used by a copy, try to extend DstReg backwards
473 CandReg
= CopyMI
->getOperand(0).getReg();
477 // If the target of the copy is a sub-register then don't coalesce.
478 if(CopyMI
->getOperand(0).getSubReg())
482 if (TargetRegisterInfo::isVirtualRegister(CandReg
)) {
483 if (!vrm_
->isAssignedReg(CandReg
))
485 CandReg
= vrm_
->getPhys(CandReg
);
490 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
491 if (!RC
->contains(CandReg
))
494 if (li_
->conflictsWithPhysReg(cur
, *vrm_
, CandReg
))
498 DEBUG(dbgs() << "Coalescing: " << cur
<< " -> " << tri_
->getName(CandReg
)
500 vrm_
->clearVirt(cur
.reg
);
501 vrm_
->assignVirt2Phys(cur
.reg
, CandReg
);
507 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
509 mri_
= &fn
.getRegInfo();
510 tm_
= &fn
.getTarget();
511 tri_
= tm_
->getRegisterInfo();
512 tii_
= tm_
->getInstrInfo();
513 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
514 reservedRegs_
= tri_
->getReservedRegs(fn
);
515 li_
= &getAnalysis
<LiveIntervals
>();
516 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
517 RegClassInfo
.runOnMachineFunction(fn
);
519 // We don't run the coalescer here because we have no reason to
520 // interact with it. If the coalescer requires interaction, it
521 // won't do anything. If it doesn't require interaction, we assume
522 // it was run as a separate pass.
524 // If this is the first function compiled, compute the related reg classes.
525 if (RelatedRegClasses
.empty())
526 ComputeRelatedRegClasses();
528 // Also resize register usage trackers.
531 vrm_
= &getAnalysis
<VirtRegMap
>();
532 if (!rewriter_
.get()) rewriter_
.reset(createVirtRegRewriter());
534 spiller_
.reset(createSpiller(*this, *mf_
, *vrm_
));
540 // Rewrite spill code and update the PhysRegsUsed set.
541 rewriter_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
543 // Write out new DBG_VALUE instructions.
544 getAnalysis
<LiveDebugVariables
>().emitDebugValues(vrm_
);
546 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
554 NextReloadMap
.clear();
555 DowngradedRegs
.clear();
556 DowngradeMap
.clear();
562 /// initIntervalSets - initialize the interval sets.
564 void RALinScan::initIntervalSets()
566 assert(unhandled_
.empty() && fixed_
.empty() &&
567 active_
.empty() && inactive_
.empty() &&
568 "interval sets should be empty on initialization");
570 handled_
.reserve(li_
->getNumIntervals());
572 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
573 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
574 if (!i
->second
->empty() && allocatableRegs_
.test(i
->second
->reg
)) {
575 mri_
->setPhysRegUsed(i
->second
->reg
);
576 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
579 if (i
->second
->empty()) {
580 assignRegOrStackSlotAtInterval(i
->second
);
583 unhandled_
.push(i
->second
);
588 void RALinScan::linearScan() {
589 // linear scan algorithm
591 dbgs() << "********** LINEAR SCAN **********\n"
592 << "********** Function: "
593 << mf_
->getFunction()->getName() << '\n';
594 printIntervals("fixed", fixed_
.begin(), fixed_
.end());
597 while (!unhandled_
.empty()) {
598 // pick the interval with the earliest start point
599 LiveInterval
* cur
= unhandled_
.top();
602 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur
<< '\n');
604 assert(!cur
->empty() && "Empty interval in unhandled set.");
606 processActiveIntervals(cur
->beginIndex());
607 processInactiveIntervals(cur
->beginIndex());
609 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
610 "Can only allocate virtual registers!");
612 // Allocating a virtual register. try to find a free
613 // physical register or spill an interval (possibly this one) in order to
615 assignRegOrStackSlotAtInterval(cur
);
618 printIntervals("active", active_
.begin(), active_
.end());
619 printIntervals("inactive", inactive_
.begin(), inactive_
.end());
623 // Expire any remaining active intervals
624 while (!active_
.empty()) {
625 IntervalPtr
&IP
= active_
.back();
626 unsigned reg
= IP
.first
->reg
;
627 DEBUG(dbgs() << "\tinterval " << *IP
.first
<< " expired\n");
628 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
629 "Can only allocate virtual registers!");
630 reg
= vrm_
->getPhys(reg
);
635 // Expire any remaining inactive intervals
637 for (IntervalPtrs::reverse_iterator
638 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
639 dbgs() << "\tinterval " << *i
->first
<< " expired\n";
643 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
644 MachineFunction::iterator EntryMBB
= mf_
->begin();
645 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
646 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
647 LiveInterval
&cur
= *i
->second
;
649 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
652 else if (vrm_
->isAssignedReg(cur
.reg
))
653 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
656 // Ignore splited live intervals.
657 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
660 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
662 const LiveRange
&LR
= *I
;
663 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
664 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
665 if (LiveInMBBs
[i
] != EntryMBB
) {
666 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) &&
667 "Adding a virtual register to livein set?");
668 LiveInMBBs
[i
]->addLiveIn(Reg
);
675 DEBUG(dbgs() << *vrm_
);
677 // Look for physical registers that end up not being allocated even though
678 // register allocator had to spill other registers in its register class.
679 if (!vrm_
->FindUnusedRegisters(li_
))
683 /// processActiveIntervals - expire old intervals and move non-overlapping ones
684 /// to the inactive list.
685 void RALinScan::processActiveIntervals(SlotIndex CurPoint
)
687 DEBUG(dbgs() << "\tprocessing active intervals:\n");
689 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
690 LiveInterval
*Interval
= active_
[i
].first
;
691 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
692 unsigned reg
= Interval
->reg
;
694 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
696 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
697 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
698 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
699 "Can only allocate virtual registers!");
700 reg
= vrm_
->getPhys(reg
);
703 // Pop off the end of the list.
704 active_
[i
] = active_
.back();
708 } else if (IntervalPos
->start
> CurPoint
) {
709 // Move inactive intervals to inactive list.
710 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " inactive\n");
711 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
712 "Can only allocate virtual registers!");
713 reg
= vrm_
->getPhys(reg
);
716 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
718 // Pop off the end of the list.
719 active_
[i
] = active_
.back();
723 // Otherwise, just update the iterator position.
724 active_
[i
].second
= IntervalPos
;
729 /// processInactiveIntervals - expire old intervals and move overlapping
730 /// ones to the active list.
731 void RALinScan::processInactiveIntervals(SlotIndex CurPoint
)
733 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
735 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
736 LiveInterval
*Interval
= inactive_
[i
].first
;
737 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
738 unsigned reg
= Interval
->reg
;
740 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
742 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
743 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
745 // Pop off the end of the list.
746 inactive_
[i
] = inactive_
.back();
747 inactive_
.pop_back();
749 } else if (IntervalPos
->start
<= CurPoint
) {
750 // move re-activated intervals in active list
751 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " active\n");
752 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
753 "Can only allocate virtual registers!");
754 reg
= vrm_
->getPhys(reg
);
757 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
759 // Pop off the end of the list.
760 inactive_
[i
] = inactive_
.back();
761 inactive_
.pop_back();
764 // Otherwise, just update the iterator position.
765 inactive_
[i
].second
= IntervalPos
;
770 /// updateSpillWeights - updates the spill weights of the specifed physical
771 /// register and its weight.
772 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
773 unsigned reg
, float weight
,
774 const TargetRegisterClass
*RC
) {
775 SmallSet
<unsigned, 4> Processed
;
776 SmallSet
<unsigned, 4> SuperAdded
;
777 SmallVector
<unsigned, 4> Supers
;
778 Weights
[reg
] += weight
;
779 Processed
.insert(reg
);
780 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
781 Weights
[*as
] += weight
;
782 Processed
.insert(*as
);
783 if (tri_
->isSubRegister(*as
, reg
) &&
784 SuperAdded
.insert(*as
) &&
786 Supers
.push_back(*as
);
790 // If the alias is a super-register, and the super-register is in the
791 // register class we are trying to allocate. Then add the weight to all
792 // sub-registers of the super-register even if they are not aliases.
793 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
794 // bl should get the same spill weight otherwise it will be chosen
795 // as a spill candidate since spilling bh doesn't make ebx available.
796 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
797 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
798 if (!Processed
.count(*sr
))
799 Weights
[*sr
] += weight
;
804 RALinScan::IntervalPtrs::iterator
805 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
806 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
808 if (I
->first
== LI
) return I
;
812 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
,
814 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
815 RALinScan::IntervalPtr
&IP
= V
[i
];
816 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
818 if (I
!= IP
.first
->begin()) --I
;
823 /// getConflictWeight - Return the number of conflicts between cur
824 /// live interval and defs and uses of Reg weighted by loop depthes.
826 float getConflictWeight(LiveInterval
*cur
, unsigned Reg
, LiveIntervals
*li_
,
827 MachineRegisterInfo
*mri_
,
828 MachineLoopInfo
*loopInfo
) {
830 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
831 E
= mri_
->reg_end(); I
!= E
; ++I
) {
832 MachineInstr
*MI
= &*I
;
833 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
834 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
835 Conflicts
+= std::pow(10.0f
, (float)loopDepth
);
841 /// findIntervalsToSpill - Determine the intervals to spill for the
842 /// specified interval. It's passed the physical registers whose spill
843 /// weight is the lowest among all the registers whose live intervals
844 /// conflict with the interval.
845 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
846 std::vector
<std::pair
<unsigned,float> > &Candidates
,
848 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
849 // We have figured out the *best* register to spill. But there are other
850 // registers that are pretty good as well (spill weight within 3%). Spill
851 // the one that has fewest defs and uses that conflict with cur.
852 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
853 SmallVector
<LiveInterval
*, 8> SLIs
[3];
856 dbgs() << "\tConsidering " << NumCands
<< " candidates: ";
857 for (unsigned i
= 0; i
!= NumCands
; ++i
)
858 dbgs() << tri_
->getName(Candidates
[i
].first
) << " ";
862 // Calculate the number of conflicts of each candidate.
863 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
864 unsigned Reg
= i
->first
->reg
;
865 unsigned PhysReg
= vrm_
->getPhys(Reg
);
866 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
868 for (unsigned j
= 0; j
< NumCands
; ++j
) {
869 unsigned Candidate
= Candidates
[j
].first
;
870 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
872 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
873 SLIs
[j
].push_back(i
->first
);
878 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
879 unsigned Reg
= i
->first
->reg
;
880 unsigned PhysReg
= vrm_
->getPhys(Reg
);
881 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
883 for (unsigned j
= 0; j
< NumCands
; ++j
) {
884 unsigned Candidate
= Candidates
[j
].first
;
885 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
887 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
888 SLIs
[j
].push_back(i
->first
);
893 // Which is the best candidate?
894 unsigned BestCandidate
= 0;
895 float MinConflicts
= Conflicts
[0];
896 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
897 if (Conflicts
[i
] < MinConflicts
) {
899 MinConflicts
= Conflicts
[i
];
903 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
904 std::back_inserter(SpillIntervals
));
908 struct WeightCompare
{
910 const RALinScan
&Allocator
;
913 WeightCompare(const RALinScan
&Alloc
) : Allocator(Alloc
) {}
915 typedef std::pair
<unsigned, float> RegWeightPair
;
916 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
917 return LHS
.second
< RHS
.second
&& !Allocator
.isRecentlyUsed(LHS
.first
);
922 static bool weightsAreClose(float w1
, float w2
) {
926 float diff
= w1
- w2
;
927 if (diff
<= 0.02f
) // Within 0.02f
929 return (diff
/ w2
) <= 0.05f
; // Within 5%.
932 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
933 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
934 if (I
== NextReloadMap
.end())
936 return &li_
->getInterval(I
->second
);
939 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
940 for (const unsigned *AS
= tri_
->getOverlaps(Reg
); *AS
; ++AS
) {
941 bool isNew
= DowngradedRegs
.insert(*AS
);
942 (void)isNew
; // Silence compiler warning.
943 assert(isNew
&& "Multiple reloads holding the same register?");
944 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
949 void RALinScan::UpgradeRegister(unsigned Reg
) {
951 DowngradedRegs
.erase(Reg
);
952 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
953 DowngradedRegs
.erase(*AS
);
959 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
960 return A
->beginIndex() < B
->beginIndex();
965 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
967 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
) {
968 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
969 DEBUG(dbgs() << "\tallocating current interval from "
970 << RC
->getName() << ": ");
972 // This is an implicitly defined live interval, just assign any register.
974 unsigned physReg
= vrm_
->getRegAllocPref(cur
->reg
);
976 physReg
= getFirstNonReservedPhysReg(RC
);
977 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
978 // Note the register is not really in use.
979 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
985 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
986 SlotIndex StartPosition
= cur
->beginIndex();
987 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
989 // If start of this live interval is defined by a move instruction and its
990 // source is assigned a physical register that is compatible with the target
991 // register class, then we should try to assign it the same register.
992 // This can happen when the move is from a larger register class to a smaller
993 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
994 if (!vrm_
->getRegAllocPref(cur
->reg
) && cur
->hasAtLeastOneValue()) {
995 VNInfo
*vni
= cur
->begin()->valno
;
996 if (!vni
->isUnused() && vni
->def
.isValid()) {
997 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
998 if (CopyMI
&& CopyMI
->isCopy()) {
999 unsigned DstSubReg
= CopyMI
->getOperand(0).getSubReg();
1000 unsigned SrcReg
= CopyMI
->getOperand(1).getReg();
1001 unsigned SrcSubReg
= CopyMI
->getOperand(1).getSubReg();
1003 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
1005 else if (vrm_
->isAssignedReg(SrcReg
))
1006 Reg
= vrm_
->getPhys(SrcReg
);
1009 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
1011 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
1012 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
1013 mri_
->setRegAllocationHint(cur
->reg
, 0, Reg
);
1019 // For every interval in inactive we overlap with, mark the
1020 // register as not free and update spill weights.
1021 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
1022 e
= inactive_
.end(); i
!= e
; ++i
) {
1023 unsigned Reg
= i
->first
->reg
;
1024 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
1025 "Can only allocate virtual registers!");
1026 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
1027 // If this is not in a related reg class to the register we're allocating,
1029 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1030 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
1031 Reg
= vrm_
->getPhys(Reg
);
1033 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
1037 // Speculatively check to see if we can get a register right now. If not,
1038 // we know we won't be able to by adding more constraints. If so, we can
1039 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1040 // is very bad (it contains all callee clobbered registers for any functions
1041 // with a call), so we want to avoid doing that if possible.
1042 unsigned physReg
= getFreePhysReg(cur
);
1043 unsigned BestPhysReg
= physReg
;
1045 // We got a register. However, if it's in the fixed_ list, we might
1046 // conflict with it. Check to see if we conflict with it or any of its
1048 SmallSet
<unsigned, 8> RegAliases
;
1049 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
1050 RegAliases
.insert(*AS
);
1052 bool ConflictsWithFixed
= false;
1053 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1054 IntervalPtr
&IP
= fixed_
[i
];
1055 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
1056 // Okay, this reg is on the fixed list. Check to see if we actually
1058 LiveInterval
*I
= IP
.first
;
1059 if (I
->endIndex() > StartPosition
) {
1060 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1062 if (II
!= I
->begin() && II
->start
> StartPosition
)
1064 if (cur
->overlapsFrom(*I
, II
)) {
1065 ConflictsWithFixed
= true;
1072 // Okay, the register picked by our speculative getFreePhysReg call turned
1073 // out to be in use. Actually add all of the conflicting fixed registers to
1074 // regUse_ so we can do an accurate query.
1075 if (ConflictsWithFixed
) {
1076 // For every interval in fixed we overlap with, mark the register as not
1077 // free and update spill weights.
1078 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1079 IntervalPtr
&IP
= fixed_
[i
];
1080 LiveInterval
*I
= IP
.first
;
1082 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
1083 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1084 I
->endIndex() > StartPosition
) {
1085 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1087 if (II
!= I
->begin() && II
->start
> StartPosition
)
1089 if (cur
->overlapsFrom(*I
, II
)) {
1090 unsigned reg
= I
->reg
;
1092 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
1097 // Using the newly updated regUse_ object, which includes conflicts in the
1098 // future, see if there are any registers available.
1099 physReg
= getFreePhysReg(cur
);
1103 // Restore the physical register tracker, removing information about the
1107 // If we find a free register, we are done: assign this virtual to
1108 // the free physical register and add this interval to the active
1111 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
1112 assert(RC
->contains(physReg
) && "Invalid candidate");
1113 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
1115 active_
.push_back(std::make_pair(cur
, cur
->begin()));
1116 handled_
.push_back(cur
);
1118 // Remember physReg for avoiding a write-after-write hazard in the next
1120 if (AvoidWAWHazard
&&
1121 tri_
->avoidWriteAfterWrite(mri_
->getRegClass(cur
->reg
)))
1122 avoidWAW_
= physReg
;
1124 // "Upgrade" the physical register since it has been allocated.
1125 UpgradeRegister(physReg
);
1126 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
1127 // "Downgrade" physReg to try to keep physReg from being allocated until
1128 // the next reload from the same SS is allocated.
1129 mri_
->setRegAllocationHint(NextReloadLI
->reg
, 0, physReg
);
1130 DowngradeRegister(cur
, physReg
);
1134 DEBUG(dbgs() << "no free registers\n");
1136 // Compile the spill weights into an array that is better for scanning.
1137 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
1138 for (std::vector
<std::pair
<unsigned, float> >::iterator
1139 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
1140 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
1142 // for each interval in active, update spill weights.
1143 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
1145 unsigned reg
= i
->first
->reg
;
1146 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1147 "Can only allocate virtual registers!");
1148 reg
= vrm_
->getPhys(reg
);
1149 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
1152 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur
<< ":\n");
1154 // Find a register to spill.
1155 float minWeight
= HUGE_VALF
;
1156 unsigned minReg
= 0;
1159 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
1160 ArrayRef
<unsigned> Order
= RegClassInfo
.getOrder(RC
);
1161 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
1162 for (unsigned i
= 0; i
!= Order
.size(); ++i
) {
1163 unsigned reg
= Order
[i
];
1164 float regWeight
= SpillWeights
[reg
];
1165 // Skip recently allocated registers and reserved registers.
1166 if (minWeight
> regWeight
&& !isRecentlyUsed(reg
))
1168 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
1171 // If we didn't find a register that is spillable, try aliases?
1173 for (unsigned i
= 0; i
!= Order
.size(); ++i
) {
1174 unsigned reg
= Order
[i
];
1175 // No need to worry about if the alias register size < regsize of RC.
1176 // We are going to spill all registers that alias it anyway.
1177 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
1178 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
1182 // Sort all potential spill candidates by weight.
1183 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare(*this));
1184 minReg
= RegsWeights
[0].first
;
1185 minWeight
= RegsWeights
[0].second
;
1186 if (minWeight
== HUGE_VALF
) {
1187 // All registers must have inf weight. Just grab one!
1188 minReg
= BestPhysReg
? BestPhysReg
: getFirstNonReservedPhysReg(RC
);
1189 if (cur
->weight
== HUGE_VALF
||
1190 li_
->getApproximateInstructionCount(*cur
) == 0) {
1191 // Spill a physical register around defs and uses.
1192 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
1193 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1194 // in fixed_. Reset them.
1195 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1196 IntervalPtr
&IP
= fixed_
[i
];
1197 LiveInterval
*I
= IP
.first
;
1198 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
1199 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
1202 DowngradedRegs
.clear();
1203 assignRegOrStackSlotAtInterval(cur
);
1205 assert(false && "Ran out of registers during register allocation!");
1206 report_fatal_error("Ran out of registers during register allocation!");
1212 // Find up to 3 registers to consider as spill candidates.
1213 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1214 while (LastCandidate
> 1) {
1215 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1221 dbgs() << "\t\tregister(s) with min weight(s): ";
1223 for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1224 dbgs() << tri_
->getName(RegsWeights
[i
].first
)
1225 << " (" << RegsWeights
[i
].second
<< ")\n";
1228 // If the current has the minimum weight, we need to spill it and
1229 // add any added intervals back to unhandled, and restart
1231 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1232 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur
<< '\n');
1233 SmallVector
<LiveInterval
*, 8> added
;
1234 LiveRangeEdit
LRE(*cur
, added
);
1235 spiller_
->spill(LRE
);
1237 std::sort(added
.begin(), added
.end(), LISorter());
1239 return; // Early exit if all spills were folded.
1241 // Merge added with unhandled. Note that we have already sorted
1242 // intervals returned by addIntervalsForSpills by their starting
1244 // This also update the NextReloadMap. That is, it adds mapping from a
1245 // register defined by a reload from SS to the next reload from SS in the
1246 // same basic block.
1247 MachineBasicBlock
*LastReloadMBB
= 0;
1248 LiveInterval
*LastReload
= 0;
1249 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1250 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1251 LiveInterval
*ReloadLi
= added
[i
];
1252 if (ReloadLi
->weight
== HUGE_VALF
&&
1253 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1254 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1255 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1256 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1257 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1258 // Last reload of same SS is in the same MBB. We want to try to
1259 // allocate both reloads the same register and make sure the reg
1260 // isn't clobbered in between if at all possible.
1261 assert(LastReload
->beginIndex() < ReloadIdx
);
1262 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1264 LastReloadMBB
= ReloadMBB
;
1265 LastReload
= ReloadLi
;
1266 LastReloadSS
= ReloadSS
;
1268 unhandled_
.push(ReloadLi
);
1275 // Push the current interval back to unhandled since we are going
1276 // to re-run at least this iteration. Since we didn't modify it it
1277 // should go back right in the front of the list
1278 unhandled_
.push(cur
);
1280 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1281 "did not choose a register to spill?");
1283 // We spill all intervals aliasing the register with
1284 // minimum weight, rollback to the interval with the earliest
1285 // start point and let the linear scan algorithm run again
1286 SmallVector
<LiveInterval
*, 8> spillIs
;
1288 // Determine which intervals have to be spilled.
1289 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1291 // Set of spilled vregs (used later to rollback properly)
1292 SmallSet
<unsigned, 8> spilled
;
1294 // The earliest start of a Spilled interval indicates up to where
1295 // in handled we need to roll back
1296 assert(!spillIs
.empty() && "No spill intervals?");
1297 SlotIndex earliestStart
= spillIs
[0]->beginIndex();
1299 // Spill live intervals of virtual regs mapped to the physical register we
1300 // want to clear (and its aliases). We only spill those that overlap with the
1301 // current interval as the rest do not affect its allocation. we also keep
1302 // track of the earliest start of all spilled live intervals since this will
1303 // mark our rollback point.
1304 SmallVector
<LiveInterval
*, 8> added
;
1305 while (!spillIs
.empty()) {
1306 LiveInterval
*sli
= spillIs
.back();
1308 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli
<< '\n');
1309 if (sli
->beginIndex() < earliestStart
)
1310 earliestStart
= sli
->beginIndex();
1311 LiveRangeEdit
LRE(*sli
, added
, 0, &spillIs
);
1312 spiller_
->spill(LRE
);
1313 spilled
.insert(sli
->reg
);
1316 // Include any added intervals in earliestStart.
1317 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1318 SlotIndex SI
= added
[i
]->beginIndex();
1319 if (SI
< earliestStart
)
1323 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart
<< '\n');
1325 // Scan handled in reverse order up to the earliest start of a
1326 // spilled live interval and undo each one, restoring the state of
1328 while (!handled_
.empty()) {
1329 LiveInterval
* i
= handled_
.back();
1330 // If this interval starts before t we are done.
1331 if (!i
->empty() && i
->beginIndex() < earliestStart
)
1333 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i
<< '\n');
1334 handled_
.pop_back();
1336 // When undoing a live interval allocation we must know if it is active or
1337 // inactive to properly update regUse_ and the VirtRegMap.
1338 IntervalPtrs::iterator it
;
1339 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1341 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1342 if (!spilled
.count(i
->reg
))
1344 delRegUse(vrm_
->getPhys(i
->reg
));
1345 vrm_
->clearVirt(i
->reg
);
1346 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1347 inactive_
.erase(it
);
1348 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1349 if (!spilled
.count(i
->reg
))
1351 vrm_
->clearVirt(i
->reg
);
1353 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1354 "Can only allocate virtual registers!");
1355 vrm_
->clearVirt(i
->reg
);
1359 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1360 if (ii
== DowngradeMap
.end())
1361 // It interval has a preference, it must be defined by a copy. Clear the
1362 // preference now since the source interval allocation may have been
1364 mri_
->setRegAllocationHint(i
->reg
, 0, 0);
1366 UpgradeRegister(ii
->second
);
1370 // Rewind the iterators in the active, inactive, and fixed lists back to the
1371 // point we reverted to.
1372 RevertVectorIteratorsTo(active_
, earliestStart
);
1373 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1374 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1376 // Scan the rest and undo each interval that expired after t and
1377 // insert it in active (the next iteration of the algorithm will
1378 // put it in inactive if required)
1379 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1380 LiveInterval
*HI
= handled_
[i
];
1381 if (!HI
->expiredAt(earliestStart
) &&
1382 HI
->expiredAt(cur
->beginIndex())) {
1383 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI
<< '\n');
1384 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1385 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1386 addRegUse(vrm_
->getPhys(HI
->reg
));
1390 // Merge added with unhandled.
1391 // This also update the NextReloadMap. That is, it adds mapping from a
1392 // register defined by a reload from SS to the next reload from SS in the
1393 // same basic block.
1394 MachineBasicBlock
*LastReloadMBB
= 0;
1395 LiveInterval
*LastReload
= 0;
1396 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1397 std::sort(added
.begin(), added
.end(), LISorter());
1398 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1399 LiveInterval
*ReloadLi
= added
[i
];
1400 if (ReloadLi
->weight
== HUGE_VALF
&&
1401 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1402 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1403 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1404 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1405 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1406 // Last reload of same SS is in the same MBB. We want to try to
1407 // allocate both reloads the same register and make sure the reg
1408 // isn't clobbered in between if at all possible.
1409 assert(LastReload
->beginIndex() < ReloadIdx
);
1410 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1412 LastReloadMBB
= ReloadMBB
;
1413 LastReload
= ReloadLi
;
1414 LastReloadSS
= ReloadSS
;
1416 unhandled_
.push(ReloadLi
);
1420 unsigned RALinScan::getFreePhysReg(LiveInterval
* cur
,
1421 const TargetRegisterClass
*RC
,
1422 unsigned MaxInactiveCount
,
1423 SmallVector
<unsigned, 256> &inactiveCounts
,
1425 unsigned FreeReg
= 0;
1426 unsigned FreeRegInactiveCount
= 0;
1428 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(cur
->reg
);
1429 // Resolve second part of the hint (if possible) given the current allocation.
1430 unsigned physReg
= Hint
.second
;
1431 if (TargetRegisterInfo::isVirtualRegister(physReg
) && vrm_
->hasPhys(physReg
))
1432 physReg
= vrm_
->getPhys(physReg
);
1434 ArrayRef
<unsigned> Order
;
1436 Order
= tri_
->getRawAllocationOrder(RC
, Hint
.first
, physReg
, *mf_
);
1438 Order
= RegClassInfo
.getOrder(RC
);
1440 assert(!Order
.empty() && "No allocatable register in this register class!");
1442 // Scan for the first available register.
1443 for (unsigned i
= 0; i
!= Order
.size(); ++i
) {
1444 unsigned Reg
= Order
[i
];
1445 // Ignore "downgraded" registers.
1446 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1448 // Skip reserved registers.
1449 if (reservedRegs_
.test(Reg
))
1451 // Skip recently allocated registers.
1452 if (isRegAvail(Reg
) && (!SkipDGRegs
|| !isRecentlyUsed(Reg
))) {
1454 if (FreeReg
< inactiveCounts
.size())
1455 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1457 FreeRegInactiveCount
= 0;
1462 // If there are no free regs, or if this reg has the max inactive count,
1463 // return this register.
1464 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
) {
1465 // Remember what register we picked so we can skip it next time.
1466 if (FreeReg
!= 0) recordRecentlyUsed(FreeReg
);
1470 // Continue scanning the registers, looking for the one with the highest
1471 // inactive count. Alkis found that this reduced register pressure very
1472 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1474 for (unsigned i
= 0; i
!= Order
.size(); ++i
) {
1475 unsigned Reg
= Order
[i
];
1476 // Ignore "downgraded" registers.
1477 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1479 // Skip reserved registers.
1480 if (reservedRegs_
.test(Reg
))
1482 if (isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1483 FreeRegInactiveCount
< inactiveCounts
[Reg
] &&
1484 (!SkipDGRegs
|| !isRecentlyUsed(Reg
))) {
1486 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1487 if (FreeRegInactiveCount
== MaxInactiveCount
)
1488 break; // We found the one with the max inactive count.
1492 // Remember what register we picked so we can skip it next time.
1493 recordRecentlyUsed(FreeReg
);
1498 /// getFreePhysReg - return a free physical register for this virtual register
1499 /// interval if we have one, otherwise return 0.
1500 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1501 SmallVector
<unsigned, 256> inactiveCounts
;
1502 unsigned MaxInactiveCount
= 0;
1504 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1505 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1507 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1509 unsigned reg
= i
->first
->reg
;
1510 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1511 "Can only allocate virtual registers!");
1513 // If this is not in a related reg class to the register we're allocating,
1515 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1516 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1517 reg
= vrm_
->getPhys(reg
);
1518 if (inactiveCounts
.size() <= reg
)
1519 inactiveCounts
.resize(reg
+1);
1520 ++inactiveCounts
[reg
];
1521 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1525 // If copy coalescer has assigned a "preferred" register, check if it's
1527 unsigned Preference
= vrm_
->getRegAllocPref(cur
->reg
);
1529 DEBUG(dbgs() << "(preferred: " << tri_
->getName(Preference
) << ") ");
1530 if (isRegAvail(Preference
) &&
1531 RC
->contains(Preference
))
1535 unsigned FreeReg
= getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
,
1539 return getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
, false);
1542 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1543 return new RALinScan();