Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blob308150fe54a6fe199054b94a3652649c4e7078e9
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/DebugInfo.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/Target/TargetFrameLowering.h"
20 #include "llvm/Target/TargetLowering.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 using namespace llvm;
36 //===----------------------------------------------------------------------===//
37 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38 /// hacks on it until the target machine can handle it. This involves
39 /// eliminating value sizes the machine cannot handle (promoting small sizes to
40 /// large sizes or splitting up large values into small values) as well as
41 /// eliminating operations the machine cannot handle.
42 ///
43 /// This code also does a small amount of optimization and recognition of idioms
44 /// as part of its processing. For example, if a target does not support a
45 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46 /// will attempt merge setcc and brc instructions into brcc's.
47 ///
48 namespace {
49 class SelectionDAGLegalize {
50 const TargetMachine &TM;
51 const TargetLowering &TLI;
52 SelectionDAG &DAG;
54 // Libcall insertion helpers.
56 /// LastCALLSEQ - This keeps track of the CALLSEQ_END node that has been
57 /// legalized. We use this to ensure that calls are properly serialized
58 /// against each other, including inserted libcalls.
59 SmallVector<SDValue, 8> LastCALLSEQ;
61 enum LegalizeAction {
62 Legal, // The target natively supports this operation.
63 Promote, // This operation should be executed in a larger type.
64 Expand // Try to expand this to other ops, otherwise use a libcall.
67 /// ValueTypeActions - This is a bitvector that contains two bits for each
68 /// value type, where the two bits correspond to the LegalizeAction enum.
69 /// This can be queried with "getTypeAction(VT)".
70 TargetLowering::ValueTypeActionImpl ValueTypeActions;
72 /// LegalizedNodes - For nodes that are of legal width, and that have more
73 /// than one use, this map indicates what regularized operand to use. This
74 /// allows us to avoid legalizing the same thing more than once.
75 DenseMap<SDValue, SDValue> LegalizedNodes;
77 void AddLegalizedOperand(SDValue From, SDValue To) {
78 LegalizedNodes.insert(std::make_pair(From, To));
79 // If someone requests legalization of the new node, return itself.
80 if (From != To)
81 LegalizedNodes.insert(std::make_pair(To, To));
83 // Transfer SDDbgValues.
84 DAG.TransferDbgValues(From, To);
87 public:
88 explicit SelectionDAGLegalize(SelectionDAG &DAG);
90 /// getTypeAction - Return how we should legalize values of this type, either
91 /// it is already legal or we need to expand it into multiple registers of
92 /// smaller integer type, or we need to promote it to a larger type.
93 LegalizeAction getTypeAction(EVT VT) const {
94 return (LegalizeAction)TLI.getTypeAction(*DAG.getContext(), VT);
97 /// isTypeLegal - Return true if this type is legal on this target.
98 ///
99 bool isTypeLegal(EVT VT) const {
100 return getTypeAction(VT) == Legal;
103 void LegalizeDAG();
105 private:
106 /// LegalizeOp - We know that the specified value has a legal type.
107 /// Recursively ensure that the operands have legal types, then return the
108 /// result.
109 SDValue LegalizeOp(SDValue O);
111 SDValue OptimizeFloatStore(StoreSDNode *ST);
113 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
114 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
115 /// is necessary to spill the vector being inserted into to memory, perform
116 /// the insert there, and then read the result back.
117 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
118 SDValue Idx, DebugLoc dl);
119 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
120 SDValue Idx, DebugLoc dl);
122 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
123 /// performs the same shuffe in terms of order or result bytes, but on a type
124 /// whose vector element type is narrower than the original shuffle type.
125 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
126 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
127 SDValue N1, SDValue N2,
128 SmallVectorImpl<int> &Mask) const;
130 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
131 SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
133 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
134 DebugLoc dl);
136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
137 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
138 unsigned NumOps, bool isSigned, DebugLoc dl);
140 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
141 SDNode *Node, bool isSigned);
142 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144 RTLIB::Libcall Call_PPCF128);
145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
146 RTLIB::Libcall Call_I8,
147 RTLIB::Libcall Call_I16,
148 RTLIB::Libcall Call_I32,
149 RTLIB::Libcall Call_I64,
150 RTLIB::Libcall Call_I128);
151 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
153 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
154 SDValue ExpandBUILD_VECTOR(SDNode *Node);
155 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
156 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
157 SmallVectorImpl<SDValue> &Results);
158 SDValue ExpandFCOPYSIGN(SDNode *Node);
159 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
160 DebugLoc dl);
161 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
162 DebugLoc dl);
163 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
164 DebugLoc dl);
166 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
167 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
169 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
170 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
171 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
173 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
175 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
176 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178 SDValue getLastCALLSEQ() { return LastCALLSEQ.back(); }
179 void setLastCALLSEQ(const SDValue s) { LastCALLSEQ.back() = s; }
180 void pushLastCALLSEQ(SDValue s) {
181 LastCALLSEQ.push_back(s);
183 void popLastCALLSEQ() {
184 LastCALLSEQ.pop_back();
189 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
190 /// performs the same shuffe in terms of order or result bytes, but on a type
191 /// whose vector element type is narrower than the original shuffle type.
192 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
193 SDValue
194 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
195 SDValue N1, SDValue N2,
196 SmallVectorImpl<int> &Mask) const {
197 unsigned NumMaskElts = VT.getVectorNumElements();
198 unsigned NumDestElts = NVT.getVectorNumElements();
199 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
201 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
203 if (NumEltsGrowth == 1)
204 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
206 SmallVector<int, 8> NewMask;
207 for (unsigned i = 0; i != NumMaskElts; ++i) {
208 int Idx = Mask[i];
209 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
210 if (Idx < 0)
211 NewMask.push_back(-1);
212 else
213 NewMask.push_back(Idx * NumEltsGrowth + j);
216 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
217 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
218 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
221 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
222 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
223 DAG(dag),
224 ValueTypeActions(TLI.getValueTypeActions()) {
225 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
226 "Too many value types for ValueTypeActions to hold!");
229 void SelectionDAGLegalize::LegalizeDAG() {
230 pushLastCALLSEQ(DAG.getEntryNode());
232 // The legalize process is inherently a bottom-up recursive process (users
233 // legalize their uses before themselves). Given infinite stack space, we
234 // could just start legalizing on the root and traverse the whole graph. In
235 // practice however, this causes us to run out of stack space on large basic
236 // blocks. To avoid this problem, compute an ordering of the nodes where each
237 // node is only legalized after all of its operands are legalized.
238 DAG.AssignTopologicalOrder();
239 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
240 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
241 LegalizeOp(SDValue(I, 0));
243 // Finally, it's possible the root changed. Get the new root.
244 SDValue OldRoot = DAG.getRoot();
245 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
246 DAG.setRoot(LegalizedNodes[OldRoot]);
248 LegalizedNodes.clear();
250 // Remove dead nodes now.
251 DAG.RemoveDeadNodes();
255 /// FindCallEndFromCallStart - Given a chained node that is part of a call
256 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
257 static SDNode *FindCallEndFromCallStart(SDNode *Node, int depth = 0) {
258 int next_depth = depth;
259 if (Node->getOpcode() == ISD::CALLSEQ_START)
260 next_depth = depth + 1;
261 if (Node->getOpcode() == ISD::CALLSEQ_END) {
262 assert(depth > 0 && "negative depth!");
263 if (depth == 1)
264 return Node;
265 else
266 next_depth = depth - 1;
268 if (Node->use_empty())
269 return 0; // No CallSeqEnd
271 // The chain is usually at the end.
272 SDValue TheChain(Node, Node->getNumValues()-1);
273 if (TheChain.getValueType() != MVT::Other) {
274 // Sometimes it's at the beginning.
275 TheChain = SDValue(Node, 0);
276 if (TheChain.getValueType() != MVT::Other) {
277 // Otherwise, hunt for it.
278 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
279 if (Node->getValueType(i) == MVT::Other) {
280 TheChain = SDValue(Node, i);
281 break;
284 // Otherwise, we walked into a node without a chain.
285 if (TheChain.getValueType() != MVT::Other)
286 return 0;
290 for (SDNode::use_iterator UI = Node->use_begin(),
291 E = Node->use_end(); UI != E; ++UI) {
293 // Make sure to only follow users of our token chain.
294 SDNode *User = *UI;
295 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
296 if (User->getOperand(i) == TheChain)
297 if (SDNode *Result = FindCallEndFromCallStart(User, next_depth))
298 return Result;
300 return 0;
303 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
304 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
305 static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
306 int nested = 0;
307 assert(Node && "Didn't find callseq_start for a call??");
308 while (Node->getOpcode() != ISD::CALLSEQ_START || nested) {
309 Node = Node->getOperand(0).getNode();
310 assert(Node->getOperand(0).getValueType() == MVT::Other &&
311 "Node doesn't have a token chain argument!");
312 switch (Node->getOpcode()) {
313 default:
314 break;
315 case ISD::CALLSEQ_START:
316 if (!nested)
317 return Node;
318 Node = Node->getOperand(0).getNode();
319 nested--;
320 break;
321 case ISD::CALLSEQ_END:
322 nested++;
323 break;
326 return (Node->getOpcode() == ISD::CALLSEQ_START) ? Node : 0;
329 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
330 /// see if any uses can reach Dest. If no dest operands can get to dest,
331 /// legalize them, legalize ourself, and return false, otherwise, return true.
333 /// Keep track of the nodes we fine that actually do lead to Dest in
334 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
336 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
337 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
338 if (N == Dest) return true; // N certainly leads to Dest :)
340 // If we've already processed this node and it does lead to Dest, there is no
341 // need to reprocess it.
342 if (NodesLeadingTo.count(N)) return true;
344 // If the first result of this node has been already legalized, then it cannot
345 // reach N.
346 if (LegalizedNodes.count(SDValue(N, 0))) return false;
348 // Okay, this node has not already been legalized. Check and legalize all
349 // operands. If none lead to Dest, then we can legalize this node.
350 bool OperandsLeadToDest = false;
351 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
352 OperandsLeadToDest |= // If an operand leads to Dest, so do we.
353 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
354 NodesLeadingTo);
356 if (OperandsLeadToDest) {
357 NodesLeadingTo.insert(N);
358 return true;
361 // Okay, this node looks safe, legalize it and return false.
362 LegalizeOp(SDValue(N, 0));
363 return false;
366 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
367 /// a load from the constant pool.
368 static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
369 SelectionDAG &DAG, const TargetLowering &TLI) {
370 bool Extend = false;
371 DebugLoc dl = CFP->getDebugLoc();
373 // If a FP immediate is precise when represented as a float and if the
374 // target can do an extending load from float to double, we put it into
375 // the constant pool as a float, even if it's is statically typed as a
376 // double. This shrinks FP constants and canonicalizes them for targets where
377 // an FP extending load is the same cost as a normal load (such as on the x87
378 // fp stack or PPC FP unit).
379 EVT VT = CFP->getValueType(0);
380 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
381 if (!UseCP) {
382 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
383 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
384 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
387 EVT OrigVT = VT;
388 EVT SVT = VT;
389 while (SVT != MVT::f32) {
390 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
391 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
392 // Only do this if the target has a native EXTLOAD instruction from
393 // smaller type.
394 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
395 TLI.ShouldShrinkFPConstant(OrigVT)) {
396 const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
397 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
398 VT = SVT;
399 Extend = true;
403 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
404 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
405 if (Extend)
406 return DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
407 DAG.getEntryNode(),
408 CPIdx, MachinePointerInfo::getConstantPool(),
409 VT, false, false, Alignment);
410 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
411 MachinePointerInfo::getConstantPool(), false, false,
412 Alignment);
415 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
416 static
417 SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
418 const TargetLowering &TLI) {
419 SDValue Chain = ST->getChain();
420 SDValue Ptr = ST->getBasePtr();
421 SDValue Val = ST->getValue();
422 EVT VT = Val.getValueType();
423 int Alignment = ST->getAlignment();
424 DebugLoc dl = ST->getDebugLoc();
425 if (ST->getMemoryVT().isFloatingPoint() ||
426 ST->getMemoryVT().isVector()) {
427 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
428 if (TLI.isTypeLegal(intVT)) {
429 // Expand to a bitconvert of the value to the integer type of the
430 // same size, then a (misaligned) int store.
431 // FIXME: Does not handle truncating floating point stores!
432 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
433 return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
434 ST->isVolatile(), ST->isNonTemporal(), Alignment);
436 // Do a (aligned) store to a stack slot, then copy from the stack slot
437 // to the final destination using (unaligned) integer loads and stores.
438 EVT StoredVT = ST->getMemoryVT();
439 EVT RegVT =
440 TLI.getRegisterType(*DAG.getContext(),
441 EVT::getIntegerVT(*DAG.getContext(),
442 StoredVT.getSizeInBits()));
443 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
444 unsigned RegBytes = RegVT.getSizeInBits() / 8;
445 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
447 // Make sure the stack slot is also aligned for the register type.
448 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
450 // Perform the original store, only redirected to the stack slot.
451 SDValue Store = DAG.getTruncStore(Chain, dl,
452 Val, StackPtr, MachinePointerInfo(),
453 StoredVT, false, false, 0);
454 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
455 SmallVector<SDValue, 8> Stores;
456 unsigned Offset = 0;
458 // Do all but one copies using the full register width.
459 for (unsigned i = 1; i < NumRegs; i++) {
460 // Load one integer register's worth from the stack slot.
461 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
462 MachinePointerInfo(),
463 false, false, 0);
464 // Store it to the final location. Remember the store.
465 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
466 ST->getPointerInfo().getWithOffset(Offset),
467 ST->isVolatile(), ST->isNonTemporal(),
468 MinAlign(ST->getAlignment(), Offset)));
469 // Increment the pointers.
470 Offset += RegBytes;
471 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
472 Increment);
473 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
476 // The last store may be partial. Do a truncating store. On big-endian
477 // machines this requires an extending load from the stack slot to ensure
478 // that the bits are in the right place.
479 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
480 8 * (StoredBytes - Offset));
482 // Load from the stack slot.
483 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
484 MachinePointerInfo(),
485 MemVT, false, false, 0);
487 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
488 ST->getPointerInfo()
489 .getWithOffset(Offset),
490 MemVT, ST->isVolatile(),
491 ST->isNonTemporal(),
492 MinAlign(ST->getAlignment(), Offset)));
493 // The order of the stores doesn't matter - say it with a TokenFactor.
494 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
495 Stores.size());
497 assert(ST->getMemoryVT().isInteger() &&
498 !ST->getMemoryVT().isVector() &&
499 "Unaligned store of unknown type.");
500 // Get the half-size VT
501 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
502 int NumBits = NewStoredVT.getSizeInBits();
503 int IncrementSize = NumBits / 8;
505 // Divide the stored value in two parts.
506 SDValue ShiftAmount = DAG.getConstant(NumBits,
507 TLI.getShiftAmountTy(Val.getValueType()));
508 SDValue Lo = Val;
509 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
511 // Store the two parts
512 SDValue Store1, Store2;
513 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
514 ST->getPointerInfo(), NewStoredVT,
515 ST->isVolatile(), ST->isNonTemporal(), Alignment);
516 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
517 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
518 Alignment = MinAlign(Alignment, IncrementSize);
519 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
520 ST->getPointerInfo().getWithOffset(IncrementSize),
521 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
522 Alignment);
524 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
527 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
528 static
529 SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
530 const TargetLowering &TLI) {
531 SDValue Chain = LD->getChain();
532 SDValue Ptr = LD->getBasePtr();
533 EVT VT = LD->getValueType(0);
534 EVT LoadedVT = LD->getMemoryVT();
535 DebugLoc dl = LD->getDebugLoc();
536 if (VT.isFloatingPoint() || VT.isVector()) {
537 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
538 if (TLI.isTypeLegal(intVT)) {
539 // Expand to a (misaligned) integer load of the same size,
540 // then bitconvert to floating point or vector.
541 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
542 LD->isVolatile(),
543 LD->isNonTemporal(), LD->getAlignment());
544 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
545 if (VT.isFloatingPoint() && LoadedVT != VT)
546 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
548 SDValue Ops[] = { Result, Chain };
549 return DAG.getMergeValues(Ops, 2, dl);
552 // Copy the value to a (aligned) stack slot using (unaligned) integer
553 // loads and stores, then do a (aligned) load from the stack slot.
554 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
555 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
556 unsigned RegBytes = RegVT.getSizeInBits() / 8;
557 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
559 // Make sure the stack slot is also aligned for the register type.
560 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
562 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
563 SmallVector<SDValue, 8> Stores;
564 SDValue StackPtr = StackBase;
565 unsigned Offset = 0;
567 // Do all but one copies using the full register width.
568 for (unsigned i = 1; i < NumRegs; i++) {
569 // Load one integer register's worth from the original location.
570 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
571 LD->getPointerInfo().getWithOffset(Offset),
572 LD->isVolatile(), LD->isNonTemporal(),
573 MinAlign(LD->getAlignment(), Offset));
574 // Follow the load with a store to the stack slot. Remember the store.
575 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
576 MachinePointerInfo(), false, false, 0));
577 // Increment the pointers.
578 Offset += RegBytes;
579 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
580 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
581 Increment);
584 // The last copy may be partial. Do an extending load.
585 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
586 8 * (LoadedBytes - Offset));
587 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
588 LD->getPointerInfo().getWithOffset(Offset),
589 MemVT, LD->isVolatile(),
590 LD->isNonTemporal(),
591 MinAlign(LD->getAlignment(), Offset));
592 // Follow the load with a store to the stack slot. Remember the store.
593 // On big-endian machines this requires a truncating store to ensure
594 // that the bits end up in the right place.
595 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
596 MachinePointerInfo(), MemVT,
597 false, false, 0));
599 // The order of the stores doesn't matter - say it with a TokenFactor.
600 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
601 Stores.size());
603 // Finally, perform the original load only redirected to the stack slot.
604 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
605 MachinePointerInfo(), LoadedVT, false, false, 0);
607 // Callers expect a MERGE_VALUES node.
608 SDValue Ops[] = { Load, TF };
609 return DAG.getMergeValues(Ops, 2, dl);
611 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
612 "Unaligned load of unsupported type.");
614 // Compute the new VT that is half the size of the old one. This is an
615 // integer MVT.
616 unsigned NumBits = LoadedVT.getSizeInBits();
617 EVT NewLoadedVT;
618 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
619 NumBits >>= 1;
621 unsigned Alignment = LD->getAlignment();
622 unsigned IncrementSize = NumBits / 8;
623 ISD::LoadExtType HiExtType = LD->getExtensionType();
625 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
626 if (HiExtType == ISD::NON_EXTLOAD)
627 HiExtType = ISD::ZEXTLOAD;
629 // Load the value in two parts
630 SDValue Lo, Hi;
631 if (TLI.isLittleEndian()) {
632 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
633 NewLoadedVT, LD->isVolatile(),
634 LD->isNonTemporal(), Alignment);
635 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
636 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
637 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
638 LD->getPointerInfo().getWithOffset(IncrementSize),
639 NewLoadedVT, LD->isVolatile(),
640 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
641 } else {
642 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
643 NewLoadedVT, LD->isVolatile(),
644 LD->isNonTemporal(), Alignment);
645 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
646 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
647 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
648 LD->getPointerInfo().getWithOffset(IncrementSize),
649 NewLoadedVT, LD->isVolatile(),
650 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
653 // aggregate the two parts
654 SDValue ShiftAmount = DAG.getConstant(NumBits,
655 TLI.getShiftAmountTy(Hi.getValueType()));
656 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
657 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
659 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
660 Hi.getValue(1));
662 SDValue Ops[] = { Result, TF };
663 return DAG.getMergeValues(Ops, 2, dl);
666 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
667 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
668 /// is necessary to spill the vector being inserted into to memory, perform
669 /// the insert there, and then read the result back.
670 SDValue SelectionDAGLegalize::
671 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
672 DebugLoc dl) {
673 SDValue Tmp1 = Vec;
674 SDValue Tmp2 = Val;
675 SDValue Tmp3 = Idx;
677 // If the target doesn't support this, we have to spill the input vector
678 // to a temporary stack slot, update the element, then reload it. This is
679 // badness. We could also load the value into a vector register (either
680 // with a "move to register" or "extload into register" instruction, then
681 // permute it into place, if the idx is a constant and if the idx is
682 // supported by the target.
683 EVT VT = Tmp1.getValueType();
684 EVT EltVT = VT.getVectorElementType();
685 EVT IdxVT = Tmp3.getValueType();
686 EVT PtrVT = TLI.getPointerTy();
687 SDValue StackPtr = DAG.CreateStackTemporary(VT);
689 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
691 // Store the vector.
692 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
693 MachinePointerInfo::getFixedStack(SPFI),
694 false, false, 0);
696 // Truncate or zero extend offset to target pointer type.
697 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
698 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
699 // Add the offset to the index.
700 unsigned EltSize = EltVT.getSizeInBits()/8;
701 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
702 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
703 // Store the scalar value.
704 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
705 false, false, 0);
706 // Load the updated vector.
707 return DAG.getLoad(VT, dl, Ch, StackPtr,
708 MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
712 SDValue SelectionDAGLegalize::
713 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
714 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
715 // SCALAR_TO_VECTOR requires that the type of the value being inserted
716 // match the element type of the vector being created, except for
717 // integers in which case the inserted value can be over width.
718 EVT EltVT = Vec.getValueType().getVectorElementType();
719 if (Val.getValueType() == EltVT ||
720 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
721 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
722 Vec.getValueType(), Val);
724 unsigned NumElts = Vec.getValueType().getVectorNumElements();
725 // We generate a shuffle of InVec and ScVec, so the shuffle mask
726 // should be 0,1,2,3,4,5... with the appropriate element replaced with
727 // elt 0 of the RHS.
728 SmallVector<int, 8> ShufOps;
729 for (unsigned i = 0; i != NumElts; ++i)
730 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
732 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
733 &ShufOps[0]);
736 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
739 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
740 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
741 // FIXME: We shouldn't do this for TargetConstantFP's.
742 // FIXME: move this to the DAG Combiner! Note that we can't regress due
743 // to phase ordering between legalized code and the dag combiner. This
744 // probably means that we need to integrate dag combiner and legalizer
745 // together.
746 // We generally can't do this one for long doubles.
747 SDValue Tmp1 = ST->getChain();
748 SDValue Tmp2 = ST->getBasePtr();
749 SDValue Tmp3;
750 unsigned Alignment = ST->getAlignment();
751 bool isVolatile = ST->isVolatile();
752 bool isNonTemporal = ST->isNonTemporal();
753 DebugLoc dl = ST->getDebugLoc();
754 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
755 if (CFP->getValueType(0) == MVT::f32 &&
756 getTypeAction(MVT::i32) == Legal) {
757 Tmp3 = DAG.getConstant(CFP->getValueAPF().
758 bitcastToAPInt().zextOrTrunc(32),
759 MVT::i32);
760 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
761 isVolatile, isNonTemporal, Alignment);
764 if (CFP->getValueType(0) == MVT::f64) {
765 // If this target supports 64-bit registers, do a single 64-bit store.
766 if (getTypeAction(MVT::i64) == Legal) {
767 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
768 zextOrTrunc(64), MVT::i64);
769 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
770 isVolatile, isNonTemporal, Alignment);
773 if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
774 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
775 // stores. If the target supports neither 32- nor 64-bits, this
776 // xform is certainly not worth it.
777 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
778 SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
779 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
780 if (TLI.isBigEndian()) std::swap(Lo, Hi);
782 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
783 isNonTemporal, Alignment);
784 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
785 DAG.getIntPtrConstant(4));
786 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
787 ST->getPointerInfo().getWithOffset(4),
788 isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
790 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
794 return SDValue(0, 0);
797 /// LegalizeOp - We know that the specified value has a legal type, and
798 /// that its operands are legal. Now ensure that the operation itself
799 /// is legal, recursively ensuring that the operands' operations remain
800 /// legal.
801 SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
802 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
803 return Op;
805 SDNode *Node = Op.getNode();
806 DebugLoc dl = Node->getDebugLoc();
808 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
809 assert(getTypeAction(Node->getValueType(i)) == Legal &&
810 "Unexpected illegal type!");
812 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
813 assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
814 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
815 "Unexpected illegal type!");
817 // Note that LegalizeOp may be reentered even from single-use nodes, which
818 // means that we always must cache transformed nodes.
819 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
820 if (I != LegalizedNodes.end()) return I->second;
822 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
823 SDValue Result = Op;
824 bool isCustom = false;
826 // Figure out the correct action; the way to query this varies by opcode
827 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
828 bool SimpleFinishLegalizing = true;
829 switch (Node->getOpcode()) {
830 case ISD::INTRINSIC_W_CHAIN:
831 case ISD::INTRINSIC_WO_CHAIN:
832 case ISD::INTRINSIC_VOID:
833 case ISD::VAARG:
834 case ISD::STACKSAVE:
835 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
836 break;
837 case ISD::SINT_TO_FP:
838 case ISD::UINT_TO_FP:
839 case ISD::EXTRACT_VECTOR_ELT:
840 Action = TLI.getOperationAction(Node->getOpcode(),
841 Node->getOperand(0).getValueType());
842 break;
843 case ISD::FP_ROUND_INREG:
844 case ISD::SIGN_EXTEND_INREG: {
845 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
846 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
847 break;
849 case ISD::SELECT_CC:
850 case ISD::SETCC:
851 case ISD::BR_CC: {
852 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
853 Node->getOpcode() == ISD::SETCC ? 2 : 1;
854 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
855 EVT OpVT = Node->getOperand(CompareOperand).getValueType();
856 ISD::CondCode CCCode =
857 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
858 Action = TLI.getCondCodeAction(CCCode, OpVT);
859 if (Action == TargetLowering::Legal) {
860 if (Node->getOpcode() == ISD::SELECT_CC)
861 Action = TLI.getOperationAction(Node->getOpcode(),
862 Node->getValueType(0));
863 else
864 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
866 break;
868 case ISD::LOAD:
869 case ISD::STORE:
870 // FIXME: Model these properly. LOAD and STORE are complicated, and
871 // STORE expects the unlegalized operand in some cases.
872 SimpleFinishLegalizing = false;
873 break;
874 case ISD::CALLSEQ_START:
875 case ISD::CALLSEQ_END:
876 // FIXME: This shouldn't be necessary. These nodes have special properties
877 // dealing with the recursive nature of legalization. Removing this
878 // special case should be done as part of making LegalizeDAG non-recursive.
879 SimpleFinishLegalizing = false;
880 break;
881 case ISD::EXTRACT_ELEMENT:
882 case ISD::FLT_ROUNDS_:
883 case ISD::SADDO:
884 case ISD::SSUBO:
885 case ISD::UADDO:
886 case ISD::USUBO:
887 case ISD::SMULO:
888 case ISD::UMULO:
889 case ISD::FPOWI:
890 case ISD::MERGE_VALUES:
891 case ISD::EH_RETURN:
892 case ISD::FRAME_TO_ARGS_OFFSET:
893 case ISD::EH_SJLJ_SETJMP:
894 case ISD::EH_SJLJ_LONGJMP:
895 case ISD::EH_SJLJ_DISPATCHSETUP:
896 // These operations lie about being legal: when they claim to be legal,
897 // they should actually be expanded.
898 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
899 if (Action == TargetLowering::Legal)
900 Action = TargetLowering::Expand;
901 break;
902 case ISD::TRAMPOLINE:
903 case ISD::FRAMEADDR:
904 case ISD::RETURNADDR:
905 // These operations lie about being legal: when they claim to be legal,
906 // they should actually be custom-lowered.
907 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
908 if (Action == TargetLowering::Legal)
909 Action = TargetLowering::Custom;
910 break;
911 case ISD::BUILD_VECTOR:
912 // A weird case: legalization for BUILD_VECTOR never legalizes the
913 // operands!
914 // FIXME: This really sucks... changing it isn't semantically incorrect,
915 // but it massively pessimizes the code for floating-point BUILD_VECTORs
916 // because ConstantFP operands get legalized into constant pool loads
917 // before the BUILD_VECTOR code can see them. It doesn't usually bite,
918 // though, because BUILD_VECTORS usually get lowered into other nodes
919 // which get legalized properly.
920 SimpleFinishLegalizing = false;
921 break;
922 default:
923 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
924 Action = TargetLowering::Legal;
925 } else {
926 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
928 break;
931 if (SimpleFinishLegalizing) {
932 SmallVector<SDValue, 8> Ops, ResultVals;
933 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
934 Ops.push_back(LegalizeOp(Node->getOperand(i)));
935 switch (Node->getOpcode()) {
936 default: break;
937 case ISD::BR:
938 case ISD::BRIND:
939 case ISD::BR_JT:
940 case ISD::BR_CC:
941 case ISD::BRCOND:
942 assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?");
943 // Branches tweak the chain to include LastCALLSEQ
944 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
945 getLastCALLSEQ());
946 Ops[0] = LegalizeOp(Ops[0]);
947 setLastCALLSEQ(DAG.getEntryNode());
948 break;
949 case ISD::SHL:
950 case ISD::SRL:
951 case ISD::SRA:
952 case ISD::ROTL:
953 case ISD::ROTR:
954 // Legalizing shifts/rotates requires adjusting the shift amount
955 // to the appropriate width.
956 if (!Ops[1].getValueType().isVector())
957 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
958 Ops[1]));
959 break;
960 case ISD::SRL_PARTS:
961 case ISD::SRA_PARTS:
962 case ISD::SHL_PARTS:
963 // Legalizing shifts/rotates requires adjusting the shift amount
964 // to the appropriate width.
965 if (!Ops[2].getValueType().isVector())
966 Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[0].getValueType(),
967 Ops[2]));
968 break;
971 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
972 Ops.size()), 0);
973 switch (Action) {
974 case TargetLowering::Legal:
975 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
976 ResultVals.push_back(Result.getValue(i));
977 break;
978 case TargetLowering::Custom:
979 // FIXME: The handling for custom lowering with multiple results is
980 // a complete mess.
981 Tmp1 = TLI.LowerOperation(Result, DAG);
982 if (Tmp1.getNode()) {
983 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
984 if (e == 1)
985 ResultVals.push_back(Tmp1);
986 else
987 ResultVals.push_back(Tmp1.getValue(i));
989 break;
992 // FALL THROUGH
993 case TargetLowering::Expand:
994 ExpandNode(Result.getNode(), ResultVals);
995 break;
996 case TargetLowering::Promote:
997 PromoteNode(Result.getNode(), ResultVals);
998 break;
1000 if (!ResultVals.empty()) {
1001 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
1002 if (ResultVals[i] != SDValue(Node, i))
1003 ResultVals[i] = LegalizeOp(ResultVals[i]);
1004 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
1006 return ResultVals[Op.getResNo()];
1010 switch (Node->getOpcode()) {
1011 default:
1012 #ifndef NDEBUG
1013 dbgs() << "NODE: ";
1014 Node->dump( &DAG);
1015 dbgs() << "\n";
1016 #endif
1017 assert(0 && "Do not know how to legalize this operator!");
1019 case ISD::BUILD_VECTOR:
1020 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
1021 default: assert(0 && "This action is not supported yet!");
1022 case TargetLowering::Custom:
1023 Tmp3 = TLI.LowerOperation(Result, DAG);
1024 if (Tmp3.getNode()) {
1025 Result = Tmp3;
1026 break;
1028 // FALLTHROUGH
1029 case TargetLowering::Expand:
1030 Result = ExpandBUILD_VECTOR(Result.getNode());
1031 break;
1033 break;
1034 case ISD::CALLSEQ_START: {
1035 SDNode *CallEnd = FindCallEndFromCallStart(Node);
1036 assert(CallEnd && "didn't find CALLSEQ_END!");
1038 // Recursively Legalize all of the inputs of the call end that do not lead
1039 // to this call start. This ensures that any libcalls that need be inserted
1040 // are inserted *before* the CALLSEQ_START.
1041 {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1042 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1043 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1044 NodesLeadingTo);
1047 // Now that we have legalized all of the inputs (which may have inserted
1048 // libcalls), create the new CALLSEQ_START node.
1049 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1051 // Merge in the last call to ensure that this call starts after the last
1052 // call ended.
1053 if (getLastCALLSEQ().getOpcode() != ISD::EntryToken) {
1054 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1055 Tmp1, getLastCALLSEQ());
1056 Tmp1 = LegalizeOp(Tmp1);
1059 // Do not try to legalize the target-specific arguments (#1+).
1060 if (Tmp1 != Node->getOperand(0)) {
1061 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1062 Ops[0] = Tmp1;
1063 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1064 Ops.size()), Result.getResNo());
1067 // Remember that the CALLSEQ_START is legalized.
1068 AddLegalizedOperand(Op.getValue(0), Result);
1069 if (Node->getNumValues() == 2) // If this has a flag result, remember it.
1070 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1072 // Now that the callseq_start and all of the non-call nodes above this call
1073 // sequence have been legalized, legalize the call itself. During this
1074 // process, no libcalls can/will be inserted, guaranteeing that no calls
1075 // can overlap.
1076 // Note that we are selecting this call!
1077 setLastCALLSEQ(SDValue(CallEnd, 0));
1079 // Legalize the call, starting from the CALLSEQ_END.
1080 LegalizeOp(getLastCALLSEQ());
1081 return Result;
1083 case ISD::CALLSEQ_END:
1085 SDNode *myCALLSEQ_BEGIN = FindCallStartFromCallEnd(Node);
1087 // If the CALLSEQ_START node hasn't been legalized first, legalize it.
1088 // This will cause this node to be legalized as well as handling libcalls
1089 // right.
1090 if (getLastCALLSEQ().getNode() != Node) {
1091 LegalizeOp(SDValue(myCALLSEQ_BEGIN, 0));
1092 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1093 assert(I != LegalizedNodes.end() &&
1094 "Legalizing the call start should have legalized this node!");
1095 return I->second;
1098 pushLastCALLSEQ(SDValue(myCALLSEQ_BEGIN, 0));
1101 // Otherwise, the call start has been legalized and everything is going
1102 // according to plan. Just legalize ourselves normally here.
1103 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1104 // Do not try to legalize the target-specific arguments (#1+), except for
1105 // an optional flag input.
1106 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Glue){
1107 if (Tmp1 != Node->getOperand(0)) {
1108 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1109 Ops[0] = Tmp1;
1110 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1111 &Ops[0], Ops.size()),
1112 Result.getResNo());
1114 } else {
1115 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1116 if (Tmp1 != Node->getOperand(0) ||
1117 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1118 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1119 Ops[0] = Tmp1;
1120 Ops.back() = Tmp2;
1121 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1122 &Ops[0], Ops.size()),
1123 Result.getResNo());
1126 // This finishes up call legalization.
1127 popLastCALLSEQ();
1129 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1130 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1131 if (Node->getNumValues() == 2)
1132 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1133 return Result.getValue(Op.getResNo());
1134 case ISD::LOAD: {
1135 LoadSDNode *LD = cast<LoadSDNode>(Node);
1136 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
1137 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1139 ISD::LoadExtType ExtType = LD->getExtensionType();
1140 if (ExtType == ISD::NON_EXTLOAD) {
1141 EVT VT = Node->getValueType(0);
1142 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1143 Tmp1, Tmp2, LD->getOffset()),
1144 Result.getResNo());
1145 Tmp3 = Result.getValue(0);
1146 Tmp4 = Result.getValue(1);
1148 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1149 default: assert(0 && "This action is not supported yet!");
1150 case TargetLowering::Legal:
1151 // If this is an unaligned load and the target doesn't support it,
1152 // expand it.
1153 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1154 const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1155 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1156 if (LD->getAlignment() < ABIAlignment){
1157 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1158 DAG, TLI);
1159 Tmp3 = Result.getOperand(0);
1160 Tmp4 = Result.getOperand(1);
1161 Tmp3 = LegalizeOp(Tmp3);
1162 Tmp4 = LegalizeOp(Tmp4);
1165 break;
1166 case TargetLowering::Custom:
1167 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1168 if (Tmp1.getNode()) {
1169 Tmp3 = LegalizeOp(Tmp1);
1170 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1172 break;
1173 case TargetLowering::Promote: {
1174 // Only promote a load of vector type to another.
1175 assert(VT.isVector() && "Cannot promote this load!");
1176 // Change base type to a different vector type.
1177 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1179 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1180 LD->isVolatile(), LD->isNonTemporal(),
1181 LD->getAlignment());
1182 Tmp3 = LegalizeOp(DAG.getNode(ISD::BITCAST, dl, VT, Tmp1));
1183 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1184 break;
1187 // Since loads produce two values, make sure to remember that we
1188 // legalized both of them.
1189 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1190 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1191 return Op.getResNo() ? Tmp4 : Tmp3;
1194 EVT SrcVT = LD->getMemoryVT();
1195 unsigned SrcWidth = SrcVT.getSizeInBits();
1196 unsigned Alignment = LD->getAlignment();
1197 bool isVolatile = LD->isVolatile();
1198 bool isNonTemporal = LD->isNonTemporal();
1200 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1201 // Some targets pretend to have an i1 loading operation, and actually
1202 // load an i8. This trick is correct for ZEXTLOAD because the top 7
1203 // bits are guaranteed to be zero; it helps the optimizers understand
1204 // that these bits are zero. It is also useful for EXTLOAD, since it
1205 // tells the optimizers that those bits are undefined. It would be
1206 // nice to have an effective generic way of getting these benefits...
1207 // Until such a way is found, don't insist on promoting i1 here.
1208 (SrcVT != MVT::i1 ||
1209 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1210 // Promote to a byte-sized load if not loading an integral number of
1211 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1212 unsigned NewWidth = SrcVT.getStoreSizeInBits();
1213 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1214 SDValue Ch;
1216 // The extra bits are guaranteed to be zero, since we stored them that
1217 // way. A zext load from NVT thus automatically gives zext from SrcVT.
1219 ISD::LoadExtType NewExtType =
1220 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1222 Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1223 Tmp1, Tmp2, LD->getPointerInfo(),
1224 NVT, isVolatile, isNonTemporal, Alignment);
1226 Ch = Result.getValue(1); // The chain.
1228 if (ExtType == ISD::SEXTLOAD)
1229 // Having the top bits zero doesn't help when sign extending.
1230 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1231 Result.getValueType(),
1232 Result, DAG.getValueType(SrcVT));
1233 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1234 // All the top bits are guaranteed to be zero - inform the optimizers.
1235 Result = DAG.getNode(ISD::AssertZext, dl,
1236 Result.getValueType(), Result,
1237 DAG.getValueType(SrcVT));
1239 Tmp1 = LegalizeOp(Result);
1240 Tmp2 = LegalizeOp(Ch);
1241 } else if (SrcWidth & (SrcWidth - 1)) {
1242 // If not loading a power-of-2 number of bits, expand as two loads.
1243 assert(!SrcVT.isVector() && "Unsupported extload!");
1244 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1245 assert(RoundWidth < SrcWidth);
1246 unsigned ExtraWidth = SrcWidth - RoundWidth;
1247 assert(ExtraWidth < RoundWidth);
1248 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1249 "Load size not an integral number of bytes!");
1250 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1251 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1252 SDValue Lo, Hi, Ch;
1253 unsigned IncrementSize;
1255 if (TLI.isLittleEndian()) {
1256 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1257 // Load the bottom RoundWidth bits.
1258 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1259 Tmp1, Tmp2,
1260 LD->getPointerInfo(), RoundVT, isVolatile,
1261 isNonTemporal, Alignment);
1263 // Load the remaining ExtraWidth bits.
1264 IncrementSize = RoundWidth / 8;
1265 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1266 DAG.getIntPtrConstant(IncrementSize));
1267 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1268 LD->getPointerInfo().getWithOffset(IncrementSize),
1269 ExtraVT, isVolatile, isNonTemporal,
1270 MinAlign(Alignment, IncrementSize));
1272 // Build a factor node to remember that this load is independent of
1273 // the other one.
1274 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1275 Hi.getValue(1));
1277 // Move the top bits to the right place.
1278 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1279 DAG.getConstant(RoundWidth,
1280 TLI.getShiftAmountTy(Hi.getValueType())));
1282 // Join the hi and lo parts.
1283 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1284 } else {
1285 // Big endian - avoid unaligned loads.
1286 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1287 // Load the top RoundWidth bits.
1288 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1289 LD->getPointerInfo(), RoundVT, isVolatile,
1290 isNonTemporal, Alignment);
1292 // Load the remaining ExtraWidth bits.
1293 IncrementSize = RoundWidth / 8;
1294 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1295 DAG.getIntPtrConstant(IncrementSize));
1296 Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1297 dl, Node->getValueType(0), Tmp1, Tmp2,
1298 LD->getPointerInfo().getWithOffset(IncrementSize),
1299 ExtraVT, isVolatile, isNonTemporal,
1300 MinAlign(Alignment, IncrementSize));
1302 // Build a factor node to remember that this load is independent of
1303 // the other one.
1304 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1305 Hi.getValue(1));
1307 // Move the top bits to the right place.
1308 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1309 DAG.getConstant(ExtraWidth,
1310 TLI.getShiftAmountTy(Hi.getValueType())));
1312 // Join the hi and lo parts.
1313 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1316 Tmp1 = LegalizeOp(Result);
1317 Tmp2 = LegalizeOp(Ch);
1318 } else {
1319 switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1320 default: assert(0 && "This action is not supported yet!");
1321 case TargetLowering::Custom:
1322 isCustom = true;
1323 // FALLTHROUGH
1324 case TargetLowering::Legal:
1325 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1326 Tmp1, Tmp2, LD->getOffset()),
1327 Result.getResNo());
1328 Tmp1 = Result.getValue(0);
1329 Tmp2 = Result.getValue(1);
1331 if (isCustom) {
1332 Tmp3 = TLI.LowerOperation(Result, DAG);
1333 if (Tmp3.getNode()) {
1334 Tmp1 = LegalizeOp(Tmp3);
1335 Tmp2 = LegalizeOp(Tmp3.getValue(1));
1337 } else {
1338 // If this is an unaligned load and the target doesn't support it,
1339 // expand it.
1340 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1341 const Type *Ty =
1342 LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1343 unsigned ABIAlignment =
1344 TLI.getTargetData()->getABITypeAlignment(Ty);
1345 if (LD->getAlignment() < ABIAlignment){
1346 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1347 DAG, TLI);
1348 Tmp1 = Result.getOperand(0);
1349 Tmp2 = Result.getOperand(1);
1350 Tmp1 = LegalizeOp(Tmp1);
1351 Tmp2 = LegalizeOp(Tmp2);
1355 break;
1356 case TargetLowering::Expand:
1357 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1358 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1359 LD->getPointerInfo(),
1360 LD->isVolatile(), LD->isNonTemporal(),
1361 LD->getAlignment());
1362 unsigned ExtendOp;
1363 switch (ExtType) {
1364 case ISD::EXTLOAD:
1365 ExtendOp = (SrcVT.isFloatingPoint() ?
1366 ISD::FP_EXTEND : ISD::ANY_EXTEND);
1367 break;
1368 case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1369 case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1370 default: llvm_unreachable("Unexpected extend load type!");
1372 Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1373 Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
1374 Tmp2 = LegalizeOp(Load.getValue(1));
1375 break;
1378 // If this is a promoted vector load, and the vector element types are
1379 // legal, then scalarize it.
1380 if (ExtType == ISD::EXTLOAD && SrcVT.isVector() &&
1381 isTypeLegal(Node->getValueType(0).getScalarType())) {
1382 SmallVector<SDValue, 8> LoadVals;
1383 SmallVector<SDValue, 8> LoadChains;
1384 unsigned NumElem = SrcVT.getVectorNumElements();
1385 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1387 for (unsigned Idx=0; Idx<NumElem; Idx++) {
1388 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1389 DAG.getIntPtrConstant(Stride));
1390 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1391 Node->getValueType(0).getScalarType(),
1392 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1393 SrcVT.getScalarType(),
1394 LD->isVolatile(), LD->isNonTemporal(),
1395 LD->getAlignment());
1397 LoadVals.push_back(ScalarLoad.getValue(0));
1398 LoadChains.push_back(ScalarLoad.getValue(1));
1400 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1401 &LoadChains[0], LoadChains.size());
1402 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1403 Node->getValueType(0), &LoadVals[0], LoadVals.size());
1405 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1406 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes.
1407 break;
1410 // If this is a promoted vector load, and the vector element types are
1411 // illegal, create the promoted vector from bitcasted segments.
1412 if (ExtType == ISD::EXTLOAD && SrcVT.isVector()) {
1413 EVT MemElemTy = Node->getValueType(0).getScalarType();
1414 EVT SrcSclrTy = SrcVT.getScalarType();
1415 unsigned SizeRatio =
1416 (MemElemTy.getSizeInBits() / SrcSclrTy.getSizeInBits());
1418 SmallVector<SDValue, 8> LoadVals;
1419 SmallVector<SDValue, 8> LoadChains;
1420 unsigned NumElem = SrcVT.getVectorNumElements();
1421 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
1423 for (unsigned Idx=0; Idx<NumElem; Idx++) {
1424 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1425 DAG.getIntPtrConstant(Stride));
1426 SDValue ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl,
1427 SrcVT.getScalarType(),
1428 Tmp1, Tmp2, LD->getPointerInfo().getWithOffset(Idx * Stride),
1429 SrcVT.getScalarType(),
1430 LD->isVolatile(), LD->isNonTemporal(),
1431 LD->getAlignment());
1432 if (TLI.isBigEndian()) {
1433 // MSB (which is garbage, comes first)
1434 LoadVals.push_back(ScalarLoad.getValue(0));
1435 for (unsigned i = 0; i<SizeRatio-1; ++i)
1436 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1437 } else {
1438 // LSB (which is data, comes first)
1439 for (unsigned i = 0; i<SizeRatio-1; ++i)
1440 LoadVals.push_back(DAG.getUNDEF(SrcVT.getScalarType()));
1441 LoadVals.push_back(ScalarLoad.getValue(0));
1443 LoadChains.push_back(ScalarLoad.getValue(1));
1446 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1447 &LoadChains[0], LoadChains.size());
1448 EVT TempWideVector = EVT::getVectorVT(*DAG.getContext(),
1449 SrcVT.getScalarType(), NumElem*SizeRatio);
1450 SDValue ValRes = DAG.getNode(ISD::BUILD_VECTOR, dl,
1451 TempWideVector, &LoadVals[0], LoadVals.size());
1453 // Cast to the correct type
1454 ValRes = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), ValRes);
1456 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1457 Tmp2 = LegalizeOp(Result.getValue(0)); // Relegalize new nodes.
1458 break;
1462 // FIXME: This does not work for vectors on most targets. Sign- and
1463 // zero-extend operations are currently folded into extending loads,
1464 // whether they are legal or not, and then we end up here without any
1465 // support for legalizing them.
1466 assert(ExtType != ISD::EXTLOAD &&
1467 "EXTLOAD should always be supported!");
1468 // Turn the unsupported load into an EXTLOAD followed by an explicit
1469 // zero/sign extend inreg.
1470 Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1471 Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1472 LD->isVolatile(), LD->isNonTemporal(),
1473 LD->getAlignment());
1474 SDValue ValRes;
1475 if (ExtType == ISD::SEXTLOAD)
1476 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1477 Result.getValueType(),
1478 Result, DAG.getValueType(SrcVT));
1479 else
1480 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1481 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1482 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
1483 break;
1487 // Since loads produce two values, make sure to remember that we legalized
1488 // both of them.
1489 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1490 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1491 return Op.getResNo() ? Tmp2 : Tmp1;
1493 case ISD::STORE: {
1494 StoreSDNode *ST = cast<StoreSDNode>(Node);
1495 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
1496 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
1497 unsigned Alignment = ST->getAlignment();
1498 bool isVolatile = ST->isVolatile();
1499 bool isNonTemporal = ST->isNonTemporal();
1501 if (!ST->isTruncatingStore()) {
1502 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1503 Result = SDValue(OptStore, 0);
1504 break;
1508 Tmp3 = LegalizeOp(ST->getValue());
1509 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1510 Tmp1, Tmp3, Tmp2,
1511 ST->getOffset()),
1512 Result.getResNo());
1514 EVT VT = Tmp3.getValueType();
1515 switch (TLI.getOperationAction(ISD::STORE, VT)) {
1516 default: assert(0 && "This action is not supported yet!");
1517 case TargetLowering::Legal:
1518 // If this is an unaligned store and the target doesn't support it,
1519 // expand it.
1520 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1521 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1522 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1523 if (ST->getAlignment() < ABIAlignment)
1524 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1525 DAG, TLI);
1527 break;
1528 case TargetLowering::Custom:
1529 Tmp1 = TLI.LowerOperation(Result, DAG);
1530 if (Tmp1.getNode()) Result = Tmp1;
1531 break;
1532 case TargetLowering::Promote:
1533 assert(VT.isVector() && "Unknown legal promote case!");
1534 Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1535 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1536 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1537 ST->getPointerInfo(), isVolatile,
1538 isNonTemporal, Alignment);
1539 break;
1541 break;
1543 } else {
1544 Tmp3 = LegalizeOp(ST->getValue());
1546 EVT StVT = ST->getMemoryVT();
1547 unsigned StWidth = StVT.getSizeInBits();
1549 if (StWidth != StVT.getStoreSizeInBits()) {
1550 // Promote to a byte-sized store with upper bits zero if not
1551 // storing an integral number of bytes. For example, promote
1552 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1553 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1554 StVT.getStoreSizeInBits());
1555 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1556 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1557 NVT, isVolatile, isNonTemporal, Alignment);
1558 } else if (StWidth & (StWidth - 1)) {
1559 // If not storing a power-of-2 number of bits, expand as two stores.
1560 assert(!StVT.isVector() && "Unsupported truncstore!");
1561 unsigned RoundWidth = 1 << Log2_32(StWidth);
1562 assert(RoundWidth < StWidth);
1563 unsigned ExtraWidth = StWidth - RoundWidth;
1564 assert(ExtraWidth < RoundWidth);
1565 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1566 "Store size not an integral number of bytes!");
1567 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1568 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1569 SDValue Lo, Hi;
1570 unsigned IncrementSize;
1572 if (TLI.isLittleEndian()) {
1573 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1574 // Store the bottom RoundWidth bits.
1575 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1576 RoundVT,
1577 isVolatile, isNonTemporal, Alignment);
1579 // Store the remaining ExtraWidth bits.
1580 IncrementSize = RoundWidth / 8;
1581 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1582 DAG.getIntPtrConstant(IncrementSize));
1583 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1584 DAG.getConstant(RoundWidth,
1585 TLI.getShiftAmountTy(Tmp3.getValueType())));
1586 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1587 ST->getPointerInfo().getWithOffset(IncrementSize),
1588 ExtraVT, isVolatile, isNonTemporal,
1589 MinAlign(Alignment, IncrementSize));
1590 } else {
1591 // Big endian - avoid unaligned stores.
1592 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1593 // Store the top RoundWidth bits.
1594 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1595 DAG.getConstant(ExtraWidth,
1596 TLI.getShiftAmountTy(Tmp3.getValueType())));
1597 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1598 RoundVT, isVolatile, isNonTemporal, Alignment);
1600 // Store the remaining ExtraWidth bits.
1601 IncrementSize = RoundWidth / 8;
1602 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1603 DAG.getIntPtrConstant(IncrementSize));
1604 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1605 ST->getPointerInfo().getWithOffset(IncrementSize),
1606 ExtraVT, isVolatile, isNonTemporal,
1607 MinAlign(Alignment, IncrementSize));
1610 // The order of the stores doesn't matter.
1611 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1612 } else {
1613 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1614 Tmp2 != ST->getBasePtr())
1615 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1616 Tmp1, Tmp3, Tmp2,
1617 ST->getOffset()),
1618 Result.getResNo());
1620 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1621 default: assert(0 && "This action is not supported yet!");
1622 case TargetLowering::Legal:
1623 // If this is an unaligned store and the target doesn't support it,
1624 // expand it.
1625 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1626 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1627 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1628 if (ST->getAlignment() < ABIAlignment)
1629 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1630 DAG, TLI);
1632 break;
1633 case TargetLowering::Custom:
1634 Result = TLI.LowerOperation(Result, DAG);
1635 break;
1636 case Expand:
1638 EVT WideScalarVT = Tmp3.getValueType().getScalarType();
1639 EVT NarrowScalarVT = StVT.getScalarType();
1641 // The Store type is illegal, must scalarize the vector store.
1642 SmallVector<SDValue, 8> Stores;
1643 bool ScalarLegal = isTypeLegal(WideScalarVT);
1644 if (!isTypeLegal(StVT) && StVT.isVector() && ScalarLegal) {
1645 unsigned NumElem = StVT.getVectorNumElements();
1647 unsigned ScalarSize = StVT.getScalarType().getSizeInBits();
1648 // Round odd types to the next pow of two.
1649 if (!isPowerOf2_32(ScalarSize))
1650 ScalarSize = NextPowerOf2(ScalarSize);
1651 // Types smaller than 8 bits are promoted to 8 bits.
1652 ScalarSize = std::max<unsigned>(ScalarSize, 8);
1653 // Store stride
1654 unsigned Stride = ScalarSize/8;
1655 assert(isPowerOf2_32(Stride) && "Stride must be a power of two");
1657 for (unsigned Idx=0; Idx<NumElem; Idx++) {
1658 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1659 WideScalarVT, Tmp3, DAG.getIntPtrConstant(Idx));
1662 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), ScalarSize);
1664 Ex = DAG.getNode(ISD::TRUNCATE, dl, NVT, Ex);
1665 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1666 DAG.getIntPtrConstant(Stride));
1667 SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2,
1668 ST->getPointerInfo().getWithOffset(Idx*Stride),
1669 isVolatile, isNonTemporal, Alignment);
1670 Stores.push_back(Store);
1672 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1673 &Stores[0], Stores.size());
1674 break;
1677 // The Store type is illegal, must scalarize the vector store.
1678 // However, the scalar type is illegal. Must bitcast the result
1679 // and store it in smaller parts.
1680 if (!isTypeLegal(StVT) && StVT.isVector()) {
1681 unsigned WideNumElem = StVT.getVectorNumElements();
1682 unsigned Stride = NarrowScalarVT.getSizeInBits()/8;
1684 unsigned SizeRatio =
1685 (WideScalarVT.getSizeInBits() / NarrowScalarVT.getSizeInBits());
1687 EVT CastValueVT = EVT::getVectorVT(*DAG.getContext(), NarrowScalarVT,
1688 SizeRatio*WideNumElem);
1690 // Cast the wide elem vector to wider vec with smaller elem type.
1691 // Example <2 x i64> -> <4 x i32>
1692 Tmp3 = DAG.getNode(ISD::BITCAST, dl, CastValueVT, Tmp3);
1694 for (unsigned Idx=0; Idx<WideNumElem*SizeRatio; Idx++) {
1695 // Extract elment i
1696 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1697 NarrowScalarVT, Tmp3, DAG.getIntPtrConstant(Idx));
1698 // bump pointer.
1699 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1700 DAG.getIntPtrConstant(Stride));
1702 // Store if, this element is:
1703 // - First element on big endian, or
1704 // - Last element on little endian
1705 if (( TLI.isBigEndian() && (Idx%SizeRatio == 0)) ||
1706 ((!TLI.isBigEndian() && (Idx%SizeRatio == SizeRatio-1)))) {
1707 SDValue Store = DAG.getStore(Tmp1, dl, Ex, Tmp2,
1708 ST->getPointerInfo().getWithOffset(Idx*Stride),
1709 isVolatile, isNonTemporal, Alignment);
1710 Stores.push_back(Store);
1713 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1714 &Stores[0], Stores.size());
1715 break;
1719 // TRUNCSTORE:i16 i32 -> STORE i16
1720 assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1721 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1722 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1723 isVolatile, isNonTemporal, Alignment);
1724 break;
1728 break;
1731 assert(Result.getValueType() == Op.getValueType() &&
1732 "Bad legalization!");
1734 // Make sure that the generated code is itself legal.
1735 if (Result != Op)
1736 Result = LegalizeOp(Result);
1738 // Note that LegalizeOp may be reentered even from single-use nodes, which
1739 // means that we always must cache transformed nodes.
1740 AddLegalizedOperand(Op, Result);
1741 return Result;
1744 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1745 SDValue Vec = Op.getOperand(0);
1746 SDValue Idx = Op.getOperand(1);
1747 DebugLoc dl = Op.getDebugLoc();
1748 // Store the value to a temporary stack slot, then LOAD the returned part.
1749 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1750 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1751 MachinePointerInfo(), false, false, 0);
1753 // Add the offset to the index.
1754 unsigned EltSize =
1755 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1756 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1757 DAG.getConstant(EltSize, Idx.getValueType()));
1759 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1760 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1761 else
1762 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1764 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1766 if (Op.getValueType().isVector())
1767 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1768 false, false, 0);
1769 return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1770 MachinePointerInfo(),
1771 Vec.getValueType().getVectorElementType(),
1772 false, false, 0);
1775 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1776 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1778 SDValue Vec = Op.getOperand(0);
1779 SDValue Part = Op.getOperand(1);
1780 SDValue Idx = Op.getOperand(2);
1781 DebugLoc dl = Op.getDebugLoc();
1783 // Store the value to a temporary stack slot, then LOAD the returned part.
1785 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1786 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1787 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1789 // First store the whole vector.
1790 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1791 false, false, 0);
1793 // Then store the inserted part.
1795 // Add the offset to the index.
1796 unsigned EltSize =
1797 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1799 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1800 DAG.getConstant(EltSize, Idx.getValueType()));
1802 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1803 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1804 else
1805 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1807 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1808 StackPtr);
1810 // Store the subvector.
1811 Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1812 MachinePointerInfo(), false, false, 0);
1814 // Finally, load the updated vector.
1815 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1816 false, false, 0);
1819 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1820 // We can't handle this case efficiently. Allocate a sufficiently
1821 // aligned object on the stack, store each element into it, then load
1822 // the result as a vector.
1823 // Create the stack frame object.
1824 EVT VT = Node->getValueType(0);
1825 EVT EltVT = VT.getVectorElementType();
1826 DebugLoc dl = Node->getDebugLoc();
1827 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1828 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1829 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1831 // Emit a store of each element to the stack slot.
1832 SmallVector<SDValue, 8> Stores;
1833 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1834 // Store (in the right endianness) the elements to memory.
1835 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1836 // Ignore undef elements.
1837 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1839 unsigned Offset = TypeByteSize*i;
1841 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1842 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1844 // If the destination vector element type is narrower than the source
1845 // element type, only store the bits necessary.
1846 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1847 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1848 Node->getOperand(i), Idx,
1849 PtrInfo.getWithOffset(Offset),
1850 EltVT, false, false, 0));
1851 } else
1852 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1853 Node->getOperand(i), Idx,
1854 PtrInfo.getWithOffset(Offset),
1855 false, false, 0));
1858 SDValue StoreChain;
1859 if (!Stores.empty()) // Not all undef elements?
1860 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1861 &Stores[0], Stores.size());
1862 else
1863 StoreChain = DAG.getEntryNode();
1865 // Result is a load from the stack slot.
1866 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1869 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1870 DebugLoc dl = Node->getDebugLoc();
1871 SDValue Tmp1 = Node->getOperand(0);
1872 SDValue Tmp2 = Node->getOperand(1);
1874 // Get the sign bit of the RHS. First obtain a value that has the same
1875 // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1876 SDValue SignBit;
1877 EVT FloatVT = Tmp2.getValueType();
1878 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1879 if (isTypeLegal(IVT)) {
1880 // Convert to an integer with the same sign bit.
1881 SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1882 } else {
1883 // Store the float to memory, then load the sign part out as an integer.
1884 MVT LoadTy = TLI.getPointerTy();
1885 // First create a temporary that is aligned for both the load and store.
1886 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1887 // Then store the float to it.
1888 SDValue Ch =
1889 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1890 false, false, 0);
1891 if (TLI.isBigEndian()) {
1892 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1893 // Load out a legal integer with the same sign bit as the float.
1894 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1895 false, false, 0);
1896 } else { // Little endian
1897 SDValue LoadPtr = StackPtr;
1898 // The float may be wider than the integer we are going to load. Advance
1899 // the pointer so that the loaded integer will contain the sign bit.
1900 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1901 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1902 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1903 LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1904 // Load a legal integer containing the sign bit.
1905 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1906 false, false, 0);
1907 // Move the sign bit to the top bit of the loaded integer.
1908 unsigned BitShift = LoadTy.getSizeInBits() -
1909 (FloatVT.getSizeInBits() - 8 * ByteOffset);
1910 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1911 if (BitShift)
1912 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1913 DAG.getConstant(BitShift,
1914 TLI.getShiftAmountTy(SignBit.getValueType())));
1917 // Now get the sign bit proper, by seeing whether the value is negative.
1918 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1919 SignBit, DAG.getConstant(0, SignBit.getValueType()),
1920 ISD::SETLT);
1921 // Get the absolute value of the result.
1922 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1923 // Select between the nabs and abs value based on the sign bit of
1924 // the input.
1925 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1926 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1927 AbsVal);
1930 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1931 SmallVectorImpl<SDValue> &Results) {
1932 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1933 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1934 " not tell us which reg is the stack pointer!");
1935 DebugLoc dl = Node->getDebugLoc();
1936 EVT VT = Node->getValueType(0);
1937 SDValue Tmp1 = SDValue(Node, 0);
1938 SDValue Tmp2 = SDValue(Node, 1);
1939 SDValue Tmp3 = Node->getOperand(2);
1940 SDValue Chain = Tmp1.getOperand(0);
1942 // Chain the dynamic stack allocation so that it doesn't modify the stack
1943 // pointer when other instructions are using the stack.
1944 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1946 SDValue Size = Tmp2.getOperand(1);
1947 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1948 Chain = SP.getValue(1);
1949 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1950 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1951 if (Align > StackAlign)
1952 SP = DAG.getNode(ISD::AND, dl, VT, SP,
1953 DAG.getConstant(-(uint64_t)Align, VT));
1954 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1955 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1957 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1958 DAG.getIntPtrConstant(0, true), SDValue());
1960 Results.push_back(Tmp1);
1961 Results.push_back(Tmp2);
1964 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1965 /// condition code CC on the current target. This routine expands SETCC with
1966 /// illegal condition code into AND / OR of multiple SETCC values.
1967 void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1968 SDValue &LHS, SDValue &RHS,
1969 SDValue &CC,
1970 DebugLoc dl) {
1971 EVT OpVT = LHS.getValueType();
1972 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1973 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1974 default: assert(0 && "Unknown condition code action!");
1975 case TargetLowering::Legal:
1976 // Nothing to do.
1977 break;
1978 case TargetLowering::Expand: {
1979 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1980 unsigned Opc = 0;
1981 switch (CCCode) {
1982 default: assert(0 && "Don't know how to expand this condition!");
1983 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
1984 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1985 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1986 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1987 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1988 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1989 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1990 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1991 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1992 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1993 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1994 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1995 // FIXME: Implement more expansions.
1998 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1999 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
2000 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
2001 RHS = SDValue();
2002 CC = SDValue();
2003 break;
2008 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
2009 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
2010 /// a load from the stack slot to DestVT, extending it if needed.
2011 /// The resultant code need not be legal.
2012 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
2013 EVT SlotVT,
2014 EVT DestVT,
2015 DebugLoc dl) {
2016 // Create the stack frame object.
2017 unsigned SrcAlign =
2018 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
2019 getTypeForEVT(*DAG.getContext()));
2020 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
2022 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
2023 int SPFI = StackPtrFI->getIndex();
2024 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
2026 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
2027 unsigned SlotSize = SlotVT.getSizeInBits();
2028 unsigned DestSize = DestVT.getSizeInBits();
2029 const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
2030 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
2032 // Emit a store to the stack slot. Use a truncstore if the input value is
2033 // later than DestVT.
2034 SDValue Store;
2036 if (SrcSize > SlotSize)
2037 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2038 PtrInfo, SlotVT, false, false, SrcAlign);
2039 else {
2040 assert(SrcSize == SlotSize && "Invalid store");
2041 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
2042 PtrInfo, false, false, SrcAlign);
2045 // Result is a load from the stack slot.
2046 if (SlotSize == DestSize)
2047 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
2048 false, false, DestAlign);
2050 assert(SlotSize < DestSize && "Unknown extension!");
2051 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
2052 PtrInfo, SlotVT, false, false, DestAlign);
2055 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
2056 DebugLoc dl = Node->getDebugLoc();
2057 // Create a vector sized/aligned stack slot, store the value to element #0,
2058 // then load the whole vector back out.
2059 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
2061 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
2062 int SPFI = StackPtrFI->getIndex();
2064 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
2065 StackPtr,
2066 MachinePointerInfo::getFixedStack(SPFI),
2067 Node->getValueType(0).getVectorElementType(),
2068 false, false, 0);
2069 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
2070 MachinePointerInfo::getFixedStack(SPFI),
2071 false, false, 0);
2075 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
2076 /// support the operation, but do support the resultant vector type.
2077 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2078 unsigned NumElems = Node->getNumOperands();
2079 SDValue Value1, Value2;
2080 DebugLoc dl = Node->getDebugLoc();
2081 EVT VT = Node->getValueType(0);
2082 EVT OpVT = Node->getOperand(0).getValueType();
2083 EVT EltVT = VT.getVectorElementType();
2085 // If the only non-undef value is the low element, turn this into a
2086 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
2087 bool isOnlyLowElement = true;
2088 bool MoreThanTwoValues = false;
2089 bool isConstant = true;
2090 for (unsigned i = 0; i < NumElems; ++i) {
2091 SDValue V = Node->getOperand(i);
2092 if (V.getOpcode() == ISD::UNDEF)
2093 continue;
2094 if (i > 0)
2095 isOnlyLowElement = false;
2096 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
2097 isConstant = false;
2099 if (!Value1.getNode()) {
2100 Value1 = V;
2101 } else if (!Value2.getNode()) {
2102 if (V != Value1)
2103 Value2 = V;
2104 } else if (V != Value1 && V != Value2) {
2105 MoreThanTwoValues = true;
2109 if (!Value1.getNode())
2110 return DAG.getUNDEF(VT);
2112 if (isOnlyLowElement)
2113 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2115 // If all elements are constants, create a load from the constant pool.
2116 if (isConstant) {
2117 std::vector<Constant*> CV;
2118 for (unsigned i = 0, e = NumElems; i != e; ++i) {
2119 if (ConstantFPSDNode *V =
2120 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2121 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2122 } else if (ConstantSDNode *V =
2123 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2124 if (OpVT==EltVT)
2125 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2126 else {
2127 // If OpVT and EltVT don't match, EltVT is not legal and the
2128 // element values have been promoted/truncated earlier. Undo this;
2129 // we don't want a v16i8 to become a v16i32 for example.
2130 const ConstantInt *CI = V->getConstantIntValue();
2131 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
2132 CI->getZExtValue()));
2134 } else {
2135 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
2136 const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
2137 CV.push_back(UndefValue::get(OpNTy));
2140 Constant *CP = ConstantVector::get(CV);
2141 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
2142 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2143 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
2144 MachinePointerInfo::getConstantPool(),
2145 false, false, Alignment);
2148 if (!MoreThanTwoValues) {
2149 SmallVector<int, 8> ShuffleVec(NumElems, -1);
2150 for (unsigned i = 0; i < NumElems; ++i) {
2151 SDValue V = Node->getOperand(i);
2152 if (V.getOpcode() == ISD::UNDEF)
2153 continue;
2154 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2156 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2157 // Get the splatted value into the low element of a vector register.
2158 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2159 SDValue Vec2;
2160 if (Value2.getNode())
2161 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2162 else
2163 Vec2 = DAG.getUNDEF(VT);
2165 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2166 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2170 // Otherwise, we can't handle this case efficiently.
2171 return ExpandVectorBuildThroughStack(Node);
2174 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
2175 // does not fit into a register, return the lo part and set the hi part to the
2176 // by-reg argument. If it does fit into a single register, return the result
2177 // and leave the Hi part unset.
2178 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2179 bool isSigned) {
2180 // The input chain to this libcall is the entry node of the function.
2181 // Legalizing the call will automatically add the previous call to the
2182 // dependence.
2183 SDValue InChain = DAG.getEntryNode();
2185 TargetLowering::ArgListTy Args;
2186 TargetLowering::ArgListEntry Entry;
2187 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2188 EVT ArgVT = Node->getOperand(i).getValueType();
2189 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2190 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2191 Entry.isSExt = isSigned;
2192 Entry.isZExt = !isSigned;
2193 Args.push_back(Entry);
2195 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2196 TLI.getPointerTy());
2198 // Splice the libcall in wherever FindInputOutputChains tells us to.
2199 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2201 // isTailCall may be true since the callee does not reference caller stack
2202 // frame. Check if it's in the right position.
2203 bool isTailCall = isInTailCallPosition(DAG, Node, TLI);
2204 std::pair<SDValue, SDValue> CallInfo =
2205 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2206 0, TLI.getLibcallCallingConv(LC), isTailCall,
2207 /*isReturnValueUsed=*/true,
2208 Callee, Args, DAG, Node->getDebugLoc());
2210 if (!CallInfo.second.getNode())
2211 // It's a tailcall, return the chain (which is the DAG root).
2212 return DAG.getRoot();
2214 // Legalize the call sequence, starting with the chain. This will advance
2215 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2216 // was added by LowerCallTo (guaranteeing proper serialization of calls).
2217 LegalizeOp(CallInfo.second);
2218 return CallInfo.first;
2221 /// ExpandLibCall - Generate a libcall taking the given operands as arguments
2222 /// and returning a result of type RetVT.
2223 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2224 const SDValue *Ops, unsigned NumOps,
2225 bool isSigned, DebugLoc dl) {
2226 TargetLowering::ArgListTy Args;
2227 Args.reserve(NumOps);
2229 TargetLowering::ArgListEntry Entry;
2230 for (unsigned i = 0; i != NumOps; ++i) {
2231 Entry.Node = Ops[i];
2232 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2233 Entry.isSExt = isSigned;
2234 Entry.isZExt = !isSigned;
2235 Args.push_back(Entry);
2237 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2238 TLI.getPointerTy());
2240 const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2241 std::pair<SDValue,SDValue> CallInfo =
2242 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
2243 false, 0, TLI.getLibcallCallingConv(LC), false,
2244 /*isReturnValueUsed=*/true,
2245 Callee, Args, DAG, dl);
2247 // Legalize the call sequence, starting with the chain. This will advance
2248 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
2249 // was added by LowerCallTo (guaranteeing proper serialization of calls).
2250 LegalizeOp(CallInfo.second);
2252 return CallInfo.first;
2255 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
2256 // ExpandLibCall except that the first operand is the in-chain.
2257 std::pair<SDValue, SDValue>
2258 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2259 SDNode *Node,
2260 bool isSigned) {
2261 SDValue InChain = Node->getOperand(0);
2263 TargetLowering::ArgListTy Args;
2264 TargetLowering::ArgListEntry Entry;
2265 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2266 EVT ArgVT = Node->getOperand(i).getValueType();
2267 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2268 Entry.Node = Node->getOperand(i);
2269 Entry.Ty = ArgTy;
2270 Entry.isSExt = isSigned;
2271 Entry.isZExt = !isSigned;
2272 Args.push_back(Entry);
2274 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2275 TLI.getPointerTy());
2277 // Splice the libcall in wherever FindInputOutputChains tells us to.
2278 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2279 std::pair<SDValue, SDValue> CallInfo =
2280 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2281 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2282 /*isReturnValueUsed=*/true,
2283 Callee, Args, DAG, Node->getDebugLoc());
2285 // Legalize the call sequence, starting with the chain. This will advance
2286 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2287 // was added by LowerCallTo (guaranteeing proper serialization of calls).
2288 LegalizeOp(CallInfo.second);
2289 return CallInfo;
2292 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2293 RTLIB::Libcall Call_F32,
2294 RTLIB::Libcall Call_F64,
2295 RTLIB::Libcall Call_F80,
2296 RTLIB::Libcall Call_PPCF128) {
2297 RTLIB::Libcall LC;
2298 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2299 default: assert(0 && "Unexpected request for libcall!");
2300 case MVT::f32: LC = Call_F32; break;
2301 case MVT::f64: LC = Call_F64; break;
2302 case MVT::f80: LC = Call_F80; break;
2303 case MVT::ppcf128: LC = Call_PPCF128; break;
2305 return ExpandLibCall(LC, Node, false);
2308 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2309 RTLIB::Libcall Call_I8,
2310 RTLIB::Libcall Call_I16,
2311 RTLIB::Libcall Call_I32,
2312 RTLIB::Libcall Call_I64,
2313 RTLIB::Libcall Call_I128) {
2314 RTLIB::Libcall LC;
2315 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2316 default: assert(0 && "Unexpected request for libcall!");
2317 case MVT::i8: LC = Call_I8; break;
2318 case MVT::i16: LC = Call_I16; break;
2319 case MVT::i32: LC = Call_I32; break;
2320 case MVT::i64: LC = Call_I64; break;
2321 case MVT::i128: LC = Call_I128; break;
2323 return ExpandLibCall(LC, Node, isSigned);
2326 /// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2327 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2328 const TargetLowering &TLI) {
2329 RTLIB::Libcall LC;
2330 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2331 default: assert(0 && "Unexpected request for libcall!");
2332 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2333 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2334 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2335 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2336 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2339 return TLI.getLibcallName(LC) != 0;
2342 /// UseDivRem - Only issue divrem libcall if both quotient and remainder are
2343 /// needed.
2344 static bool UseDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2345 unsigned OtherOpcode = 0;
2346 if (isSigned)
2347 OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2348 else
2349 OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2351 SDValue Op0 = Node->getOperand(0);
2352 SDValue Op1 = Node->getOperand(1);
2353 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2354 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2355 SDNode *User = *UI;
2356 if (User == Node)
2357 continue;
2358 if (User->getOpcode() == OtherOpcode &&
2359 User->getOperand(0) == Op0 &&
2360 User->getOperand(1) == Op1)
2361 return true;
2363 return false;
2366 /// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2367 /// pairs.
2368 void
2369 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2370 SmallVectorImpl<SDValue> &Results) {
2371 unsigned Opcode = Node->getOpcode();
2372 bool isSigned = Opcode == ISD::SDIVREM;
2374 RTLIB::Libcall LC;
2375 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2376 default: assert(0 && "Unexpected request for libcall!");
2377 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2378 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2379 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2380 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2381 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2384 // The input chain to this libcall is the entry node of the function.
2385 // Legalizing the call will automatically add the previous call to the
2386 // dependence.
2387 SDValue InChain = DAG.getEntryNode();
2389 EVT RetVT = Node->getValueType(0);
2390 const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2392 TargetLowering::ArgListTy Args;
2393 TargetLowering::ArgListEntry Entry;
2394 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2395 EVT ArgVT = Node->getOperand(i).getValueType();
2396 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2397 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2398 Entry.isSExt = isSigned;
2399 Entry.isZExt = !isSigned;
2400 Args.push_back(Entry);
2403 // Also pass the return address of the remainder.
2404 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2405 Entry.Node = FIPtr;
2406 Entry.Ty = RetTy->getPointerTo();
2407 Entry.isSExt = isSigned;
2408 Entry.isZExt = !isSigned;
2409 Args.push_back(Entry);
2411 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2412 TLI.getPointerTy());
2414 // Splice the libcall in wherever FindInputOutputChains tells us to.
2415 DebugLoc dl = Node->getDebugLoc();
2416 std::pair<SDValue, SDValue> CallInfo =
2417 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
2418 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2419 /*isReturnValueUsed=*/true, Callee, Args, DAG, dl);
2421 // Legalize the call sequence, starting with the chain. This will advance
2422 // the LastCALLSEQ to the legalized version of the CALLSEQ_END node that
2423 // was added by LowerCallTo (guaranteeing proper serialization of calls).
2424 LegalizeOp(CallInfo.second);
2426 // Remainder is loaded back from the stack frame.
2427 SDValue Rem = DAG.getLoad(RetVT, dl, getLastCALLSEQ(), FIPtr,
2428 MachinePointerInfo(), false, false, 0);
2429 Results.push_back(CallInfo.first);
2430 Results.push_back(Rem);
2433 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2434 /// INT_TO_FP operation of the specified operand when the target requests that
2435 /// we expand it. At this point, we know that the result and operand types are
2436 /// legal for the target.
2437 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2438 SDValue Op0,
2439 EVT DestVT,
2440 DebugLoc dl) {
2441 if (Op0.getValueType() == MVT::i32) {
2442 // simple 32-bit [signed|unsigned] integer to float/double expansion
2444 // Get the stack frame index of a 8 byte buffer.
2445 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2447 // word offset constant for Hi/Lo address computation
2448 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2449 // set up Hi and Lo (into buffer) address based on endian
2450 SDValue Hi = StackSlot;
2451 SDValue Lo = DAG.getNode(ISD::ADD, dl,
2452 TLI.getPointerTy(), StackSlot, WordOff);
2453 if (TLI.isLittleEndian())
2454 std::swap(Hi, Lo);
2456 // if signed map to unsigned space
2457 SDValue Op0Mapped;
2458 if (isSigned) {
2459 // constant used to invert sign bit (signed to unsigned mapping)
2460 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2461 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2462 } else {
2463 Op0Mapped = Op0;
2465 // store the lo of the constructed double - based on integer input
2466 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2467 Op0Mapped, Lo, MachinePointerInfo(),
2468 false, false, 0);
2469 // initial hi portion of constructed double
2470 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2471 // store the hi of the constructed double - biased exponent
2472 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2473 MachinePointerInfo(),
2474 false, false, 0);
2475 // load the constructed double
2476 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2477 MachinePointerInfo(), false, false, 0);
2478 // FP constant to bias correct the final result
2479 SDValue Bias = DAG.getConstantFP(isSigned ?
2480 BitsToDouble(0x4330000080000000ULL) :
2481 BitsToDouble(0x4330000000000000ULL),
2482 MVT::f64);
2483 // subtract the bias
2484 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2485 // final result
2486 SDValue Result;
2487 // handle final rounding
2488 if (DestVT == MVT::f64) {
2489 // do nothing
2490 Result = Sub;
2491 } else if (DestVT.bitsLT(MVT::f64)) {
2492 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2493 DAG.getIntPtrConstant(0));
2494 } else if (DestVT.bitsGT(MVT::f64)) {
2495 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2497 return Result;
2499 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2500 // Code below here assumes !isSigned without checking again.
2502 // Implementation of unsigned i64 to f64 following the algorithm in
2503 // __floatundidf in compiler_rt. This implementation has the advantage
2504 // of performing rounding correctly, both in the default rounding mode
2505 // and in all alternate rounding modes.
2506 // TODO: Generalize this for use with other types.
2507 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2508 SDValue TwoP52 =
2509 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2510 SDValue TwoP84PlusTwoP52 =
2511 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2512 SDValue TwoP84 =
2513 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2515 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2516 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2517 DAG.getConstant(32, MVT::i64));
2518 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2519 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2520 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2521 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2522 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2523 TwoP84PlusTwoP52);
2524 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2527 // Implementation of unsigned i64 to f32.
2528 // TODO: Generalize this for use with other types.
2529 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2530 // For unsigned conversions, convert them to signed conversions using the
2531 // algorithm from the x86_64 __floatundidf in compiler_rt.
2532 if (!isSigned) {
2533 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2535 SDValue ShiftConst =
2536 DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2537 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2538 SDValue AndConst = DAG.getConstant(1, MVT::i64);
2539 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2540 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2542 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2543 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2545 // TODO: This really should be implemented using a branch rather than a
2546 // select. We happen to get lucky and machinesink does the right
2547 // thing most of the time. This would be a good candidate for a
2548 //pseudo-op, or, even better, for whole-function isel.
2549 SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2550 Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2551 return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2554 // Otherwise, implement the fully general conversion.
2556 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2557 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2558 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2559 DAG.getConstant(UINT64_C(0x800), MVT::i64));
2560 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2561 DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2562 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2563 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2564 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2565 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2566 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2567 ISD::SETUGE);
2568 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2569 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2571 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2572 DAG.getConstant(32, SHVT));
2573 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2574 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2575 SDValue TwoP32 =
2576 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2577 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2578 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2579 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2580 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2581 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2582 DAG.getIntPtrConstant(0));
2585 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2587 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2588 Op0, DAG.getConstant(0, Op0.getValueType()),
2589 ISD::SETLT);
2590 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2591 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2592 SignSet, Four, Zero);
2594 // If the sign bit of the integer is set, the large number will be treated
2595 // as a negative number. To counteract this, the dynamic code adds an
2596 // offset depending on the data type.
2597 uint64_t FF;
2598 switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2599 default: assert(0 && "Unsupported integer type!");
2600 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2601 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2602 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2603 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2605 if (TLI.isLittleEndian()) FF <<= 32;
2606 Constant *FudgeFactor = ConstantInt::get(
2607 Type::getInt64Ty(*DAG.getContext()), FF);
2609 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2610 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2611 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2612 Alignment = std::min(Alignment, 4u);
2613 SDValue FudgeInReg;
2614 if (DestVT == MVT::f32)
2615 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2616 MachinePointerInfo::getConstantPool(),
2617 false, false, Alignment);
2618 else {
2619 FudgeInReg =
2620 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2621 DAG.getEntryNode(), CPIdx,
2622 MachinePointerInfo::getConstantPool(),
2623 MVT::f32, false, false, Alignment));
2626 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2629 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2630 /// *INT_TO_FP operation of the specified operand when the target requests that
2631 /// we promote it. At this point, we know that the result and operand types are
2632 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2633 /// operation that takes a larger input.
2634 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2635 EVT DestVT,
2636 bool isSigned,
2637 DebugLoc dl) {
2638 // First step, figure out the appropriate *INT_TO_FP operation to use.
2639 EVT NewInTy = LegalOp.getValueType();
2641 unsigned OpToUse = 0;
2643 // Scan for the appropriate larger type to use.
2644 while (1) {
2645 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2646 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2648 // If the target supports SINT_TO_FP of this type, use it.
2649 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2650 OpToUse = ISD::SINT_TO_FP;
2651 break;
2653 if (isSigned) continue;
2655 // If the target supports UINT_TO_FP of this type, use it.
2656 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2657 OpToUse = ISD::UINT_TO_FP;
2658 break;
2661 // Otherwise, try a larger type.
2664 // Okay, we found the operation and type to use. Zero extend our input to the
2665 // desired type then run the operation on it.
2666 return DAG.getNode(OpToUse, dl, DestVT,
2667 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2668 dl, NewInTy, LegalOp));
2671 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2672 /// FP_TO_*INT operation of the specified operand when the target requests that
2673 /// we promote it. At this point, we know that the result and operand types are
2674 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2675 /// operation that returns a larger result.
2676 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2677 EVT DestVT,
2678 bool isSigned,
2679 DebugLoc dl) {
2680 // First step, figure out the appropriate FP_TO*INT operation to use.
2681 EVT NewOutTy = DestVT;
2683 unsigned OpToUse = 0;
2685 // Scan for the appropriate larger type to use.
2686 while (1) {
2687 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2688 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2690 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2691 OpToUse = ISD::FP_TO_SINT;
2692 break;
2695 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2696 OpToUse = ISD::FP_TO_UINT;
2697 break;
2700 // Otherwise, try a larger type.
2704 // Okay, we found the operation and type to use.
2705 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2707 // Truncate the result of the extended FP_TO_*INT operation to the desired
2708 // size.
2709 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2712 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2714 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2715 EVT VT = Op.getValueType();
2716 EVT SHVT = TLI.getShiftAmountTy(VT);
2717 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2718 switch (VT.getSimpleVT().SimpleTy) {
2719 default: assert(0 && "Unhandled Expand type in BSWAP!");
2720 case MVT::i16:
2721 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2722 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2723 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2724 case MVT::i32:
2725 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2726 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2727 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2728 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2729 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2730 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2731 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2732 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2733 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2734 case MVT::i64:
2735 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2736 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2737 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2738 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2739 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2740 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2741 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2742 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2743 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2744 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2745 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2746 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2747 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2748 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2749 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2750 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2751 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2752 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2753 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2754 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2755 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2759 /// SplatByte - Distribute ByteVal over NumBits bits.
2760 // FIXME: Move this helper to a common place.
2761 static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2762 APInt Val = APInt(NumBits, ByteVal);
2763 unsigned Shift = 8;
2764 for (unsigned i = NumBits; i > 8; i >>= 1) {
2765 Val = (Val << Shift) | Val;
2766 Shift <<= 1;
2768 return Val;
2771 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2773 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2774 DebugLoc dl) {
2775 switch (Opc) {
2776 default: assert(0 && "Cannot expand this yet!");
2777 case ISD::CTPOP: {
2778 EVT VT = Op.getValueType();
2779 EVT ShVT = TLI.getShiftAmountTy(VT);
2780 unsigned Len = VT.getSizeInBits();
2782 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2783 "CTPOP not implemented for this type.");
2785 // This is the "best" algorithm from
2786 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2788 SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2789 SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2790 SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2791 SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2793 // v = v - ((v >> 1) & 0x55555555...)
2794 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2795 DAG.getNode(ISD::AND, dl, VT,
2796 DAG.getNode(ISD::SRL, dl, VT, Op,
2797 DAG.getConstant(1, ShVT)),
2798 Mask55));
2799 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2800 Op = DAG.getNode(ISD::ADD, dl, VT,
2801 DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2802 DAG.getNode(ISD::AND, dl, VT,
2803 DAG.getNode(ISD::SRL, dl, VT, Op,
2804 DAG.getConstant(2, ShVT)),
2805 Mask33));
2806 // v = (v + (v >> 4)) & 0x0F0F0F0F...
2807 Op = DAG.getNode(ISD::AND, dl, VT,
2808 DAG.getNode(ISD::ADD, dl, VT, Op,
2809 DAG.getNode(ISD::SRL, dl, VT, Op,
2810 DAG.getConstant(4, ShVT))),
2811 Mask0F);
2812 // v = (v * 0x01010101...) >> (Len - 8)
2813 Op = DAG.getNode(ISD::SRL, dl, VT,
2814 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2815 DAG.getConstant(Len - 8, ShVT));
2817 return Op;
2819 case ISD::CTLZ: {
2820 // for now, we do this:
2821 // x = x | (x >> 1);
2822 // x = x | (x >> 2);
2823 // ...
2824 // x = x | (x >>16);
2825 // x = x | (x >>32); // for 64-bit input
2826 // return popcount(~x);
2828 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2829 EVT VT = Op.getValueType();
2830 EVT ShVT = TLI.getShiftAmountTy(VT);
2831 unsigned len = VT.getSizeInBits();
2832 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2833 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2834 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2835 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2837 Op = DAG.getNOT(dl, Op, VT);
2838 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2840 case ISD::CTTZ: {
2841 // for now, we use: { return popcount(~x & (x - 1)); }
2842 // unless the target has ctlz but not ctpop, in which case we use:
2843 // { return 32 - nlz(~x & (x-1)); }
2844 // see also http://www.hackersdelight.org/HDcode/ntz.cc
2845 EVT VT = Op.getValueType();
2846 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2847 DAG.getNOT(dl, Op, VT),
2848 DAG.getNode(ISD::SUB, dl, VT, Op,
2849 DAG.getConstant(1, VT)));
2850 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2851 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2852 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2853 return DAG.getNode(ISD::SUB, dl, VT,
2854 DAG.getConstant(VT.getSizeInBits(), VT),
2855 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2856 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2861 std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2862 unsigned Opc = Node->getOpcode();
2863 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2864 RTLIB::Libcall LC;
2866 switch (Opc) {
2867 default:
2868 llvm_unreachable("Unhandled atomic intrinsic Expand!");
2869 break;
2870 case ISD::ATOMIC_SWAP:
2871 switch (VT.SimpleTy) {
2872 default: llvm_unreachable("Unexpected value type for atomic!");
2873 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2874 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2875 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2876 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2878 break;
2879 case ISD::ATOMIC_CMP_SWAP:
2880 switch (VT.SimpleTy) {
2881 default: llvm_unreachable("Unexpected value type for atomic!");
2882 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2883 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2884 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2885 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2887 break;
2888 case ISD::ATOMIC_LOAD_ADD:
2889 switch (VT.SimpleTy) {
2890 default: llvm_unreachable("Unexpected value type for atomic!");
2891 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2892 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2893 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2894 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2896 break;
2897 case ISD::ATOMIC_LOAD_SUB:
2898 switch (VT.SimpleTy) {
2899 default: llvm_unreachable("Unexpected value type for atomic!");
2900 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2901 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2902 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2903 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2905 break;
2906 case ISD::ATOMIC_LOAD_AND:
2907 switch (VT.SimpleTy) {
2908 default: llvm_unreachable("Unexpected value type for atomic!");
2909 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2910 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2911 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2912 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2914 break;
2915 case ISD::ATOMIC_LOAD_OR:
2916 switch (VT.SimpleTy) {
2917 default: llvm_unreachable("Unexpected value type for atomic!");
2918 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2919 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2920 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2921 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2923 break;
2924 case ISD::ATOMIC_LOAD_XOR:
2925 switch (VT.SimpleTy) {
2926 default: llvm_unreachable("Unexpected value type for atomic!");
2927 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2928 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2929 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2930 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2932 break;
2933 case ISD::ATOMIC_LOAD_NAND:
2934 switch (VT.SimpleTy) {
2935 default: llvm_unreachable("Unexpected value type for atomic!");
2936 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2937 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2938 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2939 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2941 break;
2944 return ExpandChainLibCall(LC, Node, false);
2947 void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2948 SmallVectorImpl<SDValue> &Results) {
2949 DebugLoc dl = Node->getDebugLoc();
2950 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2951 switch (Node->getOpcode()) {
2952 case ISD::CTPOP:
2953 case ISD::CTLZ:
2954 case ISD::CTTZ:
2955 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2956 Results.push_back(Tmp1);
2957 break;
2958 case ISD::BSWAP:
2959 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2960 break;
2961 case ISD::FRAMEADDR:
2962 case ISD::RETURNADDR:
2963 case ISD::FRAME_TO_ARGS_OFFSET:
2964 Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2965 break;
2966 case ISD::FLT_ROUNDS_:
2967 Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2968 break;
2969 case ISD::EH_RETURN:
2970 case ISD::EH_LABEL:
2971 case ISD::PREFETCH:
2972 case ISD::VAEND:
2973 case ISD::EH_SJLJ_LONGJMP:
2974 case ISD::EH_SJLJ_DISPATCHSETUP:
2975 // If the target didn't expand these, there's nothing to do, so just
2976 // preserve the chain and be done.
2977 Results.push_back(Node->getOperand(0));
2978 break;
2979 case ISD::EH_SJLJ_SETJMP:
2980 // If the target didn't expand this, just return 'zero' and preserve the
2981 // chain.
2982 Results.push_back(DAG.getConstant(0, MVT::i32));
2983 Results.push_back(Node->getOperand(0));
2984 break;
2985 case ISD::MEMBARRIER: {
2986 // If the target didn't lower this, lower it to '__sync_synchronize()' call
2987 TargetLowering::ArgListTy Args;
2988 std::pair<SDValue, SDValue> CallResult =
2989 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2990 false, false, false, false, 0, CallingConv::C,
2991 /*isTailCall=*/false,
2992 /*isReturnValueUsed=*/true,
2993 DAG.getExternalSymbol("__sync_synchronize",
2994 TLI.getPointerTy()),
2995 Args, DAG, dl);
2996 Results.push_back(CallResult.second);
2997 break;
2999 // By default, atomic intrinsics are marked Legal and lowered. Targets
3000 // which don't support them directly, however, may want libcalls, in which
3001 // case they mark them Expand, and we get here.
3002 case ISD::ATOMIC_SWAP:
3003 case ISD::ATOMIC_LOAD_ADD:
3004 case ISD::ATOMIC_LOAD_SUB:
3005 case ISD::ATOMIC_LOAD_AND:
3006 case ISD::ATOMIC_LOAD_OR:
3007 case ISD::ATOMIC_LOAD_XOR:
3008 case ISD::ATOMIC_LOAD_NAND:
3009 case ISD::ATOMIC_LOAD_MIN:
3010 case ISD::ATOMIC_LOAD_MAX:
3011 case ISD::ATOMIC_LOAD_UMIN:
3012 case ISD::ATOMIC_LOAD_UMAX:
3013 case ISD::ATOMIC_CMP_SWAP: {
3014 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
3015 Results.push_back(Tmp.first);
3016 Results.push_back(Tmp.second);
3017 break;
3019 case ISD::DYNAMIC_STACKALLOC:
3020 ExpandDYNAMIC_STACKALLOC(Node, Results);
3021 break;
3022 case ISD::MERGE_VALUES:
3023 for (unsigned i = 0; i < Node->getNumValues(); i++)
3024 Results.push_back(Node->getOperand(i));
3025 break;
3026 case ISD::UNDEF: {
3027 EVT VT = Node->getValueType(0);
3028 if (VT.isInteger())
3029 Results.push_back(DAG.getConstant(0, VT));
3030 else {
3031 assert(VT.isFloatingPoint() && "Unknown value type!");
3032 Results.push_back(DAG.getConstantFP(0, VT));
3034 break;
3036 case ISD::TRAP: {
3037 // If this operation is not supported, lower it to 'abort()' call
3038 TargetLowering::ArgListTy Args;
3039 std::pair<SDValue, SDValue> CallResult =
3040 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
3041 false, false, false, false, 0, CallingConv::C,
3042 /*isTailCall=*/false,
3043 /*isReturnValueUsed=*/true,
3044 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
3045 Args, DAG, dl);
3046 Results.push_back(CallResult.second);
3047 break;
3049 case ISD::FP_ROUND:
3050 case ISD::BITCAST:
3051 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3052 Node->getValueType(0), dl);
3053 Results.push_back(Tmp1);
3054 break;
3055 case ISD::FP_EXTEND:
3056 Tmp1 = EmitStackConvert(Node->getOperand(0),
3057 Node->getOperand(0).getValueType(),
3058 Node->getValueType(0), dl);
3059 Results.push_back(Tmp1);
3060 break;
3061 case ISD::SIGN_EXTEND_INREG: {
3062 // NOTE: we could fall back on load/store here too for targets without
3063 // SAR. However, it is doubtful that any exist.
3064 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3065 EVT VT = Node->getValueType(0);
3066 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
3067 if (VT.isVector())
3068 ShiftAmountTy = VT;
3069 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3070 ExtraVT.getScalarType().getSizeInBits();
3071 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
3072 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3073 Node->getOperand(0), ShiftCst);
3074 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3075 Results.push_back(Tmp1);
3076 break;
3078 case ISD::FP_ROUND_INREG: {
3079 // The only way we can lower this is to turn it into a TRUNCSTORE,
3080 // EXTLOAD pair, targeting a temporary location (a stack slot).
3082 // NOTE: there is a choice here between constantly creating new stack
3083 // slots and always reusing the same one. We currently always create
3084 // new ones, as reuse may inhibit scheduling.
3085 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3086 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3087 Node->getValueType(0), dl);
3088 Results.push_back(Tmp1);
3089 break;
3091 case ISD::SINT_TO_FP:
3092 case ISD::UINT_TO_FP:
3093 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3094 Node->getOperand(0), Node->getValueType(0), dl);
3095 Results.push_back(Tmp1);
3096 break;
3097 case ISD::FP_TO_UINT: {
3098 SDValue True, False;
3099 EVT VT = Node->getOperand(0).getValueType();
3100 EVT NVT = Node->getValueType(0);
3101 APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
3102 APInt x = APInt::getSignBit(NVT.getSizeInBits());
3103 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3104 Tmp1 = DAG.getConstantFP(apf, VT);
3105 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
3106 Node->getOperand(0),
3107 Tmp1, ISD::SETLT);
3108 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3109 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3110 DAG.getNode(ISD::FSUB, dl, VT,
3111 Node->getOperand(0), Tmp1));
3112 False = DAG.getNode(ISD::XOR, dl, NVT, False,
3113 DAG.getConstant(x, NVT));
3114 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
3115 Results.push_back(Tmp1);
3116 break;
3118 case ISD::VAARG: {
3119 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3120 EVT VT = Node->getValueType(0);
3121 Tmp1 = Node->getOperand(0);
3122 Tmp2 = Node->getOperand(1);
3123 unsigned Align = Node->getConstantOperandVal(3);
3125 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
3126 MachinePointerInfo(V), false, false, 0);
3127 SDValue VAList = VAListLoad;
3129 if (Align > TLI.getMinStackArgumentAlignment()) {
3130 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3132 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3133 DAG.getConstant(Align - 1,
3134 TLI.getPointerTy()));
3136 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
3137 DAG.getConstant(-(int64_t)Align,
3138 TLI.getPointerTy()));
3141 // Increment the pointer, VAList, to the next vaarg
3142 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
3143 DAG.getConstant(TLI.getTargetData()->
3144 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
3145 TLI.getPointerTy()));
3146 // Store the incremented VAList to the legalized pointer
3147 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3148 MachinePointerInfo(V), false, false, 0);
3149 // Load the actual argument out of the pointer VAList
3150 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3151 false, false, 0));
3152 Results.push_back(Results[0].getValue(1));
3153 break;
3155 case ISD::VACOPY: {
3156 // This defaults to loading a pointer from the input and storing it to the
3157 // output, returning the chain.
3158 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3159 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3160 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3161 Node->getOperand(2), MachinePointerInfo(VS),
3162 false, false, 0);
3163 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3164 MachinePointerInfo(VD), false, false, 0);
3165 Results.push_back(Tmp1);
3166 break;
3168 case ISD::EXTRACT_VECTOR_ELT:
3169 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3170 // This must be an access of the only element. Return it.
3171 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3172 Node->getOperand(0));
3173 else
3174 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3175 Results.push_back(Tmp1);
3176 break;
3177 case ISD::EXTRACT_SUBVECTOR:
3178 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3179 break;
3180 case ISD::INSERT_SUBVECTOR:
3181 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3182 break;
3183 case ISD::CONCAT_VECTORS: {
3184 Results.push_back(ExpandVectorBuildThroughStack(Node));
3185 break;
3187 case ISD::SCALAR_TO_VECTOR:
3188 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3189 break;
3190 case ISD::INSERT_VECTOR_ELT:
3191 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3192 Node->getOperand(1),
3193 Node->getOperand(2), dl));
3194 break;
3195 case ISD::VECTOR_SHUFFLE: {
3196 SmallVector<int, 8> Mask;
3197 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3199 EVT VT = Node->getValueType(0);
3200 EVT EltVT = VT.getVectorElementType();
3201 if (getTypeAction(EltVT) == Promote)
3202 EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3203 unsigned NumElems = VT.getVectorNumElements();
3204 SmallVector<SDValue, 8> Ops;
3205 for (unsigned i = 0; i != NumElems; ++i) {
3206 if (Mask[i] < 0) {
3207 Ops.push_back(DAG.getUNDEF(EltVT));
3208 continue;
3210 unsigned Idx = Mask[i];
3211 if (Idx < NumElems)
3212 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3213 Node->getOperand(0),
3214 DAG.getIntPtrConstant(Idx)));
3215 else
3216 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3217 Node->getOperand(1),
3218 DAG.getIntPtrConstant(Idx - NumElems)));
3220 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3221 Results.push_back(Tmp1);
3222 break;
3224 case ISD::EXTRACT_ELEMENT: {
3225 EVT OpTy = Node->getOperand(0).getValueType();
3226 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3227 // 1 -> Hi
3228 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3229 DAG.getConstant(OpTy.getSizeInBits()/2,
3230 TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3231 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3232 } else {
3233 // 0 -> Lo
3234 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3235 Node->getOperand(0));
3237 Results.push_back(Tmp1);
3238 break;
3240 case ISD::STACKSAVE:
3241 // Expand to CopyFromReg if the target set
3242 // StackPointerRegisterToSaveRestore.
3243 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3244 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3245 Node->getValueType(0)));
3246 Results.push_back(Results[0].getValue(1));
3247 } else {
3248 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3249 Results.push_back(Node->getOperand(0));
3251 break;
3252 case ISD::STACKRESTORE:
3253 // Expand to CopyToReg if the target set
3254 // StackPointerRegisterToSaveRestore.
3255 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3256 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3257 Node->getOperand(1)));
3258 } else {
3259 Results.push_back(Node->getOperand(0));
3261 break;
3262 case ISD::FCOPYSIGN:
3263 Results.push_back(ExpandFCOPYSIGN(Node));
3264 break;
3265 case ISD::FNEG:
3266 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3267 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3268 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3269 Node->getOperand(0));
3270 Results.push_back(Tmp1);
3271 break;
3272 case ISD::FABS: {
3273 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3274 EVT VT = Node->getValueType(0);
3275 Tmp1 = Node->getOperand(0);
3276 Tmp2 = DAG.getConstantFP(0.0, VT);
3277 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
3278 Tmp1, Tmp2, ISD::SETUGT);
3279 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3280 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
3281 Results.push_back(Tmp1);
3282 break;
3284 case ISD::FSQRT:
3285 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3286 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
3287 break;
3288 case ISD::FSIN:
3289 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3290 RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
3291 break;
3292 case ISD::FCOS:
3293 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3294 RTLIB::COS_F80, RTLIB::COS_PPCF128));
3295 break;
3296 case ISD::FLOG:
3297 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3298 RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
3299 break;
3300 case ISD::FLOG2:
3301 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3302 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
3303 break;
3304 case ISD::FLOG10:
3305 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3306 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
3307 break;
3308 case ISD::FEXP:
3309 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3310 RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
3311 break;
3312 case ISD::FEXP2:
3313 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3314 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
3315 break;
3316 case ISD::FTRUNC:
3317 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3318 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
3319 break;
3320 case ISD::FFLOOR:
3321 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3322 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3323 break;
3324 case ISD::FCEIL:
3325 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3326 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3327 break;
3328 case ISD::FRINT:
3329 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3330 RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3331 break;
3332 case ISD::FNEARBYINT:
3333 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3334 RTLIB::NEARBYINT_F64,
3335 RTLIB::NEARBYINT_F80,
3336 RTLIB::NEARBYINT_PPCF128));
3337 break;
3338 case ISD::FPOWI:
3339 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3340 RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3341 break;
3342 case ISD::FPOW:
3343 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3344 RTLIB::POW_F80, RTLIB::POW_PPCF128));
3345 break;
3346 case ISD::FDIV:
3347 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3348 RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3349 break;
3350 case ISD::FREM:
3351 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3352 RTLIB::REM_F80, RTLIB::REM_PPCF128));
3353 break;
3354 case ISD::FMA:
3355 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3356 RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3357 break;
3358 case ISD::FP16_TO_FP32:
3359 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3360 break;
3361 case ISD::FP32_TO_FP16:
3362 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3363 break;
3364 case ISD::ConstantFP: {
3365 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3366 // Check to see if this FP immediate is already legal.
3367 // If this is a legal constant, turn it into a TargetConstantFP node.
3368 if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3369 Results.push_back(SDValue(Node, 0));
3370 else
3371 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
3372 break;
3374 case ISD::EHSELECTION: {
3375 unsigned Reg = TLI.getExceptionSelectorRegister();
3376 assert(Reg && "Can't expand to unknown register!");
3377 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3378 Node->getValueType(0)));
3379 Results.push_back(Results[0].getValue(1));
3380 break;
3382 case ISD::EXCEPTIONADDR: {
3383 unsigned Reg = TLI.getExceptionAddressRegister();
3384 assert(Reg && "Can't expand to unknown register!");
3385 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3386 Node->getValueType(0)));
3387 Results.push_back(Results[0].getValue(1));
3388 break;
3390 case ISD::SUB: {
3391 EVT VT = Node->getValueType(0);
3392 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3393 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3394 "Don't know how to expand this subtraction!");
3395 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3396 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3397 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
3398 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3399 break;
3401 case ISD::UREM:
3402 case ISD::SREM: {
3403 EVT VT = Node->getValueType(0);
3404 SDVTList VTs = DAG.getVTList(VT, VT);
3405 bool isSigned = Node->getOpcode() == ISD::SREM;
3406 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3407 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3408 Tmp2 = Node->getOperand(0);
3409 Tmp3 = Node->getOperand(1);
3410 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3411 (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3412 UseDivRem(Node, isSigned, false))) {
3413 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3414 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3415 // X % Y -> X-X/Y*Y
3416 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3417 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3418 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3419 } else if (isSigned)
3420 Tmp1 = ExpandIntLibCall(Node, true,
3421 RTLIB::SREM_I8,
3422 RTLIB::SREM_I16, RTLIB::SREM_I32,
3423 RTLIB::SREM_I64, RTLIB::SREM_I128);
3424 else
3425 Tmp1 = ExpandIntLibCall(Node, false,
3426 RTLIB::UREM_I8,
3427 RTLIB::UREM_I16, RTLIB::UREM_I32,
3428 RTLIB::UREM_I64, RTLIB::UREM_I128);
3429 Results.push_back(Tmp1);
3430 break;
3432 case ISD::UDIV:
3433 case ISD::SDIV: {
3434 bool isSigned = Node->getOpcode() == ISD::SDIV;
3435 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3436 EVT VT = Node->getValueType(0);
3437 SDVTList VTs = DAG.getVTList(VT, VT);
3438 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3439 (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3440 UseDivRem(Node, isSigned, true)))
3441 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3442 Node->getOperand(1));
3443 else if (isSigned)
3444 Tmp1 = ExpandIntLibCall(Node, true,
3445 RTLIB::SDIV_I8,
3446 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3447 RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3448 else
3449 Tmp1 = ExpandIntLibCall(Node, false,
3450 RTLIB::UDIV_I8,
3451 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3452 RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3453 Results.push_back(Tmp1);
3454 break;
3456 case ISD::MULHU:
3457 case ISD::MULHS: {
3458 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3459 ISD::SMUL_LOHI;
3460 EVT VT = Node->getValueType(0);
3461 SDVTList VTs = DAG.getVTList(VT, VT);
3462 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3463 "If this wasn't legal, it shouldn't have been created!");
3464 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3465 Node->getOperand(1));
3466 Results.push_back(Tmp1.getValue(1));
3467 break;
3469 case ISD::SDIVREM:
3470 case ISD::UDIVREM:
3471 // Expand into divrem libcall
3472 ExpandDivRemLibCall(Node, Results);
3473 break;
3474 case ISD::MUL: {
3475 EVT VT = Node->getValueType(0);
3476 SDVTList VTs = DAG.getVTList(VT, VT);
3477 // See if multiply or divide can be lowered using two-result operations.
3478 // We just need the low half of the multiply; try both the signed
3479 // and unsigned forms. If the target supports both SMUL_LOHI and
3480 // UMUL_LOHI, form a preference by checking which forms of plain
3481 // MULH it supports.
3482 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3483 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3484 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3485 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3486 unsigned OpToUse = 0;
3487 if (HasSMUL_LOHI && !HasMULHS) {
3488 OpToUse = ISD::SMUL_LOHI;
3489 } else if (HasUMUL_LOHI && !HasMULHU) {
3490 OpToUse = ISD::UMUL_LOHI;
3491 } else if (HasSMUL_LOHI) {
3492 OpToUse = ISD::SMUL_LOHI;
3493 } else if (HasUMUL_LOHI) {
3494 OpToUse = ISD::UMUL_LOHI;
3496 if (OpToUse) {
3497 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3498 Node->getOperand(1)));
3499 break;
3501 Tmp1 = ExpandIntLibCall(Node, false,
3502 RTLIB::MUL_I8,
3503 RTLIB::MUL_I16, RTLIB::MUL_I32,
3504 RTLIB::MUL_I64, RTLIB::MUL_I128);
3505 Results.push_back(Tmp1);
3506 break;
3508 case ISD::SADDO:
3509 case ISD::SSUBO: {
3510 SDValue LHS = Node->getOperand(0);
3511 SDValue RHS = Node->getOperand(1);
3512 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3513 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3514 LHS, RHS);
3515 Results.push_back(Sum);
3516 EVT OType = Node->getValueType(1);
3518 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3520 // LHSSign -> LHS >= 0
3521 // RHSSign -> RHS >= 0
3522 // SumSign -> Sum >= 0
3524 // Add:
3525 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3526 // Sub:
3527 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3529 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3530 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3531 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3532 Node->getOpcode() == ISD::SADDO ?
3533 ISD::SETEQ : ISD::SETNE);
3535 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3536 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3538 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3539 Results.push_back(Cmp);
3540 break;
3542 case ISD::UADDO:
3543 case ISD::USUBO: {
3544 SDValue LHS = Node->getOperand(0);
3545 SDValue RHS = Node->getOperand(1);
3546 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3547 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3548 LHS, RHS);
3549 Results.push_back(Sum);
3550 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3551 Node->getOpcode () == ISD::UADDO ?
3552 ISD::SETULT : ISD::SETUGT));
3553 break;
3555 case ISD::UMULO:
3556 case ISD::SMULO: {
3557 EVT VT = Node->getValueType(0);
3558 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3559 SDValue LHS = Node->getOperand(0);
3560 SDValue RHS = Node->getOperand(1);
3561 SDValue BottomHalf;
3562 SDValue TopHalf;
3563 static const unsigned Ops[2][3] =
3564 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3565 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3566 bool isSigned = Node->getOpcode() == ISD::SMULO;
3567 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3568 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3569 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3570 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3571 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3572 RHS);
3573 TopHalf = BottomHalf.getValue(1);
3574 } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3575 VT.getSizeInBits() * 2))) {
3576 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3577 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3578 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3579 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3580 DAG.getIntPtrConstant(0));
3581 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3582 DAG.getIntPtrConstant(1));
3583 } else {
3584 // We can fall back to a libcall with an illegal type for the MUL if we
3585 // have a libcall big enough.
3586 // Also, we can fall back to a division in some cases, but that's a big
3587 // performance hit in the general case.
3588 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3589 if (WideVT == MVT::i16)
3590 LC = RTLIB::MUL_I16;
3591 else if (WideVT == MVT::i32)
3592 LC = RTLIB::MUL_I32;
3593 else if (WideVT == MVT::i64)
3594 LC = RTLIB::MUL_I64;
3595 else if (WideVT == MVT::i128)
3596 LC = RTLIB::MUL_I128;
3597 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3599 // The high part is obtained by SRA'ing all but one of the bits of low
3600 // part.
3601 unsigned LoSize = VT.getSizeInBits();
3602 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3603 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3604 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3605 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3607 // Here we're passing the 2 arguments explicitly as 4 arguments that are
3608 // pre-lowered to the correct types. This all depends upon WideVT not
3609 // being a legal type for the architecture and thus has to be split to
3610 // two arguments.
3611 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3612 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3613 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3614 DAG.getIntPtrConstant(0));
3615 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3616 DAG.getIntPtrConstant(1));
3619 if (isSigned) {
3620 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3621 TLI.getShiftAmountTy(BottomHalf.getValueType()));
3622 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3623 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3624 ISD::SETNE);
3625 } else {
3626 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3627 DAG.getConstant(0, VT), ISD::SETNE);
3629 Results.push_back(BottomHalf);
3630 Results.push_back(TopHalf);
3631 break;
3633 case ISD::BUILD_PAIR: {
3634 EVT PairTy = Node->getValueType(0);
3635 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3636 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3637 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3638 DAG.getConstant(PairTy.getSizeInBits()/2,
3639 TLI.getShiftAmountTy(PairTy)));
3640 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3641 break;
3643 case ISD::SELECT:
3644 Tmp1 = Node->getOperand(0);
3645 Tmp2 = Node->getOperand(1);
3646 Tmp3 = Node->getOperand(2);
3647 if (Tmp1.getOpcode() == ISD::SETCC) {
3648 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3649 Tmp2, Tmp3,
3650 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3651 } else {
3652 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3653 DAG.getConstant(0, Tmp1.getValueType()),
3654 Tmp2, Tmp3, ISD::SETNE);
3656 Results.push_back(Tmp1);
3657 break;
3658 case ISD::BR_JT: {
3659 SDValue Chain = Node->getOperand(0);
3660 SDValue Table = Node->getOperand(1);
3661 SDValue Index = Node->getOperand(2);
3663 EVT PTy = TLI.getPointerTy();
3665 const TargetData &TD = *TLI.getTargetData();
3666 unsigned EntrySize =
3667 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3669 Index = DAG.getNode(ISD::MUL, dl, PTy,
3670 Index, DAG.getConstant(EntrySize, PTy));
3671 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3673 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3674 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3675 MachinePointerInfo::getJumpTable(), MemVT,
3676 false, false, 0);
3677 Addr = LD;
3678 if (TM.getRelocationModel() == Reloc::PIC_) {
3679 // For PIC, the sequence is:
3680 // BRIND(load(Jumptable + index) + RelocBase)
3681 // RelocBase can be JumpTable, GOT or some sort of global base.
3682 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3683 TLI.getPICJumpTableRelocBase(Table, DAG));
3685 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3686 Results.push_back(Tmp1);
3687 break;
3689 case ISD::BRCOND:
3690 // Expand brcond's setcc into its constituent parts and create a BR_CC
3691 // Node.
3692 Tmp1 = Node->getOperand(0);
3693 Tmp2 = Node->getOperand(1);
3694 if (Tmp2.getOpcode() == ISD::SETCC) {
3695 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3696 Tmp1, Tmp2.getOperand(2),
3697 Tmp2.getOperand(0), Tmp2.getOperand(1),
3698 Node->getOperand(2));
3699 } else {
3700 // We test only the i1 bit. Skip the AND if UNDEF.
3701 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3702 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3703 DAG.getConstant(1, Tmp2.getValueType()));
3704 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3705 DAG.getCondCode(ISD::SETNE), Tmp3,
3706 DAG.getConstant(0, Tmp3.getValueType()),
3707 Node->getOperand(2));
3709 Results.push_back(Tmp1);
3710 break;
3711 case ISD::SETCC: {
3712 Tmp1 = Node->getOperand(0);
3713 Tmp2 = Node->getOperand(1);
3714 Tmp3 = Node->getOperand(2);
3715 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3717 // If we expanded the SETCC into an AND/OR, return the new node
3718 if (Tmp2.getNode() == 0) {
3719 Results.push_back(Tmp1);
3720 break;
3723 // Otherwise, SETCC for the given comparison type must be completely
3724 // illegal; expand it into a SELECT_CC.
3725 EVT VT = Node->getValueType(0);
3726 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3727 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3728 Results.push_back(Tmp1);
3729 break;
3731 case ISD::SELECT_CC: {
3732 Tmp1 = Node->getOperand(0); // LHS
3733 Tmp2 = Node->getOperand(1); // RHS
3734 Tmp3 = Node->getOperand(2); // True
3735 Tmp4 = Node->getOperand(3); // False
3736 SDValue CC = Node->getOperand(4);
3738 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3739 Tmp1, Tmp2, CC, dl);
3741 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3742 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3743 CC = DAG.getCondCode(ISD::SETNE);
3744 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3745 Tmp3, Tmp4, CC);
3746 Results.push_back(Tmp1);
3747 break;
3749 case ISD::BR_CC: {
3750 Tmp1 = Node->getOperand(0); // Chain
3751 Tmp2 = Node->getOperand(2); // LHS
3752 Tmp3 = Node->getOperand(3); // RHS
3753 Tmp4 = Node->getOperand(1); // CC
3755 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3756 Tmp2, Tmp3, Tmp4, dl);
3757 assert(LastCALLSEQ.size() == 1 && "branch inside CALLSEQ_BEGIN/END?");
3758 setLastCALLSEQ(DAG.getEntryNode());
3760 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3761 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3762 Tmp4 = DAG.getCondCode(ISD::SETNE);
3763 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3764 Tmp3, Node->getOperand(4));
3765 Results.push_back(Tmp1);
3766 break;
3768 case ISD::GLOBAL_OFFSET_TABLE:
3769 case ISD::GlobalAddress:
3770 case ISD::GlobalTLSAddress:
3771 case ISD::ExternalSymbol:
3772 case ISD::ConstantPool:
3773 case ISD::JumpTable:
3774 case ISD::INTRINSIC_W_CHAIN:
3775 case ISD::INTRINSIC_WO_CHAIN:
3776 case ISD::INTRINSIC_VOID:
3777 // FIXME: Custom lowering for these operations shouldn't return null!
3778 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3779 Results.push_back(SDValue(Node, i));
3780 break;
3783 void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3784 SmallVectorImpl<SDValue> &Results) {
3785 EVT OVT = Node->getValueType(0);
3786 if (Node->getOpcode() == ISD::UINT_TO_FP ||
3787 Node->getOpcode() == ISD::SINT_TO_FP ||
3788 Node->getOpcode() == ISD::SETCC) {
3789 OVT = Node->getOperand(0).getValueType();
3791 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3792 DebugLoc dl = Node->getDebugLoc();
3793 SDValue Tmp1, Tmp2, Tmp3;
3794 switch (Node->getOpcode()) {
3795 case ISD::CTTZ:
3796 case ISD::CTLZ:
3797 case ISD::CTPOP:
3798 // Zero extend the argument.
3799 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3800 // Perform the larger operation.
3801 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3802 if (Node->getOpcode() == ISD::CTTZ) {
3803 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3804 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3805 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3806 ISD::SETEQ);
3807 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3808 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3809 } else if (Node->getOpcode() == ISD::CTLZ) {
3810 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3811 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3812 DAG.getConstant(NVT.getSizeInBits() -
3813 OVT.getSizeInBits(), NVT));
3815 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3816 break;
3817 case ISD::BSWAP: {
3818 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3819 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3820 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3821 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3822 DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3823 Results.push_back(Tmp1);
3824 break;
3826 case ISD::FP_TO_UINT:
3827 case ISD::FP_TO_SINT:
3828 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3829 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3830 Results.push_back(Tmp1);
3831 break;
3832 case ISD::UINT_TO_FP:
3833 case ISD::SINT_TO_FP:
3834 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3835 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3836 Results.push_back(Tmp1);
3837 break;
3838 case ISD::AND:
3839 case ISD::OR:
3840 case ISD::XOR: {
3841 unsigned ExtOp, TruncOp;
3842 if (OVT.isVector()) {
3843 ExtOp = ISD::BITCAST;
3844 TruncOp = ISD::BITCAST;
3845 } else {
3846 assert(OVT.isInteger() && "Cannot promote logic operation");
3847 ExtOp = ISD::ANY_EXTEND;
3848 TruncOp = ISD::TRUNCATE;
3850 // Promote each of the values to the new type.
3851 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3852 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3853 // Perform the larger operation, then convert back
3854 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3855 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3856 break;
3858 case ISD::SELECT: {
3859 unsigned ExtOp, TruncOp;
3860 if (Node->getValueType(0).isVector()) {
3861 ExtOp = ISD::BITCAST;
3862 TruncOp = ISD::BITCAST;
3863 } else if (Node->getValueType(0).isInteger()) {
3864 ExtOp = ISD::ANY_EXTEND;
3865 TruncOp = ISD::TRUNCATE;
3866 } else {
3867 ExtOp = ISD::FP_EXTEND;
3868 TruncOp = ISD::FP_ROUND;
3870 Tmp1 = Node->getOperand(0);
3871 // Promote each of the values to the new type.
3872 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3873 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3874 // Perform the larger operation, then round down.
3875 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3876 if (TruncOp != ISD::FP_ROUND)
3877 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3878 else
3879 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3880 DAG.getIntPtrConstant(0));
3881 Results.push_back(Tmp1);
3882 break;
3884 case ISD::VECTOR_SHUFFLE: {
3885 SmallVector<int, 8> Mask;
3886 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3888 // Cast the two input vectors.
3889 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3890 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3892 // Convert the shuffle mask to the right # elements.
3893 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3894 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3895 Results.push_back(Tmp1);
3896 break;
3898 case ISD::SETCC: {
3899 unsigned ExtOp = ISD::FP_EXTEND;
3900 if (NVT.isInteger()) {
3901 ISD::CondCode CCCode =
3902 cast<CondCodeSDNode>(Node->getOperand(2))->get();
3903 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3905 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3906 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3907 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3908 Tmp1, Tmp2, Node->getOperand(2)));
3909 break;
3914 // SelectionDAG::Legalize - This is the entry point for the file.
3916 void SelectionDAG::Legalize() {
3917 /// run - This is the main entry point to this class.
3919 SelectionDAGLegalize(*this).LegalizeDAG();