1 //===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the DAGTypeLegalizer class. This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
14 //===----------------------------------------------------------------------===//
16 #ifndef SELECTIONDAG_LEGALIZETYPES_H
17 #define SELECTIONDAG_LEGALIZETYPES_H
19 #define DEBUG_TYPE "legalize-types"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
29 //===----------------------------------------------------------------------===//
30 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31 /// on it until only value types the target machine can handle are left. This
32 /// involves promoting small sizes to large sizes or splitting up large values
33 /// into small values.
35 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer
{
36 const TargetLowering
&TLI
;
39 // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40 // about the state of the node. The enum has all the values.
42 /// ReadyToProcess - All operands have been processed, so this node is ready
46 /// NewNode - This is a new node, not before seen, that was created in the
47 /// process of legalizing some other node.
50 /// Unanalyzed - This node's ID needs to be set to the number of its
51 /// unprocessed operands.
54 /// Processed - This is a node that has already been processed.
57 // 1+ - This is a node which has this many unprocessed operands.
61 /// ValueTypeActions - This is a bitvector that contains two bits for each
62 /// simple value type, where the two bits correspond to the LegalizeAction
63 /// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
64 TargetLowering::ValueTypeActionImpl ValueTypeActions
;
66 /// getTypeAction - Return how we should legalize values of this type.
67 TargetLowering::LegalizeTypeAction
getTypeAction(EVT VT
) const {
68 return TLI
.getTypeAction(*DAG
.getContext(), VT
);
71 /// isTypeLegal - Return true if this type is legal on this target.
72 bool isTypeLegal(EVT VT
) const {
73 return TLI
.getTypeAction(*DAG
.getContext(), VT
) == TargetLowering::TypeLegal
;
76 /// IgnoreNodeResults - Pretend all of this node's results are legal.
77 bool IgnoreNodeResults(SDNode
*N
) const {
78 return N
->getOpcode() == ISD::TargetConstant
;
81 /// PromotedIntegers - For integer nodes that are below legal width, this map
82 /// indicates what promoted value to use.
83 DenseMap
<SDValue
, SDValue
> PromotedIntegers
;
85 /// ExpandedIntegers - For integer nodes that need to be expanded this map
86 /// indicates which operands are the expanded version of the input.
87 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > ExpandedIntegers
;
89 /// SoftenedFloats - For floating point nodes converted to integers of
90 /// the same size, this map indicates the converted value to use.
91 DenseMap
<SDValue
, SDValue
> SoftenedFloats
;
93 /// ExpandedFloats - For float nodes that need to be expanded this map
94 /// indicates which operands are the expanded version of the input.
95 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > ExpandedFloats
;
97 /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
98 /// scalar value of type 'ty' to use.
99 DenseMap
<SDValue
, SDValue
> ScalarizedVectors
;
101 /// SplitVectors - For nodes that need to be split this map indicates
102 /// which operands are the expanded version of the input.
103 DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> > SplitVectors
;
105 /// WidenedVectors - For vector nodes that need to be widened, indicates
106 /// the widened value to use.
107 DenseMap
<SDValue
, SDValue
> WidenedVectors
;
109 /// ReplacedValues - For values that have been replaced with another,
110 /// indicates the replacement value to use.
111 DenseMap
<SDValue
, SDValue
> ReplacedValues
;
113 /// Worklist - This defines a worklist of nodes to process. In order to be
114 /// pushed onto this worklist, all operands of a node must have already been
116 SmallVector
<SDNode
*, 128> Worklist
;
119 explicit DAGTypeLegalizer(SelectionDAG
&dag
)
120 : TLI(dag
.getTargetLoweringInfo()), DAG(dag
),
121 ValueTypeActions(TLI
.getValueTypeActions()) {
122 assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
&&
123 "Too many value types for ValueTypeActions to hold!");
126 /// run - This is the main entry point for the type legalizer. This does a
127 /// top-down traversal of the dag, legalizing types as it goes. Returns
128 /// "true" if it made any changes.
131 void NoteDeletion(SDNode
*Old
, SDNode
*New
) {
134 for (unsigned i
= 0, e
= Old
->getNumValues(); i
!= e
; ++i
)
135 ReplacedValues
[SDValue(Old
, i
)] = SDValue(New
, i
);
139 SDNode
*AnalyzeNewNode(SDNode
*N
);
140 void AnalyzeNewValue(SDValue
&Val
);
141 void ExpungeNode(SDNode
*N
);
142 void PerformExpensiveChecks();
143 void RemapValue(SDValue
&N
);
146 SDValue
BitConvertToInteger(SDValue Op
);
147 SDValue
BitConvertVectorToIntegerVector(SDValue Op
);
148 SDValue
CreateStackStoreLoad(SDValue Op
, EVT DestVT
);
149 bool CustomLowerNode(SDNode
*N
, EVT VT
, bool LegalizeResult
);
150 bool CustomWidenLowerNode(SDNode
*N
, EVT VT
);
151 SDValue
GetVectorElementPointer(SDValue VecPtr
, EVT EltVT
, SDValue Index
);
152 SDValue
JoinIntegers(SDValue Lo
, SDValue Hi
);
153 SDValue
LibCallify(RTLIB::Libcall LC
, SDNode
*N
, bool isSigned
);
154 SDValue
MakeLibCall(RTLIB::Libcall LC
, EVT RetVT
,
155 const SDValue
*Ops
, unsigned NumOps
, bool isSigned
,
157 std::pair
<SDValue
, SDValue
> ExpandChainLibCall(RTLIB::Libcall LC
,
158 SDNode
*Node
, bool isSigned
);
159 std::pair
<SDValue
, SDValue
> ExpandAtomic(SDNode
*Node
);
161 SDValue
PromoteTargetBoolean(SDValue Bool
, EVT VT
);
162 void ReplaceValueWith(SDValue From
, SDValue To
);
163 void SplitInteger(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
164 void SplitInteger(SDValue Op
, EVT LoVT
, EVT HiVT
,
165 SDValue
&Lo
, SDValue
&Hi
);
167 //===--------------------------------------------------------------------===//
168 // Integer Promotion Support: LegalizeIntegerTypes.cpp
169 //===--------------------------------------------------------------------===//
171 /// GetPromotedInteger - Given a processed operand Op which was promoted to a
172 /// larger integer type, this returns the promoted value. The low bits of the
173 /// promoted value corresponding to the original type are exactly equal to Op.
174 /// The extra bits contain rubbish, so the promoted value may need to be zero-
175 /// or sign-extended from the original type before it is usable (the helpers
176 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
177 /// For example, if Op is an i16 and was promoted to an i32, then this method
178 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
179 /// 16 bits of which contain rubbish.
180 SDValue
GetPromotedInteger(SDValue Op
) {
181 SDValue
&PromotedOp
= PromotedIntegers
[Op
];
182 RemapValue(PromotedOp
);
183 assert(PromotedOp
.getNode() && "Operand wasn't promoted?");
186 void SetPromotedInteger(SDValue Op
, SDValue Result
);
188 /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
190 SDValue
SExtPromotedInteger(SDValue Op
) {
191 EVT OldVT
= Op
.getValueType();
192 DebugLoc dl
= Op
.getDebugLoc();
193 Op
= GetPromotedInteger(Op
);
194 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, Op
.getValueType(), Op
,
195 DAG
.getValueType(OldVT
));
198 /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
200 SDValue
ZExtPromotedInteger(SDValue Op
) {
201 EVT OldVT
= Op
.getValueType();
202 DebugLoc dl
= Op
.getDebugLoc();
203 Op
= GetPromotedInteger(Op
);
204 return DAG
.getZeroExtendInReg(Op
, dl
, OldVT
.getScalarType());
207 // Integer Result Promotion.
208 void PromoteIntegerResult(SDNode
*N
, unsigned ResNo
);
209 SDValue
PromoteIntRes_AssertSext(SDNode
*N
);
210 SDValue
PromoteIntRes_AssertZext(SDNode
*N
);
211 SDValue
PromoteIntRes_Atomic1(AtomicSDNode
*N
);
212 SDValue
PromoteIntRes_Atomic2(AtomicSDNode
*N
);
213 SDValue
PromoteIntRes_EXTRACT_SUBVECTOR(SDNode
*N
);
214 SDValue
PromoteIntRes_VECTOR_SHUFFLE(SDNode
*N
);
215 SDValue
PromoteIntRes_BUILD_VECTOR(SDNode
*N
);
216 SDValue
PromoteIntRes_SCALAR_TO_VECTOR(SDNode
*N
);
217 SDValue
PromoteIntRes_INSERT_VECTOR_ELT(SDNode
*N
);
218 SDValue
PromoteIntRes_BITCAST(SDNode
*N
);
219 SDValue
PromoteIntRes_BSWAP(SDNode
*N
);
220 SDValue
PromoteIntRes_BUILD_PAIR(SDNode
*N
);
221 SDValue
PromoteIntRes_Constant(SDNode
*N
);
222 SDValue
PromoteIntRes_CONVERT_RNDSAT(SDNode
*N
);
223 SDValue
PromoteIntRes_CTLZ(SDNode
*N
);
224 SDValue
PromoteIntRes_CTPOP(SDNode
*N
);
225 SDValue
PromoteIntRes_CTTZ(SDNode
*N
);
226 SDValue
PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode
*N
);
227 SDValue
PromoteIntRes_FP_TO_XINT(SDNode
*N
);
228 SDValue
PromoteIntRes_FP32_TO_FP16(SDNode
*N
);
229 SDValue
PromoteIntRes_INT_EXTEND(SDNode
*N
);
230 SDValue
PromoteIntRes_LOAD(LoadSDNode
*N
);
231 SDValue
PromoteIntRes_Overflow(SDNode
*N
);
232 SDValue
PromoteIntRes_SADDSUBO(SDNode
*N
, unsigned ResNo
);
233 SDValue
PromoteIntRes_SDIV(SDNode
*N
);
234 SDValue
PromoteIntRes_SELECT(SDNode
*N
);
235 SDValue
PromoteIntRes_SELECT_CC(SDNode
*N
);
236 SDValue
PromoteIntRes_SETCC(SDNode
*N
);
237 SDValue
PromoteIntRes_SHL(SDNode
*N
);
238 SDValue
PromoteIntRes_SimpleIntBinOp(SDNode
*N
);
239 SDValue
PromoteIntRes_SIGN_EXTEND_INREG(SDNode
*N
);
240 SDValue
PromoteIntRes_SRA(SDNode
*N
);
241 SDValue
PromoteIntRes_SRL(SDNode
*N
);
242 SDValue
PromoteIntRes_TRUNCATE(SDNode
*N
);
243 SDValue
PromoteIntRes_UADDSUBO(SDNode
*N
, unsigned ResNo
);
244 SDValue
PromoteIntRes_UDIV(SDNode
*N
);
245 SDValue
PromoteIntRes_UNDEF(SDNode
*N
);
246 SDValue
PromoteIntRes_VAARG(SDNode
*N
);
247 SDValue
PromoteIntRes_XMULO(SDNode
*N
, unsigned ResNo
);
249 // Integer Operand Promotion.
250 bool PromoteIntegerOperand(SDNode
*N
, unsigned OperandNo
);
251 SDValue
PromoteIntOp_ANY_EXTEND(SDNode
*N
);
252 SDValue
PromoteIntOp_BITCAST(SDNode
*N
);
253 SDValue
PromoteIntOp_BUILD_PAIR(SDNode
*N
);
254 SDValue
PromoteIntOp_BR_CC(SDNode
*N
, unsigned OpNo
);
255 SDValue
PromoteIntOp_BRCOND(SDNode
*N
, unsigned OpNo
);
256 SDValue
PromoteIntOp_BUILD_VECTOR(SDNode
*N
);
257 SDValue
PromoteIntOp_CONVERT_RNDSAT(SDNode
*N
);
258 SDValue
PromoteIntOp_INSERT_VECTOR_ELT(SDNode
*N
, unsigned OpNo
);
259 SDValue
PromoteIntOp_EXTRACT_ELEMENT(SDNode
*N
);
260 SDValue
PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
261 SDValue
PromoteIntOp_CONCAT_VECTORS(SDNode
*N
);
262 SDValue
PromoteIntOp_MEMBARRIER(SDNode
*N
);
263 SDValue
PromoteIntOp_SCALAR_TO_VECTOR(SDNode
*N
);
264 SDValue
PromoteIntOp_SELECT(SDNode
*N
, unsigned OpNo
);
265 SDValue
PromoteIntOp_SELECT_CC(SDNode
*N
, unsigned OpNo
);
266 SDValue
PromoteIntOp_SETCC(SDNode
*N
, unsigned OpNo
);
267 SDValue
PromoteIntOp_Shift(SDNode
*N
);
268 SDValue
PromoteIntOp_SIGN_EXTEND(SDNode
*N
);
269 SDValue
PromoteIntOp_SINT_TO_FP(SDNode
*N
);
270 SDValue
PromoteIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
271 SDValue
PromoteIntOp_TRUNCATE(SDNode
*N
);
272 SDValue
PromoteIntOp_UINT_TO_FP(SDNode
*N
);
273 SDValue
PromoteIntOp_ZERO_EXTEND(SDNode
*N
);
275 void PromoteSetCCOperands(SDValue
&LHS
,SDValue
&RHS
, ISD::CondCode Code
);
277 //===--------------------------------------------------------------------===//
278 // Integer Expansion Support: LegalizeIntegerTypes.cpp
279 //===--------------------------------------------------------------------===//
281 /// GetExpandedInteger - Given a processed operand Op which was expanded into
282 /// two integers of half the size, this returns the two halves. The low bits
283 /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
284 /// For example, if Op is an i64 which was expanded into two i32's, then this
285 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
286 /// Op, and Hi being equal to the upper 32 bits.
287 void GetExpandedInteger(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
288 void SetExpandedInteger(SDValue Op
, SDValue Lo
, SDValue Hi
);
290 // Integer Result Expansion.
291 void ExpandIntegerResult(SDNode
*N
, unsigned ResNo
);
292 void ExpandIntRes_ANY_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
293 void ExpandIntRes_AssertSext (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
294 void ExpandIntRes_AssertZext (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
295 void ExpandIntRes_Constant (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
296 void ExpandIntRes_CTLZ (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
297 void ExpandIntRes_CTPOP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
298 void ExpandIntRes_CTTZ (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
299 void ExpandIntRes_LOAD (LoadSDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
300 void ExpandIntRes_SIGN_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
301 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
302 void ExpandIntRes_TRUNCATE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
303 void ExpandIntRes_ZERO_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
304 void ExpandIntRes_FP_TO_SINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
305 void ExpandIntRes_FP_TO_UINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
307 void ExpandIntRes_Logical (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
308 void ExpandIntRes_ADDSUB (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
309 void ExpandIntRes_ADDSUBC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
310 void ExpandIntRes_ADDSUBE (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
311 void ExpandIntRes_BSWAP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
312 void ExpandIntRes_MUL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
313 void ExpandIntRes_SDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
314 void ExpandIntRes_SREM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
315 void ExpandIntRes_UDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
316 void ExpandIntRes_UREM (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
317 void ExpandIntRes_Shift (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
319 void ExpandIntRes_SADDSUBO (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
320 void ExpandIntRes_UADDSUBO (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
321 void ExpandIntRes_XMULO (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
323 void ExpandShiftByConstant(SDNode
*N
, unsigned Amt
,
324 SDValue
&Lo
, SDValue
&Hi
);
325 bool ExpandShiftWithKnownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
326 bool ExpandShiftWithUnknownAmountBit(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
328 // Integer Operand Expansion.
329 bool ExpandIntegerOperand(SDNode
*N
, unsigned OperandNo
);
330 SDValue
ExpandIntOp_BITCAST(SDNode
*N
);
331 SDValue
ExpandIntOp_BR_CC(SDNode
*N
);
332 SDValue
ExpandIntOp_BUILD_VECTOR(SDNode
*N
);
333 SDValue
ExpandIntOp_EXTRACT_ELEMENT(SDNode
*N
);
334 SDValue
ExpandIntOp_SELECT_CC(SDNode
*N
);
335 SDValue
ExpandIntOp_SETCC(SDNode
*N
);
336 SDValue
ExpandIntOp_Shift(SDNode
*N
);
337 SDValue
ExpandIntOp_SINT_TO_FP(SDNode
*N
);
338 SDValue
ExpandIntOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
339 SDValue
ExpandIntOp_TRUNCATE(SDNode
*N
);
340 SDValue
ExpandIntOp_UINT_TO_FP(SDNode
*N
);
341 SDValue
ExpandIntOp_RETURNADDR(SDNode
*N
);
343 void IntegerExpandSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
344 ISD::CondCode
&CCCode
, DebugLoc dl
);
346 //===--------------------------------------------------------------------===//
347 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
348 //===--------------------------------------------------------------------===//
350 /// GetSoftenedFloat - Given a processed operand Op which was converted to an
351 /// integer of the same size, this returns the integer. The integer contains
352 /// exactly the same bits as Op - only the type changed. For example, if Op
353 /// is an f32 which was softened to an i32, then this method returns an i32,
354 /// the bits of which coincide with those of Op.
355 SDValue
GetSoftenedFloat(SDValue Op
) {
356 SDValue
&SoftenedOp
= SoftenedFloats
[Op
];
357 RemapValue(SoftenedOp
);
358 assert(SoftenedOp
.getNode() && "Operand wasn't converted to integer?");
361 void SetSoftenedFloat(SDValue Op
, SDValue Result
);
363 // Result Float to Integer Conversion.
364 void SoftenFloatResult(SDNode
*N
, unsigned OpNo
);
365 SDValue
SoftenFloatRes_BITCAST(SDNode
*N
);
366 SDValue
SoftenFloatRes_BUILD_PAIR(SDNode
*N
);
367 SDValue
SoftenFloatRes_ConstantFP(ConstantFPSDNode
*N
);
368 SDValue
SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode
*N
);
369 SDValue
SoftenFloatRes_FABS(SDNode
*N
);
370 SDValue
SoftenFloatRes_FADD(SDNode
*N
);
371 SDValue
SoftenFloatRes_FCEIL(SDNode
*N
);
372 SDValue
SoftenFloatRes_FCOPYSIGN(SDNode
*N
);
373 SDValue
SoftenFloatRes_FCOS(SDNode
*N
);
374 SDValue
SoftenFloatRes_FDIV(SDNode
*N
);
375 SDValue
SoftenFloatRes_FEXP(SDNode
*N
);
376 SDValue
SoftenFloatRes_FEXP2(SDNode
*N
);
377 SDValue
SoftenFloatRes_FFLOOR(SDNode
*N
);
378 SDValue
SoftenFloatRes_FLOG(SDNode
*N
);
379 SDValue
SoftenFloatRes_FLOG2(SDNode
*N
);
380 SDValue
SoftenFloatRes_FLOG10(SDNode
*N
);
381 SDValue
SoftenFloatRes_FMA(SDNode
*N
);
382 SDValue
SoftenFloatRes_FMUL(SDNode
*N
);
383 SDValue
SoftenFloatRes_FNEARBYINT(SDNode
*N
);
384 SDValue
SoftenFloatRes_FNEG(SDNode
*N
);
385 SDValue
SoftenFloatRes_FP_EXTEND(SDNode
*N
);
386 SDValue
SoftenFloatRes_FP16_TO_FP32(SDNode
*N
);
387 SDValue
SoftenFloatRes_FP_ROUND(SDNode
*N
);
388 SDValue
SoftenFloatRes_FPOW(SDNode
*N
);
389 SDValue
SoftenFloatRes_FPOWI(SDNode
*N
);
390 SDValue
SoftenFloatRes_FREM(SDNode
*N
);
391 SDValue
SoftenFloatRes_FRINT(SDNode
*N
);
392 SDValue
SoftenFloatRes_FSIN(SDNode
*N
);
393 SDValue
SoftenFloatRes_FSQRT(SDNode
*N
);
394 SDValue
SoftenFloatRes_FSUB(SDNode
*N
);
395 SDValue
SoftenFloatRes_FTRUNC(SDNode
*N
);
396 SDValue
SoftenFloatRes_LOAD(SDNode
*N
);
397 SDValue
SoftenFloatRes_SELECT(SDNode
*N
);
398 SDValue
SoftenFloatRes_SELECT_CC(SDNode
*N
);
399 SDValue
SoftenFloatRes_UNDEF(SDNode
*N
);
400 SDValue
SoftenFloatRes_VAARG(SDNode
*N
);
401 SDValue
SoftenFloatRes_XINT_TO_FP(SDNode
*N
);
403 // Operand Float to Integer Conversion.
404 bool SoftenFloatOperand(SDNode
*N
, unsigned OpNo
);
405 SDValue
SoftenFloatOp_BITCAST(SDNode
*N
);
406 SDValue
SoftenFloatOp_BR_CC(SDNode
*N
);
407 SDValue
SoftenFloatOp_FP_ROUND(SDNode
*N
);
408 SDValue
SoftenFloatOp_FP_TO_SINT(SDNode
*N
);
409 SDValue
SoftenFloatOp_FP_TO_UINT(SDNode
*N
);
410 SDValue
SoftenFloatOp_FP32_TO_FP16(SDNode
*N
);
411 SDValue
SoftenFloatOp_SELECT_CC(SDNode
*N
);
412 SDValue
SoftenFloatOp_SETCC(SDNode
*N
);
413 SDValue
SoftenFloatOp_STORE(SDNode
*N
, unsigned OpNo
);
415 void SoftenSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
416 ISD::CondCode
&CCCode
, DebugLoc dl
);
418 //===--------------------------------------------------------------------===//
419 // Float Expansion Support: LegalizeFloatTypes.cpp
420 //===--------------------------------------------------------------------===//
422 /// GetExpandedFloat - Given a processed operand Op which was expanded into
423 /// two floating point values of half the size, this returns the two halves.
424 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
425 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
426 /// into two f64's, then this method returns the two f64's, with Lo being
427 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
428 void GetExpandedFloat(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
429 void SetExpandedFloat(SDValue Op
, SDValue Lo
, SDValue Hi
);
431 // Float Result Expansion.
432 void ExpandFloatResult(SDNode
*N
, unsigned ResNo
);
433 void ExpandFloatRes_ConstantFP(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
434 void ExpandFloatRes_FABS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
435 void ExpandFloatRes_FADD (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
436 void ExpandFloatRes_FCEIL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
437 void ExpandFloatRes_FCOPYSIGN (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
438 void ExpandFloatRes_FCOS (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
439 void ExpandFloatRes_FDIV (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
440 void ExpandFloatRes_FEXP (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
441 void ExpandFloatRes_FEXP2 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
442 void ExpandFloatRes_FFLOOR (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
443 void ExpandFloatRes_FLOG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
444 void ExpandFloatRes_FLOG2 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
445 void ExpandFloatRes_FLOG10 (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
446 void ExpandFloatRes_FMA (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
447 void ExpandFloatRes_FMUL (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
448 void ExpandFloatRes_FNEARBYINT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
449 void ExpandFloatRes_FNEG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
450 void ExpandFloatRes_FP_EXTEND (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
451 void ExpandFloatRes_FPOW (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
452 void ExpandFloatRes_FPOWI (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
453 void ExpandFloatRes_FRINT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
454 void ExpandFloatRes_FSIN (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
455 void ExpandFloatRes_FSQRT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
456 void ExpandFloatRes_FSUB (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
457 void ExpandFloatRes_FTRUNC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
458 void ExpandFloatRes_LOAD (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
459 void ExpandFloatRes_XINT_TO_FP(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
461 // Float Operand Expansion.
462 bool ExpandFloatOperand(SDNode
*N
, unsigned OperandNo
);
463 SDValue
ExpandFloatOp_BR_CC(SDNode
*N
);
464 SDValue
ExpandFloatOp_FP_ROUND(SDNode
*N
);
465 SDValue
ExpandFloatOp_FP_TO_SINT(SDNode
*N
);
466 SDValue
ExpandFloatOp_FP_TO_UINT(SDNode
*N
);
467 SDValue
ExpandFloatOp_SELECT_CC(SDNode
*N
);
468 SDValue
ExpandFloatOp_SETCC(SDNode
*N
);
469 SDValue
ExpandFloatOp_STORE(SDNode
*N
, unsigned OpNo
);
471 void FloatExpandSetCCOperands(SDValue
&NewLHS
, SDValue
&NewRHS
,
472 ISD::CondCode
&CCCode
, DebugLoc dl
);
474 //===--------------------------------------------------------------------===//
475 // Scalarization Support: LegalizeVectorTypes.cpp
476 //===--------------------------------------------------------------------===//
478 /// GetScalarizedVector - Given a processed one-element vector Op which was
479 /// scalarized to its element type, this returns the element. For example,
480 /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
481 SDValue
GetScalarizedVector(SDValue Op
) {
482 SDValue
&ScalarizedOp
= ScalarizedVectors
[Op
];
483 RemapValue(ScalarizedOp
);
484 assert(ScalarizedOp
.getNode() && "Operand wasn't scalarized?");
487 void SetScalarizedVector(SDValue Op
, SDValue Result
);
489 // Vector Result Scalarization: <1 x ty> -> ty.
490 void ScalarizeVectorResult(SDNode
*N
, unsigned OpNo
);
491 SDValue
ScalarizeVecRes_BinOp(SDNode
*N
);
492 SDValue
ScalarizeVecRes_UnaryOp(SDNode
*N
);
493 SDValue
ScalarizeVecRes_InregOp(SDNode
*N
);
495 SDValue
ScalarizeVecRes_BITCAST(SDNode
*N
);
496 SDValue
ScalarizeVecRes_CONVERT_RNDSAT(SDNode
*N
);
497 SDValue
ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode
*N
);
498 SDValue
ScalarizeVecRes_FP_ROUND(SDNode
*N
);
499 SDValue
ScalarizeVecRes_FPOWI(SDNode
*N
);
500 SDValue
ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode
*N
);
501 SDValue
ScalarizeVecRes_LOAD(LoadSDNode
*N
);
502 SDValue
ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode
*N
);
503 SDValue
ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode
*N
);
504 SDValue
ScalarizeVecRes_SELECT(SDNode
*N
);
505 SDValue
ScalarizeVecRes_SELECT_CC(SDNode
*N
);
506 SDValue
ScalarizeVecRes_SETCC(SDNode
*N
);
507 SDValue
ScalarizeVecRes_UNDEF(SDNode
*N
);
508 SDValue
ScalarizeVecRes_VECTOR_SHUFFLE(SDNode
*N
);
509 SDValue
ScalarizeVecRes_VSETCC(SDNode
*N
);
511 // Vector Operand Scalarization: <1 x ty> -> ty.
512 bool ScalarizeVectorOperand(SDNode
*N
, unsigned OpNo
);
513 SDValue
ScalarizeVecOp_BITCAST(SDNode
*N
);
514 SDValue
ScalarizeVecOp_CONCAT_VECTORS(SDNode
*N
);
515 SDValue
ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
516 SDValue
ScalarizeVecOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
518 //===--------------------------------------------------------------------===//
519 // Vector Splitting Support: LegalizeVectorTypes.cpp
520 //===--------------------------------------------------------------------===//
522 /// GetSplitVector - Given a processed vector Op which was split into vectors
523 /// of half the size, this method returns the halves. The first elements of
524 /// Op coincide with the elements of Lo; the remaining elements of Op coincide
525 /// with the elements of Hi: Op is what you would get by concatenating Lo and
526 /// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then
527 /// this method returns the two v4i32's, with Lo corresponding to the first 4
528 /// elements of Op, and Hi to the last 4 elements.
529 void GetSplitVector(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
);
530 void SetSplitVector(SDValue Op
, SDValue Lo
, SDValue Hi
);
532 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
533 void SplitVectorResult(SDNode
*N
, unsigned OpNo
);
534 void SplitVecRes_BinOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
535 void SplitVecRes_UnaryOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
536 void SplitVecRes_InregOp(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
538 void SplitVecRes_BITCAST(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
539 void SplitVecRes_BUILD_PAIR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
540 void SplitVecRes_BUILD_VECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
541 void SplitVecRes_CONCAT_VECTORS(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
542 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
543 void SplitVecRes_FPOWI(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
544 void SplitVecRes_INSERT_VECTOR_ELT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
545 void SplitVecRes_LOAD(LoadSDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
546 void SplitVecRes_SCALAR_TO_VECTOR(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
547 void SplitVecRes_SIGN_EXTEND_INREG(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
548 void SplitVecRes_SETCC(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
549 void SplitVecRes_UNDEF(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
550 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode
*N
, SDValue
&Lo
,
553 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
554 bool SplitVectorOperand(SDNode
*N
, unsigned OpNo
);
555 SDValue
SplitVecOp_UnaryOp(SDNode
*N
);
557 SDValue
SplitVecOp_BITCAST(SDNode
*N
);
558 SDValue
SplitVecOp_EXTRACT_SUBVECTOR(SDNode
*N
);
559 SDValue
SplitVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
560 SDValue
SplitVecOp_STORE(StoreSDNode
*N
, unsigned OpNo
);
561 SDValue
SplitVecOp_CONCAT_VECTORS(SDNode
*N
);
562 SDValue
SplitVecOp_FP_ROUND(SDNode
*N
);
564 //===--------------------------------------------------------------------===//
565 // Vector Widening Support: LegalizeVectorTypes.cpp
566 //===--------------------------------------------------------------------===//
568 /// GetWidenedVector - Given a processed vector Op which was widened into a
569 /// larger vector, this method returns the larger vector. The elements of
570 /// the returned vector consist of the elements of Op followed by elements
571 /// containing rubbish. For example, if Op is a v2i32 that was widened to a
572 /// v4i32, then this method returns a v4i32 for which the first two elements
573 /// are the same as those of Op, while the last two elements contain rubbish.
574 SDValue
GetWidenedVector(SDValue Op
) {
575 SDValue
&WidenedOp
= WidenedVectors
[Op
];
576 RemapValue(WidenedOp
);
577 assert(WidenedOp
.getNode() && "Operand wasn't widened?");
580 void SetWidenedVector(SDValue Op
, SDValue Result
);
582 // Widen Vector Result Promotion.
583 void WidenVectorResult(SDNode
*N
, unsigned ResNo
);
584 SDValue
WidenVecRes_BITCAST(SDNode
* N
);
585 SDValue
WidenVecRes_BUILD_VECTOR(SDNode
* N
);
586 SDValue
WidenVecRes_CONCAT_VECTORS(SDNode
* N
);
587 SDValue
WidenVecRes_CONVERT_RNDSAT(SDNode
* N
);
588 SDValue
WidenVecRes_EXTRACT_SUBVECTOR(SDNode
* N
);
589 SDValue
WidenVecRes_INSERT_VECTOR_ELT(SDNode
* N
);
590 SDValue
WidenVecRes_LOAD(SDNode
* N
);
591 SDValue
WidenVecRes_SCALAR_TO_VECTOR(SDNode
* N
);
592 SDValue
WidenVecRes_SIGN_EXTEND_INREG(SDNode
* N
);
593 SDValue
WidenVecRes_SELECT(SDNode
* N
);
594 SDValue
WidenVecRes_SELECT_CC(SDNode
* N
);
595 SDValue
WidenVecRes_SETCC(SDNode
* N
);
596 SDValue
WidenVecRes_UNDEF(SDNode
*N
);
597 SDValue
WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode
*N
);
598 SDValue
WidenVecRes_VSETCC(SDNode
* N
);
600 SDValue
WidenVecRes_Binary(SDNode
*N
);
601 SDValue
WidenVecRes_Convert(SDNode
*N
);
602 SDValue
WidenVecRes_POWI(SDNode
*N
);
603 SDValue
WidenVecRes_Shift(SDNode
*N
);
604 SDValue
WidenVecRes_Unary(SDNode
*N
);
605 SDValue
WidenVecRes_InregOp(SDNode
*N
);
607 // Widen Vector Operand.
608 bool WidenVectorOperand(SDNode
*N
, unsigned ResNo
);
609 SDValue
WidenVecOp_BITCAST(SDNode
*N
);
610 SDValue
WidenVecOp_CONCAT_VECTORS(SDNode
*N
);
611 SDValue
WidenVecOp_EXTRACT_VECTOR_ELT(SDNode
*N
);
612 SDValue
WidenVecOp_EXTRACT_SUBVECTOR(SDNode
*N
);
613 SDValue
WidenVecOp_STORE(SDNode
* N
);
615 SDValue
WidenVecOp_Convert(SDNode
*N
);
617 //===--------------------------------------------------------------------===//
618 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
619 //===--------------------------------------------------------------------===//
621 /// Helper GenWidenVectorLoads - Helper function to generate a set of
622 /// loads to load a vector with a resulting wider type. It takes
623 /// LdChain: list of chains for the load to be generated.
624 /// Ld: load to widen
625 SDValue
GenWidenVectorLoads(SmallVector
<SDValue
, 16>& LdChain
,
628 /// GenWidenVectorExtLoads - Helper function to generate a set of extension
629 /// loads to load a ector with a resulting wider type. It takes
630 /// LdChain: list of chains for the load to be generated.
631 /// Ld: load to widen
632 /// ExtType: extension element type
633 SDValue
GenWidenVectorExtLoads(SmallVector
<SDValue
, 16>& LdChain
,
634 LoadSDNode
*LD
, ISD::LoadExtType ExtType
);
636 /// Helper genWidenVectorStores - Helper function to generate a set of
637 /// stores to store a widen vector into non widen memory
638 /// StChain: list of chains for the stores we have generated
639 /// ST: store of a widen value
640 void GenWidenVectorStores(SmallVector
<SDValue
, 16>& StChain
, StoreSDNode
*ST
);
642 /// Helper genWidenVectorTruncStores - Helper function to generate a set of
643 /// stores to store a truncate widen vector into non widen memory
644 /// StChain: list of chains for the stores we have generated
645 /// ST: store of a widen value
646 void GenWidenVectorTruncStores(SmallVector
<SDValue
, 16>& StChain
,
649 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
650 /// input vector must have the same element type as NVT.
651 SDValue
ModifyToType(SDValue InOp
, EVT WidenVT
);
654 //===--------------------------------------------------------------------===//
655 // Generic Splitting: LegalizeTypesGeneric.cpp
656 //===--------------------------------------------------------------------===//
658 // Legalization methods which only use that the illegal type is split into two
659 // not necessarily identical types. As such they can be used for splitting
660 // vectors and expanding integers and floats.
662 void GetSplitOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
) {
663 if (Op
.getValueType().isVector())
664 GetSplitVector(Op
, Lo
, Hi
);
665 else if (Op
.getValueType().isInteger())
666 GetExpandedInteger(Op
, Lo
, Hi
);
668 GetExpandedFloat(Op
, Lo
, Hi
);
671 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
672 /// which is split (or expanded) into two not necessarily identical pieces.
673 void GetSplitDestVTs(EVT InVT
, EVT
&LoVT
, EVT
&HiVT
);
675 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
676 /// high parts of the given value.
677 void GetPairElements(SDValue Pair
, SDValue
&Lo
, SDValue
&Hi
);
679 // Generic Result Splitting.
680 void SplitRes_MERGE_VALUES(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
681 void SplitRes_SELECT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
682 void SplitRes_SELECT_CC (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
683 void SplitRes_UNDEF (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
685 //===--------------------------------------------------------------------===//
686 // Generic Expansion: LegalizeTypesGeneric.cpp
687 //===--------------------------------------------------------------------===//
689 // Legalization methods which only use that the illegal type is split into two
690 // identical types of half the size, and that the Lo/Hi part is stored first
691 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
692 // such they can be used for expanding integers and floats.
694 void GetExpandedOp(SDValue Op
, SDValue
&Lo
, SDValue
&Hi
) {
695 if (Op
.getValueType().isInteger())
696 GetExpandedInteger(Op
, Lo
, Hi
);
698 GetExpandedFloat(Op
, Lo
, Hi
);
701 // Generic Result Expansion.
702 void ExpandRes_BITCAST (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
703 void ExpandRes_BUILD_PAIR (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
704 void ExpandRes_EXTRACT_ELEMENT (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
705 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
706 void ExpandRes_NormalLoad (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
707 void ExpandRes_VAARG (SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
);
709 // Generic Operand Expansion.
710 SDValue
ExpandOp_BITCAST (SDNode
*N
);
711 SDValue
ExpandOp_BUILD_VECTOR (SDNode
*N
);
712 SDValue
ExpandOp_EXTRACT_ELEMENT (SDNode
*N
);
713 SDValue
ExpandOp_INSERT_VECTOR_ELT(SDNode
*N
);
714 SDValue
ExpandOp_SCALAR_TO_VECTOR (SDNode
*N
);
715 SDValue
ExpandOp_NormalStore (SDNode
*N
, unsigned OpNo
);
718 } // end namespace llvm.