Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.h
blob952797dc75b82dc73b5773c6d8e70c66e7adccf8
1 //===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DAGTypeLegalizer class. This is a private interface
11 // shared between the code that implements the SelectionDAG::LegalizeTypes
12 // method.
14 //===----------------------------------------------------------------------===//
16 #ifndef SELECTIONDAG_LEGALIZETYPES_H
17 #define SELECTIONDAG_LEGALIZETYPES_H
19 #define DEBUG_TYPE "legalize-types"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
27 namespace llvm {
29 //===----------------------------------------------------------------------===//
30 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
31 /// on it until only value types the target machine can handle are left. This
32 /// involves promoting small sizes to large sizes or splitting up large values
33 /// into small values.
34 ///
35 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
36 const TargetLowering &TLI;
37 SelectionDAG &DAG;
38 public:
39 // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information
40 // about the state of the node. The enum has all the values.
41 enum NodeIdFlags {
42 /// ReadyToProcess - All operands have been processed, so this node is ready
43 /// to be handled.
44 ReadyToProcess = 0,
46 /// NewNode - This is a new node, not before seen, that was created in the
47 /// process of legalizing some other node.
48 NewNode = -1,
50 /// Unanalyzed - This node's ID needs to be set to the number of its
51 /// unprocessed operands.
52 Unanalyzed = -2,
54 /// Processed - This is a node that has already been processed.
55 Processed = -3
57 // 1+ - This is a node which has this many unprocessed operands.
59 private:
61 /// ValueTypeActions - This is a bitvector that contains two bits for each
62 /// simple value type, where the two bits correspond to the LegalizeAction
63 /// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
64 TargetLowering::ValueTypeActionImpl ValueTypeActions;
66 /// getTypeAction - Return how we should legalize values of this type.
67 TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
68 return TLI.getTypeAction(*DAG.getContext(), VT);
71 /// isTypeLegal - Return true if this type is legal on this target.
72 bool isTypeLegal(EVT VT) const {
73 return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
76 /// IgnoreNodeResults - Pretend all of this node's results are legal.
77 bool IgnoreNodeResults(SDNode *N) const {
78 return N->getOpcode() == ISD::TargetConstant;
81 /// PromotedIntegers - For integer nodes that are below legal width, this map
82 /// indicates what promoted value to use.
83 DenseMap<SDValue, SDValue> PromotedIntegers;
85 /// ExpandedIntegers - For integer nodes that need to be expanded this map
86 /// indicates which operands are the expanded version of the input.
87 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
89 /// SoftenedFloats - For floating point nodes converted to integers of
90 /// the same size, this map indicates the converted value to use.
91 DenseMap<SDValue, SDValue> SoftenedFloats;
93 /// ExpandedFloats - For float nodes that need to be expanded this map
94 /// indicates which operands are the expanded version of the input.
95 DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
97 /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
98 /// scalar value of type 'ty' to use.
99 DenseMap<SDValue, SDValue> ScalarizedVectors;
101 /// SplitVectors - For nodes that need to be split this map indicates
102 /// which operands are the expanded version of the input.
103 DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
105 /// WidenedVectors - For vector nodes that need to be widened, indicates
106 /// the widened value to use.
107 DenseMap<SDValue, SDValue> WidenedVectors;
109 /// ReplacedValues - For values that have been replaced with another,
110 /// indicates the replacement value to use.
111 DenseMap<SDValue, SDValue> ReplacedValues;
113 /// Worklist - This defines a worklist of nodes to process. In order to be
114 /// pushed onto this worklist, all operands of a node must have already been
115 /// processed.
116 SmallVector<SDNode*, 128> Worklist;
118 public:
119 explicit DAGTypeLegalizer(SelectionDAG &dag)
120 : TLI(dag.getTargetLoweringInfo()), DAG(dag),
121 ValueTypeActions(TLI.getValueTypeActions()) {
122 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
123 "Too many value types for ValueTypeActions to hold!");
126 /// run - This is the main entry point for the type legalizer. This does a
127 /// top-down traversal of the dag, legalizing types as it goes. Returns
128 /// "true" if it made any changes.
129 bool run();
131 void NoteDeletion(SDNode *Old, SDNode *New) {
132 ExpungeNode(Old);
133 ExpungeNode(New);
134 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
135 ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
138 private:
139 SDNode *AnalyzeNewNode(SDNode *N);
140 void AnalyzeNewValue(SDValue &Val);
141 void ExpungeNode(SDNode *N);
142 void PerformExpensiveChecks();
143 void RemapValue(SDValue &N);
145 // Common routines.
146 SDValue BitConvertToInteger(SDValue Op);
147 SDValue BitConvertVectorToIntegerVector(SDValue Op);
148 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
149 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
150 bool CustomWidenLowerNode(SDNode *N, EVT VT);
151 SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index);
152 SDValue JoinIntegers(SDValue Lo, SDValue Hi);
153 SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned);
154 SDValue MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
155 const SDValue *Ops, unsigned NumOps, bool isSigned,
156 DebugLoc dl);
157 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
158 SDNode *Node, bool isSigned);
159 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
161 SDValue PromoteTargetBoolean(SDValue Bool, EVT VT);
162 void ReplaceValueWith(SDValue From, SDValue To);
163 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
164 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
165 SDValue &Lo, SDValue &Hi);
167 //===--------------------------------------------------------------------===//
168 // Integer Promotion Support: LegalizeIntegerTypes.cpp
169 //===--------------------------------------------------------------------===//
171 /// GetPromotedInteger - Given a processed operand Op which was promoted to a
172 /// larger integer type, this returns the promoted value. The low bits of the
173 /// promoted value corresponding to the original type are exactly equal to Op.
174 /// The extra bits contain rubbish, so the promoted value may need to be zero-
175 /// or sign-extended from the original type before it is usable (the helpers
176 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
177 /// For example, if Op is an i16 and was promoted to an i32, then this method
178 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
179 /// 16 bits of which contain rubbish.
180 SDValue GetPromotedInteger(SDValue Op) {
181 SDValue &PromotedOp = PromotedIntegers[Op];
182 RemapValue(PromotedOp);
183 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
184 return PromotedOp;
186 void SetPromotedInteger(SDValue Op, SDValue Result);
188 /// SExtPromotedInteger - Get a promoted operand and sign extend it to the
189 /// final size.
190 SDValue SExtPromotedInteger(SDValue Op) {
191 EVT OldVT = Op.getValueType();
192 DebugLoc dl = Op.getDebugLoc();
193 Op = GetPromotedInteger(Op);
194 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
195 DAG.getValueType(OldVT));
198 /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
199 /// final size.
200 SDValue ZExtPromotedInteger(SDValue Op) {
201 EVT OldVT = Op.getValueType();
202 DebugLoc dl = Op.getDebugLoc();
203 Op = GetPromotedInteger(Op);
204 return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType());
207 // Integer Result Promotion.
208 void PromoteIntegerResult(SDNode *N, unsigned ResNo);
209 SDValue PromoteIntRes_AssertSext(SDNode *N);
210 SDValue PromoteIntRes_AssertZext(SDNode *N);
211 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
212 SDValue PromoteIntRes_Atomic2(AtomicSDNode *N);
213 SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
214 SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
215 SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
216 SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
217 SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
218 SDValue PromoteIntRes_BITCAST(SDNode *N);
219 SDValue PromoteIntRes_BSWAP(SDNode *N);
220 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
221 SDValue PromoteIntRes_Constant(SDNode *N);
222 SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N);
223 SDValue PromoteIntRes_CTLZ(SDNode *N);
224 SDValue PromoteIntRes_CTPOP(SDNode *N);
225 SDValue PromoteIntRes_CTTZ(SDNode *N);
226 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
227 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
228 SDValue PromoteIntRes_FP32_TO_FP16(SDNode *N);
229 SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
230 SDValue PromoteIntRes_LOAD(LoadSDNode *N);
231 SDValue PromoteIntRes_Overflow(SDNode *N);
232 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
233 SDValue PromoteIntRes_SDIV(SDNode *N);
234 SDValue PromoteIntRes_SELECT(SDNode *N);
235 SDValue PromoteIntRes_SELECT_CC(SDNode *N);
236 SDValue PromoteIntRes_SETCC(SDNode *N);
237 SDValue PromoteIntRes_SHL(SDNode *N);
238 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
239 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
240 SDValue PromoteIntRes_SRA(SDNode *N);
241 SDValue PromoteIntRes_SRL(SDNode *N);
242 SDValue PromoteIntRes_TRUNCATE(SDNode *N);
243 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
244 SDValue PromoteIntRes_UDIV(SDNode *N);
245 SDValue PromoteIntRes_UNDEF(SDNode *N);
246 SDValue PromoteIntRes_VAARG(SDNode *N);
247 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
249 // Integer Operand Promotion.
250 bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
251 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
252 SDValue PromoteIntOp_BITCAST(SDNode *N);
253 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
254 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
255 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
256 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
257 SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N);
258 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
259 SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N);
260 SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
261 SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
262 SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
263 SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
264 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
265 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
266 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
267 SDValue PromoteIntOp_Shift(SDNode *N);
268 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
269 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
270 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
271 SDValue PromoteIntOp_TRUNCATE(SDNode *N);
272 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
273 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
275 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
277 //===--------------------------------------------------------------------===//
278 // Integer Expansion Support: LegalizeIntegerTypes.cpp
279 //===--------------------------------------------------------------------===//
281 /// GetExpandedInteger - Given a processed operand Op which was expanded into
282 /// two integers of half the size, this returns the two halves. The low bits
283 /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi.
284 /// For example, if Op is an i64 which was expanded into two i32's, then this
285 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
286 /// Op, and Hi being equal to the upper 32 bits.
287 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
288 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
290 // Integer Result Expansion.
291 void ExpandIntegerResult(SDNode *N, unsigned ResNo);
292 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
293 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
294 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
295 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
296 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
297 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
298 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
299 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
300 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
301 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
302 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
303 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
304 void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
305 void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
307 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
308 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
309 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
310 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
311 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
312 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
313 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
314 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
315 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
316 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
317 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
319 void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
320 void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
321 void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
323 void ExpandShiftByConstant(SDNode *N, unsigned Amt,
324 SDValue &Lo, SDValue &Hi);
325 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
326 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
328 // Integer Operand Expansion.
329 bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
330 SDValue ExpandIntOp_BITCAST(SDNode *N);
331 SDValue ExpandIntOp_BR_CC(SDNode *N);
332 SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
333 SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
334 SDValue ExpandIntOp_SELECT_CC(SDNode *N);
335 SDValue ExpandIntOp_SETCC(SDNode *N);
336 SDValue ExpandIntOp_Shift(SDNode *N);
337 SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
338 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
339 SDValue ExpandIntOp_TRUNCATE(SDNode *N);
340 SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
341 SDValue ExpandIntOp_RETURNADDR(SDNode *N);
343 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
344 ISD::CondCode &CCCode, DebugLoc dl);
346 //===--------------------------------------------------------------------===//
347 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
348 //===--------------------------------------------------------------------===//
350 /// GetSoftenedFloat - Given a processed operand Op which was converted to an
351 /// integer of the same size, this returns the integer. The integer contains
352 /// exactly the same bits as Op - only the type changed. For example, if Op
353 /// is an f32 which was softened to an i32, then this method returns an i32,
354 /// the bits of which coincide with those of Op.
355 SDValue GetSoftenedFloat(SDValue Op) {
356 SDValue &SoftenedOp = SoftenedFloats[Op];
357 RemapValue(SoftenedOp);
358 assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
359 return SoftenedOp;
361 void SetSoftenedFloat(SDValue Op, SDValue Result);
363 // Result Float to Integer Conversion.
364 void SoftenFloatResult(SDNode *N, unsigned OpNo);
365 SDValue SoftenFloatRes_BITCAST(SDNode *N);
366 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
367 SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
368 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
369 SDValue SoftenFloatRes_FABS(SDNode *N);
370 SDValue SoftenFloatRes_FADD(SDNode *N);
371 SDValue SoftenFloatRes_FCEIL(SDNode *N);
372 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
373 SDValue SoftenFloatRes_FCOS(SDNode *N);
374 SDValue SoftenFloatRes_FDIV(SDNode *N);
375 SDValue SoftenFloatRes_FEXP(SDNode *N);
376 SDValue SoftenFloatRes_FEXP2(SDNode *N);
377 SDValue SoftenFloatRes_FFLOOR(SDNode *N);
378 SDValue SoftenFloatRes_FLOG(SDNode *N);
379 SDValue SoftenFloatRes_FLOG2(SDNode *N);
380 SDValue SoftenFloatRes_FLOG10(SDNode *N);
381 SDValue SoftenFloatRes_FMA(SDNode *N);
382 SDValue SoftenFloatRes_FMUL(SDNode *N);
383 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
384 SDValue SoftenFloatRes_FNEG(SDNode *N);
385 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
386 SDValue SoftenFloatRes_FP16_TO_FP32(SDNode *N);
387 SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
388 SDValue SoftenFloatRes_FPOW(SDNode *N);
389 SDValue SoftenFloatRes_FPOWI(SDNode *N);
390 SDValue SoftenFloatRes_FREM(SDNode *N);
391 SDValue SoftenFloatRes_FRINT(SDNode *N);
392 SDValue SoftenFloatRes_FSIN(SDNode *N);
393 SDValue SoftenFloatRes_FSQRT(SDNode *N);
394 SDValue SoftenFloatRes_FSUB(SDNode *N);
395 SDValue SoftenFloatRes_FTRUNC(SDNode *N);
396 SDValue SoftenFloatRes_LOAD(SDNode *N);
397 SDValue SoftenFloatRes_SELECT(SDNode *N);
398 SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
399 SDValue SoftenFloatRes_UNDEF(SDNode *N);
400 SDValue SoftenFloatRes_VAARG(SDNode *N);
401 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
403 // Operand Float to Integer Conversion.
404 bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
405 SDValue SoftenFloatOp_BITCAST(SDNode *N);
406 SDValue SoftenFloatOp_BR_CC(SDNode *N);
407 SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
408 SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
409 SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
410 SDValue SoftenFloatOp_FP32_TO_FP16(SDNode *N);
411 SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
412 SDValue SoftenFloatOp_SETCC(SDNode *N);
413 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
415 void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
416 ISD::CondCode &CCCode, DebugLoc dl);
418 //===--------------------------------------------------------------------===//
419 // Float Expansion Support: LegalizeFloatTypes.cpp
420 //===--------------------------------------------------------------------===//
422 /// GetExpandedFloat - Given a processed operand Op which was expanded into
423 /// two floating point values of half the size, this returns the two halves.
424 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
425 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
426 /// into two f64's, then this method returns the two f64's, with Lo being
427 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
428 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
429 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
431 // Float Result Expansion.
432 void ExpandFloatResult(SDNode *N, unsigned ResNo);
433 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
434 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
435 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
436 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
437 void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
438 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
439 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
440 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
441 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
442 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
443 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
444 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
445 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
446 void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
447 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
448 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
449 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
450 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
451 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
452 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
453 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
454 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
455 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
456 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
457 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
458 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
459 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
461 // Float Operand Expansion.
462 bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
463 SDValue ExpandFloatOp_BR_CC(SDNode *N);
464 SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
465 SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
466 SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
467 SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
468 SDValue ExpandFloatOp_SETCC(SDNode *N);
469 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
471 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
472 ISD::CondCode &CCCode, DebugLoc dl);
474 //===--------------------------------------------------------------------===//
475 // Scalarization Support: LegalizeVectorTypes.cpp
476 //===--------------------------------------------------------------------===//
478 /// GetScalarizedVector - Given a processed one-element vector Op which was
479 /// scalarized to its element type, this returns the element. For example,
480 /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32.
481 SDValue GetScalarizedVector(SDValue Op) {
482 SDValue &ScalarizedOp = ScalarizedVectors[Op];
483 RemapValue(ScalarizedOp);
484 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
485 return ScalarizedOp;
487 void SetScalarizedVector(SDValue Op, SDValue Result);
489 // Vector Result Scalarization: <1 x ty> -> ty.
490 void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
491 SDValue ScalarizeVecRes_BinOp(SDNode *N);
492 SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
493 SDValue ScalarizeVecRes_InregOp(SDNode *N);
495 SDValue ScalarizeVecRes_BITCAST(SDNode *N);
496 SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N);
497 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
498 SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
499 SDValue ScalarizeVecRes_FPOWI(SDNode *N);
500 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
501 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
502 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
503 SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N);
504 SDValue ScalarizeVecRes_SELECT(SDNode *N);
505 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
506 SDValue ScalarizeVecRes_SETCC(SDNode *N);
507 SDValue ScalarizeVecRes_UNDEF(SDNode *N);
508 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
509 SDValue ScalarizeVecRes_VSETCC(SDNode *N);
511 // Vector Operand Scalarization: <1 x ty> -> ty.
512 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
513 SDValue ScalarizeVecOp_BITCAST(SDNode *N);
514 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
515 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
516 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
518 //===--------------------------------------------------------------------===//
519 // Vector Splitting Support: LegalizeVectorTypes.cpp
520 //===--------------------------------------------------------------------===//
522 /// GetSplitVector - Given a processed vector Op which was split into vectors
523 /// of half the size, this method returns the halves. The first elements of
524 /// Op coincide with the elements of Lo; the remaining elements of Op coincide
525 /// with the elements of Hi: Op is what you would get by concatenating Lo and
526 /// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then
527 /// this method returns the two v4i32's, with Lo corresponding to the first 4
528 /// elements of Op, and Hi to the last 4 elements.
529 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
530 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
532 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
533 void SplitVectorResult(SDNode *N, unsigned OpNo);
534 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
535 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
536 void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
538 void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
539 void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
540 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
541 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
542 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
543 void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
544 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
545 void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
546 void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
547 void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
548 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
549 void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
550 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
551 SDValue &Hi);
553 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
554 bool SplitVectorOperand(SDNode *N, unsigned OpNo);
555 SDValue SplitVecOp_UnaryOp(SDNode *N);
557 SDValue SplitVecOp_BITCAST(SDNode *N);
558 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
559 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
560 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
561 SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
562 SDValue SplitVecOp_FP_ROUND(SDNode *N);
564 //===--------------------------------------------------------------------===//
565 // Vector Widening Support: LegalizeVectorTypes.cpp
566 //===--------------------------------------------------------------------===//
568 /// GetWidenedVector - Given a processed vector Op which was widened into a
569 /// larger vector, this method returns the larger vector. The elements of
570 /// the returned vector consist of the elements of Op followed by elements
571 /// containing rubbish. For example, if Op is a v2i32 that was widened to a
572 /// v4i32, then this method returns a v4i32 for which the first two elements
573 /// are the same as those of Op, while the last two elements contain rubbish.
574 SDValue GetWidenedVector(SDValue Op) {
575 SDValue &WidenedOp = WidenedVectors[Op];
576 RemapValue(WidenedOp);
577 assert(WidenedOp.getNode() && "Operand wasn't widened?");
578 return WidenedOp;
580 void SetWidenedVector(SDValue Op, SDValue Result);
582 // Widen Vector Result Promotion.
583 void WidenVectorResult(SDNode *N, unsigned ResNo);
584 SDValue WidenVecRes_BITCAST(SDNode* N);
585 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
586 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
587 SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N);
588 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
589 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
590 SDValue WidenVecRes_LOAD(SDNode* N);
591 SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N);
592 SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N);
593 SDValue WidenVecRes_SELECT(SDNode* N);
594 SDValue WidenVecRes_SELECT_CC(SDNode* N);
595 SDValue WidenVecRes_SETCC(SDNode* N);
596 SDValue WidenVecRes_UNDEF(SDNode *N);
597 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
598 SDValue WidenVecRes_VSETCC(SDNode* N);
600 SDValue WidenVecRes_Binary(SDNode *N);
601 SDValue WidenVecRes_Convert(SDNode *N);
602 SDValue WidenVecRes_POWI(SDNode *N);
603 SDValue WidenVecRes_Shift(SDNode *N);
604 SDValue WidenVecRes_Unary(SDNode *N);
605 SDValue WidenVecRes_InregOp(SDNode *N);
607 // Widen Vector Operand.
608 bool WidenVectorOperand(SDNode *N, unsigned ResNo);
609 SDValue WidenVecOp_BITCAST(SDNode *N);
610 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
611 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
612 SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
613 SDValue WidenVecOp_STORE(SDNode* N);
615 SDValue WidenVecOp_Convert(SDNode *N);
617 //===--------------------------------------------------------------------===//
618 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
619 //===--------------------------------------------------------------------===//
621 /// Helper GenWidenVectorLoads - Helper function to generate a set of
622 /// loads to load a vector with a resulting wider type. It takes
623 /// LdChain: list of chains for the load to be generated.
624 /// Ld: load to widen
625 SDValue GenWidenVectorLoads(SmallVector<SDValue, 16>& LdChain,
626 LoadSDNode *LD);
628 /// GenWidenVectorExtLoads - Helper function to generate a set of extension
629 /// loads to load a ector with a resulting wider type. It takes
630 /// LdChain: list of chains for the load to be generated.
631 /// Ld: load to widen
632 /// ExtType: extension element type
633 SDValue GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
634 LoadSDNode *LD, ISD::LoadExtType ExtType);
636 /// Helper genWidenVectorStores - Helper function to generate a set of
637 /// stores to store a widen vector into non widen memory
638 /// StChain: list of chains for the stores we have generated
639 /// ST: store of a widen value
640 void GenWidenVectorStores(SmallVector<SDValue, 16>& StChain, StoreSDNode *ST);
642 /// Helper genWidenVectorTruncStores - Helper function to generate a set of
643 /// stores to store a truncate widen vector into non widen memory
644 /// StChain: list of chains for the stores we have generated
645 /// ST: store of a widen value
646 void GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
647 StoreSDNode *ST);
649 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
650 /// input vector must have the same element type as NVT.
651 SDValue ModifyToType(SDValue InOp, EVT WidenVT);
654 //===--------------------------------------------------------------------===//
655 // Generic Splitting: LegalizeTypesGeneric.cpp
656 //===--------------------------------------------------------------------===//
658 // Legalization methods which only use that the illegal type is split into two
659 // not necessarily identical types. As such they can be used for splitting
660 // vectors and expanding integers and floats.
662 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
663 if (Op.getValueType().isVector())
664 GetSplitVector(Op, Lo, Hi);
665 else if (Op.getValueType().isInteger())
666 GetExpandedInteger(Op, Lo, Hi);
667 else
668 GetExpandedFloat(Op, Lo, Hi);
671 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
672 /// which is split (or expanded) into two not necessarily identical pieces.
673 void GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT);
675 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
676 /// high parts of the given value.
677 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
679 // Generic Result Splitting.
680 void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
681 void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi);
682 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
683 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
685 //===--------------------------------------------------------------------===//
686 // Generic Expansion: LegalizeTypesGeneric.cpp
687 //===--------------------------------------------------------------------===//
689 // Legalization methods which only use that the illegal type is split into two
690 // identical types of half the size, and that the Lo/Hi part is stored first
691 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
692 // such they can be used for expanding integers and floats.
694 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
695 if (Op.getValueType().isInteger())
696 GetExpandedInteger(Op, Lo, Hi);
697 else
698 GetExpandedFloat(Op, Lo, Hi);
701 // Generic Result Expansion.
702 void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
703 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
704 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
705 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
706 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
707 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
709 // Generic Operand Expansion.
710 SDValue ExpandOp_BITCAST (SDNode *N);
711 SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
712 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
713 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
714 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
715 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
718 } // end namespace llvm.
720 #endif