1 //===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates PHI instructions by aggressively coalescing the copies
11 // that would be inserted by a naive algorithm and only inserting the copies
12 // that are necessary. The coalescing technique initially assumes that all
13 // registers appearing in a PHI instruction do not interfere. It then eliminates
14 // proven interferences, using dominators to only perform a linear number of
15 // interference tests instead of the quadratic number of interference tests
16 // that this would naively require. This is a technique derived from:
18 // Budimlic, et al. Fast copy coalescing and live-range identification.
19 // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20 // Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21 // PLDI '02. ACM, New York, NY, 25-32.
23 // The original implementation constructs a data structure they call a dominance
24 // forest for this purpose. The dominance forest was shown to be unnecessary,
25 // as it is possible to emulate the creation and traversal of a dominance forest
26 // by directly using the dominator tree, rather than actually constructing the
27 // dominance forest. This technique is explained in:
29 // Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30 // Quality and Efficiency,
31 // In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32 // Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33 // CGO '09. IEEE, Washington, DC, 114-125.
35 // Careful implementation allows for all of the dominator forest interference
36 // checks to be performed at once in a single depth-first traversal of the
37 // dominator tree, which is what is implemented here.
39 //===----------------------------------------------------------------------===//
41 #define DEBUG_TYPE "strongphielim"
42 #include "PHIEliminationUtils.h"
43 #include "llvm/CodeGen/Passes.h"
44 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Support/Debug.h"
55 class StrongPHIElimination
: public MachineFunctionPass
{
57 static char ID
; // Pass identification, replacement for typeid
58 StrongPHIElimination() : MachineFunctionPass(ID
) {
59 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
62 virtual void getAnalysisUsage(AnalysisUsage
&) const;
63 bool runOnMachineFunction(MachineFunction
&);
66 /// This struct represents a single node in the union-find data structure
67 /// representing the variable congruence classes. There is one difference
68 /// from a normal union-find data structure. We steal two bits from the parent
69 /// pointer . One of these bits is used to represent whether the register
70 /// itself has been isolated, and the other is used to represent whether the
71 /// PHI with that register as its destination has been isolated.
73 /// Note that this leads to the strange situation where the leader of a
74 /// congruence class may no longer logically be a member, due to being
78 kRegisterIsolatedFlag
= 1,
81 Node(unsigned v
) : value(v
), rank(0) { parent
.setPointer(this); }
85 PointerIntPair
<Node
*, 2> parent
;
90 /// Add a register in a new congruence class containing only itself.
91 void addReg(unsigned);
93 /// Join the congruence classes of two registers. This function is biased
94 /// towards the left argument, i.e. after
97 /// unionRegs(r1, r2);
99 /// the leader of the unioned congruence class is the same as the leader of
100 /// r1's congruence class prior to the union. This is actually relied upon
101 /// in the copy insertion code.
102 void unionRegs(unsigned, unsigned);
104 /// Get the color of a register. The color is 0 if the register has been
106 unsigned getRegColor(unsigned);
108 // Isolate a register.
109 void isolateReg(unsigned);
111 /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
112 /// isolated. Otherwise, it is the original color of its destination and
113 /// all of its operands (before they were isolated, if they were).
114 unsigned getPHIColor(MachineInstr
*);
117 void isolatePHI(MachineInstr
*);
119 /// Traverses a basic block, splitting any interferences found between
120 /// registers in the same congruence class. It takes two DenseMaps as
121 /// arguments that it also updates: CurrentDominatingParent, which maps
122 /// a color to the register in that congruence class whose definition was
123 /// most recently seen, and ImmediateDominatingParent, which maps a register
124 /// to the register in the same congruence class that most immediately
127 /// This function assumes that it is being called in a depth-first traversal
128 /// of the dominator tree.
129 void SplitInterferencesForBasicBlock(
131 DenseMap
<unsigned, unsigned> &CurrentDominatingParent
,
132 DenseMap
<unsigned, unsigned> &ImmediateDominatingParent
);
134 // Lowers a PHI instruction, inserting copies of the source and destination
135 // registers as necessary.
136 void InsertCopiesForPHI(MachineInstr
*, MachineBasicBlock
*);
138 // Merges the live interval of Reg into NewReg and renames Reg to NewReg
139 // everywhere that Reg appears. Requires Reg and NewReg to have non-
140 // overlapping lifetimes.
141 void MergeLIsAndRename(unsigned Reg
, unsigned NewReg
);
143 MachineRegisterInfo
*MRI
;
144 const TargetInstrInfo
*TII
;
145 MachineDominatorTree
*DT
;
148 BumpPtrAllocator Allocator
;
150 DenseMap
<unsigned, Node
*> RegNodeMap
;
152 // Maps a basic block to a list of its defs of registers that appear as PHI
154 DenseMap
<MachineBasicBlock
*, std::vector
<MachineInstr
*> > PHISrcDefs
;
156 // Maps a color to a pair of a MachineInstr* and a virtual register, which
157 // is the operand of that PHI corresponding to the current basic block.
158 DenseMap
<unsigned, std::pair
<MachineInstr
*, unsigned> > CurrentPHIForColor
;
160 // FIXME: Can these two data structures be combined? Would a std::multimap
163 // Stores pairs of predecessor basic blocks and the source registers of
164 // inserted copy instructions.
165 typedef DenseSet
<std::pair
<MachineBasicBlock
*, unsigned> > SrcCopySet
;
166 SrcCopySet InsertedSrcCopySet
;
168 // Maps pairs of predecessor basic blocks and colors to their defining copy
170 typedef DenseMap
<std::pair
<MachineBasicBlock
*, unsigned>, MachineInstr
*>
172 SrcCopyMap InsertedSrcCopyMap
;
174 // Maps inserted destination copy registers to their defining copy
176 typedef DenseMap
<unsigned, MachineInstr
*> DestCopyMap
;
177 DestCopyMap InsertedDestCopies
;
180 struct MIIndexCompare
{
181 MIIndexCompare(LiveIntervals
*LiveIntervals
) : LI(LiveIntervals
) { }
183 bool operator()(const MachineInstr
*LHS
, const MachineInstr
*RHS
) const {
184 return LI
->getInstructionIndex(LHS
) < LI
->getInstructionIndex(RHS
);
191 STATISTIC(NumPHIsLowered
, "Number of PHIs lowered");
192 STATISTIC(NumDestCopiesInserted
, "Number of destination copies inserted");
193 STATISTIC(NumSrcCopiesInserted
, "Number of source copies inserted");
195 char StrongPHIElimination::ID
= 0;
196 INITIALIZE_PASS_BEGIN(StrongPHIElimination
, "strong-phi-node-elimination",
197 "Eliminate PHI nodes for register allocation, intelligently", false, false)
198 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
199 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
201 INITIALIZE_PASS_END(StrongPHIElimination
, "strong-phi-node-elimination",
202 "Eliminate PHI nodes for register allocation, intelligently", false, false)
204 char &llvm::StrongPHIEliminationID
= StrongPHIElimination::ID
;
206 void StrongPHIElimination::getAnalysisUsage(AnalysisUsage
&AU
) const {
207 AU
.setPreservesCFG();
208 AU
.addRequired
<MachineDominatorTree
>();
209 AU
.addRequired
<SlotIndexes
>();
210 AU
.addPreserved
<SlotIndexes
>();
211 AU
.addRequired
<LiveIntervals
>();
212 AU
.addPreserved
<LiveIntervals
>();
213 MachineFunctionPass::getAnalysisUsage(AU
);
216 static MachineOperand
*findLastUse(MachineBasicBlock
*MBB
, unsigned Reg
) {
217 // FIXME: This only needs to check from the first terminator, as only the
218 // first terminator can use a virtual register.
219 for (MachineBasicBlock::reverse_iterator RI
= MBB
->rbegin(); ; ++RI
) {
220 assert (RI
!= MBB
->rend());
221 MachineInstr
*MI
= &*RI
;
223 for (MachineInstr::mop_iterator OI
= MI
->operands_begin(),
224 OE
= MI
->operands_end(); OI
!= OE
; ++OI
) {
225 MachineOperand
&MO
= *OI
;
226 if (MO
.isReg() && MO
.isUse() && MO
.getReg() == Reg
)
233 bool StrongPHIElimination::runOnMachineFunction(MachineFunction
&MF
) {
234 MRI
= &MF
.getRegInfo();
235 TII
= MF
.getTarget().getInstrInfo();
236 DT
= &getAnalysis
<MachineDominatorTree
>();
237 LI
= &getAnalysis
<LiveIntervals
>();
239 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end();
241 for (MachineBasicBlock::iterator BBI
= I
->begin(), BBE
= I
->end();
242 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
243 unsigned DestReg
= BBI
->getOperand(0).getReg();
245 PHISrcDefs
[I
].push_back(BBI
);
247 for (unsigned i
= 1; i
< BBI
->getNumOperands(); i
+= 2) {
248 MachineOperand
&SrcMO
= BBI
->getOperand(i
);
249 unsigned SrcReg
= SrcMO
.getReg();
251 unionRegs(DestReg
, SrcReg
);
253 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
255 PHISrcDefs
[DefMI
->getParent()].push_back(DefMI
);
260 // Perform a depth-first traversal of the dominator tree, splitting
261 // interferences amongst PHI-congruence classes.
262 DenseMap
<unsigned, unsigned> CurrentDominatingParent
;
263 DenseMap
<unsigned, unsigned> ImmediateDominatingParent
;
264 for (df_iterator
<MachineDomTreeNode
*> DI
= df_begin(DT
->getRootNode()),
265 DE
= df_end(DT
->getRootNode()); DI
!= DE
; ++DI
) {
266 SplitInterferencesForBasicBlock(*DI
->getBlock(),
267 CurrentDominatingParent
,
268 ImmediateDominatingParent
);
271 // Insert copies for all PHI source and destination registers.
272 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end();
274 for (MachineBasicBlock::iterator BBI
= I
->begin(), BBE
= I
->end();
275 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
276 InsertCopiesForPHI(BBI
, I
);
280 // FIXME: Preserve the equivalence classes during copy insertion and use
281 // the preversed equivalence classes instead of recomputing them.
283 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end();
285 for (MachineBasicBlock::iterator BBI
= I
->begin(), BBE
= I
->end();
286 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
287 unsigned DestReg
= BBI
->getOperand(0).getReg();
290 for (unsigned i
= 1; i
< BBI
->getNumOperands(); i
+= 2) {
291 unsigned SrcReg
= BBI
->getOperand(i
).getReg();
293 unionRegs(DestReg
, SrcReg
);
298 DenseMap
<unsigned, unsigned> RegRenamingMap
;
299 bool Changed
= false;
300 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end();
302 MachineBasicBlock::iterator BBI
= I
->begin(), BBE
= I
->end();
303 while (BBI
!= BBE
&& BBI
->isPHI()) {
304 MachineInstr
*PHI
= BBI
;
306 assert(PHI
->getNumOperands() > 0);
308 unsigned SrcReg
= PHI
->getOperand(1).getReg();
309 unsigned SrcColor
= getRegColor(SrcReg
);
310 unsigned NewReg
= RegRenamingMap
[SrcColor
];
313 RegRenamingMap
[SrcColor
] = SrcReg
;
315 MergeLIsAndRename(SrcReg
, NewReg
);
317 unsigned DestReg
= PHI
->getOperand(0).getReg();
318 if (!InsertedDestCopies
.count(DestReg
))
319 MergeLIsAndRename(DestReg
, NewReg
);
321 for (unsigned i
= 3; i
< PHI
->getNumOperands(); i
+= 2) {
322 unsigned SrcReg
= PHI
->getOperand(i
).getReg();
323 MergeLIsAndRename(SrcReg
, NewReg
);
327 LI
->RemoveMachineInstrFromMaps(PHI
);
328 PHI
->eraseFromParent();
333 // Due to the insertion of copies to split live ranges, the live intervals are
334 // guaranteed to not overlap, except in one case: an original PHI source and a
335 // PHI destination copy. In this case, they have the same value and thus don't
336 // truly intersect, so we merge them into the value live at that point.
337 // FIXME: Is there some better way we can handle this?
338 for (DestCopyMap::iterator I
= InsertedDestCopies
.begin(),
339 E
= InsertedDestCopies
.end(); I
!= E
; ++I
) {
340 unsigned DestReg
= I
->first
;
341 unsigned DestColor
= getRegColor(DestReg
);
342 unsigned NewReg
= RegRenamingMap
[DestColor
];
344 LiveInterval
&DestLI
= LI
->getInterval(DestReg
);
345 LiveInterval
&NewLI
= LI
->getInterval(NewReg
);
347 assert(DestLI
.ranges
.size() == 1
348 && "PHI destination copy's live interval should be a single live "
349 "range from the beginning of the BB to the copy instruction.");
350 LiveRange
*DestLR
= DestLI
.begin();
351 VNInfo
*NewVNI
= NewLI
.getVNInfoAt(DestLR
->start
);
353 NewVNI
= NewLI
.createValueCopy(DestLR
->valno
, LI
->getVNInfoAllocator());
354 MachineInstr
*CopyInstr
= I
->second
;
355 CopyInstr
->getOperand(1).setIsKill(true);
358 LiveRange
NewLR(DestLR
->start
, DestLR
->end
, NewVNI
);
359 NewLI
.addRange(NewLR
);
361 LI
->removeInterval(DestReg
);
362 MRI
->replaceRegWith(DestReg
, NewReg
);
365 // Adjust the live intervals of all PHI source registers to handle the case
366 // where the PHIs in successor blocks were the only later uses of the source
368 for (SrcCopySet::iterator I
= InsertedSrcCopySet
.begin(),
369 E
= InsertedSrcCopySet
.end(); I
!= E
; ++I
) {
370 MachineBasicBlock
*MBB
= I
->first
;
371 unsigned SrcReg
= I
->second
;
372 if (unsigned RenamedRegister
= RegRenamingMap
[getRegColor(SrcReg
)])
373 SrcReg
= RenamedRegister
;
375 LiveInterval
&SrcLI
= LI
->getInterval(SrcReg
);
377 bool isLiveOut
= false;
378 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
379 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
) {
380 if (SrcLI
.liveAt(LI
->getMBBStartIdx(*SI
))) {
389 MachineOperand
*LastUse
= findLastUse(MBB
, SrcReg
);
391 SlotIndex LastUseIndex
= LI
->getInstructionIndex(LastUse
->getParent());
392 SrcLI
.removeRange(LastUseIndex
.getDefIndex(), LI
->getMBBEndIdx(MBB
));
393 LastUse
->setIsKill(true);
401 InsertedSrcCopySet
.clear();
402 InsertedSrcCopyMap
.clear();
403 InsertedDestCopies
.clear();
408 void StrongPHIElimination::addReg(unsigned Reg
) {
409 if (RegNodeMap
.count(Reg
))
411 RegNodeMap
[Reg
] = new (Allocator
) Node(Reg
);
414 StrongPHIElimination::Node
*
415 StrongPHIElimination::Node::getLeader() {
417 Node
*Parent
= parent
.getPointer();
418 Node
*Grandparent
= Parent
->parent
.getPointer();
420 while (Parent
!= Grandparent
) {
421 N
->parent
.setPointer(Grandparent
);
423 Parent
= Parent
->parent
.getPointer();
424 Grandparent
= Parent
->parent
.getPointer();
430 unsigned StrongPHIElimination::getRegColor(unsigned Reg
) {
431 DenseMap
<unsigned, Node
*>::iterator RI
= RegNodeMap
.find(Reg
);
432 if (RI
== RegNodeMap
.end())
434 Node
*Node
= RI
->second
;
435 if (Node
->parent
.getInt() & Node::kRegisterIsolatedFlag
)
437 return Node
->getLeader()->value
;
440 void StrongPHIElimination::unionRegs(unsigned Reg1
, unsigned Reg2
) {
441 Node
*Node1
= RegNodeMap
[Reg1
]->getLeader();
442 Node
*Node2
= RegNodeMap
[Reg2
]->getLeader();
444 if (Node1
->rank
> Node2
->rank
) {
445 Node2
->parent
.setPointer(Node1
->getLeader());
446 } else if (Node1
->rank
< Node2
->rank
) {
447 Node1
->parent
.setPointer(Node2
->getLeader());
448 } else if (Node1
!= Node2
) {
449 Node2
->parent
.setPointer(Node1
->getLeader());
454 void StrongPHIElimination::isolateReg(unsigned Reg
) {
455 Node
*Node
= RegNodeMap
[Reg
];
456 Node
->parent
.setInt(Node
->parent
.getInt() | Node::kRegisterIsolatedFlag
);
459 unsigned StrongPHIElimination::getPHIColor(MachineInstr
*PHI
) {
460 assert(PHI
->isPHI());
462 unsigned DestReg
= PHI
->getOperand(0).getReg();
463 Node
*DestNode
= RegNodeMap
[DestReg
];
464 if (DestNode
->parent
.getInt() & Node::kPHIIsolatedFlag
)
467 for (unsigned i
= 1; i
< PHI
->getNumOperands(); i
+= 2) {
468 unsigned SrcColor
= getRegColor(PHI
->getOperand(i
).getReg());
475 void StrongPHIElimination::isolatePHI(MachineInstr
*PHI
) {
476 assert(PHI
->isPHI());
477 Node
*Node
= RegNodeMap
[PHI
->getOperand(0).getReg()];
478 Node
->parent
.setInt(Node
->parent
.getInt() | Node::kPHIIsolatedFlag
);
481 /// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
482 /// interferences found between registers in the same congruence class. It
483 /// takes two DenseMaps as arguments that it also updates:
485 /// 1) CurrentDominatingParent, which maps a color to the register in that
486 /// congruence class whose definition was most recently seen.
488 /// 2) ImmediateDominatingParent, which maps a register to the register in the
489 /// same congruence class that most immediately dominates it.
491 /// This function assumes that it is being called in a depth-first traversal
492 /// of the dominator tree.
494 /// The algorithm used here is a generalization of the dominance-based SSA test
495 /// for two variables. If there are variables a_1, ..., a_n such that
497 /// def(a_1) dom ... dom def(a_n),
499 /// then we can test for an interference between any two a_i by only using O(n)
500 /// interference tests between pairs of variables. If i < j and a_i and a_j
501 /// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
502 /// Thus, in order to test for an interference involving a_i, we need only check
503 /// for a potential interference with a_i+1.
505 /// This method can be generalized to arbitrary sets of variables by performing
506 /// a depth-first traversal of the dominator tree. As we traverse down a branch
507 /// of the dominator tree, we keep track of the current dominating variable and
508 /// only perform an interference test with that variable. However, when we go to
509 /// another branch of the dominator tree, the definition of the current dominating
510 /// variable may no longer dominate the current block. In order to correct this,
511 /// we need to use a stack of past choices of the current dominating variable
512 /// and pop from this stack until we find a variable whose definition actually
513 /// dominates the current block.
515 /// There will be one push on this stack for each variable that has become the
516 /// current dominating variable, so instead of using an explicit stack we can
517 /// simply associate the previous choice for a current dominating variable with
518 /// the new choice. This works better in our implementation, where we test for
519 /// interference in multiple distinct sets at once.
521 StrongPHIElimination::SplitInterferencesForBasicBlock(
522 MachineBasicBlock
&MBB
,
523 DenseMap
<unsigned, unsigned> &CurrentDominatingParent
,
524 DenseMap
<unsigned, unsigned> &ImmediateDominatingParent
) {
525 // Sort defs by their order in the original basic block, as the code below
526 // assumes that it is processing definitions in dominance order.
527 std::vector
<MachineInstr
*> &DefInstrs
= PHISrcDefs
[&MBB
];
528 std::sort(DefInstrs
.begin(), DefInstrs
.end(), MIIndexCompare(LI
));
530 for (std::vector
<MachineInstr
*>::const_iterator BBI
= DefInstrs
.begin(),
531 BBE
= DefInstrs
.end(); BBI
!= BBE
; ++BBI
) {
532 for (MachineInstr::const_mop_iterator I
= (*BBI
)->operands_begin(),
533 E
= (*BBI
)->operands_end(); I
!= E
; ++I
) {
534 const MachineOperand
&MO
= *I
;
536 // FIXME: This would be faster if it were possible to bail out of checking
537 // an instruction's operands after the explicit defs, but this is incorrect
538 // for variadic instructions, which may appear before register allocation
540 if (!MO
.isReg() || !MO
.isDef())
543 unsigned DestReg
= MO
.getReg();
544 if (!DestReg
|| !TargetRegisterInfo::isVirtualRegister(DestReg
))
547 // If the virtual register being defined is not used in any PHI or has
548 // already been isolated, then there are no more interferences to check.
549 unsigned DestColor
= getRegColor(DestReg
);
553 // The input to this pass sometimes is not in SSA form in every basic
554 // block, as some virtual registers have redefinitions. We could eliminate
555 // this by fixing the passes that generate the non-SSA code, or we could
556 // handle it here by tracking defining machine instructions rather than
557 // virtual registers. For now, we just handle the situation conservatively
558 // in a way that will possibly lead to false interferences.
559 unsigned &CurrentParent
= CurrentDominatingParent
[DestColor
];
560 unsigned NewParent
= CurrentParent
;
561 if (NewParent
== DestReg
)
564 // Pop registers from the stack represented by ImmediateDominatingParent
565 // until we find a parent that dominates the current instruction.
566 while (NewParent
&& (!DT
->dominates(MRI
->getVRegDef(NewParent
), *BBI
)
567 || !getRegColor(NewParent
)))
568 NewParent
= ImmediateDominatingParent
[NewParent
];
570 // If NewParent is nonzero, then its definition dominates the current
571 // instruction, so it is only necessary to check for the liveness of
572 // NewParent in order to check for an interference.
574 && LI
->getInterval(NewParent
).liveAt(LI
->getInstructionIndex(*BBI
))) {
575 // If there is an interference, always isolate the new register. This
576 // could be improved by using a heuristic that decides which of the two
577 // registers to isolate.
579 CurrentParent
= NewParent
;
581 // If there is no interference, update ImmediateDominatingParent and set
582 // the CurrentDominatingParent for this color to the current register.
583 ImmediateDominatingParent
[DestReg
] = NewParent
;
584 CurrentParent
= DestReg
;
589 // We now walk the PHIs in successor blocks and check for interferences. This
590 // is necessary because the use of a PHI's operands are logically contained in
591 // the predecessor block. The def of a PHI's destination register is processed
592 // along with the other defs in a basic block.
594 CurrentPHIForColor
.clear();
596 for (MachineBasicBlock::succ_iterator SI
= MBB
.succ_begin(),
597 SE
= MBB
.succ_end(); SI
!= SE
; ++SI
) {
598 for (MachineBasicBlock::iterator BBI
= (*SI
)->begin(), BBE
= (*SI
)->end();
599 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
600 MachineInstr
*PHI
= BBI
;
602 // If a PHI is already isolated, either by being isolated directly or
603 // having all of its operands isolated, ignore it.
604 unsigned Color
= getPHIColor(PHI
);
608 // Find the index of the PHI operand that corresponds to this basic block.
610 for (PredIndex
= 1; PredIndex
< PHI
->getNumOperands(); PredIndex
+= 2) {
611 if (PHI
->getOperand(PredIndex
+ 1).getMBB() == &MBB
)
614 assert(PredIndex
< PHI
->getNumOperands());
615 unsigned PredOperandReg
= PHI
->getOperand(PredIndex
).getReg();
617 // Pop registers from the stack represented by ImmediateDominatingParent
618 // until we find a parent that dominates the current instruction.
619 unsigned &CurrentParent
= CurrentDominatingParent
[Color
];
620 unsigned NewParent
= CurrentParent
;
622 && (!DT
->dominates(MRI
->getVRegDef(NewParent
)->getParent(), &MBB
)
623 || !getRegColor(NewParent
)))
624 NewParent
= ImmediateDominatingParent
[NewParent
];
625 CurrentParent
= NewParent
;
627 // If there is an interference with a register, always isolate the
628 // register rather than the PHI. It is also possible to isolate the
629 // PHI, but that introduces copies for all of the registers involved
631 if (NewParent
&& LI
->isLiveOutOfMBB(LI
->getInterval(NewParent
), &MBB
)
632 && NewParent
!= PredOperandReg
)
633 isolateReg(NewParent
);
635 std::pair
<MachineInstr
*, unsigned>
636 &CurrentPHI
= CurrentPHIForColor
[Color
];
638 // If two PHIs have the same operand from every shared predecessor, then
639 // they don't actually interfere. Otherwise, isolate the current PHI. This
640 // could possibly be improved, e.g. we could isolate the PHI with the
642 if (CurrentPHI
.first
&& CurrentPHI
.second
!= PredOperandReg
)
645 CurrentPHI
= std::make_pair(PHI
, PredOperandReg
);
650 void StrongPHIElimination::InsertCopiesForPHI(MachineInstr
*PHI
,
651 MachineBasicBlock
*MBB
) {
652 assert(PHI
->isPHI());
654 unsigned PHIColor
= getPHIColor(PHI
);
656 for (unsigned i
= 1; i
< PHI
->getNumOperands(); i
+= 2) {
657 MachineOperand
&SrcMO
= PHI
->getOperand(i
);
659 // If a source is defined by an implicit def, there is no need to insert a
660 // copy in the predecessor.
664 unsigned SrcReg
= SrcMO
.getReg();
665 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
666 "Machine PHI Operands must all be virtual registers!");
668 MachineBasicBlock
*PredBB
= PHI
->getOperand(i
+ 1).getMBB();
669 unsigned SrcColor
= getRegColor(SrcReg
);
671 // If neither the PHI nor the operand were isolated, then we only need to
672 // set the phi-kill flag on the VNInfo at this PHI.
673 if (PHIColor
&& SrcColor
== PHIColor
) {
674 LiveInterval
&SrcInterval
= LI
->getInterval(SrcReg
);
675 SlotIndex PredIndex
= LI
->getMBBEndIdx(PredBB
);
676 VNInfo
*SrcVNI
= SrcInterval
.getVNInfoAt(PredIndex
.getPrevIndex());
678 SrcVNI
->setHasPHIKill(true);
682 unsigned CopyReg
= 0;
684 SrcCopyMap::const_iterator I
685 = InsertedSrcCopyMap
.find(std::make_pair(PredBB
, PHIColor
));
687 = I
!= InsertedSrcCopyMap
.end() ? I
->second
->getOperand(0).getReg() : 0;
691 const TargetRegisterClass
*RC
= MRI
->getRegClass(SrcReg
);
692 CopyReg
= MRI
->createVirtualRegister(RC
);
694 MachineBasicBlock::iterator
695 CopyInsertPoint
= findPHICopyInsertPoint(PredBB
, MBB
, SrcReg
);
696 unsigned SrcSubReg
= SrcMO
.getSubReg();
697 MachineInstr
*CopyInstr
= BuildMI(*PredBB
,
700 TII
->get(TargetOpcode::COPY
),
701 CopyReg
).addReg(SrcReg
, 0, SrcSubReg
);
702 LI
->InsertMachineInstrInMaps(CopyInstr
);
703 ++NumSrcCopiesInserted
;
705 // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
706 // the newly added range.
707 LI
->addLiveRangeToEndOfBlock(CopyReg
, CopyInstr
);
708 InsertedSrcCopySet
.insert(std::make_pair(PredBB
, SrcReg
));
712 unionRegs(PHIColor
, CopyReg
);
713 assert(getRegColor(CopyReg
) != CopyReg
);
716 assert(getRegColor(CopyReg
) == CopyReg
);
719 if (!InsertedSrcCopyMap
.count(std::make_pair(PredBB
, PHIColor
)))
720 InsertedSrcCopyMap
[std::make_pair(PredBB
, PHIColor
)] = CopyInstr
;
723 SrcMO
.setReg(CopyReg
);
725 // If SrcReg is not live beyond the PHI, trim its interval so that it is no
726 // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
727 // processed later, but this is still correct to do at this point because we
728 // never rely on LiveIntervals being correct while inserting copies.
729 // FIXME: Should this just count uses at PHIs like the normal PHIElimination
731 LiveInterval
&SrcLI
= LI
->getInterval(SrcReg
);
732 SlotIndex MBBStartIndex
= LI
->getMBBStartIdx(MBB
);
733 SlotIndex PHIIndex
= LI
->getInstructionIndex(PHI
);
734 SlotIndex NextInstrIndex
= PHIIndex
.getNextIndex();
735 if (SrcLI
.liveAt(MBBStartIndex
) && SrcLI
.expiredAt(NextInstrIndex
))
736 SrcLI
.removeRange(MBBStartIndex
, PHIIndex
, true);
739 unsigned DestReg
= PHI
->getOperand(0).getReg();
740 unsigned DestColor
= getRegColor(DestReg
);
742 if (PHIColor
&& DestColor
== PHIColor
) {
743 LiveInterval
&DestLI
= LI
->getInterval(DestReg
);
745 // Set the phi-def flag for the VN at this PHI.
746 SlotIndex PHIIndex
= LI
->getInstructionIndex(PHI
);
747 VNInfo
*DestVNI
= DestLI
.getVNInfoAt(PHIIndex
.getDefIndex());
749 DestVNI
->setIsPHIDef(true);
751 // Prior to PHI elimination, the live ranges of PHIs begin at their defining
752 // instruction. After PHI elimination, PHI instructions are replaced by VNs
753 // with the phi-def flag set, and the live ranges of these VNs start at the
754 // beginning of the basic block.
755 SlotIndex MBBStartIndex
= LI
->getMBBStartIdx(MBB
);
756 DestVNI
->def
= MBBStartIndex
;
757 DestLI
.addRange(LiveRange(MBBStartIndex
,
758 PHIIndex
.getDefIndex(),
763 const TargetRegisterClass
*RC
= MRI
->getRegClass(DestReg
);
764 unsigned CopyReg
= MRI
->createVirtualRegister(RC
);
766 MachineInstr
*CopyInstr
= BuildMI(*MBB
,
767 MBB
->SkipPHIsAndLabels(MBB
->begin()),
769 TII
->get(TargetOpcode::COPY
),
770 DestReg
).addReg(CopyReg
);
771 LI
->InsertMachineInstrInMaps(CopyInstr
);
772 PHI
->getOperand(0).setReg(CopyReg
);
773 ++NumDestCopiesInserted
;
775 // Add the region from the beginning of MBB to the copy instruction to
776 // CopyReg's live interval, and give the VNInfo the phidef flag.
777 LiveInterval
&CopyLI
= LI
->getOrCreateInterval(CopyReg
);
778 SlotIndex MBBStartIndex
= LI
->getMBBStartIdx(MBB
);
779 SlotIndex DestCopyIndex
= LI
->getInstructionIndex(CopyInstr
);
780 VNInfo
*CopyVNI
= CopyLI
.getNextValue(MBBStartIndex
,
782 LI
->getVNInfoAllocator());
783 CopyVNI
->setIsPHIDef(true);
784 CopyLI
.addRange(LiveRange(MBBStartIndex
,
785 DestCopyIndex
.getDefIndex(),
788 // Adjust DestReg's live interval to adjust for its new definition at
790 LiveInterval
&DestLI
= LI
->getOrCreateInterval(DestReg
);
791 SlotIndex PHIIndex
= LI
->getInstructionIndex(PHI
);
792 DestLI
.removeRange(PHIIndex
.getDefIndex(), DestCopyIndex
.getDefIndex());
794 VNInfo
*DestVNI
= DestLI
.getVNInfoAt(DestCopyIndex
.getDefIndex());
796 DestVNI
->def
= DestCopyIndex
.getDefIndex();
798 InsertedDestCopies
[CopyReg
] = CopyInstr
;
801 void StrongPHIElimination::MergeLIsAndRename(unsigned Reg
, unsigned NewReg
) {
805 LiveInterval
&OldLI
= LI
->getInterval(Reg
);
806 LiveInterval
&NewLI
= LI
->getInterval(NewReg
);
808 // Merge the live ranges of the two registers.
809 DenseMap
<VNInfo
*, VNInfo
*> VNMap
;
810 for (LiveInterval::iterator LRI
= OldLI
.begin(), LRE
= OldLI
.end();
812 LiveRange OldLR
= *LRI
;
813 VNInfo
*OldVN
= OldLR
.valno
;
815 VNInfo
*&NewVN
= VNMap
[OldVN
];
817 NewVN
= NewLI
.createValueCopy(OldVN
, LI
->getVNInfoAllocator());
818 VNMap
[OldVN
] = NewVN
;
821 LiveRange
LR(OldLR
.start
, OldLR
.end
, NewVN
);
825 // Remove the LiveInterval for the register being renamed and replace all
826 // of its defs and uses with the new register.
827 LI
->removeInterval(Reg
);
828 MRI
->replaceRegWith(Reg
, NewReg
);