1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/ADT/BitVector.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/STLExtras.h"
52 STATISTIC(NumTwoAddressInstrs
, "Number of two-address instructions");
53 STATISTIC(NumCommuted
, "Number of instructions commuted to coalesce");
54 STATISTIC(NumAggrCommuted
, "Number of instructions aggressively commuted");
55 STATISTIC(NumConvertedTo3Addr
, "Number of instructions promoted to 3-address");
56 STATISTIC(Num3AddrSunk
, "Number of 3-address instructions sunk");
57 STATISTIC(NumReMats
, "Number of instructions re-materialized");
58 STATISTIC(NumDeletes
, "Number of dead instructions deleted");
61 class TwoAddressInstructionPass
: public MachineFunctionPass
{
62 const TargetInstrInfo
*TII
;
63 const TargetRegisterInfo
*TRI
;
64 MachineRegisterInfo
*MRI
;
68 // DistanceMap - Keep track the distance of a MI from the start of the
69 // current basic block.
70 DenseMap
<MachineInstr
*, unsigned> DistanceMap
;
72 // SrcRegMap - A map from virtual registers to physical registers which
73 // are likely targets to be coalesced to due to copies from physical
74 // registers to virtual registers. e.g. v1024 = move r0.
75 DenseMap
<unsigned, unsigned> SrcRegMap
;
77 // DstRegMap - A map from virtual registers to physical registers which
78 // are likely targets to be coalesced to due to copies to physical
79 // registers from virtual registers. e.g. r1 = move v1024.
80 DenseMap
<unsigned, unsigned> DstRegMap
;
82 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83 /// during the initial walk of the machine function.
84 SmallVector
<MachineInstr
*, 16> RegSequences
;
86 bool Sink3AddrInstruction(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
88 MachineBasicBlock::iterator OldPos
);
90 bool isProfitableToReMat(unsigned Reg
, const TargetRegisterClass
*RC
,
91 MachineInstr
*MI
, MachineInstr
*DefMI
,
92 MachineBasicBlock
*MBB
, unsigned Loc
);
94 bool NoUseAfterLastDef(unsigned Reg
, MachineBasicBlock
*MBB
, unsigned Dist
,
97 MachineInstr
*FindLastUseInMBB(unsigned Reg
, MachineBasicBlock
*MBB
,
100 bool isProfitableToCommute(unsigned regB
, unsigned regC
,
101 MachineInstr
*MI
, MachineBasicBlock
*MBB
,
104 bool CommuteInstruction(MachineBasicBlock::iterator
&mi
,
105 MachineFunction::iterator
&mbbi
,
106 unsigned RegB
, unsigned RegC
, unsigned Dist
);
108 bool isProfitableToConv3Addr(unsigned RegA
, unsigned RegB
);
110 bool ConvertInstTo3Addr(MachineBasicBlock::iterator
&mi
,
111 MachineBasicBlock::iterator
&nmi
,
112 MachineFunction::iterator
&mbbi
,
113 unsigned RegA
, unsigned RegB
, unsigned Dist
);
115 typedef std::pair
<std::pair
<unsigned, bool>, MachineInstr
*> NewKill
;
116 bool canUpdateDeletedKills(SmallVector
<unsigned, 4> &Kills
,
117 SmallVector
<NewKill
, 4> &NewKills
,
118 MachineBasicBlock
*MBB
, unsigned Dist
);
119 bool DeleteUnusedInstr(MachineBasicBlock::iterator
&mi
,
120 MachineBasicBlock::iterator
&nmi
,
121 MachineFunction::iterator
&mbbi
, unsigned Dist
);
123 bool TryInstructionTransform(MachineBasicBlock::iterator
&mi
,
124 MachineBasicBlock::iterator
&nmi
,
125 MachineFunction::iterator
&mbbi
,
126 unsigned SrcIdx
, unsigned DstIdx
,
128 SmallPtrSet
<MachineInstr
*, 8> &Processed
);
130 void ScanUses(unsigned DstReg
, MachineBasicBlock
*MBB
,
131 SmallPtrSet
<MachineInstr
*, 8> &Processed
);
133 void ProcessCopy(MachineInstr
*MI
, MachineBasicBlock
*MBB
,
134 SmallPtrSet
<MachineInstr
*, 8> &Processed
);
136 void CoalesceExtSubRegs(SmallVector
<unsigned,4> &Srcs
, unsigned DstReg
);
138 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
139 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
140 /// sub-register references of the register defined by REG_SEQUENCE.
141 bool EliminateRegSequences();
144 static char ID
; // Pass identification, replacement for typeid
145 TwoAddressInstructionPass() : MachineFunctionPass(ID
) {
146 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
149 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
150 AU
.setPreservesCFG();
151 AU
.addRequired
<AliasAnalysis
>();
152 AU
.addPreserved
<LiveVariables
>();
153 AU
.addPreservedID(MachineLoopInfoID
);
154 AU
.addPreservedID(MachineDominatorsID
);
155 AU
.addPreservedID(PHIEliminationID
);
156 MachineFunctionPass::getAnalysisUsage(AU
);
159 /// runOnMachineFunction - Pass entry point.
160 bool runOnMachineFunction(MachineFunction
&);
164 char TwoAddressInstructionPass::ID
= 0;
165 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass
, "twoaddressinstruction",
166 "Two-Address instruction pass", false, false)
167 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
168 INITIALIZE_PASS_END(TwoAddressInstructionPass
, "twoaddressinstruction",
169 "Two-Address instruction pass", false, false)
171 char &llvm::TwoAddressInstructionPassID
= TwoAddressInstructionPass::ID
;
173 /// Sink3AddrInstruction - A two-address instruction has been converted to a
174 /// three-address instruction to avoid clobbering a register. Try to sink it
175 /// past the instruction that would kill the above mentioned register to reduce
176 /// register pressure.
177 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock
*MBB
,
178 MachineInstr
*MI
, unsigned SavedReg
,
179 MachineBasicBlock::iterator OldPos
) {
180 // Check if it's safe to move this instruction.
181 bool SeenStore
= true; // Be conservative.
182 if (!MI
->isSafeToMove(TII
, AA
, SeenStore
))
186 SmallSet
<unsigned, 4> UseRegs
;
188 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
189 const MachineOperand
&MO
= MI
->getOperand(i
);
192 unsigned MOReg
= MO
.getReg();
195 if (MO
.isUse() && MOReg
!= SavedReg
)
196 UseRegs
.insert(MO
.getReg());
200 // Don't try to move it if it implicitly defines a register.
203 // For now, don't move any instructions that define multiple registers.
205 DefReg
= MO
.getReg();
208 // Find the instruction that kills SavedReg.
209 MachineInstr
*KillMI
= NULL
;
210 for (MachineRegisterInfo::use_nodbg_iterator
211 UI
= MRI
->use_nodbg_begin(SavedReg
),
212 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
213 MachineOperand
&UseMO
= UI
.getOperand();
216 KillMI
= UseMO
.getParent();
220 if (!KillMI
|| KillMI
->getParent() != MBB
|| KillMI
== MI
)
223 // If any of the definitions are used by another instruction between the
224 // position and the kill use, then it's not safe to sink it.
226 // FIXME: This can be sped up if there is an easy way to query whether an
227 // instruction is before or after another instruction. Then we can use
228 // MachineRegisterInfo def / use instead.
229 MachineOperand
*KillMO
= NULL
;
230 MachineBasicBlock::iterator KillPos
= KillMI
;
233 unsigned NumVisited
= 0;
234 for (MachineBasicBlock::iterator I
= llvm::next(OldPos
); I
!= KillPos
; ++I
) {
235 MachineInstr
*OtherMI
= I
;
236 // DBG_VALUE cannot be counted against the limit.
237 if (OtherMI
->isDebugValue())
239 if (NumVisited
> 30) // FIXME: Arbitrary limit to reduce compile time cost.
242 for (unsigned i
= 0, e
= OtherMI
->getNumOperands(); i
!= e
; ++i
) {
243 MachineOperand
&MO
= OtherMI
->getOperand(i
);
246 unsigned MOReg
= MO
.getReg();
253 if (OtherMI
== KillMI
&& MOReg
== SavedReg
)
254 // Save the operand that kills the register. We want to unset the kill
255 // marker if we can sink MI past it.
257 else if (UseRegs
.count(MOReg
))
258 // One of the uses is killed before the destination.
264 // Update kill and LV information.
265 KillMO
->setIsKill(false);
266 KillMO
= MI
->findRegisterUseOperand(SavedReg
, false, TRI
);
267 KillMO
->setIsKill(true);
270 LV
->replaceKillInstruction(SavedReg
, KillMI
, MI
);
272 // Move instruction to its destination.
274 MBB
->insert(KillPos
, MI
);
280 /// isTwoAddrUse - Return true if the specified MI is using the specified
281 /// register as a two-address operand.
282 static bool isTwoAddrUse(MachineInstr
*UseMI
, unsigned Reg
) {
283 const MCInstrDesc
&MCID
= UseMI
->getDesc();
284 for (unsigned i
= 0, e
= MCID
.getNumOperands(); i
!= e
; ++i
) {
285 MachineOperand
&MO
= UseMI
->getOperand(i
);
286 if (MO
.isReg() && MO
.getReg() == Reg
&&
287 (MO
.isDef() || UseMI
->isRegTiedToDefOperand(i
)))
288 // Earlier use is a two-address one.
294 /// isProfitableToReMat - Return true if the heuristics determines it is likely
295 /// to be profitable to re-materialize the definition of Reg rather than copy
298 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg
,
299 const TargetRegisterClass
*RC
,
300 MachineInstr
*MI
, MachineInstr
*DefMI
,
301 MachineBasicBlock
*MBB
, unsigned Loc
) {
302 bool OtherUse
= false;
303 for (MachineRegisterInfo::use_nodbg_iterator UI
= MRI
->use_nodbg_begin(Reg
),
304 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
305 MachineOperand
&UseMO
= UI
.getOperand();
306 MachineInstr
*UseMI
= UseMO
.getParent();
307 MachineBasicBlock
*UseMBB
= UseMI
->getParent();
309 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UseMI
);
310 if (DI
!= DistanceMap
.end() && DI
->second
== Loc
)
311 continue; // Current use.
313 // There is at least one other use in the MBB that will clobber the
315 if (isTwoAddrUse(UseMI
, Reg
))
320 // If other uses in MBB are not two-address uses, then don't remat.
324 // No other uses in the same block, remat if it's defined in the same
325 // block so it does not unnecessarily extend the live range.
326 return MBB
== DefMI
->getParent();
329 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
330 /// last instruction in the MBB that defines the specified register and the
331 /// two-address instruction which is being processed. It also returns the last
332 /// def location by reference
333 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg
,
334 MachineBasicBlock
*MBB
, unsigned Dist
,
337 unsigned LastUse
= Dist
;
338 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(Reg
),
339 E
= MRI
->reg_end(); I
!= E
; ++I
) {
340 MachineOperand
&MO
= I
.getOperand();
341 MachineInstr
*MI
= MO
.getParent();
342 if (MI
->getParent() != MBB
|| MI
->isDebugValue())
344 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
345 if (DI
== DistanceMap
.end())
347 if (MO
.isUse() && DI
->second
< LastUse
)
348 LastUse
= DI
->second
;
349 if (MO
.isDef() && DI
->second
> LastDef
)
350 LastDef
= DI
->second
;
353 return !(LastUse
> LastDef
&& LastUse
< Dist
);
356 MachineInstr
*TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg
,
357 MachineBasicBlock
*MBB
,
359 unsigned LastUseDist
= 0;
360 MachineInstr
*LastUse
= 0;
361 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(Reg
),
362 E
= MRI
->reg_end(); I
!= E
; ++I
) {
363 MachineOperand
&MO
= I
.getOperand();
364 MachineInstr
*MI
= MO
.getParent();
365 if (MI
->getParent() != MBB
|| MI
->isDebugValue())
367 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(MI
);
368 if (DI
== DistanceMap
.end())
370 if (DI
->second
>= Dist
)
373 if (MO
.isUse() && DI
->second
> LastUseDist
) {
375 LastUseDist
= DI
->second
;
381 /// isCopyToReg - Return true if the specified MI is a copy instruction or
382 /// a extract_subreg instruction. It also returns the source and destination
383 /// registers and whether they are physical registers by reference.
384 static bool isCopyToReg(MachineInstr
&MI
, const TargetInstrInfo
*TII
,
385 unsigned &SrcReg
, unsigned &DstReg
,
386 bool &IsSrcPhys
, bool &IsDstPhys
) {
390 DstReg
= MI
.getOperand(0).getReg();
391 SrcReg
= MI
.getOperand(1).getReg();
392 } else if (MI
.isInsertSubreg() || MI
.isSubregToReg()) {
393 DstReg
= MI
.getOperand(0).getReg();
394 SrcReg
= MI
.getOperand(2).getReg();
398 IsSrcPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
399 IsDstPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
403 /// isKilled - Test if the given register value, which is used by the given
404 /// instruction, is killed by the given instruction. This looks through
405 /// coalescable copies to see if the original value is potentially not killed.
407 /// For example, in this code:
409 /// %reg1034 = copy %reg1024
410 /// %reg1035 = copy %reg1025<kill>
411 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
413 /// %reg1034 is not considered to be killed, since it is copied from a
414 /// register which is not killed. Treating it as not killed lets the
415 /// normal heuristics commute the (two-address) add, which lets
416 /// coalescing eliminate the extra copy.
418 static bool isKilled(MachineInstr
&MI
, unsigned Reg
,
419 const MachineRegisterInfo
*MRI
,
420 const TargetInstrInfo
*TII
) {
421 MachineInstr
*DefMI
= &MI
;
423 if (!DefMI
->killsRegister(Reg
))
425 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
427 MachineRegisterInfo::def_iterator Begin
= MRI
->def_begin(Reg
);
428 // If there are multiple defs, we can't do a simple analysis, so just
429 // go with what the kill flag says.
430 if (llvm::next(Begin
) != MRI
->def_end())
433 bool IsSrcPhys
, IsDstPhys
;
434 unsigned SrcReg
, DstReg
;
435 // If the def is something other than a copy, then it isn't going to
436 // be coalesced, so follow the kill flag.
437 if (!isCopyToReg(*DefMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
443 /// isTwoAddrUse - Return true if the specified MI uses the specified register
444 /// as a two-address use. If so, return the destination register by reference.
445 static bool isTwoAddrUse(MachineInstr
&MI
, unsigned Reg
, unsigned &DstReg
) {
446 const MCInstrDesc
&MCID
= MI
.getDesc();
447 unsigned NumOps
= MI
.isInlineAsm()
448 ? MI
.getNumOperands() : MCID
.getNumOperands();
449 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
450 const MachineOperand
&MO
= MI
.getOperand(i
);
451 if (!MO
.isReg() || !MO
.isUse() || MO
.getReg() != Reg
)
454 if (MI
.isRegTiedToDefOperand(i
, &ti
)) {
455 DstReg
= MI
.getOperand(ti
).getReg();
462 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
463 /// use, return the use instruction if it's a copy or a two-address use.
465 MachineInstr
*findOnlyInterestingUse(unsigned Reg
, MachineBasicBlock
*MBB
,
466 MachineRegisterInfo
*MRI
,
467 const TargetInstrInfo
*TII
,
469 unsigned &DstReg
, bool &IsDstPhys
) {
470 if (!MRI
->hasOneNonDBGUse(Reg
))
471 // None or more than one use.
473 MachineInstr
&UseMI
= *MRI
->use_nodbg_begin(Reg
);
474 if (UseMI
.getParent() != MBB
)
478 if (isCopyToReg(UseMI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
)) {
483 if (isTwoAddrUse(UseMI
, Reg
, DstReg
)) {
484 IsDstPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
490 /// getMappedReg - Return the physical register the specified virtual register
491 /// might be mapped to.
493 getMappedReg(unsigned Reg
, DenseMap
<unsigned, unsigned> &RegMap
) {
494 while (TargetRegisterInfo::isVirtualRegister(Reg
)) {
495 DenseMap
<unsigned, unsigned>::iterator SI
= RegMap
.find(Reg
);
496 if (SI
== RegMap
.end())
500 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
505 /// regsAreCompatible - Return true if the two registers are equal or aliased.
508 regsAreCompatible(unsigned RegA
, unsigned RegB
, const TargetRegisterInfo
*TRI
) {
513 return TRI
->regsOverlap(RegA
, RegB
);
517 /// isProfitableToReMat - Return true if it's potentially profitable to commute
518 /// the two-address instruction that's being processed.
520 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB
, unsigned regC
,
521 MachineInstr
*MI
, MachineBasicBlock
*MBB
,
523 // Determine if it's profitable to commute this two address instruction. In
524 // general, we want no uses between this instruction and the definition of
525 // the two-address register.
527 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
528 // %reg1029<def> = MOV8rr %reg1028
529 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
530 // insert => %reg1030<def> = MOV8rr %reg1028
531 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
532 // In this case, it might not be possible to coalesce the second MOV8rr
533 // instruction if the first one is coalesced. So it would be profitable to
535 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
536 // %reg1029<def> = MOV8rr %reg1028
537 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
538 // insert => %reg1030<def> = MOV8rr %reg1029
539 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
541 if (!MI
->killsRegister(regC
))
544 // Ok, we have something like:
545 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
546 // let's see if it's worth commuting it.
548 // Look for situations like this:
549 // %reg1024<def> = MOV r1
550 // %reg1025<def> = MOV r0
551 // %reg1026<def> = ADD %reg1024, %reg1025
553 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
554 unsigned FromRegB
= getMappedReg(regB
, SrcRegMap
);
555 unsigned FromRegC
= getMappedReg(regC
, SrcRegMap
);
556 unsigned ToRegB
= getMappedReg(regB
, DstRegMap
);
557 unsigned ToRegC
= getMappedReg(regC
, DstRegMap
);
558 if ((FromRegB
&& ToRegB
&& !regsAreCompatible(FromRegB
, ToRegB
, TRI
)) &&
559 ((!FromRegC
&& !ToRegC
) ||
560 regsAreCompatible(FromRegB
, ToRegC
, TRI
) ||
561 regsAreCompatible(FromRegC
, ToRegB
, TRI
)))
564 // If there is a use of regC between its last def (could be livein) and this
565 // instruction, then bail.
566 unsigned LastDefC
= 0;
567 if (!NoUseAfterLastDef(regC
, MBB
, Dist
, LastDefC
))
570 // If there is a use of regB between its last def (could be livein) and this
571 // instruction, then go ahead and make this transformation.
572 unsigned LastDefB
= 0;
573 if (!NoUseAfterLastDef(regB
, MBB
, Dist
, LastDefB
))
576 // Since there are no intervening uses for both registers, then commute
577 // if the def of regC is closer. Its live interval is shorter.
578 return LastDefB
&& LastDefC
&& LastDefC
> LastDefB
;
581 /// CommuteInstruction - Commute a two-address instruction and update the basic
582 /// block, distance map, and live variables if needed. Return true if it is
585 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator
&mi
,
586 MachineFunction::iterator
&mbbi
,
587 unsigned RegB
, unsigned RegC
, unsigned Dist
) {
588 MachineInstr
*MI
= mi
;
589 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI
);
590 MachineInstr
*NewMI
= TII
->commuteInstruction(MI
);
593 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
597 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI
);
598 // If the instruction changed to commute it, update livevar.
601 // Update live variables
602 LV
->replaceKillInstruction(RegC
, MI
, NewMI
);
604 mbbi
->insert(mi
, NewMI
); // Insert the new inst
605 mbbi
->erase(mi
); // Nuke the old inst.
607 DistanceMap
.insert(std::make_pair(NewMI
, Dist
));
610 // Update source register map.
611 unsigned FromRegC
= getMappedReg(RegC
, SrcRegMap
);
613 unsigned RegA
= MI
->getOperand(0).getReg();
614 SrcRegMap
[RegA
] = FromRegC
;
620 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
621 /// given 2-address instruction to a 3-address one.
623 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA
,unsigned RegB
){
624 // Look for situations like this:
625 // %reg1024<def> = MOV r1
626 // %reg1025<def> = MOV r0
627 // %reg1026<def> = ADD %reg1024, %reg1025
629 // Turn ADD into a 3-address instruction to avoid a copy.
630 unsigned FromRegB
= getMappedReg(RegB
, SrcRegMap
);
633 unsigned ToRegA
= getMappedReg(RegA
, DstRegMap
);
634 return (ToRegA
&& !regsAreCompatible(FromRegB
, ToRegA
, TRI
));
637 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
638 /// three address one. Return true if this transformation was successful.
640 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator
&mi
,
641 MachineBasicBlock::iterator
&nmi
,
642 MachineFunction::iterator
&mbbi
,
643 unsigned RegA
, unsigned RegB
,
645 MachineInstr
*NewMI
= TII
->convertToThreeAddress(mbbi
, mi
, LV
);
647 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi
);
648 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI
);
651 if (NewMI
->findRegisterUseOperand(RegB
, false, TRI
))
652 // FIXME: Temporary workaround. If the new instruction doesn't
653 // uses RegB, convertToThreeAddress must have created more
654 // then one instruction.
655 Sunk
= Sink3AddrInstruction(mbbi
, NewMI
, RegB
, mi
);
657 mbbi
->erase(mi
); // Nuke the old inst.
660 DistanceMap
.insert(std::make_pair(NewMI
, Dist
));
662 nmi
= llvm::next(mi
);
665 // Update source and destination register maps.
666 SrcRegMap
.erase(RegA
);
667 DstRegMap
.erase(RegB
);
674 /// ScanUses - Scan forward recursively for only uses, update maps if the use
675 /// is a copy or a two-address instruction.
677 TwoAddressInstructionPass::ScanUses(unsigned DstReg
, MachineBasicBlock
*MBB
,
678 SmallPtrSet
<MachineInstr
*, 8> &Processed
) {
679 SmallVector
<unsigned, 4> VirtRegPairs
;
683 unsigned Reg
= DstReg
;
684 while (MachineInstr
*UseMI
= findOnlyInterestingUse(Reg
, MBB
, MRI
, TII
,IsCopy
,
685 NewReg
, IsDstPhys
)) {
686 if (IsCopy
&& !Processed
.insert(UseMI
))
689 DenseMap
<MachineInstr
*, unsigned>::iterator DI
= DistanceMap
.find(UseMI
);
690 if (DI
!= DistanceMap
.end())
691 // Earlier in the same MBB.Reached via a back edge.
695 VirtRegPairs
.push_back(NewReg
);
698 bool isNew
= SrcRegMap
.insert(std::make_pair(NewReg
, Reg
)).second
;
700 assert(SrcRegMap
[NewReg
] == Reg
&& "Can't map to two src registers!");
701 VirtRegPairs
.push_back(NewReg
);
705 if (!VirtRegPairs
.empty()) {
706 unsigned ToReg
= VirtRegPairs
.back();
707 VirtRegPairs
.pop_back();
708 while (!VirtRegPairs
.empty()) {
709 unsigned FromReg
= VirtRegPairs
.back();
710 VirtRegPairs
.pop_back();
711 bool isNew
= DstRegMap
.insert(std::make_pair(FromReg
, ToReg
)).second
;
713 assert(DstRegMap
[FromReg
] == ToReg
&&"Can't map to two dst registers!");
716 bool isNew
= DstRegMap
.insert(std::make_pair(DstReg
, ToReg
)).second
;
718 assert(DstRegMap
[DstReg
] == ToReg
&& "Can't map to two dst registers!");
722 /// ProcessCopy - If the specified instruction is not yet processed, process it
723 /// if it's a copy. For a copy instruction, we find the physical registers the
724 /// source and destination registers might be mapped to. These are kept in
725 /// point-to maps used to determine future optimizations. e.g.
728 /// v1026 = add v1024, v1025
730 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
731 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
732 /// potentially joined with r1 on the output side. It's worthwhile to commute
733 /// 'add' to eliminate a copy.
734 void TwoAddressInstructionPass::ProcessCopy(MachineInstr
*MI
,
735 MachineBasicBlock
*MBB
,
736 SmallPtrSet
<MachineInstr
*, 8> &Processed
) {
737 if (Processed
.count(MI
))
740 bool IsSrcPhys
, IsDstPhys
;
741 unsigned SrcReg
, DstReg
;
742 if (!isCopyToReg(*MI
, TII
, SrcReg
, DstReg
, IsSrcPhys
, IsDstPhys
))
745 if (IsDstPhys
&& !IsSrcPhys
)
746 DstRegMap
.insert(std::make_pair(SrcReg
, DstReg
));
747 else if (!IsDstPhys
&& IsSrcPhys
) {
748 bool isNew
= SrcRegMap
.insert(std::make_pair(DstReg
, SrcReg
)).second
;
750 assert(SrcRegMap
[DstReg
] == SrcReg
&&
751 "Can't map to two src physical registers!");
753 ScanUses(DstReg
, MBB
, Processed
);
756 Processed
.insert(MI
);
760 /// isSafeToDelete - If the specified instruction does not produce any side
761 /// effects and all of its defs are dead, then it's safe to delete.
762 static bool isSafeToDelete(MachineInstr
*MI
,
763 const TargetInstrInfo
*TII
,
764 SmallVector
<unsigned, 4> &Kills
) {
765 const MCInstrDesc
&MCID
= MI
->getDesc();
766 if (MCID
.mayStore() || MCID
.isCall())
768 if (MCID
.isTerminator() || MI
->hasUnmodeledSideEffects())
771 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
772 MachineOperand
&MO
= MI
->getOperand(i
);
775 if (MO
.isDef() && !MO
.isDead())
777 if (MO
.isUse() && MO
.isKill())
778 Kills
.push_back(MO
.getReg());
783 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
784 /// killed by instructions in MBB preceding the current instruction at
785 /// position Dist. If so, return true and record information about the
786 /// preceding kills in NewKills.
787 bool TwoAddressInstructionPass::
788 canUpdateDeletedKills(SmallVector
<unsigned, 4> &Kills
,
789 SmallVector
<NewKill
, 4> &NewKills
,
790 MachineBasicBlock
*MBB
, unsigned Dist
) {
791 while (!Kills
.empty()) {
792 unsigned Kill
= Kills
.back();
794 if (TargetRegisterInfo::isPhysicalRegister(Kill
))
797 MachineInstr
*LastKill
= FindLastUseInMBB(Kill
, MBB
, Dist
);
801 bool isModRef
= LastKill
->definesRegister(Kill
);
802 NewKills
.push_back(std::make_pair(std::make_pair(Kill
, isModRef
),
808 /// DeleteUnusedInstr - If an instruction with a tied register operand can
809 /// be safely deleted, just delete it.
811 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator
&mi
,
812 MachineBasicBlock::iterator
&nmi
,
813 MachineFunction::iterator
&mbbi
,
815 // Check if the instruction has no side effects and if all its defs are dead.
816 SmallVector
<unsigned, 4> Kills
;
817 if (!isSafeToDelete(mi
, TII
, Kills
))
820 // If this instruction kills some virtual registers, we need to
821 // update the kill information. If it's not possible to do so,
823 SmallVector
<NewKill
, 4> NewKills
;
824 if (!canUpdateDeletedKills(Kills
, NewKills
, &*mbbi
, Dist
))
828 while (!NewKills
.empty()) {
829 MachineInstr
*NewKill
= NewKills
.back().second
;
830 unsigned Kill
= NewKills
.back().first
.first
;
831 bool isDead
= NewKills
.back().first
.second
;
833 if (LV
->removeVirtualRegisterKilled(Kill
, mi
)) {
835 LV
->addVirtualRegisterDead(Kill
, NewKill
);
837 LV
->addVirtualRegisterKilled(Kill
, NewKill
);
842 mbbi
->erase(mi
); // Nuke the old inst.
847 /// TryInstructionTransform - For the case where an instruction has a single
848 /// pair of tied register operands, attempt some transformations that may
849 /// either eliminate the tied operands or improve the opportunities for
850 /// coalescing away the register copy. Returns true if the tied operands
851 /// are eliminated altogether.
852 bool TwoAddressInstructionPass::
853 TryInstructionTransform(MachineBasicBlock::iterator
&mi
,
854 MachineBasicBlock::iterator
&nmi
,
855 MachineFunction::iterator
&mbbi
,
856 unsigned SrcIdx
, unsigned DstIdx
, unsigned Dist
,
857 SmallPtrSet
<MachineInstr
*, 8> &Processed
) {
858 const MCInstrDesc
&MCID
= mi
->getDesc();
859 unsigned regA
= mi
->getOperand(DstIdx
).getReg();
860 unsigned regB
= mi
->getOperand(SrcIdx
).getReg();
862 assert(TargetRegisterInfo::isVirtualRegister(regB
) &&
863 "cannot make instruction into two-address form");
865 // If regA is dead and the instruction can be deleted, just delete
866 // it so it doesn't clobber regB.
867 bool regBKilled
= isKilled(*mi
, regB
, MRI
, TII
);
868 if (!regBKilled
&& mi
->getOperand(DstIdx
).isDead() &&
869 DeleteUnusedInstr(mi
, nmi
, mbbi
, Dist
)) {
871 return true; // Done with this instruction.
874 // Check if it is profitable to commute the operands.
875 unsigned SrcOp1
, SrcOp2
;
877 unsigned regCIdx
= ~0U;
878 bool TryCommute
= false;
879 bool AggressiveCommute
= false;
880 if (MCID
.isCommutable() && mi
->getNumOperands() >= 3 &&
881 TII
->findCommutedOpIndices(mi
, SrcOp1
, SrcOp2
)) {
882 if (SrcIdx
== SrcOp1
)
884 else if (SrcIdx
== SrcOp2
)
887 if (regCIdx
!= ~0U) {
888 regC
= mi
->getOperand(regCIdx
).getReg();
889 if (!regBKilled
&& isKilled(*mi
, regC
, MRI
, TII
))
890 // If C dies but B does not, swap the B and C operands.
891 // This makes the live ranges of A and C joinable.
893 else if (isProfitableToCommute(regB
, regC
, mi
, mbbi
, Dist
)) {
895 AggressiveCommute
= true;
900 // If it's profitable to commute, try to do so.
901 if (TryCommute
&& CommuteInstruction(mi
, mbbi
, regB
, regC
, Dist
)) {
903 if (AggressiveCommute
)
908 if (TargetRegisterInfo::isVirtualRegister(regA
))
909 ScanUses(regA
, &*mbbi
, Processed
);
911 if (MCID
.isConvertibleTo3Addr()) {
912 // This instruction is potentially convertible to a true
913 // three-address instruction. Check if it is profitable.
914 if (!regBKilled
|| isProfitableToConv3Addr(regA
, regB
)) {
915 // Try to convert it.
916 if (ConvertInstTo3Addr(mi
, nmi
, mbbi
, regA
, regB
, Dist
)) {
917 ++NumConvertedTo3Addr
;
918 return true; // Done with this instruction.
923 // If this is an instruction with a load folded into it, try unfolding
924 // the load, e.g. avoid this:
930 // because it's preferable to schedule a load than a register copy.
931 if (MCID
.mayLoad() && !regBKilled
) {
932 // Determine if a load can be unfolded.
933 unsigned LoadRegIndex
;
935 TII
->getOpcodeAfterMemoryUnfold(mi
->getOpcode(),
937 /*UnfoldStore=*/false,
940 const MCInstrDesc
&UnfoldMCID
= TII
->get(NewOpc
);
941 if (UnfoldMCID
.getNumDefs() == 1) {
942 MachineFunction
&MF
= *mbbi
->getParent();
945 DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi
);
946 const TargetRegisterClass
*RC
=
947 TII
->getRegClass(UnfoldMCID
, LoadRegIndex
, TRI
);
948 unsigned Reg
= MRI
->createVirtualRegister(RC
);
949 SmallVector
<MachineInstr
*, 2> NewMIs
;
950 if (!TII
->unfoldMemoryOperand(MF
, mi
, Reg
,
951 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
953 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
956 assert(NewMIs
.size() == 2 &&
957 "Unfolded a load into multiple instructions!");
958 // The load was previously folded, so this is the only use.
959 NewMIs
[1]->addRegisterKilled(Reg
, TRI
);
961 // Tentatively insert the instructions into the block so that they
962 // look "normal" to the transformation logic.
963 mbbi
->insert(mi
, NewMIs
[0]);
964 mbbi
->insert(mi
, NewMIs
[1]);
966 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs
[0]
967 << "2addr: NEW INST: " << *NewMIs
[1]);
969 // Transform the instruction, now that it no longer has a load.
970 unsigned NewDstIdx
= NewMIs
[1]->findRegisterDefOperandIdx(regA
);
971 unsigned NewSrcIdx
= NewMIs
[1]->findRegisterUseOperandIdx(regB
);
972 MachineBasicBlock::iterator NewMI
= NewMIs
[1];
973 bool TransformSuccess
=
974 TryInstructionTransform(NewMI
, mi
, mbbi
,
975 NewSrcIdx
, NewDstIdx
, Dist
, Processed
);
976 if (TransformSuccess
||
977 NewMIs
[1]->getOperand(NewSrcIdx
).isKill()) {
978 // Success, or at least we made an improvement. Keep the unfolded
979 // instructions and discard the original.
981 for (unsigned i
= 0, e
= mi
->getNumOperands(); i
!= e
; ++i
) {
982 MachineOperand
&MO
= mi
->getOperand(i
);
984 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
987 if (NewMIs
[0]->killsRegister(MO
.getReg()))
988 LV
->replaceKillInstruction(MO
.getReg(), mi
, NewMIs
[0]);
990 assert(NewMIs
[1]->killsRegister(MO
.getReg()) &&
991 "Kill missing after load unfold!");
992 LV
->replaceKillInstruction(MO
.getReg(), mi
, NewMIs
[1]);
995 } else if (LV
->removeVirtualRegisterDead(MO
.getReg(), mi
)) {
996 if (NewMIs
[1]->registerDefIsDead(MO
.getReg()))
997 LV
->addVirtualRegisterDead(MO
.getReg(), NewMIs
[1]);
999 assert(NewMIs
[0]->registerDefIsDead(MO
.getReg()) &&
1000 "Dead flag missing after load unfold!");
1001 LV
->addVirtualRegisterDead(MO
.getReg(), NewMIs
[0]);
1006 LV
->addVirtualRegisterKilled(Reg
, NewMIs
[1]);
1008 mi
->eraseFromParent();
1010 if (TransformSuccess
)
1013 // Transforming didn't eliminate the tie and didn't lead to an
1014 // improvement. Clean up the unfolded instructions and keep the
1016 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1017 NewMIs
[0]->eraseFromParent();
1018 NewMIs
[1]->eraseFromParent();
1027 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1029 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction
&MF
) {
1030 DEBUG(dbgs() << "Machine Function\n");
1031 const TargetMachine
&TM
= MF
.getTarget();
1032 MRI
= &MF
.getRegInfo();
1033 TII
= TM
.getInstrInfo();
1034 TRI
= TM
.getRegisterInfo();
1035 LV
= getAnalysisIfAvailable
<LiveVariables
>();
1036 AA
= &getAnalysis
<AliasAnalysis
>();
1038 bool MadeChange
= false;
1040 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1041 DEBUG(dbgs() << "********** Function: "
1042 << MF
.getFunction()->getName() << '\n');
1044 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1045 BitVector
ReMatRegs(MRI
->getNumVirtRegs());
1047 typedef DenseMap
<unsigned, SmallVector
<std::pair
<unsigned, unsigned>, 4> >
1049 TiedOperandMap
TiedOperands(4);
1051 SmallPtrSet
<MachineInstr
*, 8> Processed
;
1052 for (MachineFunction::iterator mbbi
= MF
.begin(), mbbe
= MF
.end();
1053 mbbi
!= mbbe
; ++mbbi
) {
1055 DistanceMap
.clear();
1059 for (MachineBasicBlock::iterator mi
= mbbi
->begin(), me
= mbbi
->end();
1061 MachineBasicBlock::iterator nmi
= llvm::next(mi
);
1062 if (mi
->isDebugValue()) {
1067 // Remember REG_SEQUENCE instructions, we'll deal with them later.
1068 if (mi
->isRegSequence())
1069 RegSequences
.push_back(&*mi
);
1071 const MCInstrDesc
&MCID
= mi
->getDesc();
1072 bool FirstTied
= true;
1074 DistanceMap
.insert(std::make_pair(mi
, ++Dist
));
1076 ProcessCopy(&*mi
, &*mbbi
, Processed
);
1078 // First scan through all the tied register uses in this instruction
1079 // and record a list of pairs of tied operands for each register.
1080 unsigned NumOps
= mi
->isInlineAsm()
1081 ? mi
->getNumOperands() : MCID
.getNumOperands();
1082 for (unsigned SrcIdx
= 0; SrcIdx
< NumOps
; ++SrcIdx
) {
1083 unsigned DstIdx
= 0;
1084 if (!mi
->isRegTiedToDefOperand(SrcIdx
, &DstIdx
))
1089 ++NumTwoAddressInstrs
;
1090 DEBUG(dbgs() << '\t' << *mi
);
1093 assert(mi
->getOperand(SrcIdx
).isReg() &&
1094 mi
->getOperand(SrcIdx
).getReg() &&
1095 mi
->getOperand(SrcIdx
).isUse() &&
1096 "two address instruction invalid");
1098 unsigned regB
= mi
->getOperand(SrcIdx
).getReg();
1099 TiedOperands
[regB
].push_back(std::make_pair(SrcIdx
, DstIdx
));
1102 // Now iterate over the information collected above.
1103 for (TiedOperandMap::iterator OI
= TiedOperands
.begin(),
1104 OE
= TiedOperands
.end(); OI
!= OE
; ++OI
) {
1105 SmallVector
<std::pair
<unsigned, unsigned>, 4> &TiedPairs
= OI
->second
;
1107 // If the instruction has a single pair of tied operands, try some
1108 // transformations that may either eliminate the tied operands or
1109 // improve the opportunities for coalescing away the register copy.
1110 if (TiedOperands
.size() == 1 && TiedPairs
.size() == 1) {
1111 unsigned SrcIdx
= TiedPairs
[0].first
;
1112 unsigned DstIdx
= TiedPairs
[0].second
;
1114 // If the registers are already equal, nothing needs to be done.
1115 if (mi
->getOperand(SrcIdx
).getReg() ==
1116 mi
->getOperand(DstIdx
).getReg())
1117 break; // Done with this instruction.
1119 if (TryInstructionTransform(mi
, nmi
, mbbi
, SrcIdx
, DstIdx
, Dist
,
1121 break; // The tied operands have been eliminated.
1124 bool IsEarlyClobber
= false;
1125 bool RemovedKillFlag
= false;
1126 bool AllUsesCopied
= true;
1127 unsigned LastCopiedReg
= 0;
1128 unsigned regB
= OI
->first
;
1129 for (unsigned tpi
= 0, tpe
= TiedPairs
.size(); tpi
!= tpe
; ++tpi
) {
1130 unsigned SrcIdx
= TiedPairs
[tpi
].first
;
1131 unsigned DstIdx
= TiedPairs
[tpi
].second
;
1133 const MachineOperand
&DstMO
= mi
->getOperand(DstIdx
);
1134 unsigned regA
= DstMO
.getReg();
1135 IsEarlyClobber
|= DstMO
.isEarlyClobber();
1137 // Grab regB from the instruction because it may have changed if the
1138 // instruction was commuted.
1139 regB
= mi
->getOperand(SrcIdx
).getReg();
1142 // The register is tied to multiple destinations (or else we would
1143 // not have continued this far), but this use of the register
1144 // already matches the tied destination. Leave it.
1145 AllUsesCopied
= false;
1148 LastCopiedReg
= regA
;
1150 assert(TargetRegisterInfo::isVirtualRegister(regB
) &&
1151 "cannot make instruction into two-address form");
1154 // First, verify that we don't have a use of "a" in the instruction
1155 // (a = b + a for example) because our transformation will not
1156 // work. This should never occur because we are in SSA form.
1157 for (unsigned i
= 0; i
!= mi
->getNumOperands(); ++i
)
1158 assert(i
== DstIdx
||
1159 !mi
->getOperand(i
).isReg() ||
1160 mi
->getOperand(i
).getReg() != regA
);
1163 // Emit a copy or rematerialize the definition.
1164 const TargetRegisterClass
*rc
= MRI
->getRegClass(regB
);
1165 MachineInstr
*DefMI
= MRI
->getVRegDef(regB
);
1166 // If it's safe and profitable, remat the definition instead of
1169 DefMI
->getDesc().isAsCheapAsAMove() &&
1170 DefMI
->isSafeToReMat(TII
, AA
, regB
) &&
1171 isProfitableToReMat(regB
, rc
, mi
, DefMI
, mbbi
, Dist
)){
1172 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI
<< "\n");
1173 unsigned regASubIdx
= mi
->getOperand(DstIdx
).getSubReg();
1174 TII
->reMaterialize(*mbbi
, mi
, regA
, regASubIdx
, DefMI
, *TRI
);
1175 ReMatRegs
.set(TargetRegisterInfo::virtReg2Index(regB
));
1178 BuildMI(*mbbi
, mi
, mi
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
1182 MachineBasicBlock::iterator prevMI
= prior(mi
);
1183 // Update DistanceMap.
1184 DistanceMap
.insert(std::make_pair(prevMI
, Dist
));
1185 DistanceMap
[mi
] = ++Dist
;
1187 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI
);
1189 MachineOperand
&MO
= mi
->getOperand(SrcIdx
);
1190 assert(MO
.isReg() && MO
.getReg() == regB
&& MO
.isUse() &&
1191 "inconsistent operand info for 2-reg pass");
1193 MO
.setIsKill(false);
1194 RemovedKillFlag
= true;
1199 if (AllUsesCopied
) {
1200 if (!IsEarlyClobber
) {
1201 // Replace other (un-tied) uses of regB with LastCopiedReg.
1202 for (unsigned i
= 0, e
= mi
->getNumOperands(); i
!= e
; ++i
) {
1203 MachineOperand
&MO
= mi
->getOperand(i
);
1204 if (MO
.isReg() && MO
.getReg() == regB
&& MO
.isUse()) {
1206 MO
.setIsKill(false);
1207 RemovedKillFlag
= true;
1209 MO
.setReg(LastCopiedReg
);
1214 // Update live variables for regB.
1215 if (RemovedKillFlag
&& LV
&& LV
->getVarInfo(regB
).removeKill(mi
))
1216 LV
->addVirtualRegisterKilled(regB
, prior(mi
));
1218 } else if (RemovedKillFlag
) {
1219 // Some tied uses of regB matched their destination registers, so
1220 // regB is still used in this instruction, but a kill flag was
1221 // removed from a different tied use of regB, so now we need to add
1222 // a kill flag to one of the remaining uses of regB.
1223 for (unsigned i
= 0, e
= mi
->getNumOperands(); i
!= e
; ++i
) {
1224 MachineOperand
&MO
= mi
->getOperand(i
);
1225 if (MO
.isReg() && MO
.getReg() == regB
&& MO
.isUse()) {
1232 // Schedule the source copy / remat inserted to form two-address
1233 // instruction. FIXME: Does it matter the distance map may not be
1234 // accurate after it's scheduled?
1235 TII
->scheduleTwoAddrSource(prior(mi
), mi
, *TRI
);
1239 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi
);
1242 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1243 if (mi
->isInsertSubreg()) {
1244 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1245 // To %reg:subidx = COPY %subreg
1246 unsigned SubIdx
= mi
->getOperand(3).getImm();
1247 mi
->RemoveOperand(3);
1248 assert(mi
->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1249 mi
->getOperand(0).setSubReg(SubIdx
);
1250 mi
->RemoveOperand(1);
1251 mi
->setDesc(TII
->get(TargetOpcode::COPY
));
1252 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi
);
1255 // Clear TiedOperands here instead of at the top of the loop
1256 // since most instructions do not have tied operands.
1257 TiedOperands
.clear();
1262 // Some remat'ed instructions are dead.
1263 for (int i
= ReMatRegs
.find_first(); i
!= -1; i
= ReMatRegs
.find_next(i
)) {
1264 unsigned VReg
= TargetRegisterInfo::index2VirtReg(i
);
1265 if (MRI
->use_nodbg_empty(VReg
)) {
1266 MachineInstr
*DefMI
= MRI
->getVRegDef(VReg
);
1267 DefMI
->eraseFromParent();
1271 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1272 // SSA form. It's now safe to de-SSA.
1273 MadeChange
|= EliminateRegSequences();
1278 static void UpdateRegSequenceSrcs(unsigned SrcReg
,
1279 unsigned DstReg
, unsigned SubIdx
,
1280 MachineRegisterInfo
*MRI
,
1281 const TargetRegisterInfo
&TRI
) {
1282 for (MachineRegisterInfo::reg_iterator RI
= MRI
->reg_begin(SrcReg
),
1283 RE
= MRI
->reg_end(); RI
!= RE
; ) {
1284 MachineOperand
&MO
= RI
.getOperand();
1286 MO
.substVirtReg(DstReg
, SubIdx
, TRI
);
1290 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1291 /// EXTRACT_SUBREG from the same register and to the same virtual register
1292 /// with different sub-register indices, attempt to combine the
1293 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1294 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1295 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1296 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1297 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1298 /// reg1026 to reg1029.
1300 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector
<unsigned,4> &Srcs
,
1302 SmallSet
<unsigned, 4> Seen
;
1303 for (unsigned i
= 0, e
= Srcs
.size(); i
!= e
; ++i
) {
1304 unsigned SrcReg
= Srcs
[i
];
1305 if (!Seen
.insert(SrcReg
))
1308 // Check that the instructions are all in the same basic block.
1309 MachineInstr
*SrcDefMI
= MRI
->getVRegDef(SrcReg
);
1310 MachineInstr
*DstDefMI
= MRI
->getVRegDef(DstReg
);
1311 if (SrcDefMI
->getParent() != DstDefMI
->getParent())
1314 // If there are no other uses than copies which feed into
1315 // the reg_sequence, then we might be able to coalesce them.
1316 bool CanCoalesce
= true;
1317 SmallVector
<unsigned, 4> SrcSubIndices
, DstSubIndices
;
1318 for (MachineRegisterInfo::use_nodbg_iterator
1319 UI
= MRI
->use_nodbg_begin(SrcReg
),
1320 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
1321 MachineInstr
*UseMI
= &*UI
;
1322 if (!UseMI
->isCopy() || UseMI
->getOperand(0).getReg() != DstReg
) {
1323 CanCoalesce
= false;
1326 SrcSubIndices
.push_back(UseMI
->getOperand(1).getSubReg());
1327 DstSubIndices
.push_back(UseMI
->getOperand(0).getSubReg());
1330 if (!CanCoalesce
|| SrcSubIndices
.size() < 2)
1333 // Check that the source subregisters can be combined.
1334 std::sort(SrcSubIndices
.begin(), SrcSubIndices
.end());
1335 unsigned NewSrcSubIdx
= 0;
1336 if (!TRI
->canCombineSubRegIndices(MRI
->getRegClass(SrcReg
), SrcSubIndices
,
1340 // Check that the destination subregisters can also be combined.
1341 std::sort(DstSubIndices
.begin(), DstSubIndices
.end());
1342 unsigned NewDstSubIdx
= 0;
1343 if (!TRI
->canCombineSubRegIndices(MRI
->getRegClass(DstReg
), DstSubIndices
,
1347 // If neither source nor destination can be combined to the full register,
1348 // just give up. This could be improved if it ever matters.
1349 if (NewSrcSubIdx
!= 0 && NewDstSubIdx
!= 0)
1352 // Now that we know that all the uses are extract_subregs and that those
1353 // subregs can somehow be combined, scan all the extract_subregs again to
1354 // make sure the subregs are in the right order and can be composed.
1355 MachineInstr
*SomeMI
= 0;
1357 for (MachineRegisterInfo::use_nodbg_iterator
1358 UI
= MRI
->use_nodbg_begin(SrcReg
),
1359 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ++UI
) {
1360 MachineInstr
*UseMI
= &*UI
;
1361 assert(UseMI
->isCopy());
1362 unsigned DstSubIdx
= UseMI
->getOperand(0).getSubReg();
1363 unsigned SrcSubIdx
= UseMI
->getOperand(1).getSubReg();
1364 assert(DstSubIdx
!= 0 && "missing subreg from RegSequence elimination");
1365 if ((NewDstSubIdx
== 0 &&
1366 TRI
->composeSubRegIndices(NewSrcSubIdx
, DstSubIdx
) != SrcSubIdx
) ||
1367 (NewSrcSubIdx
== 0 &&
1368 TRI
->composeSubRegIndices(NewDstSubIdx
, SrcSubIdx
) != DstSubIdx
)) {
1369 CanCoalesce
= false;
1372 // Keep track of one of the uses.
1378 // Insert a copy to replace the original.
1379 MachineInstr
*CopyMI
= BuildMI(*SomeMI
->getParent(), SomeMI
,
1380 SomeMI
->getDebugLoc(),
1381 TII
->get(TargetOpcode::COPY
))
1382 .addReg(DstReg
, RegState::Define
, NewDstSubIdx
)
1383 .addReg(SrcReg
, 0, NewSrcSubIdx
);
1385 // Remove all the old extract instructions.
1386 for (MachineRegisterInfo::use_nodbg_iterator
1387 UI
= MRI
->use_nodbg_begin(SrcReg
),
1388 UE
= MRI
->use_nodbg_end(); UI
!= UE
; ) {
1389 MachineInstr
*UseMI
= &*UI
;
1391 if (UseMI
== CopyMI
)
1393 assert(UseMI
->isCopy());
1394 // Move any kills to the new copy or extract instruction.
1395 if (UseMI
->getOperand(1).isKill()) {
1396 CopyMI
->getOperand(1).setIsKill();
1398 // Update live variables
1399 LV
->replaceKillInstruction(SrcReg
, UseMI
, &*CopyMI
);
1401 UseMI
->eraseFromParent();
1406 static bool HasOtherRegSequenceUses(unsigned Reg
, MachineInstr
*RegSeq
,
1407 MachineRegisterInfo
*MRI
) {
1408 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(Reg
),
1409 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
1410 MachineInstr
*UseMI
= &*UI
;
1411 if (UseMI
!= RegSeq
&& UseMI
->isRegSequence())
1417 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1418 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1419 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
1421 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1422 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1424 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1425 bool TwoAddressInstructionPass::EliminateRegSequences() {
1426 if (RegSequences
.empty())
1429 for (unsigned i
= 0, e
= RegSequences
.size(); i
!= e
; ++i
) {
1430 MachineInstr
*MI
= RegSequences
[i
];
1431 unsigned DstReg
= MI
->getOperand(0).getReg();
1432 if (MI
->getOperand(0).getSubReg() ||
1433 TargetRegisterInfo::isPhysicalRegister(DstReg
) ||
1434 !(MI
->getNumOperands() & 1)) {
1435 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI
);
1436 llvm_unreachable(0);
1439 bool IsImpDef
= true;
1440 SmallVector
<unsigned, 4> RealSrcs
;
1441 SmallSet
<unsigned, 4> Seen
;
1442 for (unsigned i
= 1, e
= MI
->getNumOperands(); i
< e
; i
+= 2) {
1443 unsigned SrcReg
= MI
->getOperand(i
).getReg();
1444 unsigned SubIdx
= MI
->getOperand(i
+1).getImm();
1445 if (MI
->getOperand(i
).getSubReg() ||
1446 TargetRegisterInfo::isPhysicalRegister(SrcReg
)) {
1447 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI
);
1448 llvm_unreachable(0);
1451 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
1452 if (DefMI
->isImplicitDef()) {
1453 DefMI
->eraseFromParent();
1458 // Remember COPY sources. These might be candidate for coalescing.
1459 if (DefMI
->isCopy() && DefMI
->getOperand(1).getSubReg())
1460 RealSrcs
.push_back(DefMI
->getOperand(1).getReg());
1462 bool isKill
= MI
->getOperand(i
).isKill();
1463 if (!Seen
.insert(SrcReg
) || MI
->getParent() != DefMI
->getParent() ||
1464 !isKill
|| HasOtherRegSequenceUses(SrcReg
, MI
, MRI
) ||
1465 !TRI
->getMatchingSuperRegClass(MRI
->getRegClass(DstReg
),
1466 MRI
->getRegClass(SrcReg
), SubIdx
)) {
1467 // REG_SEQUENCE cannot have duplicated operands, add a copy.
1468 // Also add an copy if the source is live-in the block. We don't want
1469 // to end up with a partial-redef of a livein, e.g.
1471 // reg1051:10<def> =
1477 // LiveIntervalAnalysis won't like it.
1479 // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1480 // correctly up to date becomes very difficult. Insert a copy.
1482 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1483 // might insert a COPY that uses SrcReg after is was killed.
1485 for (unsigned j
= i
+ 2; j
< e
; j
+= 2)
1486 if (MI
->getOperand(j
).getReg() == SrcReg
) {
1487 MI
->getOperand(j
).setIsKill();
1492 MachineBasicBlock::iterator InsertLoc
= MI
;
1493 MachineInstr
*CopyMI
= BuildMI(*MI
->getParent(), InsertLoc
,
1494 MI
->getDebugLoc(), TII
->get(TargetOpcode::COPY
))
1495 .addReg(DstReg
, RegState::Define
, SubIdx
)
1496 .addReg(SrcReg
, getKillRegState(isKill
));
1497 MI
->getOperand(i
).setReg(0);
1499 LV
->replaceKillInstruction(SrcReg
, MI
, CopyMI
);
1500 DEBUG(dbgs() << "Inserted: " << *CopyMI
);
1504 for (unsigned i
= 1, e
= MI
->getNumOperands(); i
< e
; i
+= 2) {
1505 unsigned SrcReg
= MI
->getOperand(i
).getReg();
1506 if (!SrcReg
) continue;
1507 unsigned SubIdx
= MI
->getOperand(i
+1).getImm();
1508 UpdateRegSequenceSrcs(SrcReg
, DstReg
, SubIdx
, MRI
, *TRI
);
1512 DEBUG(dbgs() << "Turned: " << *MI
<< " into an IMPLICIT_DEF");
1513 MI
->setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1514 for (int j
= MI
->getNumOperands() - 1, ee
= 0; j
> ee
; --j
)
1515 MI
->RemoveOperand(j
);
1517 DEBUG(dbgs() << "Eliminated: " << *MI
);
1518 MI
->eraseFromParent();
1521 // Try coalescing some EXTRACT_SUBREG instructions. This can create
1522 // INSERT_SUBREG instructions that must have <undef> flags added by
1523 // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1525 CoalesceExtSubRegs(RealSrcs
, DstReg
);
1528 RegSequences
.clear();