Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / ExecutionEngine / JIT / JITDwarfEmitter.cpp
blobddb0d5478596ded66b8a7e896e9da3b8b0a619e2
1 //===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a JITDwarfEmitter object that is used by the JIT to
11 // write dwarf tables to memory.
13 //===----------------------------------------------------------------------===//
15 #include "JIT.h"
16 #include "JITDwarfEmitter.h"
17 #include "llvm/Function.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/JITCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLocation.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/ExecutionEngine/JITMemoryManager.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 using namespace llvm;
34 JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {}
37 unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
38 JITCodeEmitter& jce,
39 unsigned char* StartFunction,
40 unsigned char* EndFunction,
41 unsigned char* &EHFramePtr) {
42 assert(MMI && "MachineModuleInfo not registered!");
44 const TargetMachine& TM = F.getTarget();
45 TD = TM.getTargetData();
46 stackGrowthDirection = TM.getFrameLowering()->getStackGrowthDirection();
47 RI = TM.getRegisterInfo();
48 TFI = TM.getFrameLowering();
49 JCE = &jce;
51 unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
52 EndFunction);
54 unsigned char* Result = 0;
56 const std::vector<const Function *> Personalities = MMI->getPersonalities();
57 EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
59 Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
60 StartFunction, EndFunction, ExceptionTable);
62 return Result;
66 void
67 JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
68 const std::vector<MachineMove> &Moves) const {
69 unsigned PointerSize = TD->getPointerSize();
70 int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
71 PointerSize : -PointerSize;
72 MCSymbol *BaseLabel = 0;
74 for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
75 const MachineMove &Move = Moves[i];
76 MCSymbol *Label = Move.getLabel();
78 // Throw out move if the label is invalid.
79 if (Label && (*JCE->getLabelLocations())[Label] == 0)
80 continue;
82 intptr_t LabelPtr = 0;
83 if (Label) LabelPtr = JCE->getLabelAddress(Label);
85 const MachineLocation &Dst = Move.getDestination();
86 const MachineLocation &Src = Move.getSource();
88 // Advance row if new location.
89 if (BaseLabelPtr && Label && BaseLabel != Label) {
90 JCE->emitByte(dwarf::DW_CFA_advance_loc4);
91 JCE->emitInt32(LabelPtr - BaseLabelPtr);
93 BaseLabel = Label;
94 BaseLabelPtr = LabelPtr;
97 // If advancing cfa.
98 if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
99 if (!Src.isReg()) {
100 if (Src.getReg() == MachineLocation::VirtualFP) {
101 JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
102 } else {
103 JCE->emitByte(dwarf::DW_CFA_def_cfa);
104 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
107 JCE->emitULEB128Bytes(-Src.getOffset());
108 } else {
109 llvm_unreachable("Machine move not supported yet.");
111 } else if (Src.isReg() &&
112 Src.getReg() == MachineLocation::VirtualFP) {
113 if (Dst.isReg()) {
114 JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
115 JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
116 } else {
117 llvm_unreachable("Machine move not supported yet.");
119 } else {
120 unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
121 int Offset = Dst.getOffset() / stackGrowth;
123 if (Offset < 0) {
124 JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
125 JCE->emitULEB128Bytes(Reg);
126 JCE->emitSLEB128Bytes(Offset);
127 } else if (Reg < 64) {
128 JCE->emitByte(dwarf::DW_CFA_offset + Reg);
129 JCE->emitULEB128Bytes(Offset);
130 } else {
131 JCE->emitByte(dwarf::DW_CFA_offset_extended);
132 JCE->emitULEB128Bytes(Reg);
133 JCE->emitULEB128Bytes(Offset);
139 /// SharedTypeIds - How many leading type ids two landing pads have in common.
140 static unsigned SharedTypeIds(const LandingPadInfo *L,
141 const LandingPadInfo *R) {
142 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
143 unsigned LSize = LIds.size(), RSize = RIds.size();
144 unsigned MinSize = LSize < RSize ? LSize : RSize;
145 unsigned Count = 0;
147 for (; Count != MinSize; ++Count)
148 if (LIds[Count] != RIds[Count])
149 return Count;
151 return Count;
155 /// PadLT - Order landing pads lexicographically by type id.
156 static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
157 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
158 unsigned LSize = LIds.size(), RSize = RIds.size();
159 unsigned MinSize = LSize < RSize ? LSize : RSize;
161 for (unsigned i = 0; i != MinSize; ++i)
162 if (LIds[i] != RIds[i])
163 return LIds[i] < RIds[i];
165 return LSize < RSize;
168 namespace {
170 /// ActionEntry - Structure describing an entry in the actions table.
171 struct ActionEntry {
172 int ValueForTypeID; // The value to write - may not be equal to the type id.
173 int NextAction;
174 struct ActionEntry *Previous;
177 /// PadRange - Structure holding a try-range and the associated landing pad.
178 struct PadRange {
179 // The index of the landing pad.
180 unsigned PadIndex;
181 // The index of the begin and end labels in the landing pad's label lists.
182 unsigned RangeIndex;
185 typedef DenseMap<MCSymbol*, PadRange> RangeMapType;
187 /// CallSiteEntry - Structure describing an entry in the call-site table.
188 struct CallSiteEntry {
189 MCSymbol *BeginLabel; // zero indicates the start of the function.
190 MCSymbol *EndLabel; // zero indicates the end of the function.
191 MCSymbol *PadLabel; // zero indicates that there is no landing pad.
192 unsigned Action;
197 unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
198 unsigned char* StartFunction,
199 unsigned char* EndFunction) const {
200 assert(MMI && "MachineModuleInfo not registered!");
202 // Map all labels and get rid of any dead landing pads.
203 MMI->TidyLandingPads(JCE->getLabelLocations());
205 const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
206 const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
207 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
208 if (PadInfos.empty()) return 0;
210 // Sort the landing pads in order of their type ids. This is used to fold
211 // duplicate actions.
212 SmallVector<const LandingPadInfo *, 64> LandingPads;
213 LandingPads.reserve(PadInfos.size());
214 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
215 LandingPads.push_back(&PadInfos[i]);
216 std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
218 // Negative type ids index into FilterIds, positive type ids index into
219 // TypeInfos. The value written for a positive type id is just the type
220 // id itself. For a negative type id, however, the value written is the
221 // (negative) byte offset of the corresponding FilterIds entry. The byte
222 // offset is usually equal to the type id, because the FilterIds entries
223 // are written using a variable width encoding which outputs one byte per
224 // entry as long as the value written is not too large, but can differ.
225 // This kind of complication does not occur for positive type ids because
226 // type infos are output using a fixed width encoding.
227 // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
228 SmallVector<int, 16> FilterOffsets;
229 FilterOffsets.reserve(FilterIds.size());
230 int Offset = -1;
231 for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
232 E = FilterIds.end(); I != E; ++I) {
233 FilterOffsets.push_back(Offset);
234 Offset -= MCAsmInfo::getULEB128Size(*I);
237 // Compute the actions table and gather the first action index for each
238 // landing pad site.
239 SmallVector<ActionEntry, 32> Actions;
240 SmallVector<unsigned, 64> FirstActions;
241 FirstActions.reserve(LandingPads.size());
243 int FirstAction = 0;
244 unsigned SizeActions = 0;
245 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
246 const LandingPadInfo *LP = LandingPads[i];
247 const std::vector<int> &TypeIds = LP->TypeIds;
248 const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
249 unsigned SizeSiteActions = 0;
251 if (NumShared < TypeIds.size()) {
252 unsigned SizeAction = 0;
253 ActionEntry *PrevAction = 0;
255 if (NumShared) {
256 const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
257 assert(Actions.size());
258 PrevAction = &Actions.back();
259 SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
260 MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
261 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
262 SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
263 SizeAction += -PrevAction->NextAction;
264 PrevAction = PrevAction->Previous;
268 // Compute the actions.
269 for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
270 int TypeID = TypeIds[I];
271 assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
272 int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
273 unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
275 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
276 SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
277 SizeSiteActions += SizeAction;
279 ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
280 Actions.push_back(Action);
282 PrevAction = &Actions.back();
285 // Record the first action of the landing pad site.
286 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
287 } // else identical - re-use previous FirstAction
289 FirstActions.push_back(FirstAction);
291 // Compute this sites contribution to size.
292 SizeActions += SizeSiteActions;
295 // Compute the call-site table. Entries must be ordered by address.
296 SmallVector<CallSiteEntry, 64> CallSites;
298 RangeMapType PadMap;
299 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
300 const LandingPadInfo *LandingPad = LandingPads[i];
301 for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
302 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
303 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
304 PadRange P = { i, j };
305 PadMap[BeginLabel] = P;
309 bool MayThrow = false;
310 MCSymbol *LastLabel = 0;
311 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
312 I != E; ++I) {
313 for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
314 MI != E; ++MI) {
315 if (!MI->isLabel()) {
316 MayThrow |= MI->getDesc().isCall();
317 continue;
320 MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
321 assert(BeginLabel && "Invalid label!");
323 if (BeginLabel == LastLabel)
324 MayThrow = false;
326 RangeMapType::iterator L = PadMap.find(BeginLabel);
328 if (L == PadMap.end())
329 continue;
331 PadRange P = L->second;
332 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
334 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
335 "Inconsistent landing pad map!");
337 // If some instruction between the previous try-range and this one may
338 // throw, create a call-site entry with no landing pad for the region
339 // between the try-ranges.
340 if (MayThrow) {
341 CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
342 CallSites.push_back(Site);
345 LastLabel = LandingPad->EndLabels[P.RangeIndex];
346 CallSiteEntry Site = {BeginLabel, LastLabel,
347 LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
349 assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
350 "Invalid landing pad!");
352 // Try to merge with the previous call-site.
353 if (CallSites.size()) {
354 CallSiteEntry &Prev = CallSites.back();
355 if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
356 // Extend the range of the previous entry.
357 Prev.EndLabel = Site.EndLabel;
358 continue;
362 // Otherwise, create a new call-site.
363 CallSites.push_back(Site);
366 // If some instruction between the previous try-range and the end of the
367 // function may throw, create a call-site entry with no landing pad for the
368 // region following the try-range.
369 if (MayThrow) {
370 CallSiteEntry Site = {LastLabel, 0, 0, 0};
371 CallSites.push_back(Site);
374 // Final tallies.
375 unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
376 sizeof(int32_t) + // Site length.
377 sizeof(int32_t)); // Landing pad.
378 for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
379 SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
381 unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
383 unsigned TypeOffset = sizeof(int8_t) + // Call site format
384 // Call-site table length
385 MCAsmInfo::getULEB128Size(SizeSites) +
386 SizeSites + SizeActions + SizeTypes;
388 // Begin the exception table.
389 JCE->emitAlignmentWithFill(4, 0);
390 // Asm->EOL("Padding");
392 unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
394 // Emit the header.
395 JCE->emitByte(dwarf::DW_EH_PE_omit);
396 // Asm->EOL("LPStart format (DW_EH_PE_omit)");
397 JCE->emitByte(dwarf::DW_EH_PE_absptr);
398 // Asm->EOL("TType format (DW_EH_PE_absptr)");
399 JCE->emitULEB128Bytes(TypeOffset);
400 // Asm->EOL("TType base offset");
401 JCE->emitByte(dwarf::DW_EH_PE_udata4);
402 // Asm->EOL("Call site format (DW_EH_PE_udata4)");
403 JCE->emitULEB128Bytes(SizeSites);
404 // Asm->EOL("Call-site table length");
406 // Emit the landing pad site information.
407 for (unsigned i = 0; i < CallSites.size(); ++i) {
408 CallSiteEntry &S = CallSites[i];
409 intptr_t BeginLabelPtr = 0;
410 intptr_t EndLabelPtr = 0;
412 if (!S.BeginLabel) {
413 BeginLabelPtr = (intptr_t)StartFunction;
414 JCE->emitInt32(0);
415 } else {
416 BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
417 JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
420 // Asm->EOL("Region start");
422 if (!S.EndLabel)
423 EndLabelPtr = (intptr_t)EndFunction;
424 else
425 EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
427 JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
428 //Asm->EOL("Region length");
430 if (!S.PadLabel) {
431 JCE->emitInt32(0);
432 } else {
433 unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
434 JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
436 // Asm->EOL("Landing pad");
438 JCE->emitULEB128Bytes(S.Action);
439 // Asm->EOL("Action");
442 // Emit the actions.
443 for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
444 ActionEntry &Action = Actions[I];
446 JCE->emitSLEB128Bytes(Action.ValueForTypeID);
447 //Asm->EOL("TypeInfo index");
448 JCE->emitSLEB128Bytes(Action.NextAction);
449 //Asm->EOL("Next action");
452 // Emit the type ids.
453 for (unsigned M = TypeInfos.size(); M; --M) {
454 const GlobalVariable *GV = TypeInfos[M - 1];
456 if (GV) {
457 if (TD->getPointerSize() == sizeof(int32_t))
458 JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
459 else
460 JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
461 } else {
462 if (TD->getPointerSize() == sizeof(int32_t))
463 JCE->emitInt32(0);
464 else
465 JCE->emitInt64(0);
467 // Asm->EOL("TypeInfo");
470 // Emit the filter typeids.
471 for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
472 unsigned TypeID = FilterIds[j];
473 JCE->emitULEB128Bytes(TypeID);
474 //Asm->EOL("Filter TypeInfo index");
477 JCE->emitAlignmentWithFill(4, 0);
479 return DwarfExceptionTable;
482 unsigned char*
483 JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
484 unsigned PointerSize = TD->getPointerSize();
485 int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
486 PointerSize : -PointerSize;
488 unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
489 // EH Common Frame header
490 JCE->allocateSpace(4, 0);
491 unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
492 JCE->emitInt32((int)0);
493 JCE->emitByte(dwarf::DW_CIE_VERSION);
494 JCE->emitString(Personality ? "zPLR" : "zR");
495 JCE->emitULEB128Bytes(1);
496 JCE->emitSLEB128Bytes(stackGrowth);
497 JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
499 if (Personality) {
500 // Augmentation Size: 3 small ULEBs of one byte each, and the personality
501 // function which size is PointerSize.
502 JCE->emitULEB128Bytes(3 + PointerSize);
504 // We set the encoding of the personality as direct encoding because we use
505 // the function pointer. The encoding is not relative because the current
506 // PC value may be bigger than the personality function pointer.
507 if (PointerSize == 4) {
508 JCE->emitByte(dwarf::DW_EH_PE_sdata4);
509 JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
510 } else {
511 JCE->emitByte(dwarf::DW_EH_PE_sdata8);
512 JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
515 // LSDA encoding: This must match the encoding used in EmitEHFrame ()
516 if (PointerSize == 4)
517 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
518 else
519 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8);
520 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
521 } else {
522 JCE->emitULEB128Bytes(1);
523 JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
526 std::vector<MachineMove> Moves;
527 TFI->getInitialFrameState(Moves);
528 EmitFrameMoves(0, Moves);
530 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
532 JCE->emitInt32At((uintptr_t*)StartCommonPtr,
533 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
534 FrameCommonBeginPtr));
536 return StartCommonPtr;
540 unsigned char*
541 JITDwarfEmitter::EmitEHFrame(const Function* Personality,
542 unsigned char* StartCommonPtr,
543 unsigned char* StartFunction,
544 unsigned char* EndFunction,
545 unsigned char* ExceptionTable) const {
546 unsigned PointerSize = TD->getPointerSize();
548 // EH frame header.
549 unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
550 JCE->allocateSpace(4, 0);
551 unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
552 // FDE CIE Offset
553 JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
554 JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
555 JCE->emitInt32(EndFunction - StartFunction);
557 // If there is a personality and landing pads then point to the language
558 // specific data area in the exception table.
559 if (Personality) {
560 JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);
562 if (PointerSize == 4) {
563 if (!MMI->getLandingPads().empty())
564 JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
565 else
566 JCE->emitInt32((int)0);
567 } else {
568 if (!MMI->getLandingPads().empty())
569 JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
570 else
571 JCE->emitInt64((int)0);
573 } else {
574 JCE->emitULEB128Bytes(0);
577 // Indicate locations of function specific callee saved registers in
578 // frame.
579 EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
581 JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
583 // Indicate the size of the table
584 JCE->emitInt32At((uintptr_t*)StartEHPtr,
585 (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
586 StartEHPtr));
588 // Double zeroes for the unwind runtime
589 if (PointerSize == 8) {
590 JCE->emitInt64(0);
591 JCE->emitInt64(0);
592 } else {
593 JCE->emitInt32(0);
594 JCE->emitInt32(0);
597 return StartEHPtr;