Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
blobeda4cbbad52a7f42f5d9556512493bbeeccdc631
1 //===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "dyld"
15 #include "llvm/ADT/OwningPtr.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/ExecutionEngine/RuntimeDyld.h"
22 #include "llvm/Object/MachOObject.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/Format.h"
26 #include "llvm/Support/Memory.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/system_error.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 using namespace llvm::object;
33 // Empty out-of-line virtual destructor as the key function.
34 RTDyldMemoryManager::~RTDyldMemoryManager() {}
36 namespace llvm {
37 class RuntimeDyldImpl {
38 unsigned CPUType;
39 unsigned CPUSubtype;
41 // The MemoryManager to load objects into.
42 RTDyldMemoryManager *MemMgr;
44 // FIXME: This all assumes we're dealing with external symbols for anything
45 // explicitly referenced. I.e., we can index by name and things
46 // will work out. In practice, this may not be the case, so we
47 // should find a way to effectively generalize.
49 // For each function, we have a MemoryBlock of it's instruction data.
50 StringMap<sys::MemoryBlock> Functions;
52 // Master symbol table. As modules are loaded and external symbols are
53 // resolved, their addresses are stored here.
54 StringMap<uint8_t*> SymbolTable;
56 // For each symbol, keep a list of relocations based on it. Anytime
57 // its address is reassigned (the JIT re-compiled the function, e.g.),
58 // the relocations get re-resolved.
59 struct RelocationEntry {
60 std::string Target; // Object this relocation is contained in.
61 uint64_t Offset; // Offset into the object for the relocation.
62 uint32_t Data; // Second word of the raw macho relocation entry.
63 int64_t Addend; // Addend encoded in the instruction itself, if any.
64 bool isResolved; // Has this relocation been resolved previously?
66 RelocationEntry(StringRef t, uint64_t offset, uint32_t data, int64_t addend)
67 : Target(t), Offset(offset), Data(data), Addend(addend),
68 isResolved(false) {}
70 typedef SmallVector<RelocationEntry, 4> RelocationList;
71 StringMap<RelocationList> Relocations;
73 // FIXME: Also keep a map of all the relocations contained in an object. Use
74 // this to dynamically answer whether all of the relocations in it have
75 // been resolved or not.
77 bool HasError;
78 std::string ErrorStr;
80 // Set the error state and record an error string.
81 bool Error(const Twine &Msg) {
82 ErrorStr = Msg.str();
83 HasError = true;
84 return true;
87 void extractFunction(StringRef Name, uint8_t *StartAddress,
88 uint8_t *EndAddress);
89 bool resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
90 unsigned Type, unsigned Size);
91 bool resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
92 unsigned Type, unsigned Size);
93 bool resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel,
94 unsigned Type, unsigned Size);
96 bool loadSegment32(const MachOObject *Obj,
97 const MachOObject::LoadCommandInfo *SegmentLCI,
98 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
99 bool loadSegment64(const MachOObject *Obj,
100 const MachOObject::LoadCommandInfo *SegmentLCI,
101 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC);
103 public:
104 RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
106 bool loadObject(MemoryBuffer *InputBuffer);
108 void *getSymbolAddress(StringRef Name) {
109 // FIXME: Just look up as a function for now. Overly simple of course.
110 // Work in progress.
111 return SymbolTable.lookup(Name);
114 void resolveRelocations();
116 void reassignSymbolAddress(StringRef Name, uint8_t *Addr);
118 // Is the linker in an error state?
119 bool hasError() { return HasError; }
121 // Mark the error condition as handled and continue.
122 void clearError() { HasError = false; }
124 // Get the error message.
125 StringRef getErrorString() { return ErrorStr; }
128 void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress,
129 uint8_t *EndAddress) {
130 // Allocate memory for the function via the memory manager.
131 uintptr_t Size = EndAddress - StartAddress + 1;
132 uintptr_t AllocSize = Size;
133 uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize);
134 assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) &&
135 "Memory manager failed to allocate enough memory!");
136 // Copy the function payload into the memory block.
137 memcpy(Mem, StartAddress, Size);
138 MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size);
139 // Remember where we put it.
140 Functions[Name] = sys::MemoryBlock(Mem, Size);
141 // Default the assigned address for this symbol to wherever this
142 // allocated it.
143 SymbolTable[Name] = Mem;
144 DEBUG(dbgs() << " allocated to [" << Mem << ", " << Mem + Size << "]\n");
147 bool RuntimeDyldImpl::
148 resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
149 unsigned Type, unsigned Size) {
150 // This just dispatches to the proper target specific routine.
151 switch (CPUType) {
152 default: assert(0 && "Unsupported CPU type!");
153 case mach::CTM_x86_64:
154 return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
155 isPCRel, Type, Size);
156 case mach::CTM_ARM:
157 return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
158 isPCRel, Type, Size);
160 llvm_unreachable("");
163 bool RuntimeDyldImpl::
164 resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
165 bool isPCRel, unsigned Type,
166 unsigned Size) {
167 // If the relocation is PC-relative, the value to be encoded is the
168 // pointer difference.
169 if (isPCRel)
170 // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
171 // address. Is that expected? Only for branches, perhaps?
172 Value -= Address + 4;
174 switch(Type) {
175 default:
176 llvm_unreachable("Invalid relocation type!");
177 case macho::RIT_X86_64_Unsigned:
178 case macho::RIT_X86_64_Branch: {
179 // Mask in the target value a byte at a time (we don't have an alignment
180 // guarantee for the target address, so this is safest).
181 uint8_t *p = (uint8_t*)Address;
182 for (unsigned i = 0; i < Size; ++i) {
183 *p++ = (uint8_t)Value;
184 Value >>= 8;
186 return false;
188 case macho::RIT_X86_64_Signed:
189 case macho::RIT_X86_64_GOTLoad:
190 case macho::RIT_X86_64_GOT:
191 case macho::RIT_X86_64_Subtractor:
192 case macho::RIT_X86_64_Signed1:
193 case macho::RIT_X86_64_Signed2:
194 case macho::RIT_X86_64_Signed4:
195 case macho::RIT_X86_64_TLV:
196 return Error("Relocation type not implemented yet!");
198 return false;
201 bool RuntimeDyldImpl::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
202 bool isPCRel, unsigned Type,
203 unsigned Size) {
204 // If the relocation is PC-relative, the value to be encoded is the
205 // pointer difference.
206 if (isPCRel) {
207 Value -= Address;
208 // ARM PCRel relocations have an effective-PC offset of two instructions
209 // (four bytes in Thumb mode, 8 bytes in ARM mode).
210 // FIXME: For now, assume ARM mode.
211 Value -= 8;
214 switch(Type) {
215 default:
216 llvm_unreachable("Invalid relocation type!");
217 case macho::RIT_Vanilla: {
218 llvm_unreachable("Invalid relocation type!");
219 // Mask in the target value a byte at a time (we don't have an alignment
220 // guarantee for the target address, so this is safest).
221 uint8_t *p = (uint8_t*)Address;
222 for (unsigned i = 0; i < Size; ++i) {
223 *p++ = (uint8_t)Value;
224 Value >>= 8;
226 break;
228 case macho::RIT_ARM_Branch24Bit: {
229 // Mask the value into the target address. We know instructions are
230 // 32-bit aligned, so we can do it all at once.
231 uint32_t *p = (uint32_t*)Address;
232 // The low two bits of the value are not encoded.
233 Value >>= 2;
234 // Mask the value to 24 bits.
235 Value &= 0xffffff;
236 // FIXME: If the destination is a Thumb function (and the instruction
237 // is a non-predicated BL instruction), we need to change it to a BLX
238 // instruction instead.
240 // Insert the value into the instruction.
241 *p = (*p & ~0xffffff) | Value;
242 break;
244 case macho::RIT_ARM_ThumbBranch22Bit:
245 case macho::RIT_ARM_ThumbBranch32Bit:
246 case macho::RIT_ARM_Half:
247 case macho::RIT_ARM_HalfDifference:
248 case macho::RIT_Pair:
249 case macho::RIT_Difference:
250 case macho::RIT_ARM_LocalDifference:
251 case macho::RIT_ARM_PreboundLazyPointer:
252 return Error("Relocation type not implemented yet!");
254 return false;
257 bool RuntimeDyldImpl::
258 loadSegment32(const MachOObject *Obj,
259 const MachOObject::LoadCommandInfo *SegmentLCI,
260 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
261 InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
262 Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
263 if (!SegmentLC)
264 return Error("unable to load segment load command");
266 for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
267 InMemoryStruct<macho::Section> Sect;
268 Obj->ReadSection(*SegmentLCI, SectNum, Sect);
269 if (!Sect)
270 return Error("unable to load section: '" + Twine(SectNum) + "'");
272 // FIXME: For the time being, we're only loading text segments.
273 if (Sect->Flags != 0x80000400)
274 continue;
276 // Address and names of symbols in the section.
277 typedef std::pair<uint64_t, StringRef> SymbolEntry;
278 SmallVector<SymbolEntry, 64> Symbols;
279 // Index of all the names, in this section or not. Used when we're
280 // dealing with relocation entries.
281 SmallVector<StringRef, 64> SymbolNames;
282 for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
283 InMemoryStruct<macho::SymbolTableEntry> STE;
284 Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
285 if (!STE)
286 return Error("unable to read symbol: '" + Twine(i) + "'");
287 if (STE->SectionIndex > SegmentLC->NumSections)
288 return Error("invalid section index for symbol: '" + Twine(i) + "'");
289 // Get the symbol name.
290 StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
291 SymbolNames.push_back(Name);
293 // Just skip symbols not defined in this section.
294 if ((unsigned)STE->SectionIndex - 1 != SectNum)
295 continue;
297 // FIXME: Check the symbol type and flags.
298 if (STE->Type != 0xF) // external, defined in this section.
299 continue;
300 // Flags == 0x8 marks a thumb function for ARM, which is fine as it
301 // doesn't require any special handling here.
302 if (STE->Flags != 0x0 && STE->Flags != 0x8)
303 continue;
305 // Remember the symbol.
306 Symbols.push_back(SymbolEntry(STE->Value, Name));
308 DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
309 (Sect->Address + STE->Value) << "\n");
311 // Sort the symbols by address, just in case they didn't come in that way.
312 array_pod_sort(Symbols.begin(), Symbols.end());
314 // If there weren't any functions (odd, but just in case...)
315 if (!Symbols.size())
316 continue;
318 // Extract the function data.
319 uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
320 SegmentLC->FileSize).data();
321 for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
322 uint64_t StartOffset = Sect->Address + Symbols[i].first;
323 uint64_t EndOffset = Symbols[i + 1].first - 1;
324 DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
325 << " from [" << StartOffset << ", " << EndOffset << "]\n");
326 extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
328 // The last symbol we do after since the end address is calculated
329 // differently because there is no next symbol to reference.
330 uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
331 uint64_t EndOffset = Sect->Size - 1;
332 DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
333 << " from [" << StartOffset << ", " << EndOffset << "]\n");
334 extractFunction(Symbols[Symbols.size()-1].second,
335 Base + StartOffset, Base + EndOffset);
337 // Now extract the relocation information for each function and process it.
338 for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
339 InMemoryStruct<macho::RelocationEntry> RE;
340 Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
341 if (RE->Word0 & macho::RF_Scattered)
342 return Error("NOT YET IMPLEMENTED: scattered relocations.");
343 // Word0 of the relocation is the offset into the section where the
344 // relocation should be applied. We need to translate that into an
345 // offset into a function since that's our atom.
346 uint32_t Offset = RE->Word0;
347 // Look for the function containing the address. This is used for JIT
348 // code, so the number of functions in section is almost always going
349 // to be very small (usually just one), so until we have use cases
350 // where that's not true, just use a trivial linear search.
351 unsigned SymbolNum;
352 unsigned NumSymbols = Symbols.size();
353 assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
354 "No symbol containing relocation!");
355 for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
356 if (Symbols[SymbolNum + 1].first > Offset)
357 break;
358 // Adjust the offset to be relative to the symbol.
359 Offset -= Symbols[SymbolNum].first;
360 // Get the name of the symbol containing the relocation.
361 StringRef TargetName = SymbolNames[SymbolNum];
363 bool isExtern = (RE->Word1 >> 27) & 1;
364 // Figure out the source symbol of the relocation. If isExtern is true,
365 // this relocation references the symbol table, otherwise it references
366 // a section in the same object, numbered from 1 through NumSections
367 // (SectionBases is [0, NumSections-1]).
368 // FIXME: Some targets (ARM) use internal relocations even for
369 // externally visible symbols, if the definition is in the same
370 // file as the reference. We need to convert those back to by-name
371 // references. We can resolve the address based on the section
372 // offset and see if we have a symbol at that address. If we do,
373 // use that; otherwise, puke.
374 if (!isExtern)
375 return Error("Internal relocations not supported.");
376 uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
377 StringRef SourceName = SymbolNames[SourceNum];
379 // FIXME: Get the relocation addend from the target address.
381 // Now store the relocation information. Associate it with the source
382 // symbol.
383 Relocations[SourceName].push_back(RelocationEntry(TargetName,
384 Offset,
385 RE->Word1,
386 0 /*Addend*/));
387 DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
388 << " from '" << SourceName << "(Word1: "
389 << format("0x%x", RE->Word1) << ")\n");
392 return false;
396 bool RuntimeDyldImpl::
397 loadSegment64(const MachOObject *Obj,
398 const MachOObject::LoadCommandInfo *SegmentLCI,
399 const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
400 InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
401 Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
402 if (!Segment64LC)
403 return Error("unable to load segment load command");
405 for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
406 InMemoryStruct<macho::Section64> Sect;
407 Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
408 if (!Sect)
409 return Error("unable to load section: '" + Twine(SectNum) + "'");
411 // FIXME: For the time being, we're only loading text segments.
412 if (Sect->Flags != 0x80000400)
413 continue;
415 // Address and names of symbols in the section.
416 typedef std::pair<uint64_t, StringRef> SymbolEntry;
417 SmallVector<SymbolEntry, 64> Symbols;
418 // Index of all the names, in this section or not. Used when we're
419 // dealing with relocation entries.
420 SmallVector<StringRef, 64> SymbolNames;
421 for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
422 InMemoryStruct<macho::Symbol64TableEntry> STE;
423 Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
424 if (!STE)
425 return Error("unable to read symbol: '" + Twine(i) + "'");
426 if (STE->SectionIndex > Segment64LC->NumSections)
427 return Error("invalid section index for symbol: '" + Twine(i) + "'");
428 // Get the symbol name.
429 StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
430 SymbolNames.push_back(Name);
432 // Just skip symbols not defined in this section.
433 if ((unsigned)STE->SectionIndex - 1 != SectNum)
434 continue;
436 // FIXME: Check the symbol type and flags.
437 if (STE->Type != 0xF) // external, defined in this section.
438 continue;
439 if (STE->Flags != 0x0)
440 continue;
442 // Remember the symbol.
443 Symbols.push_back(SymbolEntry(STE->Value, Name));
445 DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
446 (Sect->Address + STE->Value) << "\n");
448 // Sort the symbols by address, just in case they didn't come in that way.
449 array_pod_sort(Symbols.begin(), Symbols.end());
451 // If there weren't any functions (odd, but just in case...)
452 if (!Symbols.size())
453 continue;
455 // Extract the function data.
456 uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
457 Segment64LC->FileSize).data();
458 for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
459 uint64_t StartOffset = Sect->Address + Symbols[i].first;
460 uint64_t EndOffset = Symbols[i + 1].first - 1;
461 DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
462 << " from [" << StartOffset << ", " << EndOffset << "]\n");
463 extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
465 // The last symbol we do after since the end address is calculated
466 // differently because there is no next symbol to reference.
467 uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
468 uint64_t EndOffset = Sect->Size - 1;
469 DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
470 << " from [" << StartOffset << ", " << EndOffset << "]\n");
471 extractFunction(Symbols[Symbols.size()-1].second,
472 Base + StartOffset, Base + EndOffset);
474 // Now extract the relocation information for each function and process it.
475 for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
476 InMemoryStruct<macho::RelocationEntry> RE;
477 Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
478 if (RE->Word0 & macho::RF_Scattered)
479 return Error("NOT YET IMPLEMENTED: scattered relocations.");
480 // Word0 of the relocation is the offset into the section where the
481 // relocation should be applied. We need to translate that into an
482 // offset into a function since that's our atom.
483 uint32_t Offset = RE->Word0;
484 // Look for the function containing the address. This is used for JIT
485 // code, so the number of functions in section is almost always going
486 // to be very small (usually just one), so until we have use cases
487 // where that's not true, just use a trivial linear search.
488 unsigned SymbolNum;
489 unsigned NumSymbols = Symbols.size();
490 assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
491 "No symbol containing relocation!");
492 for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
493 if (Symbols[SymbolNum + 1].first > Offset)
494 break;
495 // Adjust the offset to be relative to the symbol.
496 Offset -= Symbols[SymbolNum].first;
497 // Get the name of the symbol containing the relocation.
498 StringRef TargetName = SymbolNames[SymbolNum];
500 bool isExtern = (RE->Word1 >> 27) & 1;
501 // Figure out the source symbol of the relocation. If isExtern is true,
502 // this relocation references the symbol table, otherwise it references
503 // a section in the same object, numbered from 1 through NumSections
504 // (SectionBases is [0, NumSections-1]).
505 if (!isExtern)
506 return Error("Internal relocations not supported.");
507 uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
508 StringRef SourceName = SymbolNames[SourceNum];
510 // FIXME: Get the relocation addend from the target address.
512 // Now store the relocation information. Associate it with the source
513 // symbol.
514 Relocations[SourceName].push_back(RelocationEntry(TargetName,
515 Offset,
516 RE->Word1,
517 0 /*Addend*/));
518 DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
519 << " from '" << SourceName << "(Word1: "
520 << format("0x%x", RE->Word1) << ")\n");
523 return false;
526 bool RuntimeDyldImpl::loadObject(MemoryBuffer *InputBuffer) {
527 // If the linker is in an error state, don't do anything.
528 if (hasError())
529 return true;
530 // Load the Mach-O wrapper object.
531 std::string ErrorStr;
532 OwningPtr<MachOObject> Obj(
533 MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
534 if (!Obj)
535 return Error("unable to load object: '" + ErrorStr + "'");
537 // Get the CPU type information from the header.
538 const macho::Header &Header = Obj->getHeader();
540 // FIXME: Error checking that the loaded object is compatible with
541 // the system we're running on.
542 CPUType = Header.CPUType;
543 CPUSubtype = Header.CPUSubtype;
545 // Validate that the load commands match what we expect.
546 const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
547 *DysymtabLCI = 0;
548 for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
549 const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
550 switch (LCI.Command.Type) {
551 case macho::LCT_Segment:
552 case macho::LCT_Segment64:
553 if (SegmentLCI)
554 return Error("unexpected input object (multiple segments)");
555 SegmentLCI = &LCI;
556 break;
557 case macho::LCT_Symtab:
558 if (SymtabLCI)
559 return Error("unexpected input object (multiple symbol tables)");
560 SymtabLCI = &LCI;
561 break;
562 case macho::LCT_Dysymtab:
563 if (DysymtabLCI)
564 return Error("unexpected input object (multiple symbol tables)");
565 DysymtabLCI = &LCI;
566 break;
567 default:
568 return Error("unexpected input object (unexpected load command");
572 if (!SymtabLCI)
573 return Error("no symbol table found in object");
574 if (!SegmentLCI)
575 return Error("no symbol table found in object");
577 // Read and register the symbol table data.
578 InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
579 Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
580 if (!SymtabLC)
581 return Error("unable to load symbol table load command");
582 Obj->RegisterStringTable(*SymtabLC);
584 // Read the dynamic link-edit information, if present (not present in static
585 // objects).
586 if (DysymtabLCI) {
587 InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
588 Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
589 if (!DysymtabLC)
590 return Error("unable to load dynamic link-exit load command");
592 // FIXME: We don't support anything interesting yet.
593 // if (DysymtabLC->LocalSymbolsIndex != 0)
594 // return Error("NOT YET IMPLEMENTED: local symbol entries");
595 // if (DysymtabLC->ExternalSymbolsIndex != 0)
596 // return Error("NOT YET IMPLEMENTED: non-external symbol entries");
597 // if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
598 // return Error("NOT YET IMPLEMENTED: undefined symbol entries");
601 // Load the segment load command.
602 if (SegmentLCI->Command.Type == macho::LCT_Segment) {
603 if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
604 return true;
605 } else {
606 if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
607 return true;
610 return false;
613 // Resolve the relocations for all symbols we currently know about.
614 void RuntimeDyldImpl::resolveRelocations() {
615 // Just iterate over the symbols in our symbol table and assign their
616 // addresses.
617 StringMap<uint8_t*>::iterator i = SymbolTable.begin();
618 StringMap<uint8_t*>::iterator e = SymbolTable.end();
619 for (;i != e; ++i)
620 reassignSymbolAddress(i->getKey(), i->getValue());
623 // Assign an address to a symbol name and resolve all the relocations
624 // associated with it.
625 void RuntimeDyldImpl::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
626 // Assign the address in our symbol table.
627 SymbolTable[Name] = Addr;
629 RelocationList &Relocs = Relocations[Name];
630 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
631 RelocationEntry &RE = Relocs[i];
632 uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
633 bool isPCRel = (RE.Data >> 24) & 1;
634 unsigned Type = (RE.Data >> 28) & 0xf;
635 unsigned Size = 1 << ((RE.Data >> 25) & 3);
637 DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
638 << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
639 << " from '" << Name << " (" << format("%p", Addr) << ")"
640 << "(" << (isPCRel ? "pcrel" : "absolute")
641 << ", type: " << Type << ", Size: " << Size << ").\n");
643 resolveRelocation(Target, Addr, isPCRel, Type, Size);
644 RE.isResolved = true;
648 //===----------------------------------------------------------------------===//
649 // RuntimeDyld class implementation
650 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *MM) {
651 Dyld = new RuntimeDyldImpl(MM);
654 RuntimeDyld::~RuntimeDyld() {
655 delete Dyld;
658 bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) {
659 return Dyld->loadObject(InputBuffer);
662 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
663 return Dyld->getSymbolAddress(Name);
666 void RuntimeDyld::resolveRelocations() {
667 Dyld->resolveRelocations();
670 void RuntimeDyld::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
671 Dyld->reassignSymbolAddress(Name, Addr);
674 StringRef RuntimeDyld::getErrorString() {
675 return Dyld->getErrorString();
678 } // end namespace llvm