1 //===-- RuntimeDyld.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Implementation of the MC-JIT runtime dynamic linker.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "dyld"
15 #include "llvm/ADT/OwningPtr.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/ExecutionEngine/RuntimeDyld.h"
22 #include "llvm/Object/MachOObject.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/Format.h"
26 #include "llvm/Support/Memory.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/system_error.h"
29 #include "llvm/Support/raw_ostream.h"
31 using namespace llvm::object
;
33 // Empty out-of-line virtual destructor as the key function.
34 RTDyldMemoryManager::~RTDyldMemoryManager() {}
37 class RuntimeDyldImpl
{
41 // The MemoryManager to load objects into.
42 RTDyldMemoryManager
*MemMgr
;
44 // FIXME: This all assumes we're dealing with external symbols for anything
45 // explicitly referenced. I.e., we can index by name and things
46 // will work out. In practice, this may not be the case, so we
47 // should find a way to effectively generalize.
49 // For each function, we have a MemoryBlock of it's instruction data.
50 StringMap
<sys::MemoryBlock
> Functions
;
52 // Master symbol table. As modules are loaded and external symbols are
53 // resolved, their addresses are stored here.
54 StringMap
<uint8_t*> SymbolTable
;
56 // For each symbol, keep a list of relocations based on it. Anytime
57 // its address is reassigned (the JIT re-compiled the function, e.g.),
58 // the relocations get re-resolved.
59 struct RelocationEntry
{
60 std::string Target
; // Object this relocation is contained in.
61 uint64_t Offset
; // Offset into the object for the relocation.
62 uint32_t Data
; // Second word of the raw macho relocation entry.
63 int64_t Addend
; // Addend encoded in the instruction itself, if any.
64 bool isResolved
; // Has this relocation been resolved previously?
66 RelocationEntry(StringRef t
, uint64_t offset
, uint32_t data
, int64_t addend
)
67 : Target(t
), Offset(offset
), Data(data
), Addend(addend
),
70 typedef SmallVector
<RelocationEntry
, 4> RelocationList
;
71 StringMap
<RelocationList
> Relocations
;
73 // FIXME: Also keep a map of all the relocations contained in an object. Use
74 // this to dynamically answer whether all of the relocations in it have
75 // been resolved or not.
80 // Set the error state and record an error string.
81 bool Error(const Twine
&Msg
) {
87 void extractFunction(StringRef Name
, uint8_t *StartAddress
,
89 bool resolveRelocation(uint8_t *Address
, uint8_t *Value
, bool isPCRel
,
90 unsigned Type
, unsigned Size
);
91 bool resolveX86_64Relocation(uintptr_t Address
, uintptr_t Value
, bool isPCRel
,
92 unsigned Type
, unsigned Size
);
93 bool resolveARMRelocation(uintptr_t Address
, uintptr_t Value
, bool isPCRel
,
94 unsigned Type
, unsigned Size
);
96 bool loadSegment32(const MachOObject
*Obj
,
97 const MachOObject::LoadCommandInfo
*SegmentLCI
,
98 const InMemoryStruct
<macho::SymtabLoadCommand
> &SymtabLC
);
99 bool loadSegment64(const MachOObject
*Obj
,
100 const MachOObject::LoadCommandInfo
*SegmentLCI
,
101 const InMemoryStruct
<macho::SymtabLoadCommand
> &SymtabLC
);
104 RuntimeDyldImpl(RTDyldMemoryManager
*mm
) : MemMgr(mm
), HasError(false) {}
106 bool loadObject(MemoryBuffer
*InputBuffer
);
108 void *getSymbolAddress(StringRef Name
) {
109 // FIXME: Just look up as a function for now. Overly simple of course.
111 return SymbolTable
.lookup(Name
);
114 void resolveRelocations();
116 void reassignSymbolAddress(StringRef Name
, uint8_t *Addr
);
118 // Is the linker in an error state?
119 bool hasError() { return HasError
; }
121 // Mark the error condition as handled and continue.
122 void clearError() { HasError
= false; }
124 // Get the error message.
125 StringRef
getErrorString() { return ErrorStr
; }
128 void RuntimeDyldImpl::extractFunction(StringRef Name
, uint8_t *StartAddress
,
129 uint8_t *EndAddress
) {
130 // Allocate memory for the function via the memory manager.
131 uintptr_t Size
= EndAddress
- StartAddress
+ 1;
132 uintptr_t AllocSize
= Size
;
133 uint8_t *Mem
= MemMgr
->startFunctionBody(Name
.data(), AllocSize
);
134 assert(Size
>= (uint64_t)(EndAddress
- StartAddress
+ 1) &&
135 "Memory manager failed to allocate enough memory!");
136 // Copy the function payload into the memory block.
137 memcpy(Mem
, StartAddress
, Size
);
138 MemMgr
->endFunctionBody(Name
.data(), Mem
, Mem
+ Size
);
139 // Remember where we put it.
140 Functions
[Name
] = sys::MemoryBlock(Mem
, Size
);
141 // Default the assigned address for this symbol to wherever this
143 SymbolTable
[Name
] = Mem
;
144 DEBUG(dbgs() << " allocated to [" << Mem
<< ", " << Mem
+ Size
<< "]\n");
147 bool RuntimeDyldImpl::
148 resolveRelocation(uint8_t *Address
, uint8_t *Value
, bool isPCRel
,
149 unsigned Type
, unsigned Size
) {
150 // This just dispatches to the proper target specific routine.
152 default: assert(0 && "Unsupported CPU type!");
153 case mach::CTM_x86_64
:
154 return resolveX86_64Relocation((uintptr_t)Address
, (uintptr_t)Value
,
155 isPCRel
, Type
, Size
);
157 return resolveARMRelocation((uintptr_t)Address
, (uintptr_t)Value
,
158 isPCRel
, Type
, Size
);
160 llvm_unreachable("");
163 bool RuntimeDyldImpl::
164 resolveX86_64Relocation(uintptr_t Address
, uintptr_t Value
,
165 bool isPCRel
, unsigned Type
,
167 // If the relocation is PC-relative, the value to be encoded is the
168 // pointer difference.
170 // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
171 // address. Is that expected? Only for branches, perhaps?
172 Value
-= Address
+ 4;
176 llvm_unreachable("Invalid relocation type!");
177 case macho::RIT_X86_64_Unsigned
:
178 case macho::RIT_X86_64_Branch
: {
179 // Mask in the target value a byte at a time (we don't have an alignment
180 // guarantee for the target address, so this is safest).
181 uint8_t *p
= (uint8_t*)Address
;
182 for (unsigned i
= 0; i
< Size
; ++i
) {
183 *p
++ = (uint8_t)Value
;
188 case macho::RIT_X86_64_Signed
:
189 case macho::RIT_X86_64_GOTLoad
:
190 case macho::RIT_X86_64_GOT
:
191 case macho::RIT_X86_64_Subtractor
:
192 case macho::RIT_X86_64_Signed1
:
193 case macho::RIT_X86_64_Signed2
:
194 case macho::RIT_X86_64_Signed4
:
195 case macho::RIT_X86_64_TLV
:
196 return Error("Relocation type not implemented yet!");
201 bool RuntimeDyldImpl::resolveARMRelocation(uintptr_t Address
, uintptr_t Value
,
202 bool isPCRel
, unsigned Type
,
204 // If the relocation is PC-relative, the value to be encoded is the
205 // pointer difference.
208 // ARM PCRel relocations have an effective-PC offset of two instructions
209 // (four bytes in Thumb mode, 8 bytes in ARM mode).
210 // FIXME: For now, assume ARM mode.
216 llvm_unreachable("Invalid relocation type!");
217 case macho::RIT_Vanilla
: {
218 llvm_unreachable("Invalid relocation type!");
219 // Mask in the target value a byte at a time (we don't have an alignment
220 // guarantee for the target address, so this is safest).
221 uint8_t *p
= (uint8_t*)Address
;
222 for (unsigned i
= 0; i
< Size
; ++i
) {
223 *p
++ = (uint8_t)Value
;
228 case macho::RIT_ARM_Branch24Bit
: {
229 // Mask the value into the target address. We know instructions are
230 // 32-bit aligned, so we can do it all at once.
231 uint32_t *p
= (uint32_t*)Address
;
232 // The low two bits of the value are not encoded.
234 // Mask the value to 24 bits.
236 // FIXME: If the destination is a Thumb function (and the instruction
237 // is a non-predicated BL instruction), we need to change it to a BLX
238 // instruction instead.
240 // Insert the value into the instruction.
241 *p
= (*p
& ~0xffffff) | Value
;
244 case macho::RIT_ARM_ThumbBranch22Bit
:
245 case macho::RIT_ARM_ThumbBranch32Bit
:
246 case macho::RIT_ARM_Half
:
247 case macho::RIT_ARM_HalfDifference
:
248 case macho::RIT_Pair
:
249 case macho::RIT_Difference
:
250 case macho::RIT_ARM_LocalDifference
:
251 case macho::RIT_ARM_PreboundLazyPointer
:
252 return Error("Relocation type not implemented yet!");
257 bool RuntimeDyldImpl::
258 loadSegment32(const MachOObject
*Obj
,
259 const MachOObject::LoadCommandInfo
*SegmentLCI
,
260 const InMemoryStruct
<macho::SymtabLoadCommand
> &SymtabLC
) {
261 InMemoryStruct
<macho::SegmentLoadCommand
> SegmentLC
;
262 Obj
->ReadSegmentLoadCommand(*SegmentLCI
, SegmentLC
);
264 return Error("unable to load segment load command");
266 for (unsigned SectNum
= 0; SectNum
!= SegmentLC
->NumSections
; ++SectNum
) {
267 InMemoryStruct
<macho::Section
> Sect
;
268 Obj
->ReadSection(*SegmentLCI
, SectNum
, Sect
);
270 return Error("unable to load section: '" + Twine(SectNum
) + "'");
272 // FIXME: For the time being, we're only loading text segments.
273 if (Sect
->Flags
!= 0x80000400)
276 // Address and names of symbols in the section.
277 typedef std::pair
<uint64_t, StringRef
> SymbolEntry
;
278 SmallVector
<SymbolEntry
, 64> Symbols
;
279 // Index of all the names, in this section or not. Used when we're
280 // dealing with relocation entries.
281 SmallVector
<StringRef
, 64> SymbolNames
;
282 for (unsigned i
= 0; i
!= SymtabLC
->NumSymbolTableEntries
; ++i
) {
283 InMemoryStruct
<macho::SymbolTableEntry
> STE
;
284 Obj
->ReadSymbolTableEntry(SymtabLC
->SymbolTableOffset
, i
, STE
);
286 return Error("unable to read symbol: '" + Twine(i
) + "'");
287 if (STE
->SectionIndex
> SegmentLC
->NumSections
)
288 return Error("invalid section index for symbol: '" + Twine(i
) + "'");
289 // Get the symbol name.
290 StringRef Name
= Obj
->getStringAtIndex(STE
->StringIndex
);
291 SymbolNames
.push_back(Name
);
293 // Just skip symbols not defined in this section.
294 if ((unsigned)STE
->SectionIndex
- 1 != SectNum
)
297 // FIXME: Check the symbol type and flags.
298 if (STE
->Type
!= 0xF) // external, defined in this section.
300 // Flags == 0x8 marks a thumb function for ARM, which is fine as it
301 // doesn't require any special handling here.
302 if (STE
->Flags
!= 0x0 && STE
->Flags
!= 0x8)
305 // Remember the symbol.
306 Symbols
.push_back(SymbolEntry(STE
->Value
, Name
));
308 DEBUG(dbgs() << "Function sym: '" << Name
<< "' @ " <<
309 (Sect
->Address
+ STE
->Value
) << "\n");
311 // Sort the symbols by address, just in case they didn't come in that way.
312 array_pod_sort(Symbols
.begin(), Symbols
.end());
314 // If there weren't any functions (odd, but just in case...)
318 // Extract the function data.
319 uint8_t *Base
= (uint8_t*)Obj
->getData(SegmentLC
->FileOffset
,
320 SegmentLC
->FileSize
).data();
321 for (unsigned i
= 0, e
= Symbols
.size() - 1; i
!= e
; ++i
) {
322 uint64_t StartOffset
= Sect
->Address
+ Symbols
[i
].first
;
323 uint64_t EndOffset
= Symbols
[i
+ 1].first
- 1;
324 DEBUG(dbgs() << "Extracting function: " << Symbols
[i
].second
325 << " from [" << StartOffset
<< ", " << EndOffset
<< "]\n");
326 extractFunction(Symbols
[i
].second
, Base
+ StartOffset
, Base
+ EndOffset
);
328 // The last symbol we do after since the end address is calculated
329 // differently because there is no next symbol to reference.
330 uint64_t StartOffset
= Symbols
[Symbols
.size() - 1].first
;
331 uint64_t EndOffset
= Sect
->Size
- 1;
332 DEBUG(dbgs() << "Extracting function: " << Symbols
[Symbols
.size()-1].second
333 << " from [" << StartOffset
<< ", " << EndOffset
<< "]\n");
334 extractFunction(Symbols
[Symbols
.size()-1].second
,
335 Base
+ StartOffset
, Base
+ EndOffset
);
337 // Now extract the relocation information for each function and process it.
338 for (unsigned j
= 0; j
!= Sect
->NumRelocationTableEntries
; ++j
) {
339 InMemoryStruct
<macho::RelocationEntry
> RE
;
340 Obj
->ReadRelocationEntry(Sect
->RelocationTableOffset
, j
, RE
);
341 if (RE
->Word0
& macho::RF_Scattered
)
342 return Error("NOT YET IMPLEMENTED: scattered relocations.");
343 // Word0 of the relocation is the offset into the section where the
344 // relocation should be applied. We need to translate that into an
345 // offset into a function since that's our atom.
346 uint32_t Offset
= RE
->Word0
;
347 // Look for the function containing the address. This is used for JIT
348 // code, so the number of functions in section is almost always going
349 // to be very small (usually just one), so until we have use cases
350 // where that's not true, just use a trivial linear search.
352 unsigned NumSymbols
= Symbols
.size();
353 assert(NumSymbols
> 0 && Symbols
[0].first
<= Offset
&&
354 "No symbol containing relocation!");
355 for (SymbolNum
= 0; SymbolNum
< NumSymbols
- 1; ++SymbolNum
)
356 if (Symbols
[SymbolNum
+ 1].first
> Offset
)
358 // Adjust the offset to be relative to the symbol.
359 Offset
-= Symbols
[SymbolNum
].first
;
360 // Get the name of the symbol containing the relocation.
361 StringRef TargetName
= SymbolNames
[SymbolNum
];
363 bool isExtern
= (RE
->Word1
>> 27) & 1;
364 // Figure out the source symbol of the relocation. If isExtern is true,
365 // this relocation references the symbol table, otherwise it references
366 // a section in the same object, numbered from 1 through NumSections
367 // (SectionBases is [0, NumSections-1]).
368 // FIXME: Some targets (ARM) use internal relocations even for
369 // externally visible symbols, if the definition is in the same
370 // file as the reference. We need to convert those back to by-name
371 // references. We can resolve the address based on the section
372 // offset and see if we have a symbol at that address. If we do,
373 // use that; otherwise, puke.
375 return Error("Internal relocations not supported.");
376 uint32_t SourceNum
= RE
->Word1
& 0xffffff; // 24-bit value
377 StringRef SourceName
= SymbolNames
[SourceNum
];
379 // FIXME: Get the relocation addend from the target address.
381 // Now store the relocation information. Associate it with the source
383 Relocations
[SourceName
].push_back(RelocationEntry(TargetName
,
387 DEBUG(dbgs() << "Relocation at '" << TargetName
<< "' + " << Offset
388 << " from '" << SourceName
<< "(Word1: "
389 << format("0x%x", RE
->Word1
) << ")\n");
396 bool RuntimeDyldImpl::
397 loadSegment64(const MachOObject
*Obj
,
398 const MachOObject::LoadCommandInfo
*SegmentLCI
,
399 const InMemoryStruct
<macho::SymtabLoadCommand
> &SymtabLC
) {
400 InMemoryStruct
<macho::Segment64LoadCommand
> Segment64LC
;
401 Obj
->ReadSegment64LoadCommand(*SegmentLCI
, Segment64LC
);
403 return Error("unable to load segment load command");
405 for (unsigned SectNum
= 0; SectNum
!= Segment64LC
->NumSections
; ++SectNum
) {
406 InMemoryStruct
<macho::Section64
> Sect
;
407 Obj
->ReadSection64(*SegmentLCI
, SectNum
, Sect
);
409 return Error("unable to load section: '" + Twine(SectNum
) + "'");
411 // FIXME: For the time being, we're only loading text segments.
412 if (Sect
->Flags
!= 0x80000400)
415 // Address and names of symbols in the section.
416 typedef std::pair
<uint64_t, StringRef
> SymbolEntry
;
417 SmallVector
<SymbolEntry
, 64> Symbols
;
418 // Index of all the names, in this section or not. Used when we're
419 // dealing with relocation entries.
420 SmallVector
<StringRef
, 64> SymbolNames
;
421 for (unsigned i
= 0; i
!= SymtabLC
->NumSymbolTableEntries
; ++i
) {
422 InMemoryStruct
<macho::Symbol64TableEntry
> STE
;
423 Obj
->ReadSymbol64TableEntry(SymtabLC
->SymbolTableOffset
, i
, STE
);
425 return Error("unable to read symbol: '" + Twine(i
) + "'");
426 if (STE
->SectionIndex
> Segment64LC
->NumSections
)
427 return Error("invalid section index for symbol: '" + Twine(i
) + "'");
428 // Get the symbol name.
429 StringRef Name
= Obj
->getStringAtIndex(STE
->StringIndex
);
430 SymbolNames
.push_back(Name
);
432 // Just skip symbols not defined in this section.
433 if ((unsigned)STE
->SectionIndex
- 1 != SectNum
)
436 // FIXME: Check the symbol type and flags.
437 if (STE
->Type
!= 0xF) // external, defined in this section.
439 if (STE
->Flags
!= 0x0)
442 // Remember the symbol.
443 Symbols
.push_back(SymbolEntry(STE
->Value
, Name
));
445 DEBUG(dbgs() << "Function sym: '" << Name
<< "' @ " <<
446 (Sect
->Address
+ STE
->Value
) << "\n");
448 // Sort the symbols by address, just in case they didn't come in that way.
449 array_pod_sort(Symbols
.begin(), Symbols
.end());
451 // If there weren't any functions (odd, but just in case...)
455 // Extract the function data.
456 uint8_t *Base
= (uint8_t*)Obj
->getData(Segment64LC
->FileOffset
,
457 Segment64LC
->FileSize
).data();
458 for (unsigned i
= 0, e
= Symbols
.size() - 1; i
!= e
; ++i
) {
459 uint64_t StartOffset
= Sect
->Address
+ Symbols
[i
].first
;
460 uint64_t EndOffset
= Symbols
[i
+ 1].first
- 1;
461 DEBUG(dbgs() << "Extracting function: " << Symbols
[i
].second
462 << " from [" << StartOffset
<< ", " << EndOffset
<< "]\n");
463 extractFunction(Symbols
[i
].second
, Base
+ StartOffset
, Base
+ EndOffset
);
465 // The last symbol we do after since the end address is calculated
466 // differently because there is no next symbol to reference.
467 uint64_t StartOffset
= Symbols
[Symbols
.size() - 1].first
;
468 uint64_t EndOffset
= Sect
->Size
- 1;
469 DEBUG(dbgs() << "Extracting function: " << Symbols
[Symbols
.size()-1].second
470 << " from [" << StartOffset
<< ", " << EndOffset
<< "]\n");
471 extractFunction(Symbols
[Symbols
.size()-1].second
,
472 Base
+ StartOffset
, Base
+ EndOffset
);
474 // Now extract the relocation information for each function and process it.
475 for (unsigned j
= 0; j
!= Sect
->NumRelocationTableEntries
; ++j
) {
476 InMemoryStruct
<macho::RelocationEntry
> RE
;
477 Obj
->ReadRelocationEntry(Sect
->RelocationTableOffset
, j
, RE
);
478 if (RE
->Word0
& macho::RF_Scattered
)
479 return Error("NOT YET IMPLEMENTED: scattered relocations.");
480 // Word0 of the relocation is the offset into the section where the
481 // relocation should be applied. We need to translate that into an
482 // offset into a function since that's our atom.
483 uint32_t Offset
= RE
->Word0
;
484 // Look for the function containing the address. This is used for JIT
485 // code, so the number of functions in section is almost always going
486 // to be very small (usually just one), so until we have use cases
487 // where that's not true, just use a trivial linear search.
489 unsigned NumSymbols
= Symbols
.size();
490 assert(NumSymbols
> 0 && Symbols
[0].first
<= Offset
&&
491 "No symbol containing relocation!");
492 for (SymbolNum
= 0; SymbolNum
< NumSymbols
- 1; ++SymbolNum
)
493 if (Symbols
[SymbolNum
+ 1].first
> Offset
)
495 // Adjust the offset to be relative to the symbol.
496 Offset
-= Symbols
[SymbolNum
].first
;
497 // Get the name of the symbol containing the relocation.
498 StringRef TargetName
= SymbolNames
[SymbolNum
];
500 bool isExtern
= (RE
->Word1
>> 27) & 1;
501 // Figure out the source symbol of the relocation. If isExtern is true,
502 // this relocation references the symbol table, otherwise it references
503 // a section in the same object, numbered from 1 through NumSections
504 // (SectionBases is [0, NumSections-1]).
506 return Error("Internal relocations not supported.");
507 uint32_t SourceNum
= RE
->Word1
& 0xffffff; // 24-bit value
508 StringRef SourceName
= SymbolNames
[SourceNum
];
510 // FIXME: Get the relocation addend from the target address.
512 // Now store the relocation information. Associate it with the source
514 Relocations
[SourceName
].push_back(RelocationEntry(TargetName
,
518 DEBUG(dbgs() << "Relocation at '" << TargetName
<< "' + " << Offset
519 << " from '" << SourceName
<< "(Word1: "
520 << format("0x%x", RE
->Word1
) << ")\n");
526 bool RuntimeDyldImpl::loadObject(MemoryBuffer
*InputBuffer
) {
527 // If the linker is in an error state, don't do anything.
530 // Load the Mach-O wrapper object.
531 std::string ErrorStr
;
532 OwningPtr
<MachOObject
> Obj(
533 MachOObject::LoadFromBuffer(InputBuffer
, &ErrorStr
));
535 return Error("unable to load object: '" + ErrorStr
+ "'");
537 // Get the CPU type information from the header.
538 const macho::Header
&Header
= Obj
->getHeader();
540 // FIXME: Error checking that the loaded object is compatible with
541 // the system we're running on.
542 CPUType
= Header
.CPUType
;
543 CPUSubtype
= Header
.CPUSubtype
;
545 // Validate that the load commands match what we expect.
546 const MachOObject::LoadCommandInfo
*SegmentLCI
= 0, *SymtabLCI
= 0,
548 for (unsigned i
= 0; i
!= Header
.NumLoadCommands
; ++i
) {
549 const MachOObject::LoadCommandInfo
&LCI
= Obj
->getLoadCommandInfo(i
);
550 switch (LCI
.Command
.Type
) {
551 case macho::LCT_Segment
:
552 case macho::LCT_Segment64
:
554 return Error("unexpected input object (multiple segments)");
557 case macho::LCT_Symtab
:
559 return Error("unexpected input object (multiple symbol tables)");
562 case macho::LCT_Dysymtab
:
564 return Error("unexpected input object (multiple symbol tables)");
568 return Error("unexpected input object (unexpected load command");
573 return Error("no symbol table found in object");
575 return Error("no symbol table found in object");
577 // Read and register the symbol table data.
578 InMemoryStruct
<macho::SymtabLoadCommand
> SymtabLC
;
579 Obj
->ReadSymtabLoadCommand(*SymtabLCI
, SymtabLC
);
581 return Error("unable to load symbol table load command");
582 Obj
->RegisterStringTable(*SymtabLC
);
584 // Read the dynamic link-edit information, if present (not present in static
587 InMemoryStruct
<macho::DysymtabLoadCommand
> DysymtabLC
;
588 Obj
->ReadDysymtabLoadCommand(*DysymtabLCI
, DysymtabLC
);
590 return Error("unable to load dynamic link-exit load command");
592 // FIXME: We don't support anything interesting yet.
593 // if (DysymtabLC->LocalSymbolsIndex != 0)
594 // return Error("NOT YET IMPLEMENTED: local symbol entries");
595 // if (DysymtabLC->ExternalSymbolsIndex != 0)
596 // return Error("NOT YET IMPLEMENTED: non-external symbol entries");
597 // if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
598 // return Error("NOT YET IMPLEMENTED: undefined symbol entries");
601 // Load the segment load command.
602 if (SegmentLCI
->Command
.Type
== macho::LCT_Segment
) {
603 if (loadSegment32(Obj
.get(), SegmentLCI
, SymtabLC
))
606 if (loadSegment64(Obj
.get(), SegmentLCI
, SymtabLC
))
613 // Resolve the relocations for all symbols we currently know about.
614 void RuntimeDyldImpl::resolveRelocations() {
615 // Just iterate over the symbols in our symbol table and assign their
617 StringMap
<uint8_t*>::iterator i
= SymbolTable
.begin();
618 StringMap
<uint8_t*>::iterator e
= SymbolTable
.end();
620 reassignSymbolAddress(i
->getKey(), i
->getValue());
623 // Assign an address to a symbol name and resolve all the relocations
624 // associated with it.
625 void RuntimeDyldImpl::reassignSymbolAddress(StringRef Name
, uint8_t *Addr
) {
626 // Assign the address in our symbol table.
627 SymbolTable
[Name
] = Addr
;
629 RelocationList
&Relocs
= Relocations
[Name
];
630 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
631 RelocationEntry
&RE
= Relocs
[i
];
632 uint8_t *Target
= SymbolTable
[RE
.Target
] + RE
.Offset
;
633 bool isPCRel
= (RE
.Data
>> 24) & 1;
634 unsigned Type
= (RE
.Data
>> 28) & 0xf;
635 unsigned Size
= 1 << ((RE
.Data
>> 25) & 3);
637 DEBUG(dbgs() << "Resolving relocation at '" << RE
.Target
638 << "' + " << RE
.Offset
<< " (" << format("%p", Target
) << ")"
639 << " from '" << Name
<< " (" << format("%p", Addr
) << ")"
640 << "(" << (isPCRel
? "pcrel" : "absolute")
641 << ", type: " << Type
<< ", Size: " << Size
<< ").\n");
643 resolveRelocation(Target
, Addr
, isPCRel
, Type
, Size
);
644 RE
.isResolved
= true;
648 //===----------------------------------------------------------------------===//
649 // RuntimeDyld class implementation
650 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager
*MM
) {
651 Dyld
= new RuntimeDyldImpl(MM
);
654 RuntimeDyld::~RuntimeDyld() {
658 bool RuntimeDyld::loadObject(MemoryBuffer
*InputBuffer
) {
659 return Dyld
->loadObject(InputBuffer
);
662 void *RuntimeDyld::getSymbolAddress(StringRef Name
) {
663 return Dyld
->getSymbolAddress(Name
);
666 void RuntimeDyld::resolveRelocations() {
667 Dyld
->resolveRelocations();
670 void RuntimeDyld::reassignSymbolAddress(StringRef Name
, uint8_t *Addr
) {
671 Dyld
->reassignSymbolAddress(Name
, Addr
);
674 StringRef
RuntimeDyld::getErrorString() {
675 return Dyld
->getErrorString();
678 } // end namespace llvm