Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Linker / LinkModules.cpp
blobd77062772e37bb7d899f0ce1455f93f17b392321
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Linker.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Module.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include "llvm/Support/Path.h"
20 #include "llvm/Transforms/Utils/ValueMapper.h"
21 using namespace llvm;
23 //===----------------------------------------------------------------------===//
24 // TypeMap implementation.
25 //===----------------------------------------------------------------------===//
27 namespace {
28 class TypeMapTy : public ValueMapTypeRemapper {
29 /// MappedTypes - This is a mapping from a source type to a destination type
30 /// to use.
31 DenseMap<Type*, Type*> MappedTypes;
33 /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
34 /// we speculatively add types to MappedTypes, but keep track of them here in
35 /// case we need to roll back.
36 SmallVector<Type*, 16> SpeculativeTypes;
38 /// DefinitionsToResolve - This is a list of non-opaque structs in the source
39 /// module that are mapped to an opaque struct in the destination module.
40 SmallVector<StructType*, 16> DefinitionsToResolve;
41 public:
43 /// addTypeMapping - Indicate that the specified type in the destination
44 /// module is conceptually equivalent to the specified type in the source
45 /// module.
46 void addTypeMapping(Type *DstTy, Type *SrcTy);
48 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
49 /// module from a type definition in the source module.
50 void linkDefinedTypeBodies();
52 /// get - Return the mapped type to use for the specified input type from the
53 /// source module.
54 Type *get(Type *SrcTy);
56 FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
58 private:
59 Type *getImpl(Type *T);
60 /// remapType - Implement the ValueMapTypeRemapper interface.
61 Type *remapType(Type *SrcTy) {
62 return get(SrcTy);
65 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
69 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
70 Type *&Entry = MappedTypes[SrcTy];
71 if (Entry) return;
73 if (DstTy == SrcTy) {
74 Entry = DstTy;
75 return;
78 // Check to see if these types are recursively isomorphic and establish a
79 // mapping between them if so.
80 if (!areTypesIsomorphic(DstTy, SrcTy)) {
81 // Oops, they aren't isomorphic. Just discard this request by rolling out
82 // any speculative mappings we've established.
83 for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
84 MappedTypes.erase(SpeculativeTypes[i]);
86 SpeculativeTypes.clear();
89 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
90 /// if they are isomorphic, false if they are not.
91 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
92 // Two types with differing kinds are clearly not isomorphic.
93 if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
95 // If we have an entry in the MappedTypes table, then we have our answer.
96 Type *&Entry = MappedTypes[SrcTy];
97 if (Entry)
98 return Entry == DstTy;
100 // Two identical types are clearly isomorphic. Remember this
101 // non-speculatively.
102 if (DstTy == SrcTy) {
103 Entry = DstTy;
104 return true;
107 // Okay, we have two types with identical kinds that we haven't seen before.
109 // If this is an opaque struct type, special case it.
110 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
111 // Mapping an opaque type to any struct, just keep the dest struct.
112 if (SSTy->isOpaque()) {
113 Entry = DstTy;
114 SpeculativeTypes.push_back(SrcTy);
115 return true;
118 // Mapping a non-opaque source type to an opaque dest. Keep the dest, but
119 // fill it in later. This doesn't need to be speculative.
120 if (cast<StructType>(DstTy)->isOpaque()) {
121 Entry = DstTy;
122 DefinitionsToResolve.push_back(SSTy);
123 return true;
127 // If the number of subtypes disagree between the two types, then we fail.
128 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
129 return false;
131 // Fail if any of the extra properties (e.g. array size) of the type disagree.
132 if (isa<IntegerType>(DstTy))
133 return false; // bitwidth disagrees.
134 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
135 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
136 return false;
137 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
138 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
139 return false;
140 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
141 StructType *SSTy = cast<StructType>(SrcTy);
142 if (DSTy->isAnonymous() != SSTy->isAnonymous() ||
143 DSTy->isPacked() != SSTy->isPacked())
144 return false;
145 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
146 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
147 return false;
148 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
149 if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
150 return false;
153 // Otherwise, we speculate that these two types will line up and recursively
154 // check the subelements.
155 Entry = DstTy;
156 SpeculativeTypes.push_back(SrcTy);
158 for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
159 if (!areTypesIsomorphic(DstTy->getContainedType(i),
160 SrcTy->getContainedType(i)))
161 return false;
163 // If everything seems to have lined up, then everything is great.
164 return true;
167 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
168 /// module from a type definition in the source module.
169 void TypeMapTy::linkDefinedTypeBodies() {
170 SmallVector<Type*, 16> Elements;
171 SmallString<16> TmpName;
173 // Note that processing entries in this loop (calling 'get') can add new
174 // entries to the DefinitionsToResolve vector.
175 while (!DefinitionsToResolve.empty()) {
176 StructType *SrcSTy = DefinitionsToResolve.pop_back_val();
177 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
179 // TypeMap is a many-to-one mapping, if there were multiple types that
180 // provide a body for DstSTy then previous iterations of this loop may have
181 // already handled it. Just ignore this case.
182 if (!DstSTy->isOpaque()) continue;
183 assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
185 // Map the body of the source type over to a new body for the dest type.
186 Elements.resize(SrcSTy->getNumElements());
187 for (unsigned i = 0, e = Elements.size(); i != e; ++i)
188 Elements[i] = getImpl(SrcSTy->getElementType(i));
190 DstSTy->setBody(Elements, SrcSTy->isPacked());
192 // If DstSTy has no name or has a longer name than STy, then viciously steal
193 // STy's name.
194 if (!SrcSTy->hasName()) continue;
195 StringRef SrcName = SrcSTy->getName();
197 if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
198 TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
199 SrcSTy->setName("");
200 DstSTy->setName(TmpName.str());
201 TmpName.clear();
207 /// get - Return the mapped type to use for the specified input type from the
208 /// source module.
209 Type *TypeMapTy::get(Type *Ty) {
210 Type *Result = getImpl(Ty);
212 // If this caused a reference to any struct type, resolve it before returning.
213 if (!DefinitionsToResolve.empty())
214 linkDefinedTypeBodies();
215 return Result;
218 /// getImpl - This is the recursive version of get().
219 Type *TypeMapTy::getImpl(Type *Ty) {
220 // If we already have an entry for this type, return it.
221 Type **Entry = &MappedTypes[Ty];
222 if (*Entry) return *Entry;
224 // If this is not a named struct type, then just map all of the elements and
225 // then rebuild the type from inside out.
226 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isAnonymous()) {
227 // If there are no element types to map, then the type is itself. This is
228 // true for the anonymous {} struct, things like 'float', integers, etc.
229 if (Ty->getNumContainedTypes() == 0)
230 return *Entry = Ty;
232 // Remap all of the elements, keeping track of whether any of them change.
233 bool AnyChange = false;
234 SmallVector<Type*, 4> ElementTypes;
235 ElementTypes.resize(Ty->getNumContainedTypes());
236 for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
237 ElementTypes[i] = getImpl(Ty->getContainedType(i));
238 AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
241 // If we found our type while recursively processing stuff, just use it.
242 Entry = &MappedTypes[Ty];
243 if (*Entry) return *Entry;
245 // If all of the element types mapped directly over, then the type is usable
246 // as-is.
247 if (!AnyChange)
248 return *Entry = Ty;
250 // Otherwise, rebuild a modified type.
251 switch (Ty->getTypeID()) {
252 default: assert(0 && "unknown derived type to remap");
253 case Type::ArrayTyID:
254 return *Entry = ArrayType::get(ElementTypes[0],
255 cast<ArrayType>(Ty)->getNumElements());
256 case Type::VectorTyID:
257 return *Entry = VectorType::get(ElementTypes[0],
258 cast<VectorType>(Ty)->getNumElements());
259 case Type::PointerTyID:
260 return *Entry = PointerType::get(ElementTypes[0],
261 cast<PointerType>(Ty)->getAddressSpace());
262 case Type::FunctionTyID:
263 return *Entry = FunctionType::get(ElementTypes[0],
264 ArrayRef<Type*>(ElementTypes).slice(1),
265 cast<FunctionType>(Ty)->isVarArg());
266 case Type::StructTyID:
267 // Note that this is only reached for anonymous structs.
268 return *Entry = StructType::get(Ty->getContext(), ElementTypes,
269 cast<StructType>(Ty)->isPacked());
273 // Otherwise, this is an unmapped named struct. If the struct can be directly
274 // mapped over, just use it as-is. This happens in a case when the linked-in
275 // module has something like:
276 // %T = type {%T*, i32}
277 // @GV = global %T* null
278 // where T does not exist at all in the destination module.
280 // The other case we watch for is when the type is not in the destination
281 // module, but that it has to be rebuilt because it refers to something that
282 // is already mapped. For example, if the destination module has:
283 // %A = type { i32 }
284 // and the source module has something like
285 // %A' = type { i32 }
286 // %B = type { %A'* }
287 // @GV = global %B* null
288 // then we want to create a new type: "%B = type { %A*}" and have it take the
289 // pristine "%B" name from the source module.
291 // To determine which case this is, we have to recursively walk the type graph
292 // speculating that we'll be able to reuse it unmodified. Only if this is
293 // safe would we map the entire thing over. Because this is an optimization,
294 // and is not required for the prettiness of the linked module, we just skip
295 // it and always rebuild a type here.
296 StructType *STy = cast<StructType>(Ty);
298 // If the type is opaque, we can just use it directly.
299 if (STy->isOpaque())
300 return *Entry = STy;
302 // Otherwise we create a new type and resolve its body later. This will be
303 // resolved by the top level of get().
304 DefinitionsToResolve.push_back(STy);
305 return *Entry = StructType::createNamed(STy->getContext(), "");
310 //===----------------------------------------------------------------------===//
311 // ModuleLinker implementation.
312 //===----------------------------------------------------------------------===//
314 namespace {
315 /// ModuleLinker - This is an implementation class for the LinkModules
316 /// function, which is the entrypoint for this file.
317 class ModuleLinker {
318 Module *DstM, *SrcM;
320 TypeMapTy TypeMap;
322 /// ValueMap - Mapping of values from what they used to be in Src, to what
323 /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
324 /// some overhead due to the use of Value handles which the Linker doesn't
325 /// actually need, but this allows us to reuse the ValueMapper code.
326 ValueToValueMapTy ValueMap;
328 struct AppendingVarInfo {
329 GlobalVariable *NewGV; // New aggregate global in dest module.
330 Constant *DstInit; // Old initializer from dest module.
331 Constant *SrcInit; // Old initializer from src module.
334 std::vector<AppendingVarInfo> AppendingVars;
336 public:
337 std::string ErrorMsg;
339 ModuleLinker(Module *dstM, Module *srcM) : DstM(dstM), SrcM(srcM) { }
341 bool run();
343 private:
344 /// emitError - Helper method for setting a message and returning an error
345 /// code.
346 bool emitError(const Twine &Message) {
347 ErrorMsg = Message.str();
348 return true;
351 /// getLinkageResult - This analyzes the two global values and determines
352 /// what the result will look like in the destination module.
353 bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
354 GlobalValue::LinkageTypes &LT, bool &LinkFromSrc);
356 /// getLinkedToGlobal - Given a global in the source module, return the
357 /// global in the destination module that is being linked to, if any.
358 GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
359 // If the source has no name it can't link. If it has local linkage,
360 // there is no name match-up going on.
361 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
362 return 0;
364 // Otherwise see if we have a match in the destination module's symtab.
365 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
366 if (DGV == 0) return 0;
368 // If we found a global with the same name in the dest module, but it has
369 // internal linkage, we are really not doing any linkage here.
370 if (DGV->hasLocalLinkage())
371 return 0;
373 // Otherwise, we do in fact link to the destination global.
374 return DGV;
377 void computeTypeMapping();
379 bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
380 bool linkGlobalProto(GlobalVariable *SrcGV);
381 bool linkFunctionProto(Function *SrcF);
382 bool linkAliasProto(GlobalAlias *SrcA);
384 void linkAppendingVarInit(const AppendingVarInfo &AVI);
385 void linkGlobalInits();
386 void linkFunctionBody(Function *Dst, Function *Src);
387 void linkAliasBodies();
388 void linkNamedMDNodes();
394 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
395 /// in the symbol table. This is good for all clients except for us. Go
396 /// through the trouble to force this back.
397 static void forceRenaming(GlobalValue *GV, StringRef Name) {
398 // If the global doesn't force its name or if it already has the right name,
399 // there is nothing for us to do.
400 if (GV->hasLocalLinkage() || GV->getName() == Name)
401 return;
403 Module *M = GV->getParent();
405 // If there is a conflict, rename the conflict.
406 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
407 GV->takeName(ConflictGV);
408 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
409 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
410 } else {
411 GV->setName(Name); // Force the name back
415 /// CopyGVAttributes - copy additional attributes (those not needed to construct
416 /// a GlobalValue) from the SrcGV to the DestGV.
417 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
418 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
419 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
420 DestGV->copyAttributesFrom(SrcGV);
421 DestGV->setAlignment(Alignment);
423 forceRenaming(DestGV, SrcGV->getName());
426 /// getLinkageResult - This analyzes the two global values and determines what
427 /// the result will look like in the destination module. In particular, it
428 /// computes the resultant linkage type, computes whether the global in the
429 /// source should be copied over to the destination (replacing the existing
430 /// one), and computes whether this linkage is an error or not. It also performs
431 /// visibility checks: we cannot link together two symbols with different
432 /// visibilities.
433 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
434 GlobalValue::LinkageTypes &LT,
435 bool &LinkFromSrc) {
436 assert(Dest && "Must have two globals being queried");
437 assert(!Src->hasLocalLinkage() &&
438 "If Src has internal linkage, Dest shouldn't be set!");
440 // FIXME: GlobalAlias::isDeclaration is broken, should always be
441 // false.
442 bool SrcIsDeclaration = Src->isDeclaration() && !isa<GlobalAlias>(Src);
443 bool DestIsDeclaration = Dest->isDeclaration() && !isa<GlobalAlias>(Dest);
445 if (SrcIsDeclaration) {
446 // If Src is external or if both Src & Dest are external.. Just link the
447 // external globals, we aren't adding anything.
448 if (Src->hasDLLImportLinkage()) {
449 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
450 if (DestIsDeclaration) {
451 LinkFromSrc = true;
452 LT = Src->getLinkage();
454 } else if (Dest->hasExternalWeakLinkage()) {
455 // If the Dest is weak, use the source linkage.
456 LinkFromSrc = true;
457 LT = Src->getLinkage();
458 } else {
459 LinkFromSrc = false;
460 LT = Dest->getLinkage();
462 } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
463 // If Dest is external but Src is not:
464 LinkFromSrc = true;
465 LT = Src->getLinkage();
466 } else if (Src->isWeakForLinker()) {
467 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
468 // or DLL* linkage.
469 if (Dest->hasExternalWeakLinkage() ||
470 Dest->hasAvailableExternallyLinkage() ||
471 (Dest->hasLinkOnceLinkage() &&
472 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
473 LinkFromSrc = true;
474 LT = Src->getLinkage();
475 } else {
476 LinkFromSrc = false;
477 LT = Dest->getLinkage();
479 } else if (Dest->isWeakForLinker()) {
480 // At this point we know that Src has External* or DLL* linkage.
481 if (Src->hasExternalWeakLinkage()) {
482 LinkFromSrc = false;
483 LT = Dest->getLinkage();
484 } else {
485 LinkFromSrc = true;
486 LT = GlobalValue::ExternalLinkage;
488 } else {
489 assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() ||
490 Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
491 (Src->hasExternalLinkage() || Src->hasDLLImportLinkage() ||
492 Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) &&
493 "Unexpected linkage type!");
494 return emitError("Linking globals named '" + Src->getName() +
495 "': symbol multiply defined!");
498 // Check visibility
499 if (Src->getVisibility() != Dest->getVisibility() &&
500 !SrcIsDeclaration && !DestIsDeclaration &&
501 !Src->hasAvailableExternallyLinkage() &&
502 !Dest->hasAvailableExternallyLinkage())
503 return emitError("Linking globals named '" + Src->getName() +
504 "': symbols have different visibilities!");
505 return false;
508 /// computeTypeMapping - Loop over all of the linked values to compute type
509 /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
510 /// we have two struct types 'Foo' but one got renamed when the module was
511 /// loaded into the same LLVMContext.
512 void ModuleLinker::computeTypeMapping() {
513 // Incorporate globals.
514 for (Module::global_iterator I = SrcM->global_begin(),
515 E = SrcM->global_end(); I != E; ++I) {
516 GlobalValue *DGV = getLinkedToGlobal(I);
517 if (DGV == 0) continue;
519 if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
520 TypeMap.addTypeMapping(DGV->getType(), I->getType());
521 continue;
524 // Unify the element type of appending arrays.
525 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
526 ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
527 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
530 // Incorporate functions.
531 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
532 if (GlobalValue *DGV = getLinkedToGlobal(I))
533 TypeMap.addTypeMapping(DGV->getType(), I->getType());
536 // Don't bother incorporating aliases, they aren't generally typed well.
538 // Now that we have discovered all of the type equivalences, get a body for
539 // any 'opaque' types in the dest module that are now resolved.
540 TypeMap.linkDefinedTypeBodies();
543 /// linkAppendingVarProto - If there were any appending global variables, link
544 /// them together now. Return true on error.
545 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
546 GlobalVariable *SrcGV) {
548 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
549 return emitError("Linking globals named '" + SrcGV->getName() +
550 "': can only link appending global with another appending global!");
552 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
553 ArrayType *SrcTy =
554 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
555 Type *EltTy = DstTy->getElementType();
557 // Check to see that they two arrays agree on type.
558 if (EltTy != SrcTy->getElementType())
559 return emitError("Appending variables with different element types!");
560 if (DstGV->isConstant() != SrcGV->isConstant())
561 return emitError("Appending variables linked with different const'ness!");
563 if (DstGV->getAlignment() != SrcGV->getAlignment())
564 return emitError(
565 "Appending variables with different alignment need to be linked!");
567 if (DstGV->getVisibility() != SrcGV->getVisibility())
568 return emitError(
569 "Appending variables with different visibility need to be linked!");
571 if (DstGV->getSection() != SrcGV->getSection())
572 return emitError(
573 "Appending variables with different section name need to be linked!");
575 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
576 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
578 // Create the new global variable.
579 GlobalVariable *NG =
580 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
581 DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
582 DstGV->isThreadLocal(),
583 DstGV->getType()->getAddressSpace());
585 // Propagate alignment, visibility and section info.
586 CopyGVAttributes(NG, DstGV);
588 AppendingVarInfo AVI;
589 AVI.NewGV = NG;
590 AVI.DstInit = DstGV->getInitializer();
591 AVI.SrcInit = SrcGV->getInitializer();
592 AppendingVars.push_back(AVI);
594 // Replace any uses of the two global variables with uses of the new
595 // global.
596 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
598 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
599 DstGV->eraseFromParent();
601 // Zap the initializer in the source variable so we don't try to link it.
602 SrcGV->setInitializer(0);
603 SrcGV->setLinkage(GlobalValue::ExternalLinkage);
604 return false;
607 /// linkGlobalProto - Loop through the global variables in the src module and
608 /// merge them into the dest module.
609 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
610 GlobalValue *DGV = getLinkedToGlobal(SGV);
612 if (DGV) {
613 // Concatenation of appending linkage variables is magic and handled later.
614 if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
615 return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
617 // Determine whether linkage of these two globals follows the source
618 // module's definition or the destination module's definition.
619 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
620 bool LinkFromSrc = false;
621 if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc))
622 return true;
624 // If we're not linking from the source, then keep the definition that we
625 // have.
626 if (!LinkFromSrc) {
627 // Special case for const propagation.
628 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
629 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
630 DGVar->setConstant(true);
632 // Set calculated linkage.
633 DGV->setLinkage(NewLinkage);
635 // Make sure to remember this mapping.
636 ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
638 // Destroy the source global's initializer (and convert it to a prototype)
639 // so that we don't attempt to copy it over when processing global
640 // initializers.
641 SGV->setInitializer(0);
642 SGV->setLinkage(GlobalValue::ExternalLinkage);
643 return false;
647 // No linking to be performed or linking from the source: simply create an
648 // identical version of the symbol over in the dest module... the
649 // initializer will be filled in later by LinkGlobalInits.
650 GlobalVariable *NewDGV =
651 new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
652 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
653 SGV->getName(), /*insertbefore*/0,
654 SGV->isThreadLocal(),
655 SGV->getType()->getAddressSpace());
656 // Propagate alignment, visibility and section info.
657 CopyGVAttributes(NewDGV, SGV);
659 if (DGV) {
660 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
661 DGV->eraseFromParent();
664 // Make sure to remember this mapping.
665 ValueMap[SGV] = NewDGV;
666 return false;
669 /// linkFunctionProto - Link the function in the source module into the
670 /// destination module if needed, setting up mapping information.
671 bool ModuleLinker::linkFunctionProto(Function *SF) {
672 GlobalValue *DGV = getLinkedToGlobal(SF);
674 if (DGV) {
675 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
676 bool LinkFromSrc = false;
677 if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc))
678 return true;
680 if (!LinkFromSrc) {
681 // Set calculated linkage
682 DGV->setLinkage(NewLinkage);
684 // Make sure to remember this mapping.
685 ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
687 // Remove the body from the source module so we don't attempt to remap it.
688 SF->deleteBody();
689 return false;
693 // If there is no linkage to be performed or we are linking from the source,
694 // bring SF over.
695 Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
696 SF->getLinkage(), SF->getName(), DstM);
697 CopyGVAttributes(NewDF, SF);
699 if (DGV) {
700 // Any uses of DF need to change to NewDF, with cast.
701 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
702 DGV->eraseFromParent();
705 ValueMap[SF] = NewDF;
706 return false;
709 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
710 /// source module.
711 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
712 GlobalValue *DGV = getLinkedToGlobal(SGA);
714 if (DGV) {
715 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
716 bool LinkFromSrc = false;
717 if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc))
718 return true;
720 if (!LinkFromSrc) {
721 // Set calculated linkage.
722 DGV->setLinkage(NewLinkage);
724 // Make sure to remember this mapping.
725 ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
727 // Remove the body from the source module so we don't attempt to remap it.
728 SGA->setAliasee(0);
729 return false;
733 // If there is no linkage to be performed or we're linking from the source,
734 // bring over SGA.
735 GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
736 SGA->getLinkage(), SGA->getName(),
737 /*aliasee*/0, DstM);
738 CopyGVAttributes(NewDA, SGA);
740 if (DGV) {
741 // Any uses of DGV need to change to NewDA, with cast.
742 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
743 DGV->eraseFromParent();
746 ValueMap[SGA] = NewDA;
747 return false;
750 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
751 // Merge the initializer.
752 SmallVector<Constant*, 16> Elements;
753 if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) {
754 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
755 Elements.push_back(I->getOperand(i));
756 } else {
757 assert(isa<ConstantAggregateZero>(AVI.DstInit));
758 ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType());
759 Type *EltTy = DstAT->getElementType();
760 Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy));
763 Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
764 if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) {
765 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
766 Elements.push_back(I->getOperand(i));
767 } else {
768 assert(isa<ConstantAggregateZero>(SrcInit));
769 ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType());
770 Type *EltTy = SrcAT->getElementType();
771 Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy));
773 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
774 AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
778 // linkGlobalInits - Update the initializers in the Dest module now that all
779 // globals that may be referenced are in Dest.
780 void ModuleLinker::linkGlobalInits() {
781 // Loop over all of the globals in the src module, mapping them over as we go
782 for (Module::const_global_iterator I = SrcM->global_begin(),
783 E = SrcM->global_end(); I != E; ++I) {
784 if (!I->hasInitializer()) continue; // Only process initialized GV's.
786 // Grab destination global variable.
787 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
788 // Figure out what the initializer looks like in the dest module.
789 DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
790 RF_None, &TypeMap));
794 // linkFunctionBody - Copy the source function over into the dest function and
795 // fix up references to values. At this point we know that Dest is an external
796 // function, and that Src is not.
797 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
798 assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
800 // Go through and convert function arguments over, remembering the mapping.
801 Function::arg_iterator DI = Dst->arg_begin();
802 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
803 I != E; ++I, ++DI) {
804 DI->setName(I->getName()); // Copy the name over.
806 // Add a mapping to our mapping.
807 ValueMap[I] = DI;
810 // Splice the body of the source function into the dest function.
811 Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
813 // At this point, all of the instructions and values of the function are now
814 // copied over. The only problem is that they are still referencing values in
815 // the Source function as operands. Loop through all of the operands of the
816 // functions and patch them up to point to the local versions.
817 for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
818 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
819 RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
821 // There is no need to map the arguments anymore.
822 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
823 I != E; ++I)
824 ValueMap.erase(I);
828 void ModuleLinker::linkAliasBodies() {
829 for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
830 I != E; ++I)
831 if (Constant *Aliasee = I->getAliasee()) {
832 GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
833 DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
837 /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
838 /// module.
839 void ModuleLinker::linkNamedMDNodes() {
840 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
841 E = SrcM->named_metadata_end(); I != E; ++I) {
842 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
843 // Add Src elements into Dest node.
844 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
845 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
846 RF_None, &TypeMap));
850 bool ModuleLinker::run() {
851 assert(DstM && "Null Destination module");
852 assert(SrcM && "Null Source Module");
854 // Inherit the target data from the source module if the destination module
855 // doesn't have one already.
856 if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
857 DstM->setDataLayout(SrcM->getDataLayout());
859 // Copy the target triple from the source to dest if the dest's is empty.
860 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
861 DstM->setTargetTriple(SrcM->getTargetTriple());
863 if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
864 SrcM->getDataLayout() != DstM->getDataLayout())
865 errs() << "WARNING: Linking two modules of different data layouts!\n";
866 if (!SrcM->getTargetTriple().empty() &&
867 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
868 errs() << "WARNING: Linking two modules of different target triples: ";
869 if (!SrcM->getModuleIdentifier().empty())
870 errs() << SrcM->getModuleIdentifier() << ": ";
871 errs() << "'" << SrcM->getTargetTriple() << "' and '"
872 << DstM->getTargetTriple() << "'\n";
875 // Append the module inline asm string.
876 if (!SrcM->getModuleInlineAsm().empty()) {
877 if (DstM->getModuleInlineAsm().empty())
878 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
879 else
880 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
881 SrcM->getModuleInlineAsm());
884 // Update the destination module's dependent libraries list with the libraries
885 // from the source module. There's no opportunity for duplicates here as the
886 // Module ensures that duplicate insertions are discarded.
887 for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
888 SI != SE; ++SI)
889 DstM->addLibrary(*SI);
891 // If the source library's module id is in the dependent library list of the
892 // destination library, remove it since that module is now linked in.
893 StringRef ModuleId = SrcM->getModuleIdentifier();
894 if (!ModuleId.empty())
895 DstM->removeLibrary(sys::path::stem(ModuleId));
898 // Loop over all of the linked values to compute type mappings.
899 computeTypeMapping();
901 // Insert all of the globals in src into the DstM module... without linking
902 // initializers (which could refer to functions not yet mapped over).
903 for (Module::global_iterator I = SrcM->global_begin(),
904 E = SrcM->global_end(); I != E; ++I)
905 if (linkGlobalProto(I))
906 return true;
908 // Link the functions together between the two modules, without doing function
909 // bodies... this just adds external function prototypes to the DstM
910 // function... We do this so that when we begin processing function bodies,
911 // all of the global values that may be referenced are available in our
912 // ValueMap.
913 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
914 if (linkFunctionProto(I))
915 return true;
917 // If there were any aliases, link them now.
918 for (Module::alias_iterator I = SrcM->alias_begin(),
919 E = SrcM->alias_end(); I != E; ++I)
920 if (linkAliasProto(I))
921 return true;
923 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
924 linkAppendingVarInit(AppendingVars[i]);
926 // Update the initializers in the DstM module now that all globals that may
927 // be referenced are in DstM.
928 linkGlobalInits();
930 // Link in the function bodies that are defined in the source module into
931 // DstM.
932 for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
933 if (SF->isDeclaration()) continue; // No body if function is external.
935 linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
938 // Resolve all uses of aliases with aliasees.
939 linkAliasBodies();
941 // Remap all of the named mdnoes in Src into the DstM module. We do this
942 // after linking GlobalValues so that MDNodes that reference GlobalValues
943 // are properly remapped.
944 linkNamedMDNodes();
946 // Now that all of the types from the source are used, resolve any structs
947 // copied over to the dest that didn't exist there.
948 TypeMap.linkDefinedTypeBodies();
950 return false;
953 //===----------------------------------------------------------------------===//
954 // LinkModules entrypoint.
955 //===----------------------------------------------------------------------===//
957 // LinkModules - This function links two modules together, with the resulting
958 // left module modified to be the composite of the two input modules. If an
959 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
960 // the problem. Upon failure, the Dest module could be in a modified state, and
961 // shouldn't be relied on to be consistent.
962 bool Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
963 ModuleLinker TheLinker(Dest, Src);
964 if (TheLinker.run()) {
965 if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
966 return true;
969 return false;