Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Support / StringRef.cpp
blob8c3fc094cd11b4bc3003b50f24b5c3469f1aba7c
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/OwningPtr.h"
13 #include <bitset>
15 using namespace llvm;
17 // MSVC emits references to this into the translation units which reference it.
18 #ifndef _MSC_VER
19 const size_t StringRef::npos;
20 #endif
22 static char ascii_tolower(char x) {
23 if (x >= 'A' && x <= 'Z')
24 return x - 'A' + 'a';
25 return x;
28 static bool ascii_isdigit(char x) {
29 return x >= '0' && x <= '9';
32 /// compare_lower - Compare strings, ignoring case.
33 int StringRef::compare_lower(StringRef RHS) const {
34 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
35 unsigned char LHC = ascii_tolower(Data[I]);
36 unsigned char RHC = ascii_tolower(RHS.Data[I]);
37 if (LHC != RHC)
38 return LHC < RHC ? -1 : 1;
41 if (Length == RHS.Length)
42 return 0;
43 return Length < RHS.Length ? -1 : 1;
46 /// compare_numeric - Compare strings, handle embedded numbers.
47 int StringRef::compare_numeric(StringRef RHS) const {
48 for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
49 if (Data[I] == RHS.Data[I])
50 continue;
51 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
52 // The longer sequence of numbers is larger. This doesn't really handle
53 // prefixed zeros well.
54 for (size_t J = I+1; J != E+1; ++J) {
55 bool ld = J < Length && ascii_isdigit(Data[J]);
56 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
57 if (ld != rd)
58 return rd ? -1 : 1;
59 if (!rd)
60 break;
63 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
65 if (Length == RHS.Length)
66 return 0;
67 return Length < RHS.Length ? -1 : 1;
70 // Compute the edit distance between the two given strings.
71 unsigned StringRef::edit_distance(llvm::StringRef Other,
72 bool AllowReplacements,
73 unsigned MaxEditDistance) {
74 // The algorithm implemented below is the "classic"
75 // dynamic-programming algorithm for computing the Levenshtein
76 // distance, which is described here:
78 // http://en.wikipedia.org/wiki/Levenshtein_distance
80 // Although the algorithm is typically described using an m x n
81 // array, only two rows are used at a time, so this implemenation
82 // just keeps two separate vectors for those two rows.
83 size_type m = size();
84 size_type n = Other.size();
86 const unsigned SmallBufferSize = 64;
87 unsigned SmallBuffer[SmallBufferSize];
88 llvm::OwningArrayPtr<unsigned> Allocated;
89 unsigned *previous = SmallBuffer;
90 if (2*(n + 1) > SmallBufferSize) {
91 previous = new unsigned [2*(n+1)];
92 Allocated.reset(previous);
94 unsigned *current = previous + (n + 1);
96 for (unsigned i = 0; i <= n; ++i)
97 previous[i] = i;
99 for (size_type y = 1; y <= m; ++y) {
100 current[0] = y;
101 unsigned BestThisRow = current[0];
103 for (size_type x = 1; x <= n; ++x) {
104 if (AllowReplacements) {
105 current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u),
106 min(current[x-1], previous[x])+1);
108 else {
109 if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1];
110 else current[x] = min(current[x-1], previous[x]) + 1;
112 BestThisRow = min(BestThisRow, current[x]);
115 if (MaxEditDistance && BestThisRow > MaxEditDistance)
116 return MaxEditDistance + 1;
118 unsigned *tmp = current;
119 current = previous;
120 previous = tmp;
123 unsigned Result = previous[n];
124 return Result;
127 //===----------------------------------------------------------------------===//
128 // String Searching
129 //===----------------------------------------------------------------------===//
132 /// find - Search for the first string \arg Str in the string.
134 /// \return - The index of the first occurrence of \arg Str, or npos if not
135 /// found.
136 size_t StringRef::find(StringRef Str, size_t From) const {
137 size_t N = Str.size();
138 if (N > Length)
139 return npos;
140 for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
141 if (substr(i, N).equals(Str))
142 return i;
143 return npos;
146 /// rfind - Search for the last string \arg Str in the string.
148 /// \return - The index of the last occurrence of \arg Str, or npos if not
149 /// found.
150 size_t StringRef::rfind(StringRef Str) const {
151 size_t N = Str.size();
152 if (N > Length)
153 return npos;
154 for (size_t i = Length - N + 1, e = 0; i != e;) {
155 --i;
156 if (substr(i, N).equals(Str))
157 return i;
159 return npos;
162 /// find_first_of - Find the first character in the string that is in \arg
163 /// Chars, or npos if not found.
165 /// Note: O(size() + Chars.size())
166 StringRef::size_type StringRef::find_first_of(StringRef Chars,
167 size_t From) const {
168 std::bitset<1 << CHAR_BIT> CharBits;
169 for (size_type i = 0; i != Chars.size(); ++i)
170 CharBits.set((unsigned char)Chars[i]);
172 for (size_type i = min(From, Length), e = Length; i != e; ++i)
173 if (CharBits.test((unsigned char)Data[i]))
174 return i;
175 return npos;
178 /// find_first_not_of - Find the first character in the string that is not
179 /// \arg C or npos if not found.
180 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
181 for (size_type i = min(From, Length), e = Length; i != e; ++i)
182 if (Data[i] != C)
183 return i;
184 return npos;
187 /// find_first_not_of - Find the first character in the string that is not
188 /// in the string \arg Chars, or npos if not found.
190 /// Note: O(size() + Chars.size())
191 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
192 size_t From) const {
193 std::bitset<1 << CHAR_BIT> CharBits;
194 for (size_type i = 0; i != Chars.size(); ++i)
195 CharBits.set((unsigned char)Chars[i]);
197 for (size_type i = min(From, Length), e = Length; i != e; ++i)
198 if (!CharBits.test((unsigned char)Data[i]))
199 return i;
200 return npos;
203 /// find_last_of - Find the last character in the string that is in \arg C,
204 /// or npos if not found.
206 /// Note: O(size() + Chars.size())
207 StringRef::size_type StringRef::find_last_of(StringRef Chars,
208 size_t From) const {
209 std::bitset<1 << CHAR_BIT> CharBits;
210 for (size_type i = 0; i != Chars.size(); ++i)
211 CharBits.set((unsigned char)Chars[i]);
213 for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
214 if (CharBits.test((unsigned char)Data[i]))
215 return i;
216 return npos;
219 //===----------------------------------------------------------------------===//
220 // Helpful Algorithms
221 //===----------------------------------------------------------------------===//
223 /// count - Return the number of non-overlapped occurrences of \arg Str in
224 /// the string.
225 size_t StringRef::count(StringRef Str) const {
226 size_t Count = 0;
227 size_t N = Str.size();
228 if (N > Length)
229 return 0;
230 for (size_t i = 0, e = Length - N + 1; i != e; ++i)
231 if (substr(i, N).equals(Str))
232 ++Count;
233 return Count;
236 static unsigned GetAutoSenseRadix(StringRef &Str) {
237 if (Str.startswith("0x")) {
238 Str = Str.substr(2);
239 return 16;
240 } else if (Str.startswith("0b")) {
241 Str = Str.substr(2);
242 return 2;
243 } else if (Str.startswith("0")) {
244 return 8;
245 } else {
246 return 10;
251 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
252 /// sequence of radix up to 36 to an unsigned long long value.
253 static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix,
254 unsigned long long &Result) {
255 // Autosense radix if not specified.
256 if (Radix == 0)
257 Radix = GetAutoSenseRadix(Str);
259 // Empty strings (after the radix autosense) are invalid.
260 if (Str.empty()) return true;
262 // Parse all the bytes of the string given this radix. Watch for overflow.
263 Result = 0;
264 while (!Str.empty()) {
265 unsigned CharVal;
266 if (Str[0] >= '0' && Str[0] <= '9')
267 CharVal = Str[0]-'0';
268 else if (Str[0] >= 'a' && Str[0] <= 'z')
269 CharVal = Str[0]-'a'+10;
270 else if (Str[0] >= 'A' && Str[0] <= 'Z')
271 CharVal = Str[0]-'A'+10;
272 else
273 return true;
275 // If the parsed value is larger than the integer radix, the string is
276 // invalid.
277 if (CharVal >= Radix)
278 return true;
280 // Add in this character.
281 unsigned long long PrevResult = Result;
282 Result = Result*Radix+CharVal;
284 // Check for overflow.
285 if (Result < PrevResult)
286 return true;
288 Str = Str.substr(1);
291 return false;
294 bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const {
295 return GetAsUnsignedInteger(*this, Radix, Result);
299 bool StringRef::getAsInteger(unsigned Radix, long long &Result) const {
300 unsigned long long ULLVal;
302 // Handle positive strings first.
303 if (empty() || front() != '-') {
304 if (GetAsUnsignedInteger(*this, Radix, ULLVal) ||
305 // Check for value so large it overflows a signed value.
306 (long long)ULLVal < 0)
307 return true;
308 Result = ULLVal;
309 return false;
312 // Get the positive part of the value.
313 if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) ||
314 // Reject values so large they'd overflow as negative signed, but allow
315 // "-0". This negates the unsigned so that the negative isn't undefined
316 // on signed overflow.
317 (long long)-ULLVal > 0)
318 return true;
320 Result = -ULLVal;
321 return false;
324 bool StringRef::getAsInteger(unsigned Radix, int &Result) const {
325 long long Val;
326 if (getAsInteger(Radix, Val) ||
327 (int)Val != Val)
328 return true;
329 Result = Val;
330 return false;
333 bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const {
334 unsigned long long Val;
335 if (getAsInteger(Radix, Val) ||
336 (unsigned)Val != Val)
337 return true;
338 Result = Val;
339 return false;
342 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
343 StringRef Str = *this;
345 // Autosense radix if not specified.
346 if (Radix == 0)
347 Radix = GetAutoSenseRadix(Str);
349 assert(Radix > 1 && Radix <= 36);
351 // Empty strings (after the radix autosense) are invalid.
352 if (Str.empty()) return true;
354 // Skip leading zeroes. This can be a significant improvement if
355 // it means we don't need > 64 bits.
356 while (!Str.empty() && Str.front() == '0')
357 Str = Str.substr(1);
359 // If it was nothing but zeroes....
360 if (Str.empty()) {
361 Result = APInt(64, 0);
362 return false;
365 // (Over-)estimate the required number of bits.
366 unsigned Log2Radix = 0;
367 while ((1U << Log2Radix) < Radix) Log2Radix++;
368 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
370 unsigned BitWidth = Log2Radix * Str.size();
371 if (BitWidth < Result.getBitWidth())
372 BitWidth = Result.getBitWidth(); // don't shrink the result
373 else
374 Result = Result.zext(BitWidth);
376 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
377 if (!IsPowerOf2Radix) {
378 // These must have the same bit-width as Result.
379 RadixAP = APInt(BitWidth, Radix);
380 CharAP = APInt(BitWidth, 0);
383 // Parse all the bytes of the string given this radix.
384 Result = 0;
385 while (!Str.empty()) {
386 unsigned CharVal;
387 if (Str[0] >= '0' && Str[0] <= '9')
388 CharVal = Str[0]-'0';
389 else if (Str[0] >= 'a' && Str[0] <= 'z')
390 CharVal = Str[0]-'a'+10;
391 else if (Str[0] >= 'A' && Str[0] <= 'Z')
392 CharVal = Str[0]-'A'+10;
393 else
394 return true;
396 // If the parsed value is larger than the integer radix, the string is
397 // invalid.
398 if (CharVal >= Radix)
399 return true;
401 // Add in this character.
402 if (IsPowerOf2Radix) {
403 Result <<= Log2Radix;
404 Result |= CharVal;
405 } else {
406 Result *= RadixAP;
407 CharAP = CharVal;
408 Result += CharAP;
411 Str = Str.substr(1);
414 return false;