1 //===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "ARMBaseInstrInfo.h"
16 #include "ARMAddressingModes.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMHazardRecognizer.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMRegisterInfo.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Support/BranchProbability.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/ADT/STLExtras.h"
39 #define GET_INSTRINFO_MC_DESC
40 #define GET_INSTRINFO_CTOR
41 #include "ARMGenInstrInfo.inc"
46 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden
,
47 cl::desc("Enable ARM 2-addr to 3-addr conv"));
49 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
51 unsigned MLxOpc
; // MLA / MLS opcode
52 unsigned MulOpc
; // Expanded multiplication opcode
53 unsigned AddSubOpc
; // Expanded add / sub opcode
54 bool NegAcc
; // True if the acc is negated before the add / sub.
55 bool HasLane
; // True if instruction has an extra "lane" operand.
58 static const ARM_MLxEntry ARM_MLxTable
[] = {
59 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
61 { ARM::VMLAS
, ARM::VMULS
, ARM::VADDS
, false, false },
62 { ARM::VMLSS
, ARM::VMULS
, ARM::VSUBS
, false, false },
63 { ARM::VMLAD
, ARM::VMULD
, ARM::VADDD
, false, false },
64 { ARM::VMLSD
, ARM::VMULD
, ARM::VSUBD
, false, false },
65 { ARM::VNMLAS
, ARM::VNMULS
, ARM::VSUBS
, true, false },
66 { ARM::VNMLSS
, ARM::VMULS
, ARM::VSUBS
, true, false },
67 { ARM::VNMLAD
, ARM::VNMULD
, ARM::VSUBD
, true, false },
68 { ARM::VNMLSD
, ARM::VMULD
, ARM::VSUBD
, true, false },
71 { ARM::VMLAfd
, ARM::VMULfd
, ARM::VADDfd
, false, false },
72 { ARM::VMLSfd
, ARM::VMULfd
, ARM::VSUBfd
, false, false },
73 { ARM::VMLAfq
, ARM::VMULfq
, ARM::VADDfq
, false, false },
74 { ARM::VMLSfq
, ARM::VMULfq
, ARM::VSUBfq
, false, false },
75 { ARM::VMLAslfd
, ARM::VMULslfd
, ARM::VADDfd
, false, true },
76 { ARM::VMLSslfd
, ARM::VMULslfd
, ARM::VSUBfd
, false, true },
77 { ARM::VMLAslfq
, ARM::VMULslfq
, ARM::VADDfq
, false, true },
78 { ARM::VMLSslfq
, ARM::VMULslfq
, ARM::VSUBfq
, false, true },
81 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget
& STI
)
82 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN
, ARM::ADJCALLSTACKUP
),
84 for (unsigned i
= 0, e
= array_lengthof(ARM_MLxTable
); i
!= e
; ++i
) {
85 if (!MLxEntryMap
.insert(std::make_pair(ARM_MLxTable
[i
].MLxOpc
, i
)).second
)
86 assert(false && "Duplicated entries?");
87 MLxHazardOpcodes
.insert(ARM_MLxTable
[i
].AddSubOpc
);
88 MLxHazardOpcodes
.insert(ARM_MLxTable
[i
].MulOpc
);
92 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
93 // currently defaults to no prepass hazard recognizer.
94 ScheduleHazardRecognizer
*ARMBaseInstrInfo::
95 CreateTargetHazardRecognizer(const TargetMachine
*TM
,
96 const ScheduleDAG
*DAG
) const {
97 if (usePreRAHazardRecognizer()) {
98 const InstrItineraryData
*II
= TM
->getInstrItineraryData();
99 return new ScoreboardHazardRecognizer(II
, DAG
, "pre-RA-sched");
101 return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM
, DAG
);
104 ScheduleHazardRecognizer
*ARMBaseInstrInfo::
105 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
106 const ScheduleDAG
*DAG
) const {
107 if (Subtarget
.isThumb2() || Subtarget
.hasVFP2())
108 return (ScheduleHazardRecognizer
*)
109 new ARMHazardRecognizer(II
, *this, getRegisterInfo(), Subtarget
, DAG
);
110 return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II
, DAG
);
114 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
115 MachineBasicBlock::iterator
&MBBI
,
116 LiveVariables
*LV
) const {
117 // FIXME: Thumb2 support.
122 MachineInstr
*MI
= MBBI
;
123 MachineFunction
&MF
= *MI
->getParent()->getParent();
124 uint64_t TSFlags
= MI
->getDesc().TSFlags
;
126 switch ((TSFlags
& ARMII::IndexModeMask
) >> ARMII::IndexModeShift
) {
127 default: return NULL
;
128 case ARMII::IndexModePre
:
131 case ARMII::IndexModePost
:
135 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
137 unsigned MemOpc
= getUnindexedOpcode(MI
->getOpcode());
141 MachineInstr
*UpdateMI
= NULL
;
142 MachineInstr
*MemMI
= NULL
;
143 unsigned AddrMode
= (TSFlags
& ARMII::AddrModeMask
);
144 const MCInstrDesc
&MCID
= MI
->getDesc();
145 unsigned NumOps
= MCID
.getNumOperands();
146 bool isLoad
= !MCID
.mayStore();
147 const MachineOperand
&WB
= isLoad
? MI
->getOperand(1) : MI
->getOperand(0);
148 const MachineOperand
&Base
= MI
->getOperand(2);
149 const MachineOperand
&Offset
= MI
->getOperand(NumOps
-3);
150 unsigned WBReg
= WB
.getReg();
151 unsigned BaseReg
= Base
.getReg();
152 unsigned OffReg
= Offset
.getReg();
153 unsigned OffImm
= MI
->getOperand(NumOps
-2).getImm();
154 ARMCC::CondCodes Pred
= (ARMCC::CondCodes
)MI
->getOperand(NumOps
-1).getImm();
157 assert(false && "Unknown indexed op!");
159 case ARMII::AddrMode2
: {
160 bool isSub
= ARM_AM::getAM2Op(OffImm
) == ARM_AM::sub
;
161 unsigned Amt
= ARM_AM::getAM2Offset(OffImm
);
163 if (ARM_AM::getSOImmVal(Amt
) == -1)
164 // Can't encode it in a so_imm operand. This transformation will
165 // add more than 1 instruction. Abandon!
167 UpdateMI
= BuildMI(MF
, MI
->getDebugLoc(),
168 get(isSub
? ARM::SUBri
: ARM::ADDri
), WBReg
)
169 .addReg(BaseReg
).addImm(Amt
)
170 .addImm(Pred
).addReg(0).addReg(0);
171 } else if (Amt
!= 0) {
172 ARM_AM::ShiftOpc ShOpc
= ARM_AM::getAM2ShiftOpc(OffImm
);
173 unsigned SOOpc
= ARM_AM::getSORegOpc(ShOpc
, Amt
);
174 UpdateMI
= BuildMI(MF
, MI
->getDebugLoc(),
175 get(isSub
? ARM::SUBrs
: ARM::ADDrs
), WBReg
)
176 .addReg(BaseReg
).addReg(OffReg
).addReg(0).addImm(SOOpc
)
177 .addImm(Pred
).addReg(0).addReg(0);
179 UpdateMI
= BuildMI(MF
, MI
->getDebugLoc(),
180 get(isSub
? ARM::SUBrr
: ARM::ADDrr
), WBReg
)
181 .addReg(BaseReg
).addReg(OffReg
)
182 .addImm(Pred
).addReg(0).addReg(0);
185 case ARMII::AddrMode3
: {
186 bool isSub
= ARM_AM::getAM3Op(OffImm
) == ARM_AM::sub
;
187 unsigned Amt
= ARM_AM::getAM3Offset(OffImm
);
189 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
190 UpdateMI
= BuildMI(MF
, MI
->getDebugLoc(),
191 get(isSub
? ARM::SUBri
: ARM::ADDri
), WBReg
)
192 .addReg(BaseReg
).addImm(Amt
)
193 .addImm(Pred
).addReg(0).addReg(0);
195 UpdateMI
= BuildMI(MF
, MI
->getDebugLoc(),
196 get(isSub
? ARM::SUBrr
: ARM::ADDrr
), WBReg
)
197 .addReg(BaseReg
).addReg(OffReg
)
198 .addImm(Pred
).addReg(0).addReg(0);
203 std::vector
<MachineInstr
*> NewMIs
;
206 MemMI
= BuildMI(MF
, MI
->getDebugLoc(),
207 get(MemOpc
), MI
->getOperand(0).getReg())
208 .addReg(WBReg
).addImm(0).addImm(Pred
);
210 MemMI
= BuildMI(MF
, MI
->getDebugLoc(),
211 get(MemOpc
)).addReg(MI
->getOperand(1).getReg())
212 .addReg(WBReg
).addReg(0).addImm(0).addImm(Pred
);
213 NewMIs
.push_back(MemMI
);
214 NewMIs
.push_back(UpdateMI
);
217 MemMI
= BuildMI(MF
, MI
->getDebugLoc(),
218 get(MemOpc
), MI
->getOperand(0).getReg())
219 .addReg(BaseReg
).addImm(0).addImm(Pred
);
221 MemMI
= BuildMI(MF
, MI
->getDebugLoc(),
222 get(MemOpc
)).addReg(MI
->getOperand(1).getReg())
223 .addReg(BaseReg
).addReg(0).addImm(0).addImm(Pred
);
225 UpdateMI
->getOperand(0).setIsDead();
226 NewMIs
.push_back(UpdateMI
);
227 NewMIs
.push_back(MemMI
);
230 // Transfer LiveVariables states, kill / dead info.
232 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
233 MachineOperand
&MO
= MI
->getOperand(i
);
234 if (MO
.isReg() && TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
235 unsigned Reg
= MO
.getReg();
237 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(Reg
);
239 MachineInstr
*NewMI
= (Reg
== WBReg
) ? UpdateMI
: MemMI
;
241 LV
->addVirtualRegisterDead(Reg
, NewMI
);
243 if (MO
.isUse() && MO
.isKill()) {
244 for (unsigned j
= 0; j
< 2; ++j
) {
245 // Look at the two new MI's in reverse order.
246 MachineInstr
*NewMI
= NewMIs
[j
];
247 if (!NewMI
->readsRegister(Reg
))
249 LV
->addVirtualRegisterKilled(Reg
, NewMI
);
250 if (VI
.removeKill(MI
))
251 VI
.Kills
.push_back(NewMI
);
259 MFI
->insert(MBBI
, NewMIs
[1]);
260 MFI
->insert(MBBI
, NewMIs
[0]);
266 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB
,MachineBasicBlock
*&TBB
,
267 MachineBasicBlock
*&FBB
,
268 SmallVectorImpl
<MachineOperand
> &Cond
,
269 bool AllowModify
) const {
270 // If the block has no terminators, it just falls into the block after it.
271 MachineBasicBlock::iterator I
= MBB
.end();
272 if (I
== MBB
.begin())
275 while (I
->isDebugValue()) {
276 if (I
== MBB
.begin())
280 if (!isUnpredicatedTerminator(I
))
283 // Get the last instruction in the block.
284 MachineInstr
*LastInst
= I
;
286 // If there is only one terminator instruction, process it.
287 unsigned LastOpc
= LastInst
->getOpcode();
288 if (I
== MBB
.begin() || !isUnpredicatedTerminator(--I
)) {
289 if (isUncondBranchOpcode(LastOpc
)) {
290 TBB
= LastInst
->getOperand(0).getMBB();
293 if (isCondBranchOpcode(LastOpc
)) {
294 // Block ends with fall-through condbranch.
295 TBB
= LastInst
->getOperand(0).getMBB();
296 Cond
.push_back(LastInst
->getOperand(1));
297 Cond
.push_back(LastInst
->getOperand(2));
300 return true; // Can't handle indirect branch.
303 // Get the instruction before it if it is a terminator.
304 MachineInstr
*SecondLastInst
= I
;
305 unsigned SecondLastOpc
= SecondLastInst
->getOpcode();
307 // If AllowModify is true and the block ends with two or more unconditional
308 // branches, delete all but the first unconditional branch.
309 if (AllowModify
&& isUncondBranchOpcode(LastOpc
)) {
310 while (isUncondBranchOpcode(SecondLastOpc
)) {
311 LastInst
->eraseFromParent();
312 LastInst
= SecondLastInst
;
313 LastOpc
= LastInst
->getOpcode();
314 if (I
== MBB
.begin() || !isUnpredicatedTerminator(--I
)) {
315 // Return now the only terminator is an unconditional branch.
316 TBB
= LastInst
->getOperand(0).getMBB();
320 SecondLastOpc
= SecondLastInst
->getOpcode();
325 // If there are three terminators, we don't know what sort of block this is.
326 if (SecondLastInst
&& I
!= MBB
.begin() && isUnpredicatedTerminator(--I
))
329 // If the block ends with a B and a Bcc, handle it.
330 if (isCondBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
331 TBB
= SecondLastInst
->getOperand(0).getMBB();
332 Cond
.push_back(SecondLastInst
->getOperand(1));
333 Cond
.push_back(SecondLastInst
->getOperand(2));
334 FBB
= LastInst
->getOperand(0).getMBB();
338 // If the block ends with two unconditional branches, handle it. The second
339 // one is not executed, so remove it.
340 if (isUncondBranchOpcode(SecondLastOpc
) && isUncondBranchOpcode(LastOpc
)) {
341 TBB
= SecondLastInst
->getOperand(0).getMBB();
344 I
->eraseFromParent();
348 // ...likewise if it ends with a branch table followed by an unconditional
349 // branch. The branch folder can create these, and we must get rid of them for
350 // correctness of Thumb constant islands.
351 if ((isJumpTableBranchOpcode(SecondLastOpc
) ||
352 isIndirectBranchOpcode(SecondLastOpc
)) &&
353 isUncondBranchOpcode(LastOpc
)) {
356 I
->eraseFromParent();
360 // Otherwise, can't handle this.
365 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock
&MBB
) const {
366 MachineBasicBlock::iterator I
= MBB
.end();
367 if (I
== MBB
.begin()) return 0;
369 while (I
->isDebugValue()) {
370 if (I
== MBB
.begin())
374 if (!isUncondBranchOpcode(I
->getOpcode()) &&
375 !isCondBranchOpcode(I
->getOpcode()))
378 // Remove the branch.
379 I
->eraseFromParent();
383 if (I
== MBB
.begin()) return 1;
385 if (!isCondBranchOpcode(I
->getOpcode()))
388 // Remove the branch.
389 I
->eraseFromParent();
394 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
395 MachineBasicBlock
*FBB
,
396 const SmallVectorImpl
<MachineOperand
> &Cond
,
398 ARMFunctionInfo
*AFI
= MBB
.getParent()->getInfo
<ARMFunctionInfo
>();
399 int BOpc
= !AFI
->isThumbFunction()
400 ? ARM::B
: (AFI
->isThumb2Function() ? ARM::t2B
: ARM::tB
);
401 int BccOpc
= !AFI
->isThumbFunction()
402 ? ARM::Bcc
: (AFI
->isThumb2Function() ? ARM::t2Bcc
: ARM::tBcc
);
404 // Shouldn't be a fall through.
405 assert(TBB
&& "InsertBranch must not be told to insert a fallthrough");
406 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
407 "ARM branch conditions have two components!");
410 if (Cond
.empty()) // Unconditional branch?
411 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
);
413 BuildMI(&MBB
, DL
, get(BccOpc
)).addMBB(TBB
)
414 .addImm(Cond
[0].getImm()).addReg(Cond
[1].getReg());
418 // Two-way conditional branch.
419 BuildMI(&MBB
, DL
, get(BccOpc
)).addMBB(TBB
)
420 .addImm(Cond
[0].getImm()).addReg(Cond
[1].getReg());
421 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
);
425 bool ARMBaseInstrInfo::
426 ReverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
427 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)(int)Cond
[0].getImm();
428 Cond
[0].setImm(ARMCC::getOppositeCondition(CC
));
432 bool ARMBaseInstrInfo::
433 PredicateInstruction(MachineInstr
*MI
,
434 const SmallVectorImpl
<MachineOperand
> &Pred
) const {
435 unsigned Opc
= MI
->getOpcode();
436 if (isUncondBranchOpcode(Opc
)) {
437 MI
->setDesc(get(getMatchingCondBranchOpcode(Opc
)));
438 MI
->addOperand(MachineOperand::CreateImm(Pred
[0].getImm()));
439 MI
->addOperand(MachineOperand::CreateReg(Pred
[1].getReg(), false));
443 int PIdx
= MI
->findFirstPredOperandIdx();
445 MachineOperand
&PMO
= MI
->getOperand(PIdx
);
446 PMO
.setImm(Pred
[0].getImm());
447 MI
->getOperand(PIdx
+1).setReg(Pred
[1].getReg());
453 bool ARMBaseInstrInfo::
454 SubsumesPredicate(const SmallVectorImpl
<MachineOperand
> &Pred1
,
455 const SmallVectorImpl
<MachineOperand
> &Pred2
) const {
456 if (Pred1
.size() > 2 || Pred2
.size() > 2)
459 ARMCC::CondCodes CC1
= (ARMCC::CondCodes
)Pred1
[0].getImm();
460 ARMCC::CondCodes CC2
= (ARMCC::CondCodes
)Pred2
[0].getImm();
470 return CC2
== ARMCC::HI
;
472 return CC2
== ARMCC::LO
|| CC2
== ARMCC::EQ
;
474 return CC2
== ARMCC::GT
;
476 return CC2
== ARMCC::LT
;
480 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr
*MI
,
481 std::vector
<MachineOperand
> &Pred
) const {
482 // FIXME: This confuses implicit_def with optional CPSR def.
483 const MCInstrDesc
&MCID
= MI
->getDesc();
484 if (!MCID
.getImplicitDefs() && !MCID
.hasOptionalDef())
488 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
489 const MachineOperand
&MO
= MI
->getOperand(i
);
490 if (MO
.isReg() && MO
.getReg() == ARM::CPSR
) {
499 /// isPredicable - Return true if the specified instruction can be predicated.
500 /// By default, this returns true for every instruction with a
501 /// PredicateOperand.
502 bool ARMBaseInstrInfo::isPredicable(MachineInstr
*MI
) const {
503 const MCInstrDesc
&MCID
= MI
->getDesc();
504 if (!MCID
.isPredicable())
507 if ((MCID
.TSFlags
& ARMII::DomainMask
) == ARMII::DomainNEON
) {
508 ARMFunctionInfo
*AFI
=
509 MI
->getParent()->getParent()->getInfo
<ARMFunctionInfo
>();
510 return AFI
->isThumb2Function();
515 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
516 LLVM_ATTRIBUTE_NOINLINE
517 static unsigned getNumJTEntries(const std::vector
<MachineJumpTableEntry
> &JT
,
519 static unsigned getNumJTEntries(const std::vector
<MachineJumpTableEntry
> &JT
,
521 assert(JTI
< JT
.size());
522 return JT
[JTI
].MBBs
.size();
525 /// GetInstSize - Return the size of the specified MachineInstr.
527 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr
*MI
) const {
528 const MachineBasicBlock
&MBB
= *MI
->getParent();
529 const MachineFunction
*MF
= MBB
.getParent();
530 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
532 // Basic size info comes from the TSFlags field.
533 const MCInstrDesc
&MCID
= MI
->getDesc();
534 uint64_t TSFlags
= MCID
.TSFlags
;
536 unsigned Opc
= MI
->getOpcode();
537 switch ((TSFlags
& ARMII::SizeMask
) >> ARMII::SizeShift
) {
539 // If this machine instr is an inline asm, measure it.
540 if (MI
->getOpcode() == ARM::INLINEASM
)
541 return getInlineAsmLength(MI
->getOperand(0).getSymbolName(), *MAI
);
546 llvm_unreachable("Unknown or unset size field for instr!");
547 case TargetOpcode::IMPLICIT_DEF
:
548 case TargetOpcode::KILL
:
549 case TargetOpcode::PROLOG_LABEL
:
550 case TargetOpcode::EH_LABEL
:
551 case TargetOpcode::DBG_VALUE
:
556 case ARMII::Size8Bytes
: return 8; // ARM instruction x 2.
557 case ARMII::Size4Bytes
: return 4; // ARM / Thumb2 instruction.
558 case ARMII::Size2Bytes
: return 2; // Thumb1 instruction.
559 case ARMII::SizeSpecial
: {
561 case ARM::MOVi16_ga_pcrel
:
562 case ARM::MOVTi16_ga_pcrel
:
563 case ARM::t2MOVi16_ga_pcrel
:
564 case ARM::t2MOVTi16_ga_pcrel
:
567 case ARM::t2MOVi32imm
:
569 case ARM::CONSTPOOL_ENTRY
:
570 // If this machine instr is a constant pool entry, its size is recorded as
572 return MI
->getOperand(2).getImm();
573 case ARM::Int_eh_sjlj_longjmp
:
575 case ARM::tInt_eh_sjlj_longjmp
:
577 case ARM::Int_eh_sjlj_setjmp
:
578 case ARM::Int_eh_sjlj_setjmp_nofp
:
580 case ARM::tInt_eh_sjlj_setjmp
:
581 case ARM::t2Int_eh_sjlj_setjmp
:
582 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
590 case ARM::t2TBH_JT
: {
591 // These are jumptable branches, i.e. a branch followed by an inlined
592 // jumptable. The size is 4 + 4 * number of entries. For TBB, each
593 // entry is one byte; TBH two byte each.
594 unsigned EntrySize
= (Opc
== ARM::t2TBB_JT
)
595 ? 1 : ((Opc
== ARM::t2TBH_JT
) ? 2 : 4);
596 unsigned NumOps
= MCID
.getNumOperands();
597 MachineOperand JTOP
=
598 MI
->getOperand(NumOps
- (MCID
.isPredicable() ? 3 : 2));
599 unsigned JTI
= JTOP
.getIndex();
600 const MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
602 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
603 assert(JTI
< JT
.size());
604 // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
605 // 4 aligned. The assembler / linker may add 2 byte padding just before
606 // the JT entries. The size does not include this padding; the
607 // constant islands pass does separate bookkeeping for it.
608 // FIXME: If we know the size of the function is less than (1 << 16) *2
609 // bytes, we can use 16-bit entries instead. Then there won't be an
611 unsigned InstSize
= (Opc
== ARM::tBR_JTr
|| Opc
== ARM::t2BR_JT
) ? 2 : 4;
612 unsigned NumEntries
= getNumJTEntries(JT
, JTI
);
613 if (Opc
== ARM::t2TBB_JT
&& (NumEntries
& 1))
614 // Make sure the instruction that follows TBB is 2-byte aligned.
615 // FIXME: Constant island pass should insert an "ALIGN" instruction
618 return NumEntries
* EntrySize
+ InstSize
;
621 // Otherwise, pseudo-instruction sizes are zero.
626 return 0; // Not reached
629 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
630 MachineBasicBlock::iterator I
, DebugLoc DL
,
631 unsigned DestReg
, unsigned SrcReg
,
632 bool KillSrc
) const {
633 bool GPRDest
= ARM::GPRRegClass
.contains(DestReg
);
634 bool GPRSrc
= ARM::GPRRegClass
.contains(SrcReg
);
636 if (GPRDest
&& GPRSrc
) {
637 AddDefaultCC(AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::MOVr
), DestReg
)
638 .addReg(SrcReg
, getKillRegState(KillSrc
))));
642 bool SPRDest
= ARM::SPRRegClass
.contains(DestReg
);
643 bool SPRSrc
= ARM::SPRRegClass
.contains(SrcReg
);
646 if (SPRDest
&& SPRSrc
)
648 else if (GPRDest
&& SPRSrc
)
650 else if (SPRDest
&& GPRSrc
)
652 else if (ARM::DPRRegClass
.contains(DestReg
, SrcReg
))
654 else if (ARM::QPRRegClass
.contains(DestReg
, SrcReg
))
656 else if (ARM::QQPRRegClass
.contains(DestReg
, SrcReg
))
658 else if (ARM::QQQQPRRegClass
.contains(DestReg
, SrcReg
))
661 llvm_unreachable("Impossible reg-to-reg copy");
663 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
);
664 MIB
.addReg(SrcReg
, getKillRegState(KillSrc
));
665 if (Opc
!= ARM::VMOVQQ
&& Opc
!= ARM::VMOVQQQQ
)
670 MachineInstrBuilder
&AddDReg(MachineInstrBuilder
&MIB
,
671 unsigned Reg
, unsigned SubIdx
, unsigned State
,
672 const TargetRegisterInfo
*TRI
) {
674 return MIB
.addReg(Reg
, State
);
676 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
677 return MIB
.addReg(TRI
->getSubReg(Reg
, SubIdx
), State
);
678 return MIB
.addReg(Reg
, State
, SubIdx
);
681 void ARMBaseInstrInfo::
682 storeRegToStackSlot(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
683 unsigned SrcReg
, bool isKill
, int FI
,
684 const TargetRegisterClass
*RC
,
685 const TargetRegisterInfo
*TRI
) const {
687 if (I
!= MBB
.end()) DL
= I
->getDebugLoc();
688 MachineFunction
&MF
= *MBB
.getParent();
689 MachineFrameInfo
&MFI
= *MF
.getFrameInfo();
690 unsigned Align
= MFI
.getObjectAlignment(FI
);
692 MachineMemOperand
*MMO
=
693 MF
.getMachineMemOperand(MachinePointerInfo(
694 PseudoSourceValue::getFixedStack(FI
)),
695 MachineMemOperand::MOStore
,
696 MFI
.getObjectSize(FI
),
699 // tGPR is used sometimes in ARM instructions that need to avoid using
700 // certain registers. Just treat it as GPR here. Likewise, rGPR.
701 if (RC
== ARM::tGPRRegisterClass
|| RC
== ARM::tcGPRRegisterClass
702 || RC
== ARM::rGPRRegisterClass
)
703 RC
= ARM::GPRRegisterClass
;
705 switch (RC
->getID()) {
706 case ARM::GPRRegClassID
:
707 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::STRi12
))
708 .addReg(SrcReg
, getKillRegState(isKill
))
709 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
));
711 case ARM::SPRRegClassID
:
712 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VSTRS
))
713 .addReg(SrcReg
, getKillRegState(isKill
))
714 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
));
716 case ARM::DPRRegClassID
:
717 case ARM::DPR_VFP2RegClassID
:
718 case ARM::DPR_8RegClassID
:
719 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VSTRD
))
720 .addReg(SrcReg
, getKillRegState(isKill
))
721 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
));
723 case ARM::QPRRegClassID
:
724 case ARM::QPR_VFP2RegClassID
:
725 case ARM::QPR_8RegClassID
:
726 if (Align
>= 16 && getRegisterInfo().needsStackRealignment(MF
)) {
727 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VST1q64Pseudo
))
728 .addFrameIndex(FI
).addImm(16)
729 .addReg(SrcReg
, getKillRegState(isKill
))
730 .addMemOperand(MMO
));
732 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VSTMQIA
))
733 .addReg(SrcReg
, getKillRegState(isKill
))
735 .addMemOperand(MMO
));
738 case ARM::QQPRRegClassID
:
739 case ARM::QQPR_VFP2RegClassID
:
740 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
741 // FIXME: It's possible to only store part of the QQ register if the
742 // spilled def has a sub-register index.
743 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VST1d64QPseudo
))
744 .addFrameIndex(FI
).addImm(16)
745 .addReg(SrcReg
, getKillRegState(isKill
))
746 .addMemOperand(MMO
));
748 MachineInstrBuilder MIB
=
749 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VSTMDIA
))
752 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
753 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
754 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
755 AddDReg(MIB
, SrcReg
, ARM::dsub_3
, 0, TRI
);
758 case ARM::QQQQPRRegClassID
: {
759 MachineInstrBuilder MIB
=
760 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VSTMDIA
))
763 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
764 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
765 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
766 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_3
, 0, TRI
);
767 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_4
, 0, TRI
);
768 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_5
, 0, TRI
);
769 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_6
, 0, TRI
);
770 AddDReg(MIB
, SrcReg
, ARM::dsub_7
, 0, TRI
);
774 llvm_unreachable("Unknown regclass!");
779 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr
*MI
,
780 int &FrameIndex
) const {
781 switch (MI
->getOpcode()) {
784 case ARM::t2STRs
: // FIXME: don't use t2STRs to access frame.
785 if (MI
->getOperand(1).isFI() &&
786 MI
->getOperand(2).isReg() &&
787 MI
->getOperand(3).isImm() &&
788 MI
->getOperand(2).getReg() == 0 &&
789 MI
->getOperand(3).getImm() == 0) {
790 FrameIndex
= MI
->getOperand(1).getIndex();
791 return MI
->getOperand(0).getReg();
799 if (MI
->getOperand(1).isFI() &&
800 MI
->getOperand(2).isImm() &&
801 MI
->getOperand(2).getImm() == 0) {
802 FrameIndex
= MI
->getOperand(1).getIndex();
803 return MI
->getOperand(0).getReg();
806 case ARM::VST1q64Pseudo
:
807 if (MI
->getOperand(0).isFI() &&
808 MI
->getOperand(2).getSubReg() == 0) {
809 FrameIndex
= MI
->getOperand(0).getIndex();
810 return MI
->getOperand(2).getReg();
814 if (MI
->getOperand(1).isFI() &&
815 MI
->getOperand(0).getSubReg() == 0) {
816 FrameIndex
= MI
->getOperand(1).getIndex();
817 return MI
->getOperand(0).getReg();
825 void ARMBaseInstrInfo::
826 loadRegFromStackSlot(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
827 unsigned DestReg
, int FI
,
828 const TargetRegisterClass
*RC
,
829 const TargetRegisterInfo
*TRI
) const {
831 if (I
!= MBB
.end()) DL
= I
->getDebugLoc();
832 MachineFunction
&MF
= *MBB
.getParent();
833 MachineFrameInfo
&MFI
= *MF
.getFrameInfo();
834 unsigned Align
= MFI
.getObjectAlignment(FI
);
835 MachineMemOperand
*MMO
=
836 MF
.getMachineMemOperand(
837 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI
)),
838 MachineMemOperand::MOLoad
,
839 MFI
.getObjectSize(FI
),
842 // tGPR is used sometimes in ARM instructions that need to avoid using
843 // certain registers. Just treat it as GPR here.
844 if (RC
== ARM::tGPRRegisterClass
|| RC
== ARM::tcGPRRegisterClass
845 || RC
== ARM::rGPRRegisterClass
)
846 RC
= ARM::GPRRegisterClass
;
848 switch (RC
->getID()) {
849 case ARM::GPRRegClassID
:
850 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::LDRi12
), DestReg
)
851 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
));
853 case ARM::SPRRegClassID
:
854 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VLDRS
), DestReg
)
855 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
));
857 case ARM::DPRRegClassID
:
858 case ARM::DPR_VFP2RegClassID
:
859 case ARM::DPR_8RegClassID
:
860 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VLDRD
), DestReg
)
861 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
));
863 case ARM::QPRRegClassID
:
864 case ARM::QPR_VFP2RegClassID
:
865 case ARM::QPR_8RegClassID
:
866 if (Align
>= 16 && getRegisterInfo().needsStackRealignment(MF
)) {
867 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VLD1q64Pseudo
), DestReg
)
868 .addFrameIndex(FI
).addImm(16)
869 .addMemOperand(MMO
));
871 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VLDMQIA
), DestReg
)
873 .addMemOperand(MMO
));
876 case ARM::QQPRRegClassID
:
877 case ARM::QQPR_VFP2RegClassID
:
878 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
879 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VLD1d64QPseudo
), DestReg
)
880 .addFrameIndex(FI
).addImm(16)
881 .addMemOperand(MMO
));
883 MachineInstrBuilder MIB
=
884 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
887 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::Define
, TRI
);
888 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::Define
, TRI
);
889 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::Define
, TRI
);
890 AddDReg(MIB
, DestReg
, ARM::dsub_3
, RegState::Define
, TRI
);
893 case ARM::QQQQPRRegClassID
: {
894 MachineInstrBuilder MIB
=
895 AddDefaultPred(BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
898 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::Define
, TRI
);
899 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::Define
, TRI
);
900 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::Define
, TRI
);
901 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_3
, RegState::Define
, TRI
);
902 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_4
, RegState::Define
, TRI
);
903 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_5
, RegState::Define
, TRI
);
904 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_6
, RegState::Define
, TRI
);
905 AddDReg(MIB
, DestReg
, ARM::dsub_7
, RegState::Define
, TRI
);
909 llvm_unreachable("Unknown regclass!");
914 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr
*MI
,
915 int &FrameIndex
) const {
916 switch (MI
->getOpcode()) {
919 case ARM::t2LDRs
: // FIXME: don't use t2LDRs to access frame.
920 if (MI
->getOperand(1).isFI() &&
921 MI
->getOperand(2).isReg() &&
922 MI
->getOperand(3).isImm() &&
923 MI
->getOperand(2).getReg() == 0 &&
924 MI
->getOperand(3).getImm() == 0) {
925 FrameIndex
= MI
->getOperand(1).getIndex();
926 return MI
->getOperand(0).getReg();
934 if (MI
->getOperand(1).isFI() &&
935 MI
->getOperand(2).isImm() &&
936 MI
->getOperand(2).getImm() == 0) {
937 FrameIndex
= MI
->getOperand(1).getIndex();
938 return MI
->getOperand(0).getReg();
941 case ARM::VLD1q64Pseudo
:
942 if (MI
->getOperand(1).isFI() &&
943 MI
->getOperand(0).getSubReg() == 0) {
944 FrameIndex
= MI
->getOperand(1).getIndex();
945 return MI
->getOperand(0).getReg();
949 if (MI
->getOperand(1).isFI() &&
950 MI
->getOperand(0).getSubReg() == 0) {
951 FrameIndex
= MI
->getOperand(1).getIndex();
952 return MI
->getOperand(0).getReg();
961 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction
&MF
,
962 int FrameIx
, uint64_t Offset
,
965 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(ARM::DBG_VALUE
))
966 .addFrameIndex(FrameIx
).addImm(0).addImm(Offset
).addMetadata(MDPtr
);
970 /// Create a copy of a const pool value. Update CPI to the new index and return
972 static unsigned duplicateCPV(MachineFunction
&MF
, unsigned &CPI
) {
973 MachineConstantPool
*MCP
= MF
.getConstantPool();
974 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
976 const MachineConstantPoolEntry
&MCPE
= MCP
->getConstants()[CPI
];
977 assert(MCPE
.isMachineConstantPoolEntry() &&
978 "Expecting a machine constantpool entry!");
979 ARMConstantPoolValue
*ACPV
=
980 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
982 unsigned PCLabelId
= AFI
->createPICLabelUId();
983 ARMConstantPoolValue
*NewCPV
= 0;
984 // FIXME: The below assumes PIC relocation model and that the function
985 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
986 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
987 // instructions, so that's probably OK, but is PIC always correct when
989 if (ACPV
->isGlobalValue())
990 NewCPV
= new ARMConstantPoolValue(ACPV
->getGV(), PCLabelId
,
992 else if (ACPV
->isExtSymbol())
993 NewCPV
= new ARMConstantPoolValue(MF
.getFunction()->getContext(),
994 ACPV
->getSymbol(), PCLabelId
, 4);
995 else if (ACPV
->isBlockAddress())
996 NewCPV
= new ARMConstantPoolValue(ACPV
->getBlockAddress(), PCLabelId
,
997 ARMCP::CPBlockAddress
, 4);
998 else if (ACPV
->isLSDA())
999 NewCPV
= new ARMConstantPoolValue(MF
.getFunction(), PCLabelId
,
1002 llvm_unreachable("Unexpected ARM constantpool value type!!");
1003 CPI
= MCP
->getConstantPoolIndex(NewCPV
, MCPE
.getAlignment());
1007 void ARMBaseInstrInfo::
1008 reMaterialize(MachineBasicBlock
&MBB
,
1009 MachineBasicBlock::iterator I
,
1010 unsigned DestReg
, unsigned SubIdx
,
1011 const MachineInstr
*Orig
,
1012 const TargetRegisterInfo
&TRI
) const {
1013 unsigned Opcode
= Orig
->getOpcode();
1016 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(Orig
);
1017 MI
->substituteRegister(Orig
->getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
1021 case ARM::tLDRpci_pic
:
1022 case ARM::t2LDRpci_pic
: {
1023 MachineFunction
&MF
= *MBB
.getParent();
1024 unsigned CPI
= Orig
->getOperand(1).getIndex();
1025 unsigned PCLabelId
= duplicateCPV(MF
, CPI
);
1026 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, Orig
->getDebugLoc(), get(Opcode
),
1028 .addConstantPoolIndex(CPI
).addImm(PCLabelId
);
1029 MIB
->setMemRefs(Orig
->memoperands_begin(), Orig
->memoperands_end());
1036 ARMBaseInstrInfo::duplicate(MachineInstr
*Orig
, MachineFunction
&MF
) const {
1037 MachineInstr
*MI
= TargetInstrInfoImpl::duplicate(Orig
, MF
);
1038 switch(Orig
->getOpcode()) {
1039 case ARM::tLDRpci_pic
:
1040 case ARM::t2LDRpci_pic
: {
1041 unsigned CPI
= Orig
->getOperand(1).getIndex();
1042 unsigned PCLabelId
= duplicateCPV(MF
, CPI
);
1043 Orig
->getOperand(1).setIndex(CPI
);
1044 Orig
->getOperand(2).setImm(PCLabelId
);
1051 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr
*MI0
,
1052 const MachineInstr
*MI1
,
1053 const MachineRegisterInfo
*MRI
) const {
1054 int Opcode
= MI0
->getOpcode();
1055 if (Opcode
== ARM::t2LDRpci
||
1056 Opcode
== ARM::t2LDRpci_pic
||
1057 Opcode
== ARM::tLDRpci
||
1058 Opcode
== ARM::tLDRpci_pic
||
1059 Opcode
== ARM::MOV_ga_dyn
||
1060 Opcode
== ARM::MOV_ga_pcrel
||
1061 Opcode
== ARM::MOV_ga_pcrel_ldr
||
1062 Opcode
== ARM::t2MOV_ga_dyn
||
1063 Opcode
== ARM::t2MOV_ga_pcrel
) {
1064 if (MI1
->getOpcode() != Opcode
)
1066 if (MI0
->getNumOperands() != MI1
->getNumOperands())
1069 const MachineOperand
&MO0
= MI0
->getOperand(1);
1070 const MachineOperand
&MO1
= MI1
->getOperand(1);
1071 if (MO0
.getOffset() != MO1
.getOffset())
1074 if (Opcode
== ARM::MOV_ga_dyn
||
1075 Opcode
== ARM::MOV_ga_pcrel
||
1076 Opcode
== ARM::MOV_ga_pcrel_ldr
||
1077 Opcode
== ARM::t2MOV_ga_dyn
||
1078 Opcode
== ARM::t2MOV_ga_pcrel
)
1079 // Ignore the PC labels.
1080 return MO0
.getGlobal() == MO1
.getGlobal();
1082 const MachineFunction
*MF
= MI0
->getParent()->getParent();
1083 const MachineConstantPool
*MCP
= MF
->getConstantPool();
1084 int CPI0
= MO0
.getIndex();
1085 int CPI1
= MO1
.getIndex();
1086 const MachineConstantPoolEntry
&MCPE0
= MCP
->getConstants()[CPI0
];
1087 const MachineConstantPoolEntry
&MCPE1
= MCP
->getConstants()[CPI1
];
1088 bool isARMCP0
= MCPE0
.isMachineConstantPoolEntry();
1089 bool isARMCP1
= MCPE1
.isMachineConstantPoolEntry();
1090 if (isARMCP0
&& isARMCP1
) {
1091 ARMConstantPoolValue
*ACPV0
=
1092 static_cast<ARMConstantPoolValue
*>(MCPE0
.Val
.MachineCPVal
);
1093 ARMConstantPoolValue
*ACPV1
=
1094 static_cast<ARMConstantPoolValue
*>(MCPE1
.Val
.MachineCPVal
);
1095 return ACPV0
->hasSameValue(ACPV1
);
1096 } else if (!isARMCP0
&& !isARMCP1
) {
1097 return MCPE0
.Val
.ConstVal
== MCPE1
.Val
.ConstVal
;
1100 } else if (Opcode
== ARM::PICLDR
) {
1101 if (MI1
->getOpcode() != Opcode
)
1103 if (MI0
->getNumOperands() != MI1
->getNumOperands())
1106 unsigned Addr0
= MI0
->getOperand(1).getReg();
1107 unsigned Addr1
= MI1
->getOperand(1).getReg();
1108 if (Addr0
!= Addr1
) {
1110 !TargetRegisterInfo::isVirtualRegister(Addr0
) ||
1111 !TargetRegisterInfo::isVirtualRegister(Addr1
))
1114 // This assumes SSA form.
1115 MachineInstr
*Def0
= MRI
->getVRegDef(Addr0
);
1116 MachineInstr
*Def1
= MRI
->getVRegDef(Addr1
);
1117 // Check if the loaded value, e.g. a constantpool of a global address, are
1119 if (!produceSameValue(Def0
, Def1
, MRI
))
1123 for (unsigned i
= 3, e
= MI0
->getNumOperands(); i
!= e
; ++i
) {
1124 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1125 const MachineOperand
&MO0
= MI0
->getOperand(i
);
1126 const MachineOperand
&MO1
= MI1
->getOperand(i
);
1127 if (!MO0
.isIdenticalTo(MO1
))
1133 return MI0
->isIdenticalTo(MI1
, MachineInstr::IgnoreVRegDefs
);
1136 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1137 /// determine if two loads are loading from the same base address. It should
1138 /// only return true if the base pointers are the same and the only differences
1139 /// between the two addresses is the offset. It also returns the offsets by
1141 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
1143 int64_t &Offset2
) const {
1144 // Don't worry about Thumb: just ARM and Thumb2.
1145 if (Subtarget
.isThumb1Only()) return false;
1147 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
1150 switch (Load1
->getMachineOpcode()) {
1163 case ARM::t2LDRSHi8
:
1165 case ARM::t2LDRSHi12
:
1169 switch (Load2
->getMachineOpcode()) {
1182 case ARM::t2LDRSHi8
:
1184 case ARM::t2LDRSHi12
:
1188 // Check if base addresses and chain operands match.
1189 if (Load1
->getOperand(0) != Load2
->getOperand(0) ||
1190 Load1
->getOperand(4) != Load2
->getOperand(4))
1193 // Index should be Reg0.
1194 if (Load1
->getOperand(3) != Load2
->getOperand(3))
1197 // Determine the offsets.
1198 if (isa
<ConstantSDNode
>(Load1
->getOperand(1)) &&
1199 isa
<ConstantSDNode
>(Load2
->getOperand(1))) {
1200 Offset1
= cast
<ConstantSDNode
>(Load1
->getOperand(1))->getSExtValue();
1201 Offset2
= cast
<ConstantSDNode
>(Load2
->getOperand(1))->getSExtValue();
1208 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1209 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1210 /// be scheduled togther. On some targets if two loads are loading from
1211 /// addresses in the same cache line, it's better if they are scheduled
1212 /// together. This function takes two integers that represent the load offsets
1213 /// from the common base address. It returns true if it decides it's desirable
1214 /// to schedule the two loads together. "NumLoads" is the number of loads that
1215 /// have already been scheduled after Load1.
1216 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
1217 int64_t Offset1
, int64_t Offset2
,
1218 unsigned NumLoads
) const {
1219 // Don't worry about Thumb: just ARM and Thumb2.
1220 if (Subtarget
.isThumb1Only()) return false;
1222 assert(Offset2
> Offset1
);
1224 if ((Offset2
- Offset1
) / 8 > 64)
1227 if (Load1
->getMachineOpcode() != Load2
->getMachineOpcode())
1228 return false; // FIXME: overly conservative?
1230 // Four loads in a row should be sufficient.
1237 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr
*MI
,
1238 const MachineBasicBlock
*MBB
,
1239 const MachineFunction
&MF
) const {
1240 // Debug info is never a scheduling boundary. It's necessary to be explicit
1241 // due to the special treatment of IT instructions below, otherwise a
1242 // dbg_value followed by an IT will result in the IT instruction being
1243 // considered a scheduling hazard, which is wrong. It should be the actual
1244 // instruction preceding the dbg_value instruction(s), just like it is
1245 // when debug info is not present.
1246 if (MI
->isDebugValue())
1249 // Terminators and labels can't be scheduled around.
1250 if (MI
->getDesc().isTerminator() || MI
->isLabel())
1253 // Treat the start of the IT block as a scheduling boundary, but schedule
1254 // t2IT along with all instructions following it.
1255 // FIXME: This is a big hammer. But the alternative is to add all potential
1256 // true and anti dependencies to IT block instructions as implicit operands
1257 // to the t2IT instruction. The added compile time and complexity does not
1259 MachineBasicBlock::const_iterator I
= MI
;
1260 // Make sure to skip any dbg_value instructions
1261 while (++I
!= MBB
->end() && I
->isDebugValue())
1263 if (I
!= MBB
->end() && I
->getOpcode() == ARM::t2IT
)
1266 // Don't attempt to schedule around any instruction that defines
1267 // a stack-oriented pointer, as it's unlikely to be profitable. This
1268 // saves compile time, because it doesn't require every single
1269 // stack slot reference to depend on the instruction that does the
1271 if (MI
->definesRegister(ARM::SP
))
1277 bool ARMBaseInstrInfo::
1278 isProfitableToIfCvt(MachineBasicBlock
&MBB
,
1279 unsigned NumCycles
, unsigned ExtraPredCycles
,
1280 const BranchProbability
&Probability
) const {
1284 // Attempt to estimate the relative costs of predication versus branching.
1285 unsigned UnpredCost
= Probability
.getNumerator() * NumCycles
;
1286 UnpredCost
/= Probability
.getDenominator();
1287 UnpredCost
+= 1; // The branch itself
1288 UnpredCost
+= Subtarget
.getMispredictionPenalty() / 10;
1290 return (NumCycles
+ ExtraPredCycles
) <= UnpredCost
;
1293 bool ARMBaseInstrInfo::
1294 isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
1295 unsigned TCycles
, unsigned TExtra
,
1296 MachineBasicBlock
&FMBB
,
1297 unsigned FCycles
, unsigned FExtra
,
1298 const BranchProbability
&Probability
) const {
1299 if (!TCycles
|| !FCycles
)
1302 // Attempt to estimate the relative costs of predication versus branching.
1303 unsigned TUnpredCost
= Probability
.getNumerator() * TCycles
;
1304 TUnpredCost
/= Probability
.getDenominator();
1306 uint32_t Comp
= Probability
.getDenominator() - Probability
.getNumerator();
1307 unsigned FUnpredCost
= Comp
* FCycles
;
1308 FUnpredCost
/= Probability
.getDenominator();
1310 unsigned UnpredCost
= TUnpredCost
+ FUnpredCost
;
1311 UnpredCost
+= 1; // The branch itself
1312 UnpredCost
+= Subtarget
.getMispredictionPenalty() / 10;
1314 return (TCycles
+ FCycles
+ TExtra
+ FExtra
) <= UnpredCost
;
1317 /// getInstrPredicate - If instruction is predicated, returns its predicate
1318 /// condition, otherwise returns AL. It also returns the condition code
1319 /// register by reference.
1321 llvm::getInstrPredicate(const MachineInstr
*MI
, unsigned &PredReg
) {
1322 int PIdx
= MI
->findFirstPredOperandIdx();
1328 PredReg
= MI
->getOperand(PIdx
+1).getReg();
1329 return (ARMCC::CondCodes
)MI
->getOperand(PIdx
).getImm();
1333 int llvm::getMatchingCondBranchOpcode(int Opc
) {
1336 else if (Opc
== ARM::tB
)
1338 else if (Opc
== ARM::t2B
)
1341 llvm_unreachable("Unknown unconditional branch opcode!");
1346 void llvm::emitARMRegPlusImmediate(MachineBasicBlock
&MBB
,
1347 MachineBasicBlock::iterator
&MBBI
, DebugLoc dl
,
1348 unsigned DestReg
, unsigned BaseReg
, int NumBytes
,
1349 ARMCC::CondCodes Pred
, unsigned PredReg
,
1350 const ARMBaseInstrInfo
&TII
, unsigned MIFlags
) {
1351 bool isSub
= NumBytes
< 0;
1352 if (isSub
) NumBytes
= -NumBytes
;
1355 unsigned RotAmt
= ARM_AM::getSOImmValRotate(NumBytes
);
1356 unsigned ThisVal
= NumBytes
& ARM_AM::rotr32(0xFF, RotAmt
);
1357 assert(ThisVal
&& "Didn't extract field correctly");
1359 // We will handle these bits from offset, clear them.
1360 NumBytes
&= ~ThisVal
;
1362 assert(ARM_AM::getSOImmVal(ThisVal
) != -1 && "Bit extraction didn't work?");
1364 // Build the new ADD / SUB.
1365 unsigned Opc
= isSub
? ARM::SUBri
: ARM::ADDri
;
1366 BuildMI(MBB
, MBBI
, dl
, TII
.get(Opc
), DestReg
)
1367 .addReg(BaseReg
, RegState::Kill
).addImm(ThisVal
)
1368 .addImm((unsigned)Pred
).addReg(PredReg
).addReg(0)
1369 .setMIFlags(MIFlags
);
1374 bool llvm::rewriteARMFrameIndex(MachineInstr
&MI
, unsigned FrameRegIdx
,
1375 unsigned FrameReg
, int &Offset
,
1376 const ARMBaseInstrInfo
&TII
) {
1377 unsigned Opcode
= MI
.getOpcode();
1378 const MCInstrDesc
&Desc
= MI
.getDesc();
1379 unsigned AddrMode
= (Desc
.TSFlags
& ARMII::AddrModeMask
);
1382 // Memory operands in inline assembly always use AddrMode2.
1383 if (Opcode
== ARM::INLINEASM
)
1384 AddrMode
= ARMII::AddrMode2
;
1386 if (Opcode
== ARM::ADDri
) {
1387 Offset
+= MI
.getOperand(FrameRegIdx
+1).getImm();
1389 // Turn it into a move.
1390 MI
.setDesc(TII
.get(ARM::MOVr
));
1391 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
1392 MI
.RemoveOperand(FrameRegIdx
+1);
1395 } else if (Offset
< 0) {
1398 MI
.setDesc(TII
.get(ARM::SUBri
));
1401 // Common case: small offset, fits into instruction.
1402 if (ARM_AM::getSOImmVal(Offset
) != -1) {
1403 // Replace the FrameIndex with sp / fp
1404 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
1405 MI
.getOperand(FrameRegIdx
+1).ChangeToImmediate(Offset
);
1410 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1412 unsigned RotAmt
= ARM_AM::getSOImmValRotate(Offset
);
1413 unsigned ThisImmVal
= Offset
& ARM_AM::rotr32(0xFF, RotAmt
);
1415 // We will handle these bits from offset, clear them.
1416 Offset
&= ~ThisImmVal
;
1418 // Get the properly encoded SOImmVal field.
1419 assert(ARM_AM::getSOImmVal(ThisImmVal
) != -1 &&
1420 "Bit extraction didn't work?");
1421 MI
.getOperand(FrameRegIdx
+1).ChangeToImmediate(ThisImmVal
);
1423 unsigned ImmIdx
= 0;
1425 unsigned NumBits
= 0;
1428 case ARMII::AddrMode_i12
: {
1429 ImmIdx
= FrameRegIdx
+ 1;
1430 InstrOffs
= MI
.getOperand(ImmIdx
).getImm();
1434 case ARMII::AddrMode2
: {
1435 ImmIdx
= FrameRegIdx
+2;
1436 InstrOffs
= ARM_AM::getAM2Offset(MI
.getOperand(ImmIdx
).getImm());
1437 if (ARM_AM::getAM2Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
1442 case ARMII::AddrMode3
: {
1443 ImmIdx
= FrameRegIdx
+2;
1444 InstrOffs
= ARM_AM::getAM3Offset(MI
.getOperand(ImmIdx
).getImm());
1445 if (ARM_AM::getAM3Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
1450 case ARMII::AddrMode4
:
1451 case ARMII::AddrMode6
:
1452 // Can't fold any offset even if it's zero.
1454 case ARMII::AddrMode5
: {
1455 ImmIdx
= FrameRegIdx
+1;
1456 InstrOffs
= ARM_AM::getAM5Offset(MI
.getOperand(ImmIdx
).getImm());
1457 if (ARM_AM::getAM5Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
1464 llvm_unreachable("Unsupported addressing mode!");
1468 Offset
+= InstrOffs
* Scale
;
1469 assert((Offset
& (Scale
-1)) == 0 && "Can't encode this offset!");
1475 // Attempt to fold address comp. if opcode has offset bits
1477 // Common case: small offset, fits into instruction.
1478 MachineOperand
&ImmOp
= MI
.getOperand(ImmIdx
);
1479 int ImmedOffset
= Offset
/ Scale
;
1480 unsigned Mask
= (1 << NumBits
) - 1;
1481 if ((unsigned)Offset
<= Mask
* Scale
) {
1482 // Replace the FrameIndex with sp
1483 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
1484 // FIXME: When addrmode2 goes away, this will simplify (like the
1485 // T2 version), as the LDR.i12 versions don't need the encoding
1486 // tricks for the offset value.
1488 if (AddrMode
== ARMII::AddrMode_i12
)
1489 ImmedOffset
= -ImmedOffset
;
1491 ImmedOffset
|= 1 << NumBits
;
1493 ImmOp
.ChangeToImmediate(ImmedOffset
);
1498 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1499 ImmedOffset
= ImmedOffset
& Mask
;
1501 if (AddrMode
== ARMII::AddrMode_i12
)
1502 ImmedOffset
= -ImmedOffset
;
1504 ImmedOffset
|= 1 << NumBits
;
1506 ImmOp
.ChangeToImmediate(ImmedOffset
);
1507 Offset
&= ~(Mask
*Scale
);
1511 Offset
= (isSub
) ? -Offset
: Offset
;
1515 bool ARMBaseInstrInfo::
1516 AnalyzeCompare(const MachineInstr
*MI
, unsigned &SrcReg
, int &CmpMask
,
1517 int &CmpValue
) const {
1518 switch (MI
->getOpcode()) {
1522 SrcReg
= MI
->getOperand(0).getReg();
1524 CmpValue
= MI
->getOperand(1).getImm();
1528 SrcReg
= MI
->getOperand(0).getReg();
1529 CmpMask
= MI
->getOperand(1).getImm();
1537 /// isSuitableForMask - Identify a suitable 'and' instruction that
1538 /// operates on the given source register and applies the same mask
1539 /// as a 'tst' instruction. Provide a limited look-through for copies.
1540 /// When successful, MI will hold the found instruction.
1541 static bool isSuitableForMask(MachineInstr
*&MI
, unsigned SrcReg
,
1542 int CmpMask
, bool CommonUse
) {
1543 switch (MI
->getOpcode()) {
1546 if (CmpMask
!= MI
->getOperand(2).getImm())
1548 if (SrcReg
== MI
->getOperand(CommonUse
? 1 : 0).getReg())
1552 // Walk down one instruction which is potentially an 'and'.
1553 const MachineInstr
&Copy
= *MI
;
1554 MachineBasicBlock::iterator
AND(
1555 llvm::next(MachineBasicBlock::iterator(MI
)));
1556 if (AND
== MI
->getParent()->end()) return false;
1558 return isSuitableForMask(MI
, Copy
.getOperand(0).getReg(),
1566 /// OptimizeCompareInstr - Convert the instruction supplying the argument to the
1567 /// comparison into one that sets the zero bit in the flags register.
1568 bool ARMBaseInstrInfo::
1569 OptimizeCompareInstr(MachineInstr
*CmpInstr
, unsigned SrcReg
, int CmpMask
,
1570 int CmpValue
, const MachineRegisterInfo
*MRI
) const {
1574 MachineRegisterInfo::def_iterator DI
= MRI
->def_begin(SrcReg
);
1575 if (llvm::next(DI
) != MRI
->def_end())
1576 // Only support one definition.
1579 MachineInstr
*MI
= &*DI
;
1581 // Masked compares sometimes use the same register as the corresponding 'and'.
1582 if (CmpMask
!= ~0) {
1583 if (!isSuitableForMask(MI
, SrcReg
, CmpMask
, false)) {
1585 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(SrcReg
),
1586 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
1587 if (UI
->getParent() != CmpInstr
->getParent()) continue;
1588 MachineInstr
*PotentialAND
= &*UI
;
1589 if (!isSuitableForMask(PotentialAND
, SrcReg
, CmpMask
, true))
1594 if (!MI
) return false;
1598 // Conservatively refuse to convert an instruction which isn't in the same BB
1599 // as the comparison.
1600 if (MI
->getParent() != CmpInstr
->getParent())
1603 // Check that CPSR isn't set between the comparison instruction and the one we
1605 MachineBasicBlock::const_iterator I
= CmpInstr
, E
= MI
,
1606 B
= MI
->getParent()->begin();
1608 // Early exit if CmpInstr is at the beginning of the BB.
1609 if (I
== B
) return false;
1612 for (; I
!= E
; --I
) {
1613 const MachineInstr
&Instr
= *I
;
1615 for (unsigned IO
= 0, EO
= Instr
.getNumOperands(); IO
!= EO
; ++IO
) {
1616 const MachineOperand
&MO
= Instr
.getOperand(IO
);
1617 if (!MO
.isReg()) continue;
1619 // This instruction modifies or uses CPSR after the one we want to
1620 // change. We can't do this transformation.
1621 if (MO
.getReg() == ARM::CPSR
)
1626 // The 'and' is below the comparison instruction.
1630 // Set the "zero" bit in CPSR.
1631 switch (MI
->getOpcode()) {
1665 case ARM::t2EORri
: {
1666 // Scan forward for the use of CPSR, if it's a conditional code requires
1667 // checking of V bit, then this is not safe to do. If we can't find the
1668 // CPSR use (i.e. used in another block), then it's not safe to perform
1669 // the optimization.
1670 bool isSafe
= false;
1672 E
= MI
->getParent()->end();
1673 while (!isSafe
&& ++I
!= E
) {
1674 const MachineInstr
&Instr
= *I
;
1675 for (unsigned IO
= 0, EO
= Instr
.getNumOperands();
1676 !isSafe
&& IO
!= EO
; ++IO
) {
1677 const MachineOperand
&MO
= Instr
.getOperand(IO
);
1678 if (!MO
.isReg() || MO
.getReg() != ARM::CPSR
)
1684 // Condition code is after the operand before CPSR.
1685 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)Instr
.getOperand(IO
-1).getImm();
1704 // Toggle the optional operand to CPSR.
1705 MI
->getOperand(5).setReg(ARM::CPSR
);
1706 MI
->getOperand(5).setIsDef(true);
1707 CmpInstr
->eraseFromParent();
1715 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr
*UseMI
,
1716 MachineInstr
*DefMI
, unsigned Reg
,
1717 MachineRegisterInfo
*MRI
) const {
1718 // Fold large immediates into add, sub, or, xor.
1719 unsigned DefOpc
= DefMI
->getOpcode();
1720 if (DefOpc
!= ARM::t2MOVi32imm
&& DefOpc
!= ARM::MOVi32imm
)
1722 if (!DefMI
->getOperand(1).isImm())
1723 // Could be t2MOVi32imm <ga:xx>
1726 if (!MRI
->hasOneNonDBGUse(Reg
))
1729 unsigned UseOpc
= UseMI
->getOpcode();
1730 unsigned NewUseOpc
= 0;
1731 uint32_t ImmVal
= (uint32_t)DefMI
->getOperand(1).getImm();
1732 uint32_t SOImmValV1
= 0, SOImmValV2
= 0;
1733 bool Commute
= false;
1735 default: return false;
1743 case ARM::t2EORrr
: {
1744 Commute
= UseMI
->getOperand(2).getReg() != Reg
;
1751 NewUseOpc
= ARM::SUBri
;
1757 if (!ARM_AM::isSOImmTwoPartVal(ImmVal
))
1759 SOImmValV1
= (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal
);
1760 SOImmValV2
= (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal
);
1763 case ARM::ADDrr
: NewUseOpc
= ARM::ADDri
; break;
1764 case ARM::ORRrr
: NewUseOpc
= ARM::ORRri
; break;
1765 case ARM::EORrr
: NewUseOpc
= ARM::EORri
; break;
1769 case ARM::t2SUBrr
: {
1773 NewUseOpc
= ARM::t2SUBri
;
1778 case ARM::t2EORrr
: {
1779 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal
))
1781 SOImmValV1
= (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal
);
1782 SOImmValV2
= (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal
);
1785 case ARM::t2ADDrr
: NewUseOpc
= ARM::t2ADDri
; break;
1786 case ARM::t2ORRrr
: NewUseOpc
= ARM::t2ORRri
; break;
1787 case ARM::t2EORrr
: NewUseOpc
= ARM::t2EORri
; break;
1795 unsigned OpIdx
= Commute
? 2 : 1;
1796 unsigned Reg1
= UseMI
->getOperand(OpIdx
).getReg();
1797 bool isKill
= UseMI
->getOperand(OpIdx
).isKill();
1798 unsigned NewReg
= MRI
->createVirtualRegister(MRI
->getRegClass(Reg
));
1799 AddDefaultCC(AddDefaultPred(BuildMI(*UseMI
->getParent(),
1800 *UseMI
, UseMI
->getDebugLoc(),
1801 get(NewUseOpc
), NewReg
)
1802 .addReg(Reg1
, getKillRegState(isKill
))
1803 .addImm(SOImmValV1
)));
1804 UseMI
->setDesc(get(NewUseOpc
));
1805 UseMI
->getOperand(1).setReg(NewReg
);
1806 UseMI
->getOperand(1).setIsKill();
1807 UseMI
->getOperand(2).ChangeToImmediate(SOImmValV2
);
1808 DefMI
->eraseFromParent();
1813 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData
*ItinData
,
1814 const MachineInstr
*MI
) const {
1815 if (!ItinData
|| ItinData
->isEmpty())
1818 const MCInstrDesc
&Desc
= MI
->getDesc();
1819 unsigned Class
= Desc
.getSchedClass();
1820 unsigned UOps
= ItinData
->Itineraries
[Class
].NumMicroOps
;
1824 unsigned Opc
= MI
->getOpcode();
1827 llvm_unreachable("Unexpected multi-uops instruction!");
1833 // The number of uOps for load / store multiple are determined by the number
1836 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
1837 // same cycle. The scheduling for the first load / store must be done
1838 // separately by assuming the the address is not 64-bit aligned.
1840 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
1841 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
1842 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
1844 case ARM::VLDMDIA_UPD
:
1845 case ARM::VLDMDDB_UPD
:
1847 case ARM::VLDMSIA_UPD
:
1848 case ARM::VLDMSDB_UPD
:
1850 case ARM::VSTMDIA_UPD
:
1851 case ARM::VSTMDDB_UPD
:
1853 case ARM::VSTMSIA_UPD
:
1854 case ARM::VSTMSDB_UPD
: {
1855 unsigned NumRegs
= MI
->getNumOperands() - Desc
.getNumOperands();
1856 return (NumRegs
/ 2) + (NumRegs
% 2) + 1;
1859 case ARM::LDMIA_RET
:
1864 case ARM::LDMIA_UPD
:
1865 case ARM::LDMDA_UPD
:
1866 case ARM::LDMDB_UPD
:
1867 case ARM::LDMIB_UPD
:
1872 case ARM::STMIA_UPD
:
1873 case ARM::STMDA_UPD
:
1874 case ARM::STMDB_UPD
:
1875 case ARM::STMIB_UPD
:
1877 case ARM::tLDMIA_UPD
:
1879 case ARM::tSTMIA_UPD
:
1883 case ARM::t2LDMIA_RET
:
1886 case ARM::t2LDMIA_UPD
:
1887 case ARM::t2LDMDB_UPD
:
1890 case ARM::t2STMIA_UPD
:
1891 case ARM::t2STMDB_UPD
: {
1892 unsigned NumRegs
= MI
->getNumOperands() - Desc
.getNumOperands() + 1;
1893 if (Subtarget
.isCortexA8()) {
1896 // 4 registers would be issued: 2, 2.
1897 // 5 registers would be issued: 2, 2, 1.
1898 UOps
= (NumRegs
/ 2);
1902 } else if (Subtarget
.isCortexA9()) {
1903 UOps
= (NumRegs
/ 2);
1904 // If there are odd number of registers or if it's not 64-bit aligned,
1905 // then it takes an extra AGU (Address Generation Unit) cycle.
1906 if ((NumRegs
% 2) ||
1907 !MI
->hasOneMemOperand() ||
1908 (*MI
->memoperands_begin())->getAlignment() < 8)
1912 // Assume the worst.
1920 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData
*ItinData
,
1921 const MCInstrDesc
&DefMCID
,
1923 unsigned DefIdx
, unsigned DefAlign
) const {
1924 int RegNo
= (int)(DefIdx
+1) - DefMCID
.getNumOperands() + 1;
1926 // Def is the address writeback.
1927 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
1930 if (Subtarget
.isCortexA8()) {
1931 // (regno / 2) + (regno % 2) + 1
1932 DefCycle
= RegNo
/ 2 + 1;
1935 } else if (Subtarget
.isCortexA9()) {
1937 bool isSLoad
= false;
1939 switch (DefMCID
.getOpcode()) {
1942 case ARM::VLDMSIA_UPD
:
1943 case ARM::VLDMSDB_UPD
:
1948 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
1949 // then it takes an extra cycle.
1950 if ((isSLoad
&& (RegNo
% 2)) || DefAlign
< 8)
1953 // Assume the worst.
1954 DefCycle
= RegNo
+ 2;
1961 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData
*ItinData
,
1962 const MCInstrDesc
&DefMCID
,
1964 unsigned DefIdx
, unsigned DefAlign
) const {
1965 int RegNo
= (int)(DefIdx
+1) - DefMCID
.getNumOperands() + 1;
1967 // Def is the address writeback.
1968 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
1971 if (Subtarget
.isCortexA8()) {
1972 // 4 registers would be issued: 1, 2, 1.
1973 // 5 registers would be issued: 1, 2, 2.
1974 DefCycle
= RegNo
/ 2;
1977 // Result latency is issue cycle + 2: E2.
1979 } else if (Subtarget
.isCortexA9()) {
1980 DefCycle
= (RegNo
/ 2);
1981 // If there are odd number of registers or if it's not 64-bit aligned,
1982 // then it takes an extra AGU (Address Generation Unit) cycle.
1983 if ((RegNo
% 2) || DefAlign
< 8)
1985 // Result latency is AGU cycles + 2.
1988 // Assume the worst.
1989 DefCycle
= RegNo
+ 2;
1996 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData
*ItinData
,
1997 const MCInstrDesc
&UseMCID
,
1999 unsigned UseIdx
, unsigned UseAlign
) const {
2000 int RegNo
= (int)(UseIdx
+1) - UseMCID
.getNumOperands() + 1;
2002 return ItinData
->getOperandCycle(UseClass
, UseIdx
);
2005 if (Subtarget
.isCortexA8()) {
2006 // (regno / 2) + (regno % 2) + 1
2007 UseCycle
= RegNo
/ 2 + 1;
2010 } else if (Subtarget
.isCortexA9()) {
2012 bool isSStore
= false;
2014 switch (UseMCID
.getOpcode()) {
2017 case ARM::VSTMSIA_UPD
:
2018 case ARM::VSTMSDB_UPD
:
2023 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2024 // then it takes an extra cycle.
2025 if ((isSStore
&& (RegNo
% 2)) || UseAlign
< 8)
2028 // Assume the worst.
2029 UseCycle
= RegNo
+ 2;
2036 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData
*ItinData
,
2037 const MCInstrDesc
&UseMCID
,
2039 unsigned UseIdx
, unsigned UseAlign
) const {
2040 int RegNo
= (int)(UseIdx
+1) - UseMCID
.getNumOperands() + 1;
2042 return ItinData
->getOperandCycle(UseClass
, UseIdx
);
2045 if (Subtarget
.isCortexA8()) {
2046 UseCycle
= RegNo
/ 2;
2051 } else if (Subtarget
.isCortexA9()) {
2052 UseCycle
= (RegNo
/ 2);
2053 // If there are odd number of registers or if it's not 64-bit aligned,
2054 // then it takes an extra AGU (Address Generation Unit) cycle.
2055 if ((RegNo
% 2) || UseAlign
< 8)
2058 // Assume the worst.
2065 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
2066 const MCInstrDesc
&DefMCID
,
2067 unsigned DefIdx
, unsigned DefAlign
,
2068 const MCInstrDesc
&UseMCID
,
2069 unsigned UseIdx
, unsigned UseAlign
) const {
2070 unsigned DefClass
= DefMCID
.getSchedClass();
2071 unsigned UseClass
= UseMCID
.getSchedClass();
2073 if (DefIdx
< DefMCID
.getNumDefs() && UseIdx
< UseMCID
.getNumOperands())
2074 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
2076 // This may be a def / use of a variable_ops instruction, the operand
2077 // latency might be determinable dynamically. Let the target try to
2080 bool LdmBypass
= false;
2081 switch (DefMCID
.getOpcode()) {
2083 DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
2087 case ARM::VLDMDIA_UPD
:
2088 case ARM::VLDMDDB_UPD
:
2090 case ARM::VLDMSIA_UPD
:
2091 case ARM::VLDMSDB_UPD
:
2092 DefCycle
= getVLDMDefCycle(ItinData
, DefMCID
, DefClass
, DefIdx
, DefAlign
);
2095 case ARM::LDMIA_RET
:
2100 case ARM::LDMIA_UPD
:
2101 case ARM::LDMDA_UPD
:
2102 case ARM::LDMDB_UPD
:
2103 case ARM::LDMIB_UPD
:
2105 case ARM::tLDMIA_UPD
:
2107 case ARM::t2LDMIA_RET
:
2110 case ARM::t2LDMIA_UPD
:
2111 case ARM::t2LDMDB_UPD
:
2113 DefCycle
= getLDMDefCycle(ItinData
, DefMCID
, DefClass
, DefIdx
, DefAlign
);
2118 // We can't seem to determine the result latency of the def, assume it's 2.
2122 switch (UseMCID
.getOpcode()) {
2124 UseCycle
= ItinData
->getOperandCycle(UseClass
, UseIdx
);
2128 case ARM::VSTMDIA_UPD
:
2129 case ARM::VSTMDDB_UPD
:
2131 case ARM::VSTMSIA_UPD
:
2132 case ARM::VSTMSDB_UPD
:
2133 UseCycle
= getVSTMUseCycle(ItinData
, UseMCID
, UseClass
, UseIdx
, UseAlign
);
2140 case ARM::STMIA_UPD
:
2141 case ARM::STMDA_UPD
:
2142 case ARM::STMDB_UPD
:
2143 case ARM::STMIB_UPD
:
2145 case ARM::tSTMIA_UPD
:
2150 case ARM::t2STMIA_UPD
:
2151 case ARM::t2STMDB_UPD
:
2152 UseCycle
= getSTMUseCycle(ItinData
, UseMCID
, UseClass
, UseIdx
, UseAlign
);
2157 // Assume it's read in the first stage.
2160 UseCycle
= DefCycle
- UseCycle
+ 1;
2163 // It's a variable_ops instruction so we can't use DefIdx here. Just use
2164 // first def operand.
2165 if (ItinData
->hasPipelineForwarding(DefClass
, DefMCID
.getNumOperands()-1,
2168 } else if (ItinData
->hasPipelineForwarding(DefClass
, DefIdx
,
2169 UseClass
, UseIdx
)) {
2178 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
2179 const MachineInstr
*DefMI
, unsigned DefIdx
,
2180 const MachineInstr
*UseMI
, unsigned UseIdx
) const {
2181 if (DefMI
->isCopyLike() || DefMI
->isInsertSubreg() ||
2182 DefMI
->isRegSequence() || DefMI
->isImplicitDef())
2185 const MCInstrDesc
&DefMCID
= DefMI
->getDesc();
2186 if (!ItinData
|| ItinData
->isEmpty())
2187 return DefMCID
.mayLoad() ? 3 : 1;
2189 const MCInstrDesc
&UseMCID
= UseMI
->getDesc();
2190 const MachineOperand
&DefMO
= DefMI
->getOperand(DefIdx
);
2191 if (DefMO
.getReg() == ARM::CPSR
) {
2192 if (DefMI
->getOpcode() == ARM::FMSTAT
) {
2193 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2194 return Subtarget
.isCortexA9() ? 1 : 20;
2197 // CPSR set and branch can be paired in the same cycle.
2198 if (UseMCID
.isBranch())
2202 unsigned DefAlign
= DefMI
->hasOneMemOperand()
2203 ? (*DefMI
->memoperands_begin())->getAlignment() : 0;
2204 unsigned UseAlign
= UseMI
->hasOneMemOperand()
2205 ? (*UseMI
->memoperands_begin())->getAlignment() : 0;
2206 int Latency
= getOperandLatency(ItinData
, DefMCID
, DefIdx
, DefAlign
,
2207 UseMCID
, UseIdx
, UseAlign
);
2210 (Subtarget
.isCortexA8() || Subtarget
.isCortexA9())) {
2211 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2212 // variants are one cycle cheaper.
2213 switch (DefMCID
.getOpcode()) {
2217 unsigned ShOpVal
= DefMI
->getOperand(3).getImm();
2218 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
2220 (ShImm
== 2 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
2227 case ARM::t2LDRSHs
: {
2228 // Thumb2 mode: lsl only.
2229 unsigned ShAmt
= DefMI
->getOperand(3).getImm();
2230 if (ShAmt
== 0 || ShAmt
== 2)
2237 if (DefAlign
< 8 && Subtarget
.isCortexA9())
2238 switch (DefMCID
.getOpcode()) {
2244 case ARM::VLD1q8_UPD
:
2245 case ARM::VLD1q16_UPD
:
2246 case ARM::VLD1q32_UPD
:
2247 case ARM::VLD1q64_UPD
:
2254 case ARM::VLD2d8_UPD
:
2255 case ARM::VLD2d16_UPD
:
2256 case ARM::VLD2d32_UPD
:
2257 case ARM::VLD2q8_UPD
:
2258 case ARM::VLD2q16_UPD
:
2259 case ARM::VLD2q32_UPD
:
2264 case ARM::VLD3d8_UPD
:
2265 case ARM::VLD3d16_UPD
:
2266 case ARM::VLD3d32_UPD
:
2267 case ARM::VLD1d64T_UPD
:
2268 case ARM::VLD3q8_UPD
:
2269 case ARM::VLD3q16_UPD
:
2270 case ARM::VLD3q32_UPD
:
2275 case ARM::VLD4d8_UPD
:
2276 case ARM::VLD4d16_UPD
:
2277 case ARM::VLD4d32_UPD
:
2278 case ARM::VLD1d64Q_UPD
:
2279 case ARM::VLD4q8_UPD
:
2280 case ARM::VLD4q16_UPD
:
2281 case ARM::VLD4q32_UPD
:
2282 case ARM::VLD1DUPq8
:
2283 case ARM::VLD1DUPq16
:
2284 case ARM::VLD1DUPq32
:
2285 case ARM::VLD1DUPq8_UPD
:
2286 case ARM::VLD1DUPq16_UPD
:
2287 case ARM::VLD1DUPq32_UPD
:
2288 case ARM::VLD2DUPd8
:
2289 case ARM::VLD2DUPd16
:
2290 case ARM::VLD2DUPd32
:
2291 case ARM::VLD2DUPd8_UPD
:
2292 case ARM::VLD2DUPd16_UPD
:
2293 case ARM::VLD2DUPd32_UPD
:
2294 case ARM::VLD4DUPd8
:
2295 case ARM::VLD4DUPd16
:
2296 case ARM::VLD4DUPd32
:
2297 case ARM::VLD4DUPd8_UPD
:
2298 case ARM::VLD4DUPd16_UPD
:
2299 case ARM::VLD4DUPd32_UPD
:
2301 case ARM::VLD1LNd16
:
2302 case ARM::VLD1LNd32
:
2303 case ARM::VLD1LNd8_UPD
:
2304 case ARM::VLD1LNd16_UPD
:
2305 case ARM::VLD1LNd32_UPD
:
2307 case ARM::VLD2LNd16
:
2308 case ARM::VLD2LNd32
:
2309 case ARM::VLD2LNq16
:
2310 case ARM::VLD2LNq32
:
2311 case ARM::VLD2LNd8_UPD
:
2312 case ARM::VLD2LNd16_UPD
:
2313 case ARM::VLD2LNd32_UPD
:
2314 case ARM::VLD2LNq16_UPD
:
2315 case ARM::VLD2LNq32_UPD
:
2317 case ARM::VLD4LNd16
:
2318 case ARM::VLD4LNd32
:
2319 case ARM::VLD4LNq16
:
2320 case ARM::VLD4LNq32
:
2321 case ARM::VLD4LNd8_UPD
:
2322 case ARM::VLD4LNd16_UPD
:
2323 case ARM::VLD4LNd32_UPD
:
2324 case ARM::VLD4LNq16_UPD
:
2325 case ARM::VLD4LNq32_UPD
:
2326 // If the address is not 64-bit aligned, the latencies of these
2327 // instructions increases by one.
2336 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
2337 SDNode
*DefNode
, unsigned DefIdx
,
2338 SDNode
*UseNode
, unsigned UseIdx
) const {
2339 if (!DefNode
->isMachineOpcode())
2342 const MCInstrDesc
&DefMCID
= get(DefNode
->getMachineOpcode());
2344 if (isZeroCost(DefMCID
.Opcode
))
2347 if (!ItinData
|| ItinData
->isEmpty())
2348 return DefMCID
.mayLoad() ? 3 : 1;
2350 if (!UseNode
->isMachineOpcode()) {
2351 int Latency
= ItinData
->getOperandCycle(DefMCID
.getSchedClass(), DefIdx
);
2352 if (Subtarget
.isCortexA9())
2353 return Latency
<= 2 ? 1 : Latency
- 1;
2355 return Latency
<= 3 ? 1 : Latency
- 2;
2358 const MCInstrDesc
&UseMCID
= get(UseNode
->getMachineOpcode());
2359 const MachineSDNode
*DefMN
= dyn_cast
<MachineSDNode
>(DefNode
);
2360 unsigned DefAlign
= !DefMN
->memoperands_empty()
2361 ? (*DefMN
->memoperands_begin())->getAlignment() : 0;
2362 const MachineSDNode
*UseMN
= dyn_cast
<MachineSDNode
>(UseNode
);
2363 unsigned UseAlign
= !UseMN
->memoperands_empty()
2364 ? (*UseMN
->memoperands_begin())->getAlignment() : 0;
2365 int Latency
= getOperandLatency(ItinData
, DefMCID
, DefIdx
, DefAlign
,
2366 UseMCID
, UseIdx
, UseAlign
);
2369 (Subtarget
.isCortexA8() || Subtarget
.isCortexA9())) {
2370 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2371 // variants are one cycle cheaper.
2372 switch (DefMCID
.getOpcode()) {
2377 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
2378 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
2380 (ShImm
== 2 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
2387 case ARM::t2LDRSHs
: {
2388 // Thumb2 mode: lsl only.
2390 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
2391 if (ShAmt
== 0 || ShAmt
== 2)
2398 if (DefAlign
< 8 && Subtarget
.isCortexA9())
2399 switch (DefMCID
.getOpcode()) {
2401 case ARM::VLD1q8Pseudo
:
2402 case ARM::VLD1q16Pseudo
:
2403 case ARM::VLD1q32Pseudo
:
2404 case ARM::VLD1q64Pseudo
:
2405 case ARM::VLD1q8Pseudo_UPD
:
2406 case ARM::VLD1q16Pseudo_UPD
:
2407 case ARM::VLD1q32Pseudo_UPD
:
2408 case ARM::VLD1q64Pseudo_UPD
:
2409 case ARM::VLD2d8Pseudo
:
2410 case ARM::VLD2d16Pseudo
:
2411 case ARM::VLD2d32Pseudo
:
2412 case ARM::VLD2q8Pseudo
:
2413 case ARM::VLD2q16Pseudo
:
2414 case ARM::VLD2q32Pseudo
:
2415 case ARM::VLD2d8Pseudo_UPD
:
2416 case ARM::VLD2d16Pseudo_UPD
:
2417 case ARM::VLD2d32Pseudo_UPD
:
2418 case ARM::VLD2q8Pseudo_UPD
:
2419 case ARM::VLD2q16Pseudo_UPD
:
2420 case ARM::VLD2q32Pseudo_UPD
:
2421 case ARM::VLD3d8Pseudo
:
2422 case ARM::VLD3d16Pseudo
:
2423 case ARM::VLD3d32Pseudo
:
2424 case ARM::VLD1d64TPseudo
:
2425 case ARM::VLD3d8Pseudo_UPD
:
2426 case ARM::VLD3d16Pseudo_UPD
:
2427 case ARM::VLD3d32Pseudo_UPD
:
2428 case ARM::VLD1d64TPseudo_UPD
:
2429 case ARM::VLD3q8Pseudo_UPD
:
2430 case ARM::VLD3q16Pseudo_UPD
:
2431 case ARM::VLD3q32Pseudo_UPD
:
2432 case ARM::VLD3q8oddPseudo
:
2433 case ARM::VLD3q16oddPseudo
:
2434 case ARM::VLD3q32oddPseudo
:
2435 case ARM::VLD3q8oddPseudo_UPD
:
2436 case ARM::VLD3q16oddPseudo_UPD
:
2437 case ARM::VLD3q32oddPseudo_UPD
:
2438 case ARM::VLD4d8Pseudo
:
2439 case ARM::VLD4d16Pseudo
:
2440 case ARM::VLD4d32Pseudo
:
2441 case ARM::VLD1d64QPseudo
:
2442 case ARM::VLD4d8Pseudo_UPD
:
2443 case ARM::VLD4d16Pseudo_UPD
:
2444 case ARM::VLD4d32Pseudo_UPD
:
2445 case ARM::VLD1d64QPseudo_UPD
:
2446 case ARM::VLD4q8Pseudo_UPD
:
2447 case ARM::VLD4q16Pseudo_UPD
:
2448 case ARM::VLD4q32Pseudo_UPD
:
2449 case ARM::VLD4q8oddPseudo
:
2450 case ARM::VLD4q16oddPseudo
:
2451 case ARM::VLD4q32oddPseudo
:
2452 case ARM::VLD4q8oddPseudo_UPD
:
2453 case ARM::VLD4q16oddPseudo_UPD
:
2454 case ARM::VLD4q32oddPseudo_UPD
:
2455 case ARM::VLD1DUPq8Pseudo
:
2456 case ARM::VLD1DUPq16Pseudo
:
2457 case ARM::VLD1DUPq32Pseudo
:
2458 case ARM::VLD1DUPq8Pseudo_UPD
:
2459 case ARM::VLD1DUPq16Pseudo_UPD
:
2460 case ARM::VLD1DUPq32Pseudo_UPD
:
2461 case ARM::VLD2DUPd8Pseudo
:
2462 case ARM::VLD2DUPd16Pseudo
:
2463 case ARM::VLD2DUPd32Pseudo
:
2464 case ARM::VLD2DUPd8Pseudo_UPD
:
2465 case ARM::VLD2DUPd16Pseudo_UPD
:
2466 case ARM::VLD2DUPd32Pseudo_UPD
:
2467 case ARM::VLD4DUPd8Pseudo
:
2468 case ARM::VLD4DUPd16Pseudo
:
2469 case ARM::VLD4DUPd32Pseudo
:
2470 case ARM::VLD4DUPd8Pseudo_UPD
:
2471 case ARM::VLD4DUPd16Pseudo_UPD
:
2472 case ARM::VLD4DUPd32Pseudo_UPD
:
2473 case ARM::VLD1LNq8Pseudo
:
2474 case ARM::VLD1LNq16Pseudo
:
2475 case ARM::VLD1LNq32Pseudo
:
2476 case ARM::VLD1LNq8Pseudo_UPD
:
2477 case ARM::VLD1LNq16Pseudo_UPD
:
2478 case ARM::VLD1LNq32Pseudo_UPD
:
2479 case ARM::VLD2LNd8Pseudo
:
2480 case ARM::VLD2LNd16Pseudo
:
2481 case ARM::VLD2LNd32Pseudo
:
2482 case ARM::VLD2LNq16Pseudo
:
2483 case ARM::VLD2LNq32Pseudo
:
2484 case ARM::VLD2LNd8Pseudo_UPD
:
2485 case ARM::VLD2LNd16Pseudo_UPD
:
2486 case ARM::VLD2LNd32Pseudo_UPD
:
2487 case ARM::VLD2LNq16Pseudo_UPD
:
2488 case ARM::VLD2LNq32Pseudo_UPD
:
2489 case ARM::VLD4LNd8Pseudo
:
2490 case ARM::VLD4LNd16Pseudo
:
2491 case ARM::VLD4LNd32Pseudo
:
2492 case ARM::VLD4LNq16Pseudo
:
2493 case ARM::VLD4LNq32Pseudo
:
2494 case ARM::VLD4LNd8Pseudo_UPD
:
2495 case ARM::VLD4LNd16Pseudo_UPD
:
2496 case ARM::VLD4LNd32Pseudo_UPD
:
2497 case ARM::VLD4LNq16Pseudo_UPD
:
2498 case ARM::VLD4LNq32Pseudo_UPD
:
2499 // If the address is not 64-bit aligned, the latencies of these
2500 // instructions increases by one.
2508 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
2509 const MachineInstr
*MI
,
2510 unsigned *PredCost
) const {
2511 if (MI
->isCopyLike() || MI
->isInsertSubreg() ||
2512 MI
->isRegSequence() || MI
->isImplicitDef())
2515 if (!ItinData
|| ItinData
->isEmpty())
2518 const MCInstrDesc
&MCID
= MI
->getDesc();
2519 unsigned Class
= MCID
.getSchedClass();
2520 unsigned UOps
= ItinData
->Itineraries
[Class
].NumMicroOps
;
2521 if (PredCost
&& MCID
.hasImplicitDefOfPhysReg(ARM::CPSR
))
2522 // When predicated, CPSR is an additional source operand for CPSR updating
2523 // instructions, this apparently increases their latencies.
2526 return ItinData
->getStageLatency(Class
);
2527 return getNumMicroOps(ItinData
, MI
);
2530 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
2531 SDNode
*Node
) const {
2532 if (!Node
->isMachineOpcode())
2535 if (!ItinData
|| ItinData
->isEmpty())
2538 unsigned Opcode
= Node
->getMachineOpcode();
2541 return ItinData
->getStageLatency(get(Opcode
).getSchedClass());
2548 bool ARMBaseInstrInfo::
2549 hasHighOperandLatency(const InstrItineraryData
*ItinData
,
2550 const MachineRegisterInfo
*MRI
,
2551 const MachineInstr
*DefMI
, unsigned DefIdx
,
2552 const MachineInstr
*UseMI
, unsigned UseIdx
) const {
2553 unsigned DDomain
= DefMI
->getDesc().TSFlags
& ARMII::DomainMask
;
2554 unsigned UDomain
= UseMI
->getDesc().TSFlags
& ARMII::DomainMask
;
2555 if (Subtarget
.isCortexA8() &&
2556 (DDomain
== ARMII::DomainVFP
|| UDomain
== ARMII::DomainVFP
))
2557 // CortexA8 VFP instructions are not pipelined.
2560 // Hoist VFP / NEON instructions with 4 or higher latency.
2561 int Latency
= getOperandLatency(ItinData
, DefMI
, DefIdx
, UseMI
, UseIdx
);
2564 return DDomain
== ARMII::DomainVFP
|| DDomain
== ARMII::DomainNEON
||
2565 UDomain
== ARMII::DomainVFP
|| UDomain
== ARMII::DomainNEON
;
2568 bool ARMBaseInstrInfo::
2569 hasLowDefLatency(const InstrItineraryData
*ItinData
,
2570 const MachineInstr
*DefMI
, unsigned DefIdx
) const {
2571 if (!ItinData
|| ItinData
->isEmpty())
2574 unsigned DDomain
= DefMI
->getDesc().TSFlags
& ARMII::DomainMask
;
2575 if (DDomain
== ARMII::DomainGeneral
) {
2576 unsigned DefClass
= DefMI
->getDesc().getSchedClass();
2577 int DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
2578 return (DefCycle
!= -1 && DefCycle
<= 2);
2584 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode
, unsigned &MulOpc
,
2585 unsigned &AddSubOpc
,
2586 bool &NegAcc
, bool &HasLane
) const {
2587 DenseMap
<unsigned, unsigned>::const_iterator I
= MLxEntryMap
.find(Opcode
);
2588 if (I
== MLxEntryMap
.end())
2591 const ARM_MLxEntry
&Entry
= ARM_MLxTable
[I
->second
];
2592 MulOpc
= Entry
.MulOpc
;
2593 AddSubOpc
= Entry
.AddSubOpc
;
2594 NegAcc
= Entry
.NegAcc
;
2595 HasLane
= Entry
.HasLane
;