1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "arm-cp-islands"
18 #include "ARMAddressingModes.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMInstrInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Support/CommandLine.h"
38 STATISTIC(NumCPEs
, "Number of constpool entries");
39 STATISTIC(NumSplit
, "Number of uncond branches inserted");
40 STATISTIC(NumCBrFixed
, "Number of cond branches fixed");
41 STATISTIC(NumUBrFixed
, "Number of uncond branches fixed");
42 STATISTIC(NumTBs
, "Number of table branches generated");
43 STATISTIC(NumT2CPShrunk
, "Number of Thumb2 constantpool instructions shrunk");
44 STATISTIC(NumT2BrShrunk
, "Number of Thumb2 immediate branches shrunk");
45 STATISTIC(NumCBZ
, "Number of CBZ / CBNZ formed");
46 STATISTIC(NumJTMoved
, "Number of jump table destination blocks moved");
47 STATISTIC(NumJTInserted
, "Number of jump table intermediate blocks inserted");
51 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden
, cl::init(true),
52 cl::desc("Adjust basic block layout to better use TB[BH]"));
55 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56 /// requires constant pool entries to be scattered among the instructions
57 /// inside a function. To do this, it completely ignores the normal LLVM
58 /// constant pool; instead, it places constants wherever it feels like with
59 /// special instructions.
61 /// The terminology used in this pass includes:
62 /// Islands - Clumps of constants placed in the function.
63 /// Water - Potential places where an island could be formed.
64 /// CPE - A constant pool entry that has been placed somewhere, which
65 /// tracks a list of users.
66 class ARMConstantIslands
: public MachineFunctionPass
{
67 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
68 /// by MBB Number. The two-byte pads required for Thumb alignment are
69 /// counted as part of the following block (i.e., the offset and size for
70 /// a padded block will both be ==2 mod 4).
71 std::vector
<unsigned> BBSizes
;
73 /// BBOffsets - the offset of each MBB in bytes, starting from 0.
74 /// The two-byte pads required for Thumb alignment are counted as part of
75 /// the following block.
76 std::vector
<unsigned> BBOffsets
;
78 /// WaterList - A sorted list of basic blocks where islands could be placed
79 /// (i.e. blocks that don't fall through to the following block, due
80 /// to a return, unreachable, or unconditional branch).
81 std::vector
<MachineBasicBlock
*> WaterList
;
83 /// NewWaterList - The subset of WaterList that was created since the
84 /// previous iteration by inserting unconditional branches.
85 SmallSet
<MachineBasicBlock
*, 4> NewWaterList
;
87 typedef std::vector
<MachineBasicBlock
*>::iterator water_iterator
;
89 /// CPUser - One user of a constant pool, keeping the machine instruction
90 /// pointer, the constant pool being referenced, and the max displacement
91 /// allowed from the instruction to the CP. The HighWaterMark records the
92 /// highest basic block where a new CPEntry can be placed. To ensure this
93 /// pass terminates, the CP entries are initially placed at the end of the
94 /// function and then move monotonically to lower addresses. The
95 /// exception to this rule is when the current CP entry for a particular
96 /// CPUser is out of range, but there is another CP entry for the same
97 /// constant value in range. We want to use the existing in-range CP
98 /// entry, but if it later moves out of range, the search for new water
99 /// should resume where it left off. The HighWaterMark is used to record
104 MachineBasicBlock
*HighWaterMark
;
108 CPUser(MachineInstr
*mi
, MachineInstr
*cpemi
, unsigned maxdisp
,
109 bool neg
, bool soimm
)
110 : MI(mi
), CPEMI(cpemi
), MaxDisp(maxdisp
), NegOk(neg
), IsSoImm(soimm
) {
111 HighWaterMark
= CPEMI
->getParent();
115 /// CPUsers - Keep track of all of the machine instructions that use various
116 /// constant pools and their max displacement.
117 std::vector
<CPUser
> CPUsers
;
119 /// CPEntry - One per constant pool entry, keeping the machine instruction
120 /// pointer, the constpool index, and the number of CPUser's which
121 /// reference this entry.
126 CPEntry(MachineInstr
*cpemi
, unsigned cpi
, unsigned rc
= 0)
127 : CPEMI(cpemi
), CPI(cpi
), RefCount(rc
) {}
130 /// CPEntries - Keep track of all of the constant pool entry machine
131 /// instructions. For each original constpool index (i.e. those that
132 /// existed upon entry to this pass), it keeps a vector of entries.
133 /// Original elements are cloned as we go along; the clones are
134 /// put in the vector of the original element, but have distinct CPIs.
135 std::vector
<std::vector
<CPEntry
> > CPEntries
;
137 /// ImmBranch - One per immediate branch, keeping the machine instruction
138 /// pointer, conditional or unconditional, the max displacement,
139 /// and (if isCond is true) the corresponding unconditional branch
143 unsigned MaxDisp
: 31;
146 ImmBranch(MachineInstr
*mi
, unsigned maxdisp
, bool cond
, int ubr
)
147 : MI(mi
), MaxDisp(maxdisp
), isCond(cond
), UncondBr(ubr
) {}
150 /// ImmBranches - Keep track of all the immediate branch instructions.
152 std::vector
<ImmBranch
> ImmBranches
;
154 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
156 SmallVector
<MachineInstr
*, 4> PushPopMIs
;
158 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
159 SmallVector
<MachineInstr
*, 4> T2JumpTables
;
161 /// HasFarJump - True if any far jump instruction has been emitted during
162 /// the branch fix up pass.
165 /// HasInlineAsm - True if the function contains inline assembly.
168 const ARMInstrInfo
*TII
;
169 const ARMSubtarget
*STI
;
170 ARMFunctionInfo
*AFI
;
176 ARMConstantIslands() : MachineFunctionPass(ID
) {}
178 virtual bool runOnMachineFunction(MachineFunction
&MF
);
180 virtual const char *getPassName() const {
181 return "ARM constant island placement and branch shortening pass";
185 void DoInitialPlacement(MachineFunction
&MF
,
186 std::vector
<MachineInstr
*> &CPEMIs
);
187 CPEntry
*findConstPoolEntry(unsigned CPI
, const MachineInstr
*CPEMI
);
188 void JumpTableFunctionScan(MachineFunction
&MF
);
189 void InitialFunctionScan(MachineFunction
&MF
,
190 const std::vector
<MachineInstr
*> &CPEMIs
);
191 MachineBasicBlock
*SplitBlockBeforeInstr(MachineInstr
*MI
);
192 void UpdateForInsertedWaterBlock(MachineBasicBlock
*NewBB
);
193 void AdjustBBOffsetsAfter(MachineBasicBlock
*BB
, int delta
);
194 bool DecrementOldEntry(unsigned CPI
, MachineInstr
* CPEMI
);
195 int LookForExistingCPEntry(CPUser
& U
, unsigned UserOffset
);
196 bool LookForWater(CPUser
&U
, unsigned UserOffset
, water_iterator
&WaterIter
);
197 void CreateNewWater(unsigned CPUserIndex
, unsigned UserOffset
,
198 MachineBasicBlock
*&NewMBB
);
199 bool HandleConstantPoolUser(MachineFunction
&MF
, unsigned CPUserIndex
);
200 void RemoveDeadCPEMI(MachineInstr
*CPEMI
);
201 bool RemoveUnusedCPEntries();
202 bool CPEIsInRange(MachineInstr
*MI
, unsigned UserOffset
,
203 MachineInstr
*CPEMI
, unsigned Disp
, bool NegOk
,
204 bool DoDump
= false);
205 bool WaterIsInRange(unsigned UserOffset
, MachineBasicBlock
*Water
,
207 bool OffsetIsInRange(unsigned UserOffset
, unsigned TrialOffset
,
208 unsigned Disp
, bool NegativeOK
, bool IsSoImm
= false);
209 bool BBIsInRange(MachineInstr
*MI
, MachineBasicBlock
*BB
, unsigned Disp
);
210 bool FixUpImmediateBr(MachineFunction
&MF
, ImmBranch
&Br
);
211 bool FixUpConditionalBr(MachineFunction
&MF
, ImmBranch
&Br
);
212 bool FixUpUnconditionalBr(MachineFunction
&MF
, ImmBranch
&Br
);
213 bool UndoLRSpillRestore();
214 bool OptimizeThumb2Instructions(MachineFunction
&MF
);
215 bool OptimizeThumb2Branches(MachineFunction
&MF
);
216 bool ReorderThumb2JumpTables(MachineFunction
&MF
);
217 bool OptimizeThumb2JumpTables(MachineFunction
&MF
);
218 MachineBasicBlock
*AdjustJTTargetBlockForward(MachineBasicBlock
*BB
,
219 MachineBasicBlock
*JTBB
);
221 unsigned GetOffsetOf(MachineInstr
*MI
) const;
223 void verify(MachineFunction
&MF
);
225 char ARMConstantIslands::ID
= 0;
228 /// verify - check BBOffsets, BBSizes, alignment of islands
229 void ARMConstantIslands::verify(MachineFunction
&MF
) {
230 assert(BBOffsets
.size() == BBSizes
.size());
231 for (unsigned i
= 1, e
= BBOffsets
.size(); i
!= e
; ++i
)
232 assert(BBOffsets
[i
-1]+BBSizes
[i
-1] == BBOffsets
[i
]);
236 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
238 MachineBasicBlock
*MBB
= MBBI
;
240 MBB
->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY
) {
241 unsigned MBBId
= MBB
->getNumber();
242 assert(HasInlineAsm
||
243 (BBOffsets
[MBBId
]%4 == 0 && BBSizes
[MBBId
]%4 == 0) ||
244 (BBOffsets
[MBBId
]%4 != 0 && BBSizes
[MBBId
]%4 != 0));
247 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
) {
248 CPUser
&U
= CPUsers
[i
];
249 unsigned UserOffset
= GetOffsetOf(U
.MI
) + (isThumb
? 4 : 8);
250 unsigned CPEOffset
= GetOffsetOf(U
.CPEMI
);
251 unsigned Disp
= UserOffset
< CPEOffset
? CPEOffset
- UserOffset
:
252 UserOffset
- CPEOffset
;
253 assert(Disp
<= U
.MaxDisp
|| "Constant pool entry out of range!");
258 /// print block size and offset information - debugging
259 void ARMConstantIslands::dumpBBs() {
260 for (unsigned J
= 0, E
= BBOffsets
.size(); J
!=E
; ++J
) {
261 DEBUG(errs() << "block " << J
<< " offset " << BBOffsets
[J
]
262 << " size " << BBSizes
[J
] << "\n");
266 /// createARMConstantIslandPass - returns an instance of the constpool
268 FunctionPass
*llvm::createARMConstantIslandPass() {
269 return new ARMConstantIslands();
272 bool ARMConstantIslands::runOnMachineFunction(MachineFunction
&MF
) {
273 MachineConstantPool
&MCP
= *MF
.getConstantPool();
275 TII
= (const ARMInstrInfo
*)MF
.getTarget().getInstrInfo();
276 AFI
= MF
.getInfo
<ARMFunctionInfo
>();
277 STI
= &MF
.getTarget().getSubtarget
<ARMSubtarget
>();
279 isThumb
= AFI
->isThumbFunction();
280 isThumb1
= AFI
->isThumb1OnlyFunction();
281 isThumb2
= AFI
->isThumb2Function();
284 HasInlineAsm
= false;
286 // Renumber all of the machine basic blocks in the function, guaranteeing that
287 // the numbers agree with the position of the block in the function.
290 // Try to reorder and otherwise adjust the block layout to make good use
291 // of the TB[BH] instructions.
292 bool MadeChange
= false;
293 if (isThumb2
&& AdjustJumpTableBlocks
) {
294 JumpTableFunctionScan(MF
);
295 MadeChange
|= ReorderThumb2JumpTables(MF
);
296 // Data is out of date, so clear it. It'll be re-computed later.
297 T2JumpTables
.clear();
298 // Blocks may have shifted around. Keep the numbering up to date.
302 // Thumb1 functions containing constant pools get 4-byte alignment.
303 // This is so we can keep exact track of where the alignment padding goes.
305 // ARM and Thumb2 functions need to be 4-byte aligned.
307 MF
.EnsureAlignment(2); // 2 = log2(4)
309 // Perform the initial placement of the constant pool entries. To start with,
310 // we put them all at the end of the function.
311 std::vector
<MachineInstr
*> CPEMIs
;
312 if (!MCP
.isEmpty()) {
313 DoInitialPlacement(MF
, CPEMIs
);
315 MF
.EnsureAlignment(2); // 2 = log2(4)
318 /// The next UID to take is the first unused one.
319 AFI
->initPICLabelUId(CPEMIs
.size());
321 // Do the initial scan of the function, building up information about the
322 // sizes of each block, the location of all the water, and finding all of the
323 // constant pool users.
324 InitialFunctionScan(MF
, CPEMIs
);
329 /// Remove dead constant pool entries.
330 MadeChange
|= RemoveUnusedCPEntries();
332 // Iteratively place constant pool entries and fix up branches until there
334 unsigned NoCPIters
= 0, NoBRIters
= 0;
336 bool CPChange
= false;
337 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
)
338 CPChange
|= HandleConstantPoolUser(MF
, i
);
339 if (CPChange
&& ++NoCPIters
> 30)
340 llvm_unreachable("Constant Island pass failed to converge!");
343 // Clear NewWaterList now. If we split a block for branches, it should
344 // appear as "new water" for the next iteration of constant pool placement.
345 NewWaterList
.clear();
347 bool BRChange
= false;
348 for (unsigned i
= 0, e
= ImmBranches
.size(); i
!= e
; ++i
)
349 BRChange
|= FixUpImmediateBr(MF
, ImmBranches
[i
]);
350 if (BRChange
&& ++NoBRIters
> 30)
351 llvm_unreachable("Branch Fix Up pass failed to converge!");
354 if (!CPChange
&& !BRChange
)
359 // Shrink 32-bit Thumb2 branch, load, and store instructions.
360 if (isThumb2
&& !STI
->prefers32BitThumb())
361 MadeChange
|= OptimizeThumb2Instructions(MF
);
363 // After a while, this might be made debug-only, but it is not expensive.
366 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
367 // undo the spill / restore of LR if possible.
368 if (isThumb
&& !HasFarJump
&& AFI
->isLRSpilledForFarJump())
369 MadeChange
|= UndoLRSpillRestore();
371 // Save the mapping between original and cloned constpool entries.
372 for (unsigned i
= 0, e
= CPEntries
.size(); i
!= e
; ++i
) {
373 for (unsigned j
= 0, je
= CPEntries
[i
].size(); j
!= je
; ++j
) {
374 const CPEntry
& CPE
= CPEntries
[i
][j
];
375 AFI
->recordCPEClone(i
, CPE
.CPI
);
379 DEBUG(errs() << '\n'; dumpBBs());
388 T2JumpTables
.clear();
393 /// DoInitialPlacement - Perform the initial placement of the constant pool
394 /// entries. To start with, we put them all at the end of the function.
395 void ARMConstantIslands::DoInitialPlacement(MachineFunction
&MF
,
396 std::vector
<MachineInstr
*> &CPEMIs
) {
397 // Create the basic block to hold the CPE's.
398 MachineBasicBlock
*BB
= MF
.CreateMachineBasicBlock();
401 // Add all of the constants from the constant pool to the end block, use an
402 // identity mapping of CPI's to CPE's.
403 const std::vector
<MachineConstantPoolEntry
> &CPs
=
404 MF
.getConstantPool()->getConstants();
406 const TargetData
&TD
= *MF
.getTarget().getTargetData();
407 for (unsigned i
= 0, e
= CPs
.size(); i
!= e
; ++i
) {
408 unsigned Size
= TD
.getTypeAllocSize(CPs
[i
].getType());
409 // Verify that all constant pool entries are a multiple of 4 bytes. If not,
410 // we would have to pad them out or something so that instructions stay
412 assert((Size
& 3) == 0 && "CP Entry not multiple of 4 bytes!");
413 MachineInstr
*CPEMI
=
414 BuildMI(BB
, DebugLoc(), TII
->get(ARM::CONSTPOOL_ENTRY
))
415 .addImm(i
).addConstantPoolIndex(i
).addImm(Size
);
416 CPEMIs
.push_back(CPEMI
);
418 // Add a new CPEntry, but no corresponding CPUser yet.
419 std::vector
<CPEntry
> CPEs
;
420 CPEs
.push_back(CPEntry(CPEMI
, i
));
421 CPEntries
.push_back(CPEs
);
423 DEBUG(errs() << "Moved CPI#" << i
<< " to end of function as #" << i
428 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
429 /// into the block immediately after it.
430 static bool BBHasFallthrough(MachineBasicBlock
*MBB
) {
431 // Get the next machine basic block in the function.
432 MachineFunction::iterator MBBI
= MBB
;
433 // Can't fall off end of function.
434 if (llvm::next(MBBI
) == MBB
->getParent()->end())
437 MachineBasicBlock
*NextBB
= llvm::next(MBBI
);
438 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
439 E
= MBB
->succ_end(); I
!= E
; ++I
)
446 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
447 /// look up the corresponding CPEntry.
448 ARMConstantIslands::CPEntry
449 *ARMConstantIslands::findConstPoolEntry(unsigned CPI
,
450 const MachineInstr
*CPEMI
) {
451 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
452 // Number of entries per constpool index should be small, just do a
454 for (unsigned i
= 0, e
= CPEs
.size(); i
!= e
; ++i
) {
455 if (CPEs
[i
].CPEMI
== CPEMI
)
461 /// JumpTableFunctionScan - Do a scan of the function, building up
462 /// information about the sizes of each block and the locations of all
464 void ARMConstantIslands::JumpTableFunctionScan(MachineFunction
&MF
) {
465 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
467 MachineBasicBlock
&MBB
= *MBBI
;
469 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
471 if (I
->getDesc().isBranch() && I
->getOpcode() == ARM::t2BR_JT
)
472 T2JumpTables
.push_back(I
);
476 /// InitialFunctionScan - Do the initial scan of the function, building up
477 /// information about the sizes of each block, the location of all the water,
478 /// and finding all of the constant pool users.
479 void ARMConstantIslands::InitialFunctionScan(MachineFunction
&MF
,
480 const std::vector
<MachineInstr
*> &CPEMIs
) {
481 // First thing, see if the function has any inline assembly in it. If so,
482 // we have to be conservative about alignment assumptions, as we don't
483 // know for sure the size of any instructions in the inline assembly.
484 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
486 MachineBasicBlock
&MBB
= *MBBI
;
487 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
489 if (I
->getOpcode() == ARM::INLINEASM
)
493 // Now go back through the instructions and build up our data structures.
495 for (MachineFunction::iterator MBBI
= MF
.begin(), E
= MF
.end();
497 MachineBasicBlock
&MBB
= *MBBI
;
499 // If this block doesn't fall through into the next MBB, then this is
500 // 'water' that a constant pool island could be placed.
501 if (!BBHasFallthrough(&MBB
))
502 WaterList
.push_back(&MBB
);
504 unsigned MBBSize
= 0;
505 for (MachineBasicBlock::iterator I
= MBB
.begin(), E
= MBB
.end();
507 if (I
->isDebugValue())
509 // Add instruction size to MBBSize.
510 MBBSize
+= TII
->GetInstSizeInBytes(I
);
512 int Opc
= I
->getOpcode();
513 if (I
->getDesc().isBranch()) {
520 continue; // Ignore other JT branches
522 // A Thumb1 table jump may involve padding; for the offsets to
523 // be right, functions containing these must be 4-byte aligned.
524 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
525 // table entries. So this code checks whether offset of tBR_JTr + 2
526 // is aligned. That is held in Offset+MBBSize, which already has
527 // 2 added in for the size of the mov pc instruction.
528 MF
.EnsureAlignment(2U);
529 if ((Offset
+MBBSize
)%4 != 0 || HasInlineAsm
)
530 // FIXME: Add a pseudo ALIGN instruction instead.
531 MBBSize
+= 2; // padding
532 continue; // Does not get an entry in ImmBranches
534 T2JumpTables
.push_back(I
);
535 continue; // Does not get an entry in ImmBranches
566 // Record this immediate branch.
567 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
568 ImmBranches
.push_back(ImmBranch(I
, MaxOffs
, isCond
, UOpc
));
571 if (Opc
== ARM::tPUSH
|| Opc
== ARM::tPOP_RET
)
572 PushPopMIs
.push_back(I
);
574 if (Opc
== ARM::CONSTPOOL_ENTRY
)
577 // Scan the instructions for constant pool operands.
578 for (unsigned op
= 0, e
= I
->getNumOperands(); op
!= e
; ++op
)
579 if (I
->getOperand(op
).isCPI()) {
580 // We found one. The addressing mode tells us the max displacement
581 // from the PC that this instruction permits.
583 // Basic size info comes from the TSFlags field.
587 bool IsSoImm
= false;
591 llvm_unreachable("Unknown addressing mode for CP reference!");
594 // Taking the address of a CP entry.
596 // This takes a SoImm, which is 8 bit immediate rotated. We'll
597 // pretend the maximum offset is 255 * 4. Since each instruction
598 // 4 byte wide, this is always correct. We'll check for other
599 // displacements that fits in a SoImm as well.
605 case ARM::t2LEApcrel
:
617 Bits
= 12; // +-offset_12
623 Scale
= 4; // +(offset_8*4)
629 Scale
= 4; // +-(offset_8*4)
634 // Remember that this is a user of a CP entry.
635 unsigned CPI
= I
->getOperand(op
).getIndex();
636 MachineInstr
*CPEMI
= CPEMIs
[CPI
];
637 unsigned MaxOffs
= ((1 << Bits
)-1) * Scale
;
638 CPUsers
.push_back(CPUser(I
, CPEMI
, MaxOffs
, NegOk
, IsSoImm
));
640 // Increment corresponding CPEntry reference count.
641 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
642 assert(CPE
&& "Cannot find a corresponding CPEntry!");
645 // Instructions can only use one CP entry, don't bother scanning the
646 // rest of the operands.
651 // In thumb mode, if this block is a constpool island, we may need padding
652 // so it's aligned on 4 byte boundary.
655 MBB
.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY
&&
656 ((Offset
%4) != 0 || HasInlineAsm
))
659 BBSizes
.push_back(MBBSize
);
660 BBOffsets
.push_back(Offset
);
665 /// GetOffsetOf - Return the current offset of the specified machine instruction
666 /// from the start of the function. This offset changes as stuff is moved
667 /// around inside the function.
668 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr
*MI
) const {
669 MachineBasicBlock
*MBB
= MI
->getParent();
671 // The offset is composed of two things: the sum of the sizes of all MBB's
672 // before this instruction's block, and the offset from the start of the block
674 unsigned Offset
= BBOffsets
[MBB
->getNumber()];
676 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
677 // alignment padding, and compensate if so.
679 MI
->getOpcode() == ARM::CONSTPOOL_ENTRY
&&
680 (Offset
%4 != 0 || HasInlineAsm
))
683 // Sum instructions before MI in MBB.
684 for (MachineBasicBlock::iterator I
= MBB
->begin(); ; ++I
) {
685 assert(I
!= MBB
->end() && "Didn't find MI in its own basic block?");
686 if (&*I
== MI
) return Offset
;
687 Offset
+= TII
->GetInstSizeInBytes(I
);
691 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
693 static bool CompareMBBNumbers(const MachineBasicBlock
*LHS
,
694 const MachineBasicBlock
*RHS
) {
695 return LHS
->getNumber() < RHS
->getNumber();
698 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
699 /// machine function, it upsets all of the block numbers. Renumber the blocks
700 /// and update the arrays that parallel this numbering.
701 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock
*NewBB
) {
702 // Renumber the MBB's to keep them consecutive.
703 NewBB
->getParent()->RenumberBlocks(NewBB
);
705 // Insert a size into BBSizes to align it properly with the (newly
706 // renumbered) block numbers.
707 BBSizes
.insert(BBSizes
.begin()+NewBB
->getNumber(), 0);
709 // Likewise for BBOffsets.
710 BBOffsets
.insert(BBOffsets
.begin()+NewBB
->getNumber(), 0);
712 // Next, update WaterList. Specifically, we need to add NewMBB as having
713 // available water after it.
715 std::lower_bound(WaterList
.begin(), WaterList
.end(), NewBB
,
717 WaterList
.insert(IP
, NewBB
);
721 /// Split the basic block containing MI into two blocks, which are joined by
722 /// an unconditional branch. Update data structures and renumber blocks to
723 /// account for this change and returns the newly created block.
724 MachineBasicBlock
*ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr
*MI
) {
725 MachineBasicBlock
*OrigBB
= MI
->getParent();
726 MachineFunction
&MF
= *OrigBB
->getParent();
728 // Create a new MBB for the code after the OrigBB.
729 MachineBasicBlock
*NewBB
=
730 MF
.CreateMachineBasicBlock(OrigBB
->getBasicBlock());
731 MachineFunction::iterator MBBI
= OrigBB
; ++MBBI
;
732 MF
.insert(MBBI
, NewBB
);
734 // Splice the instructions starting with MI over to NewBB.
735 NewBB
->splice(NewBB
->end(), OrigBB
, MI
, OrigBB
->end());
737 // Add an unconditional branch from OrigBB to NewBB.
738 // Note the new unconditional branch is not being recorded.
739 // There doesn't seem to be meaningful DebugInfo available; this doesn't
740 // correspond to anything in the source.
741 unsigned Opc
= isThumb
? (isThumb2
? ARM::t2B
: ARM::tB
) : ARM::B
;
742 BuildMI(OrigBB
, DebugLoc(), TII
->get(Opc
)).addMBB(NewBB
);
745 // Update the CFG. All succs of OrigBB are now succs of NewBB.
746 while (!OrigBB
->succ_empty()) {
747 MachineBasicBlock
*Succ
= *OrigBB
->succ_begin();
748 OrigBB
->removeSuccessor(Succ
);
749 NewBB
->addSuccessor(Succ
);
751 // This pass should be run after register allocation, so there should be no
752 // PHI nodes to update.
753 assert((Succ
->empty() || !Succ
->begin()->isPHI())
754 && "PHI nodes should be eliminated by now!");
757 // OrigBB branches to NewBB.
758 OrigBB
->addSuccessor(NewBB
);
760 // Update internal data structures to account for the newly inserted MBB.
761 // This is almost the same as UpdateForInsertedWaterBlock, except that
762 // the Water goes after OrigBB, not NewBB.
763 MF
.RenumberBlocks(NewBB
);
765 // Insert a size into BBSizes to align it properly with the (newly
766 // renumbered) block numbers.
767 BBSizes
.insert(BBSizes
.begin()+NewBB
->getNumber(), 0);
769 // Likewise for BBOffsets.
770 BBOffsets
.insert(BBOffsets
.begin()+NewBB
->getNumber(), 0);
772 // Next, update WaterList. Specifically, we need to add OrigMBB as having
773 // available water after it (but not if it's already there, which happens
774 // when splitting before a conditional branch that is followed by an
775 // unconditional branch - in that case we want to insert NewBB).
777 std::lower_bound(WaterList
.begin(), WaterList
.end(), OrigBB
,
779 MachineBasicBlock
* WaterBB
= *IP
;
780 if (WaterBB
== OrigBB
)
781 WaterList
.insert(llvm::next(IP
), NewBB
);
783 WaterList
.insert(IP
, OrigBB
);
784 NewWaterList
.insert(OrigBB
);
786 unsigned OrigBBI
= OrigBB
->getNumber();
787 unsigned NewBBI
= NewBB
->getNumber();
789 int delta
= isThumb1
? 2 : 4;
791 // Figure out how large the OrigBB is. As the first half of the original
792 // block, it cannot contain a tablejump. The size includes
793 // the new jump we added. (It should be possible to do this without
794 // recounting everything, but it's very confusing, and this is rarely
796 unsigned OrigBBSize
= 0;
797 for (MachineBasicBlock::iterator I
= OrigBB
->begin(), E
= OrigBB
->end();
799 OrigBBSize
+= TII
->GetInstSizeInBytes(I
);
800 BBSizes
[OrigBBI
] = OrigBBSize
;
802 // ...and adjust BBOffsets for NewBB accordingly.
803 BBOffsets
[NewBBI
] = BBOffsets
[OrigBBI
] + BBSizes
[OrigBBI
];
805 // Figure out how large the NewMBB is. As the second half of the original
806 // block, it may contain a tablejump.
807 unsigned NewBBSize
= 0;
808 for (MachineBasicBlock::iterator I
= NewBB
->begin(), E
= NewBB
->end();
810 NewBBSize
+= TII
->GetInstSizeInBytes(I
);
811 // Set the size of NewBB in BBSizes. It does not include any padding now.
812 BBSizes
[NewBBI
] = NewBBSize
;
814 MachineInstr
* ThumbJTMI
= prior(NewBB
->end());
815 if (ThumbJTMI
->getOpcode() == ARM::tBR_JTr
) {
816 // We've added another 2-byte instruction before this tablejump, which
817 // means we will always need padding if we didn't before, and vice versa.
819 // The original offset of the jump instruction was:
820 unsigned OrigOffset
= BBOffsets
[OrigBBI
] + BBSizes
[OrigBBI
] - delta
;
821 if (OrigOffset
%4 == 0) {
822 // We had padding before and now we don't. No net change in code size.
825 // We didn't have padding before and now we do.
826 BBSizes
[NewBBI
] += 2;
831 // All BBOffsets following these blocks must be modified.
833 AdjustBBOffsetsAfter(NewBB
, delta
);
838 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
839 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
840 /// constant pool entry).
841 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset
,
842 unsigned TrialOffset
, unsigned MaxDisp
,
843 bool NegativeOK
, bool IsSoImm
) {
844 // On Thumb offsets==2 mod 4 are rounded down by the hardware for
845 // purposes of the displacement computation; compensate for that here.
846 // Effectively, the valid range of displacements is 2 bytes smaller for such
848 unsigned TotalAdj
= 0;
849 if (isThumb
&& UserOffset
%4 !=0) {
853 // CPEs will be rounded up to a multiple of 4.
854 if (isThumb
&& TrialOffset
%4 != 0) {
859 // In Thumb2 mode, later branch adjustments can shift instructions up and
860 // cause alignment change. In the worst case scenario this can cause the
861 // user's effective address to be subtracted by 2 and the CPE's address to
863 if (isThumb2
&& TotalAdj
!= 4)
864 MaxDisp
-= (4 - TotalAdj
);
866 if (UserOffset
<= TrialOffset
) {
867 // User before the Trial.
868 if (TrialOffset
- UserOffset
<= MaxDisp
)
870 // FIXME: Make use full range of soimm values.
871 } else if (NegativeOK
) {
872 if (UserOffset
- TrialOffset
<= MaxDisp
)
874 // FIXME: Make use full range of soimm values.
879 /// WaterIsInRange - Returns true if a CPE placed after the specified
880 /// Water (a basic block) will be in range for the specific MI.
882 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset
,
883 MachineBasicBlock
* Water
, CPUser
&U
) {
884 unsigned MaxDisp
= U
.MaxDisp
;
885 unsigned CPEOffset
= BBOffsets
[Water
->getNumber()] +
886 BBSizes
[Water
->getNumber()];
888 // If the CPE is to be inserted before the instruction, that will raise
889 // the offset of the instruction.
890 if (CPEOffset
< UserOffset
)
891 UserOffset
+= U
.CPEMI
->getOperand(2).getImm();
893 return OffsetIsInRange(UserOffset
, CPEOffset
, MaxDisp
, U
.NegOk
, U
.IsSoImm
);
896 /// CPEIsInRange - Returns true if the distance between specific MI and
897 /// specific ConstPool entry instruction can fit in MI's displacement field.
898 bool ARMConstantIslands::CPEIsInRange(MachineInstr
*MI
, unsigned UserOffset
,
899 MachineInstr
*CPEMI
, unsigned MaxDisp
,
900 bool NegOk
, bool DoDump
) {
901 unsigned CPEOffset
= GetOffsetOf(CPEMI
);
902 assert((CPEOffset
%4 == 0 || HasInlineAsm
) && "Misaligned CPE");
905 DEBUG(errs() << "User of CPE#" << CPEMI
->getOperand(0).getImm()
906 << " max delta=" << MaxDisp
907 << " insn address=" << UserOffset
908 << " CPE address=" << CPEOffset
909 << " offset=" << int(CPEOffset
-UserOffset
) << "\t" << *MI
);
912 return OffsetIsInRange(UserOffset
, CPEOffset
, MaxDisp
, NegOk
);
916 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
917 /// unconditionally branches to its only successor.
918 static bool BBIsJumpedOver(MachineBasicBlock
*MBB
) {
919 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
922 MachineBasicBlock
*Succ
= *MBB
->succ_begin();
923 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
924 MachineInstr
*PredMI
= &Pred
->back();
925 if (PredMI
->getOpcode() == ARM::B
|| PredMI
->getOpcode() == ARM::tB
926 || PredMI
->getOpcode() == ARM::t2B
)
927 return PredMI
->getOperand(0).getMBB() == Succ
;
932 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock
*BB
,
934 MachineFunction::iterator MBBI
= BB
; MBBI
= llvm::next(MBBI
);
935 for(unsigned i
= BB
->getNumber()+1, e
= BB
->getParent()->getNumBlockIDs();
937 BBOffsets
[i
] += delta
;
938 // If some existing blocks have padding, adjust the padding as needed, a
939 // bit tricky. delta can be negative so don't use % on that.
942 MachineBasicBlock
*MBB
= MBBI
;
943 if (!MBB
->empty() && !HasInlineAsm
) {
944 // Constant pool entries require padding.
945 if (MBB
->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY
) {
946 unsigned OldOffset
= BBOffsets
[i
] - delta
;
947 if ((OldOffset
%4) == 0 && (BBOffsets
[i
]%4) != 0) {
951 } else if ((OldOffset
%4) != 0 && (BBOffsets
[i
]%4) == 0) {
952 // remove existing padding
957 // Thumb1 jump tables require padding. They should be at the end;
958 // following unconditional branches are removed by AnalyzeBranch.
959 // tBR_JTr expands to a mov pc followed by .align 2 and then the jump
960 // table entries. So this code checks whether offset of tBR_JTr
961 // is aligned; if it is, the offset of the jump table following the
962 // instruction will not be aligned, and we need padding.
963 MachineInstr
*ThumbJTMI
= prior(MBB
->end());
964 if (ThumbJTMI
->getOpcode() == ARM::tBR_JTr
) {
965 unsigned NewMIOffset
= GetOffsetOf(ThumbJTMI
);
966 unsigned OldMIOffset
= NewMIOffset
- delta
;
967 if ((OldMIOffset
%4) == 0 && (NewMIOffset
%4) != 0) {
968 // remove existing padding
971 } else if ((OldMIOffset
%4) != 0 && (NewMIOffset
%4) == 0) {
980 MBBI
= llvm::next(MBBI
);
984 /// DecrementOldEntry - find the constant pool entry with index CPI
985 /// and instruction CPEMI, and decrement its refcount. If the refcount
986 /// becomes 0 remove the entry and instruction. Returns true if we removed
987 /// the entry, false if we didn't.
989 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI
, MachineInstr
*CPEMI
) {
990 // Find the old entry. Eliminate it if it is no longer used.
991 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
992 assert(CPE
&& "Unexpected!");
993 if (--CPE
->RefCount
== 0) {
994 RemoveDeadCPEMI(CPEMI
);
1002 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1003 /// if not, see if an in-range clone of the CPE is in range, and if so,
1004 /// change the data structures so the user references the clone. Returns:
1005 /// 0 = no existing entry found
1006 /// 1 = entry found, and there were no code insertions or deletions
1007 /// 2 = entry found, and there were code insertions or deletions
1008 int ARMConstantIslands::LookForExistingCPEntry(CPUser
& U
, unsigned UserOffset
)
1010 MachineInstr
*UserMI
= U
.MI
;
1011 MachineInstr
*CPEMI
= U
.CPEMI
;
1013 // Check to see if the CPE is already in-range.
1014 if (CPEIsInRange(UserMI
, UserOffset
, CPEMI
, U
.MaxDisp
, U
.NegOk
, true)) {
1015 DEBUG(errs() << "In range\n");
1019 // No. Look for previously created clones of the CPE that are in range.
1020 unsigned CPI
= CPEMI
->getOperand(1).getIndex();
1021 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
1022 for (unsigned i
= 0, e
= CPEs
.size(); i
!= e
; ++i
) {
1023 // We already tried this one
1024 if (CPEs
[i
].CPEMI
== CPEMI
)
1026 // Removing CPEs can leave empty entries, skip
1027 if (CPEs
[i
].CPEMI
== NULL
)
1029 if (CPEIsInRange(UserMI
, UserOffset
, CPEs
[i
].CPEMI
, U
.MaxDisp
, U
.NegOk
)) {
1030 DEBUG(errs() << "Replacing CPE#" << CPI
<< " with CPE#"
1031 << CPEs
[i
].CPI
<< "\n");
1032 // Point the CPUser node to the replacement
1033 U
.CPEMI
= CPEs
[i
].CPEMI
;
1034 // Change the CPI in the instruction operand to refer to the clone.
1035 for (unsigned j
= 0, e
= UserMI
->getNumOperands(); j
!= e
; ++j
)
1036 if (UserMI
->getOperand(j
).isCPI()) {
1037 UserMI
->getOperand(j
).setIndex(CPEs
[i
].CPI
);
1040 // Adjust the refcount of the clone...
1042 // ...and the original. If we didn't remove the old entry, none of the
1043 // addresses changed, so we don't need another pass.
1044 return DecrementOldEntry(CPI
, CPEMI
) ? 2 : 1;
1050 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1051 /// the specific unconditional branch instruction.
1052 static inline unsigned getUnconditionalBrDisp(int Opc
) {
1055 return ((1<<10)-1)*2;
1057 return ((1<<23)-1)*2;
1062 return ((1<<23)-1)*4;
1065 /// LookForWater - Look for an existing entry in the WaterList in which
1066 /// we can place the CPE referenced from U so it's within range of U's MI.
1067 /// Returns true if found, false if not. If it returns true, WaterIter
1068 /// is set to the WaterList entry. For Thumb, prefer water that will not
1069 /// introduce padding to water that will. To ensure that this pass
1070 /// terminates, the CPE location for a particular CPUser is only allowed to
1071 /// move to a lower address, so search backward from the end of the list and
1072 /// prefer the first water that is in range.
1073 bool ARMConstantIslands::LookForWater(CPUser
&U
, unsigned UserOffset
,
1074 water_iterator
&WaterIter
) {
1075 if (WaterList
.empty())
1078 bool FoundWaterThatWouldPad
= false;
1079 water_iterator IPThatWouldPad
;
1080 for (water_iterator IP
= prior(WaterList
.end()),
1081 B
= WaterList
.begin();; --IP
) {
1082 MachineBasicBlock
* WaterBB
= *IP
;
1083 // Check if water is in range and is either at a lower address than the
1084 // current "high water mark" or a new water block that was created since
1085 // the previous iteration by inserting an unconditional branch. In the
1086 // latter case, we want to allow resetting the high water mark back to
1087 // this new water since we haven't seen it before. Inserting branches
1088 // should be relatively uncommon and when it does happen, we want to be
1089 // sure to take advantage of it for all the CPEs near that block, so that
1090 // we don't insert more branches than necessary.
1091 if (WaterIsInRange(UserOffset
, WaterBB
, U
) &&
1092 (WaterBB
->getNumber() < U
.HighWaterMark
->getNumber() ||
1093 NewWaterList
.count(WaterBB
))) {
1094 unsigned WBBId
= WaterBB
->getNumber();
1096 (BBOffsets
[WBBId
] + BBSizes
[WBBId
])%4 != 0) {
1097 // This is valid Water, but would introduce padding. Remember
1098 // it in case we don't find any Water that doesn't do this.
1099 if (!FoundWaterThatWouldPad
) {
1100 FoundWaterThatWouldPad
= true;
1101 IPThatWouldPad
= IP
;
1111 if (FoundWaterThatWouldPad
) {
1112 WaterIter
= IPThatWouldPad
;
1118 /// CreateNewWater - No existing WaterList entry will work for
1119 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1120 /// block is used if in range, and the conditional branch munged so control
1121 /// flow is correct. Otherwise the block is split to create a hole with an
1122 /// unconditional branch around it. In either case NewMBB is set to a
1123 /// block following which the new island can be inserted (the WaterList
1124 /// is not adjusted).
1125 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex
,
1126 unsigned UserOffset
,
1127 MachineBasicBlock
*&NewMBB
) {
1128 CPUser
&U
= CPUsers
[CPUserIndex
];
1129 MachineInstr
*UserMI
= U
.MI
;
1130 MachineInstr
*CPEMI
= U
.CPEMI
;
1131 MachineBasicBlock
*UserMBB
= UserMI
->getParent();
1132 unsigned OffsetOfNextBlock
= BBOffsets
[UserMBB
->getNumber()] +
1133 BBSizes
[UserMBB
->getNumber()];
1134 assert(OffsetOfNextBlock
== BBOffsets
[UserMBB
->getNumber()+1]);
1136 // If the block does not end in an unconditional branch already, and if the
1137 // end of the block is within range, make new water there. (The addition
1138 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1139 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for
1140 // inside OffsetIsInRange.
1141 if (BBHasFallthrough(UserMBB
) &&
1142 OffsetIsInRange(UserOffset
, OffsetOfNextBlock
+ (isThumb1
? 2: 4),
1143 U
.MaxDisp
, U
.NegOk
, U
.IsSoImm
)) {
1144 DEBUG(errs() << "Split at end of block\n");
1145 if (&UserMBB
->back() == UserMI
)
1146 assert(BBHasFallthrough(UserMBB
) && "Expected a fallthrough BB!");
1147 NewMBB
= llvm::next(MachineFunction::iterator(UserMBB
));
1148 // Add an unconditional branch from UserMBB to fallthrough block.
1149 // Record it for branch lengthening; this new branch will not get out of
1150 // range, but if the preceding conditional branch is out of range, the
1151 // targets will be exchanged, and the altered branch may be out of
1152 // range, so the machinery has to know about it.
1153 int UncondBr
= isThumb
? ((isThumb2
) ? ARM::t2B
: ARM::tB
) : ARM::B
;
1154 BuildMI(UserMBB
, DebugLoc(), TII
->get(UncondBr
)).addMBB(NewMBB
);
1155 unsigned MaxDisp
= getUnconditionalBrDisp(UncondBr
);
1156 ImmBranches
.push_back(ImmBranch(&UserMBB
->back(),
1157 MaxDisp
, false, UncondBr
));
1158 int delta
= isThumb1
? 2 : 4;
1159 BBSizes
[UserMBB
->getNumber()] += delta
;
1160 AdjustBBOffsetsAfter(UserMBB
, delta
);
1162 // What a big block. Find a place within the block to split it.
1163 // This is a little tricky on Thumb1 since instructions are 2 bytes
1164 // and constant pool entries are 4 bytes: if instruction I references
1165 // island CPE, and instruction I+1 references CPE', it will
1166 // not work well to put CPE as far forward as possible, since then
1167 // CPE' cannot immediately follow it (that location is 2 bytes
1168 // farther away from I+1 than CPE was from I) and we'd need to create
1169 // a new island. So, we make a first guess, then walk through the
1170 // instructions between the one currently being looked at and the
1171 // possible insertion point, and make sure any other instructions
1172 // that reference CPEs will be able to use the same island area;
1173 // if not, we back up the insertion point.
1175 // The 4 in the following is for the unconditional branch we'll be
1176 // inserting (allows for long branch on Thumb1). Alignment of the
1177 // island is handled inside OffsetIsInRange.
1178 unsigned BaseInsertOffset
= UserOffset
+ U
.MaxDisp
-4;
1179 // This could point off the end of the block if we've already got
1180 // constant pool entries following this block; only the last one is
1181 // in the water list. Back past any possible branches (allow for a
1182 // conditional and a maximally long unconditional).
1183 if (BaseInsertOffset
>= BBOffsets
[UserMBB
->getNumber()+1])
1184 BaseInsertOffset
= BBOffsets
[UserMBB
->getNumber()+1] -
1186 unsigned EndInsertOffset
= BaseInsertOffset
+
1187 CPEMI
->getOperand(2).getImm();
1188 MachineBasicBlock::iterator MI
= UserMI
;
1190 unsigned CPUIndex
= CPUserIndex
+1;
1191 unsigned NumCPUsers
= CPUsers
.size();
1192 MachineInstr
*LastIT
= 0;
1193 for (unsigned Offset
= UserOffset
+TII
->GetInstSizeInBytes(UserMI
);
1194 Offset
< BaseInsertOffset
;
1195 Offset
+= TII
->GetInstSizeInBytes(MI
),
1196 MI
= llvm::next(MI
)) {
1197 if (CPUIndex
< NumCPUsers
&& CPUsers
[CPUIndex
].MI
== MI
) {
1198 CPUser
&U
= CPUsers
[CPUIndex
];
1199 if (!OffsetIsInRange(Offset
, EndInsertOffset
,
1200 U
.MaxDisp
, U
.NegOk
, U
.IsSoImm
)) {
1201 BaseInsertOffset
-= (isThumb1
? 2 : 4);
1202 EndInsertOffset
-= (isThumb1
? 2 : 4);
1204 // This is overly conservative, as we don't account for CPEMIs
1205 // being reused within the block, but it doesn't matter much.
1206 EndInsertOffset
+= CPUsers
[CPUIndex
].CPEMI
->getOperand(2).getImm();
1210 // Remember the last IT instruction.
1211 if (MI
->getOpcode() == ARM::t2IT
)
1215 DEBUG(errs() << "Split in middle of big block\n");
1218 // Avoid splitting an IT block.
1220 unsigned PredReg
= 0;
1221 ARMCC::CondCodes CC
= llvm::getITInstrPredicate(MI
, PredReg
);
1222 if (CC
!= ARMCC::AL
)
1225 NewMBB
= SplitBlockBeforeInstr(MI
);
1229 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1230 /// is out-of-range. If so, pick up the constant pool value and move it some
1231 /// place in-range. Return true if we changed any addresses (thus must run
1232 /// another pass of branch lengthening), false otherwise.
1233 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction
&MF
,
1234 unsigned CPUserIndex
) {
1235 CPUser
&U
= CPUsers
[CPUserIndex
];
1236 MachineInstr
*UserMI
= U
.MI
;
1237 MachineInstr
*CPEMI
= U
.CPEMI
;
1238 unsigned CPI
= CPEMI
->getOperand(1).getIndex();
1239 unsigned Size
= CPEMI
->getOperand(2).getImm();
1240 // Compute this only once, it's expensive. The 4 or 8 is the value the
1241 // hardware keeps in the PC.
1242 unsigned UserOffset
= GetOffsetOf(UserMI
) + (isThumb
? 4 : 8);
1244 // See if the current entry is within range, or there is a clone of it
1246 int result
= LookForExistingCPEntry(U
, UserOffset
);
1247 if (result
==1) return false;
1248 else if (result
==2) return true;
1250 // No existing clone of this CPE is within range.
1251 // We will be generating a new clone. Get a UID for it.
1252 unsigned ID
= AFI
->createPICLabelUId();
1254 // Look for water where we can place this CPE.
1255 MachineBasicBlock
*NewIsland
= MF
.CreateMachineBasicBlock();
1256 MachineBasicBlock
*NewMBB
;
1258 if (LookForWater(U
, UserOffset
, IP
)) {
1259 DEBUG(errs() << "found water in range\n");
1260 MachineBasicBlock
*WaterBB
= *IP
;
1262 // If the original WaterList entry was "new water" on this iteration,
1263 // propagate that to the new island. This is just keeping NewWaterList
1264 // updated to match the WaterList, which will be updated below.
1265 if (NewWaterList
.count(WaterBB
)) {
1266 NewWaterList
.erase(WaterBB
);
1267 NewWaterList
.insert(NewIsland
);
1269 // The new CPE goes before the following block (NewMBB).
1270 NewMBB
= llvm::next(MachineFunction::iterator(WaterBB
));
1274 DEBUG(errs() << "No water found\n");
1275 CreateNewWater(CPUserIndex
, UserOffset
, NewMBB
);
1277 // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1278 // called while handling branches so that the water will be seen on the
1279 // next iteration for constant pools, but in this context, we don't want
1280 // it. Check for this so it will be removed from the WaterList.
1281 // Also remove any entry from NewWaterList.
1282 MachineBasicBlock
*WaterBB
= prior(MachineFunction::iterator(NewMBB
));
1283 IP
= std::find(WaterList
.begin(), WaterList
.end(), WaterBB
);
1284 if (IP
!= WaterList
.end())
1285 NewWaterList
.erase(WaterBB
);
1287 // We are adding new water. Update NewWaterList.
1288 NewWaterList
.insert(NewIsland
);
1291 // Remove the original WaterList entry; we want subsequent insertions in
1292 // this vicinity to go after the one we're about to insert. This
1293 // considerably reduces the number of times we have to move the same CPE
1294 // more than once and is also important to ensure the algorithm terminates.
1295 if (IP
!= WaterList
.end())
1296 WaterList
.erase(IP
);
1298 // Okay, we know we can put an island before NewMBB now, do it!
1299 MF
.insert(NewMBB
, NewIsland
);
1301 // Update internal data structures to account for the newly inserted MBB.
1302 UpdateForInsertedWaterBlock(NewIsland
);
1304 // Decrement the old entry, and remove it if refcount becomes 0.
1305 DecrementOldEntry(CPI
, CPEMI
);
1307 // Now that we have an island to add the CPE to, clone the original CPE and
1308 // add it to the island.
1309 U
.HighWaterMark
= NewIsland
;
1310 U
.CPEMI
= BuildMI(NewIsland
, DebugLoc(), TII
->get(ARM::CONSTPOOL_ENTRY
))
1311 .addImm(ID
).addConstantPoolIndex(CPI
).addImm(Size
);
1312 CPEntries
[CPI
].push_back(CPEntry(U
.CPEMI
, ID
, 1));
1315 BBOffsets
[NewIsland
->getNumber()] = BBOffsets
[NewMBB
->getNumber()];
1316 // Compensate for .align 2 in thumb mode.
1317 if (isThumb
&& (BBOffsets
[NewIsland
->getNumber()]%4 != 0 || HasInlineAsm
))
1319 // Increase the size of the island block to account for the new entry.
1320 BBSizes
[NewIsland
->getNumber()] += Size
;
1321 AdjustBBOffsetsAfter(NewIsland
, Size
);
1323 // Finally, change the CPI in the instruction operand to be ID.
1324 for (unsigned i
= 0, e
= UserMI
->getNumOperands(); i
!= e
; ++i
)
1325 if (UserMI
->getOperand(i
).isCPI()) {
1326 UserMI
->getOperand(i
).setIndex(ID
);
1330 DEBUG(errs() << " Moved CPE to #" << ID
<< " CPI=" << CPI
1331 << '\t' << *UserMI
);
1336 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1337 /// sizes and offsets of impacted basic blocks.
1338 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr
*CPEMI
) {
1339 MachineBasicBlock
*CPEBB
= CPEMI
->getParent();
1340 unsigned Size
= CPEMI
->getOperand(2).getImm();
1341 CPEMI
->eraseFromParent();
1342 BBSizes
[CPEBB
->getNumber()] -= Size
;
1343 // All succeeding offsets have the current size value added in, fix this.
1344 if (CPEBB
->empty()) {
1345 // In thumb1 mode, the size of island may be padded by two to compensate for
1346 // the alignment requirement. Then it will now be 2 when the block is
1347 // empty, so fix this.
1348 // All succeeding offsets have the current size value added in, fix this.
1349 if (BBSizes
[CPEBB
->getNumber()] != 0) {
1350 Size
+= BBSizes
[CPEBB
->getNumber()];
1351 BBSizes
[CPEBB
->getNumber()] = 0;
1354 AdjustBBOffsetsAfter(CPEBB
, -Size
);
1355 // An island has only one predecessor BB and one successor BB. Check if
1356 // this BB's predecessor jumps directly to this BB's successor. This
1357 // shouldn't happen currently.
1358 assert(!BBIsJumpedOver(CPEBB
) && "How did this happen?");
1359 // FIXME: remove the empty blocks after all the work is done?
1362 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1364 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1365 unsigned MadeChange
= false;
1366 for (unsigned i
= 0, e
= CPEntries
.size(); i
!= e
; ++i
) {
1367 std::vector
<CPEntry
> &CPEs
= CPEntries
[i
];
1368 for (unsigned j
= 0, ee
= CPEs
.size(); j
!= ee
; ++j
) {
1369 if (CPEs
[j
].RefCount
== 0 && CPEs
[j
].CPEMI
) {
1370 RemoveDeadCPEMI(CPEs
[j
].CPEMI
);
1371 CPEs
[j
].CPEMI
= NULL
;
1379 /// BBIsInRange - Returns true if the distance between specific MI and
1380 /// specific BB can fit in MI's displacement field.
1381 bool ARMConstantIslands::BBIsInRange(MachineInstr
*MI
,MachineBasicBlock
*DestBB
,
1383 unsigned PCAdj
= isThumb
? 4 : 8;
1384 unsigned BrOffset
= GetOffsetOf(MI
) + PCAdj
;
1385 unsigned DestOffset
= BBOffsets
[DestBB
->getNumber()];
1387 DEBUG(errs() << "Branch of destination BB#" << DestBB
->getNumber()
1388 << " from BB#" << MI
->getParent()->getNumber()
1389 << " max delta=" << MaxDisp
1390 << " from " << GetOffsetOf(MI
) << " to " << DestOffset
1391 << " offset " << int(DestOffset
-BrOffset
) << "\t" << *MI
);
1393 if (BrOffset
<= DestOffset
) {
1394 // Branch before the Dest.
1395 if (DestOffset
-BrOffset
<= MaxDisp
)
1398 if (BrOffset
-DestOffset
<= MaxDisp
)
1404 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1405 /// away to fit in its displacement field.
1406 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction
&MF
, ImmBranch
&Br
) {
1407 MachineInstr
*MI
= Br
.MI
;
1408 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1410 // Check to see if the DestBB is already in-range.
1411 if (BBIsInRange(MI
, DestBB
, Br
.MaxDisp
))
1415 return FixUpUnconditionalBr(MF
, Br
);
1416 return FixUpConditionalBr(MF
, Br
);
1419 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1420 /// too far away to fit in its displacement field. If the LR register has been
1421 /// spilled in the epilogue, then we can use BL to implement a far jump.
1422 /// Otherwise, add an intermediate branch instruction to a branch.
1424 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction
&MF
, ImmBranch
&Br
) {
1425 MachineInstr
*MI
= Br
.MI
;
1426 MachineBasicBlock
*MBB
= MI
->getParent();
1428 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1430 // Use BL to implement far jump.
1431 Br
.MaxDisp
= (1 << 21) * 2;
1432 MI
->setDesc(TII
->get(ARM::tBfar
));
1433 BBSizes
[MBB
->getNumber()] += 2;
1434 AdjustBBOffsetsAfter(MBB
, 2);
1438 DEBUG(errs() << " Changed B to long jump " << *MI
);
1443 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1444 /// far away to fit in its displacement field. It is converted to an inverse
1445 /// conditional branch + an unconditional branch to the destination.
1447 ARMConstantIslands::FixUpConditionalBr(MachineFunction
&MF
, ImmBranch
&Br
) {
1448 MachineInstr
*MI
= Br
.MI
;
1449 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1451 // Add an unconditional branch to the destination and invert the branch
1452 // condition to jump over it:
1458 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)MI
->getOperand(1).getImm();
1459 CC
= ARMCC::getOppositeCondition(CC
);
1460 unsigned CCReg
= MI
->getOperand(2).getReg();
1462 // If the branch is at the end of its MBB and that has a fall-through block,
1463 // direct the updated conditional branch to the fall-through block. Otherwise,
1464 // split the MBB before the next instruction.
1465 MachineBasicBlock
*MBB
= MI
->getParent();
1466 MachineInstr
*BMI
= &MBB
->back();
1467 bool NeedSplit
= (BMI
!= MI
) || !BBHasFallthrough(MBB
);
1471 if (llvm::next(MachineBasicBlock::iterator(MI
)) == prior(MBB
->end()) &&
1472 BMI
->getOpcode() == Br
.UncondBr
) {
1473 // Last MI in the BB is an unconditional branch. Can we simply invert the
1474 // condition and swap destinations:
1480 MachineBasicBlock
*NewDest
= BMI
->getOperand(0).getMBB();
1481 if (BBIsInRange(MI
, NewDest
, Br
.MaxDisp
)) {
1482 DEBUG(errs() << " Invert Bcc condition and swap its destination with "
1484 BMI
->getOperand(0).setMBB(DestBB
);
1485 MI
->getOperand(0).setMBB(NewDest
);
1486 MI
->getOperand(1).setImm(CC
);
1493 SplitBlockBeforeInstr(MI
);
1494 // No need for the branch to the next block. We're adding an unconditional
1495 // branch to the destination.
1496 int delta
= TII
->GetInstSizeInBytes(&MBB
->back());
1497 BBSizes
[MBB
->getNumber()] -= delta
;
1498 MachineBasicBlock
* SplitBB
= llvm::next(MachineFunction::iterator(MBB
));
1499 AdjustBBOffsetsAfter(SplitBB
, -delta
);
1500 MBB
->back().eraseFromParent();
1501 // BBOffsets[SplitBB] is wrong temporarily, fixed below
1503 MachineBasicBlock
*NextBB
= llvm::next(MachineFunction::iterator(MBB
));
1505 DEBUG(errs() << " Insert B to BB#" << DestBB
->getNumber()
1506 << " also invert condition and change dest. to BB#"
1507 << NextBB
->getNumber() << "\n");
1509 // Insert a new conditional branch and a new unconditional branch.
1510 // Also update the ImmBranch as well as adding a new entry for the new branch.
1511 BuildMI(MBB
, DebugLoc(), TII
->get(MI
->getOpcode()))
1512 .addMBB(NextBB
).addImm(CC
).addReg(CCReg
);
1513 Br
.MI
= &MBB
->back();
1514 BBSizes
[MBB
->getNumber()] += TII
->GetInstSizeInBytes(&MBB
->back());
1515 BuildMI(MBB
, DebugLoc(), TII
->get(Br
.UncondBr
)).addMBB(DestBB
);
1516 BBSizes
[MBB
->getNumber()] += TII
->GetInstSizeInBytes(&MBB
->back());
1517 unsigned MaxDisp
= getUnconditionalBrDisp(Br
.UncondBr
);
1518 ImmBranches
.push_back(ImmBranch(&MBB
->back(), MaxDisp
, false, Br
.UncondBr
));
1520 // Remove the old conditional branch. It may or may not still be in MBB.
1521 BBSizes
[MI
->getParent()->getNumber()] -= TII
->GetInstSizeInBytes(MI
);
1522 MI
->eraseFromParent();
1524 // The net size change is an addition of one unconditional branch.
1525 int delta
= TII
->GetInstSizeInBytes(&MBB
->back());
1526 AdjustBBOffsetsAfter(MBB
, delta
);
1530 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1531 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1532 /// to do this if tBfar is not used.
1533 bool ARMConstantIslands::UndoLRSpillRestore() {
1534 bool MadeChange
= false;
1535 for (unsigned i
= 0, e
= PushPopMIs
.size(); i
!= e
; ++i
) {
1536 MachineInstr
*MI
= PushPopMIs
[i
];
1537 // First two operands are predicates.
1538 if (MI
->getOpcode() == ARM::tPOP_RET
&&
1539 MI
->getOperand(2).getReg() == ARM::PC
&&
1540 MI
->getNumExplicitOperands() == 3) {
1541 // Create the new insn and copy the predicate from the old.
1542 BuildMI(MI
->getParent(), MI
->getDebugLoc(), TII
->get(ARM::tBX_RET
))
1543 .addOperand(MI
->getOperand(0))
1544 .addOperand(MI
->getOperand(1));
1545 MI
->eraseFromParent();
1552 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction
&MF
) {
1553 bool MadeChange
= false;
1555 // Shrink ADR and LDR from constantpool.
1556 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
) {
1557 CPUser
&U
= CPUsers
[i
];
1558 unsigned Opcode
= U
.MI
->getOpcode();
1559 unsigned NewOpc
= 0;
1564 case ARM::t2LEApcrel
:
1565 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1566 NewOpc
= ARM::tLEApcrel
;
1572 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1573 NewOpc
= ARM::tLDRpci
;
1583 unsigned UserOffset
= GetOffsetOf(U
.MI
) + 4;
1584 unsigned MaxOffs
= ((1 << Bits
) - 1) * Scale
;
1585 // FIXME: Check if offset is multiple of scale if scale is not 4.
1586 if (CPEIsInRange(U
.MI
, UserOffset
, U
.CPEMI
, MaxOffs
, false, true)) {
1587 U
.MI
->setDesc(TII
->get(NewOpc
));
1588 MachineBasicBlock
*MBB
= U
.MI
->getParent();
1589 BBSizes
[MBB
->getNumber()] -= 2;
1590 AdjustBBOffsetsAfter(MBB
, -2);
1596 MadeChange
|= OptimizeThumb2Branches(MF
);
1597 MadeChange
|= OptimizeThumb2JumpTables(MF
);
1601 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction
&MF
) {
1602 bool MadeChange
= false;
1604 for (unsigned i
= 0, e
= ImmBranches
.size(); i
!= e
; ++i
) {
1605 ImmBranch
&Br
= ImmBranches
[i
];
1606 unsigned Opcode
= Br
.MI
->getOpcode();
1607 unsigned NewOpc
= 0;
1625 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
1626 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1627 if (BBIsInRange(Br
.MI
, DestBB
, MaxOffs
)) {
1628 Br
.MI
->setDesc(TII
->get(NewOpc
));
1629 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1630 BBSizes
[MBB
->getNumber()] -= 2;
1631 AdjustBBOffsetsAfter(MBB
, -2);
1637 Opcode
= Br
.MI
->getOpcode();
1638 if (Opcode
!= ARM::tBcc
)
1642 unsigned PredReg
= 0;
1643 ARMCC::CondCodes Pred
= llvm::getInstrPredicate(Br
.MI
, PredReg
);
1644 if (Pred
== ARMCC::EQ
)
1646 else if (Pred
== ARMCC::NE
)
1647 NewOpc
= ARM::tCBNZ
;
1650 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1651 // Check if the distance is within 126. Subtract starting offset by 2
1652 // because the cmp will be eliminated.
1653 unsigned BrOffset
= GetOffsetOf(Br
.MI
) + 4 - 2;
1654 unsigned DestOffset
= BBOffsets
[DestBB
->getNumber()];
1655 if (BrOffset
< DestOffset
&& (DestOffset
- BrOffset
) <= 126) {
1656 MachineBasicBlock::iterator CmpMI
= Br
.MI
;
1657 if (CmpMI
!= Br
.MI
->getParent()->begin()) {
1659 if (CmpMI
->getOpcode() == ARM::tCMPi8
) {
1660 unsigned Reg
= CmpMI
->getOperand(0).getReg();
1661 Pred
= llvm::getInstrPredicate(CmpMI
, PredReg
);
1662 if (Pred
== ARMCC::AL
&&
1663 CmpMI
->getOperand(1).getImm() == 0 &&
1664 isARMLowRegister(Reg
)) {
1665 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1666 MachineInstr
*NewBR
=
1667 BuildMI(*MBB
, CmpMI
, Br
.MI
->getDebugLoc(), TII
->get(NewOpc
))
1668 .addReg(Reg
).addMBB(DestBB
,Br
.MI
->getOperand(0).getTargetFlags());
1669 CmpMI
->eraseFromParent();
1670 Br
.MI
->eraseFromParent();
1672 BBSizes
[MBB
->getNumber()] -= 2;
1673 AdjustBBOffsetsAfter(MBB
, -2);
1685 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1686 /// jumptables when it's possible.
1687 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction
&MF
) {
1688 bool MadeChange
= false;
1690 // FIXME: After the tables are shrunk, can we get rid some of the
1691 // constantpool tables?
1692 MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo();
1693 if (MJTI
== 0) return false;
1695 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
1696 for (unsigned i
= 0, e
= T2JumpTables
.size(); i
!= e
; ++i
) {
1697 MachineInstr
*MI
= T2JumpTables
[i
];
1698 const MCInstrDesc
&MCID
= MI
->getDesc();
1699 unsigned NumOps
= MCID
.getNumOperands();
1700 unsigned JTOpIdx
= NumOps
- (MCID
.isPredicable() ? 3 : 2);
1701 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
1702 unsigned JTI
= JTOP
.getIndex();
1703 assert(JTI
< JT
.size());
1706 bool HalfWordOk
= true;
1707 unsigned JTOffset
= GetOffsetOf(MI
) + 4;
1708 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
1709 for (unsigned j
= 0, ee
= JTBBs
.size(); j
!= ee
; ++j
) {
1710 MachineBasicBlock
*MBB
= JTBBs
[j
];
1711 unsigned DstOffset
= BBOffsets
[MBB
->getNumber()];
1712 // Negative offset is not ok. FIXME: We should change BB layout to make
1713 // sure all the branches are forward.
1714 if (ByteOk
&& (DstOffset
- JTOffset
) > ((1<<8)-1)*2)
1716 unsigned TBHLimit
= ((1<<16)-1)*2;
1717 if (HalfWordOk
&& (DstOffset
- JTOffset
) > TBHLimit
)
1719 if (!ByteOk
&& !HalfWordOk
)
1723 if (ByteOk
|| HalfWordOk
) {
1724 MachineBasicBlock
*MBB
= MI
->getParent();
1725 unsigned BaseReg
= MI
->getOperand(0).getReg();
1726 bool BaseRegKill
= MI
->getOperand(0).isKill();
1729 unsigned IdxReg
= MI
->getOperand(1).getReg();
1730 bool IdxRegKill
= MI
->getOperand(1).isKill();
1732 // Scan backwards to find the instruction that defines the base
1733 // register. Due to post-RA scheduling, we can't count on it
1734 // immediately preceding the branch instruction.
1735 MachineBasicBlock::iterator PrevI
= MI
;
1736 MachineBasicBlock::iterator B
= MBB
->begin();
1737 while (PrevI
!= B
&& !PrevI
->definesRegister(BaseReg
))
1740 // If for some reason we didn't find it, we can't do anything, so
1741 // just skip this one.
1742 if (!PrevI
->definesRegister(BaseReg
))
1745 MachineInstr
*AddrMI
= PrevI
;
1747 // Examine the instruction that calculates the jumptable entry address.
1748 // Make sure it only defines the base register and kills any uses
1749 // other than the index register.
1750 for (unsigned k
= 0, eee
= AddrMI
->getNumOperands(); k
!= eee
; ++k
) {
1751 const MachineOperand
&MO
= AddrMI
->getOperand(k
);
1752 if (!MO
.isReg() || !MO
.getReg())
1754 if (MO
.isDef() && MO
.getReg() != BaseReg
) {
1758 if (MO
.isUse() && !MO
.isKill() && MO
.getReg() != IdxReg
) {
1766 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1767 // that gave us the initial base register definition.
1768 for (--PrevI
; PrevI
!= B
&& !PrevI
->definesRegister(BaseReg
); --PrevI
)
1771 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1772 // to delete it as well.
1773 MachineInstr
*LeaMI
= PrevI
;
1774 if ((LeaMI
->getOpcode() != ARM::tLEApcrelJT
&&
1775 LeaMI
->getOpcode() != ARM::t2LEApcrelJT
) ||
1776 LeaMI
->getOperand(0).getReg() != BaseReg
)
1782 unsigned Opc
= ByteOk
? ARM::t2TBB_JT
: ARM::t2TBH_JT
;
1783 MachineInstr
*NewJTMI
= BuildMI(MBB
, MI
->getDebugLoc(), TII
->get(Opc
))
1784 .addReg(IdxReg
, getKillRegState(IdxRegKill
))
1785 .addJumpTableIndex(JTI
, JTOP
.getTargetFlags())
1786 .addImm(MI
->getOperand(JTOpIdx
+1).getImm());
1787 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1788 // is 2-byte aligned. For now, asm printer will fix it up.
1789 unsigned NewSize
= TII
->GetInstSizeInBytes(NewJTMI
);
1790 unsigned OrigSize
= TII
->GetInstSizeInBytes(AddrMI
);
1791 OrigSize
+= TII
->GetInstSizeInBytes(LeaMI
);
1792 OrigSize
+= TII
->GetInstSizeInBytes(MI
);
1794 AddrMI
->eraseFromParent();
1795 LeaMI
->eraseFromParent();
1796 MI
->eraseFromParent();
1798 int delta
= OrigSize
- NewSize
;
1799 BBSizes
[MBB
->getNumber()] -= delta
;
1800 AdjustBBOffsetsAfter(MBB
, -delta
);
1810 /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1811 /// jump tables always branch forwards, since that's what tbb and tbh need.
1812 bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction
&MF
) {
1813 bool MadeChange
= false;
1815 MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo();
1816 if (MJTI
== 0) return false;
1818 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
1819 for (unsigned i
= 0, e
= T2JumpTables
.size(); i
!= e
; ++i
) {
1820 MachineInstr
*MI
= T2JumpTables
[i
];
1821 const MCInstrDesc
&MCID
= MI
->getDesc();
1822 unsigned NumOps
= MCID
.getNumOperands();
1823 unsigned JTOpIdx
= NumOps
- (MCID
.isPredicable() ? 3 : 2);
1824 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
1825 unsigned JTI
= JTOP
.getIndex();
1826 assert(JTI
< JT
.size());
1828 // We prefer if target blocks for the jump table come after the jump
1829 // instruction so we can use TB[BH]. Loop through the target blocks
1830 // and try to adjust them such that that's true.
1831 int JTNumber
= MI
->getParent()->getNumber();
1832 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
1833 for (unsigned j
= 0, ee
= JTBBs
.size(); j
!= ee
; ++j
) {
1834 MachineBasicBlock
*MBB
= JTBBs
[j
];
1835 int DTNumber
= MBB
->getNumber();
1837 if (DTNumber
< JTNumber
) {
1838 // The destination precedes the switch. Try to move the block forward
1839 // so we have a positive offset.
1840 MachineBasicBlock
*NewBB
=
1841 AdjustJTTargetBlockForward(MBB
, MI
->getParent());
1843 MJTI
->ReplaceMBBInJumpTable(JTI
, JTBBs
[j
], NewBB
);
1852 MachineBasicBlock
*ARMConstantIslands::
1853 AdjustJTTargetBlockForward(MachineBasicBlock
*BB
, MachineBasicBlock
*JTBB
)
1855 MachineFunction
&MF
= *BB
->getParent();
1857 // If the destination block is terminated by an unconditional branch,
1858 // try to move it; otherwise, create a new block following the jump
1859 // table that branches back to the actual target. This is a very simple
1860 // heuristic. FIXME: We can definitely improve it.
1861 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
1862 SmallVector
<MachineOperand
, 4> Cond
;
1863 SmallVector
<MachineOperand
, 4> CondPrior
;
1864 MachineFunction::iterator BBi
= BB
;
1865 MachineFunction::iterator OldPrior
= prior(BBi
);
1867 // If the block terminator isn't analyzable, don't try to move the block
1868 bool B
= TII
->AnalyzeBranch(*BB
, TBB
, FBB
, Cond
);
1870 // If the block ends in an unconditional branch, move it. The prior block
1871 // has to have an analyzable terminator for us to move this one. Be paranoid
1872 // and make sure we're not trying to move the entry block of the function.
1873 if (!B
&& Cond
.empty() && BB
!= MF
.begin() &&
1874 !TII
->AnalyzeBranch(*OldPrior
, TBB
, FBB
, CondPrior
)) {
1875 BB
->moveAfter(JTBB
);
1876 OldPrior
->updateTerminator();
1877 BB
->updateTerminator();
1878 // Update numbering to account for the block being moved.
1879 MF
.RenumberBlocks();
1884 // Create a new MBB for the code after the jump BB.
1885 MachineBasicBlock
*NewBB
=
1886 MF
.CreateMachineBasicBlock(JTBB
->getBasicBlock());
1887 MachineFunction::iterator MBBI
= JTBB
; ++MBBI
;
1888 MF
.insert(MBBI
, NewBB
);
1890 // Add an unconditional branch from NewBB to BB.
1891 // There doesn't seem to be meaningful DebugInfo available; this doesn't
1892 // correspond directly to anything in the source.
1893 assert (isThumb2
&& "Adjusting for TB[BH] but not in Thumb2?");
1894 BuildMI(NewBB
, DebugLoc(), TII
->get(ARM::t2B
)).addMBB(BB
);
1896 // Update internal data structures to account for the newly inserted MBB.
1897 MF
.RenumberBlocks(NewBB
);
1900 NewBB
->addSuccessor(BB
);
1901 JTBB
->removeSuccessor(BB
);
1902 JTBB
->addSuccessor(NewBB
);