Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Target / ARM / ARMJITInfo.cpp
blob45b7e48d0cfb7513eef55f31ca69ff24bf3a8e4f
1 //===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the JIT interfaces for the ARM target.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jit"
15 #include "ARMJITInfo.h"
16 #include "ARMInstrInfo.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMRelocations.h"
19 #include "ARMSubtarget.h"
20 #include "llvm/Function.h"
21 #include "llvm/CodeGen/JITCodeEmitter.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Support/Memory.h"
26 #include <cstdlib>
27 using namespace llvm;
29 void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
30 report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
33 /// JITCompilerFunction - This contains the address of the JIT function used to
34 /// compile a function lazily.
35 static TargetJITInfo::JITCompilerFn JITCompilerFunction;
37 // Get the ASMPREFIX for the current host. This is often '_'.
38 #ifndef __USER_LABEL_PREFIX__
39 #define __USER_LABEL_PREFIX__
40 #endif
41 #define GETASMPREFIX2(X) #X
42 #define GETASMPREFIX(X) GETASMPREFIX2(X)
43 #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
45 // CompilationCallback stub - We can't use a C function with inline assembly in
46 // it, because the prolog/epilog inserted by GCC won't work for us. (We need
47 // to preserve more context and manipulate the stack directly). Instead,
48 // write our own wrapper, which does things our way, so we have complete
49 // control over register saving and restoring.
50 extern "C" {
51 #if defined(__arm__)
52 void ARMCompilationCallback();
53 asm(
54 ".text\n"
55 ".align 2\n"
56 ".globl " ASMPREFIX "ARMCompilationCallback\n"
57 ASMPREFIX "ARMCompilationCallback:\n"
58 // Save caller saved registers since they may contain stuff
59 // for the real target function right now. We have to act as if this
60 // whole compilation callback doesn't exist as far as the caller is
61 // concerned, so we can't just preserve the callee saved regs.
62 "stmdb sp!, {r0, r1, r2, r3, lr}\n"
63 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
64 "fstmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
65 #endif
66 // The LR contains the address of the stub function on entry.
67 // pass it as the argument to the C part of the callback
68 "mov r0, lr\n"
69 "sub sp, sp, #4\n"
70 // Call the C portion of the callback
71 "bl " ASMPREFIX "ARMCompilationCallbackC\n"
72 "add sp, sp, #4\n"
73 // Restoring the LR to the return address of the function that invoked
74 // the stub and de-allocating the stack space for it requires us to
75 // swap the two saved LR values on the stack, as they're backwards
76 // for what we need since the pop instruction has a pre-determined
77 // order for the registers.
78 // +--------+
79 // 0 | LR | Original return address
80 // +--------+
81 // 1 | LR | Stub address (start of stub)
82 // 2-5 | R3..R0 | Saved registers (we need to preserve all regs)
83 // 6-20 | D0..D7 | Saved VFP registers
84 // +--------+
86 #if (defined(__VFP_FP__) && !defined(__SOFTFP__))
87 // Restore VFP caller-saved registers.
88 "fldmfdd sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
89 #endif
91 // We need to exchange the values in slots 0 and 1 so we can
92 // return to the address in slot 1 with the address in slot 0
93 // restored to the LR.
94 "ldr r0, [sp,#20]\n"
95 "ldr r1, [sp,#16]\n"
96 "str r1, [sp,#20]\n"
97 "str r0, [sp,#16]\n"
98 // Return to the (newly modified) stub to invoke the real function.
99 // The above twiddling of the saved return addresses allows us to
100 // deallocate everything, including the LR the stub saved, with two
101 // updating load instructions.
102 "ldmia sp!, {r0, r1, r2, r3, lr}\n"
103 "ldr pc, [sp], #4\n"
105 #else // Not an ARM host
106 void ARMCompilationCallback() {
107 llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
109 #endif
112 /// ARMCompilationCallbackC - This is the target-specific function invoked
113 /// by the function stub when we did not know the real target of a call.
114 /// This function must locate the start of the stub or call site and pass
115 /// it into the JIT compiler function.
116 extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
117 // Get the address of the compiled code for this function.
118 intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
120 // Rewrite the call target... so that we don't end up here every time we
121 // execute the call. We're replacing the first two instructions of the
122 // stub with:
123 // ldr pc, [pc,#-4]
124 // <addr>
125 if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
126 llvm_unreachable("ERROR: Unable to mark stub writable");
128 *(intptr_t *)StubAddr = 0xe51ff004; // ldr pc, [pc, #-4]
129 *(intptr_t *)(StubAddr+4) = NewVal;
130 if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
131 llvm_unreachable("ERROR: Unable to mark stub executable");
135 TargetJITInfo::LazyResolverFn
136 ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
137 JITCompilerFunction = F;
138 return ARMCompilationCallback;
141 void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
142 JITCodeEmitter &JCE) {
143 uint8_t Buffer[4];
144 uint8_t *Cur = Buffer;
145 MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
146 void *PtrAddr = JCE.allocIndirectGV(
147 GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
148 addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
149 return PtrAddr;
152 TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
153 // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
154 // 4-byte address. See emitFunctionStub for details.
155 StubLayout Result = {16, 4};
156 return Result;
159 void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
160 JITCodeEmitter &JCE) {
161 void *Addr;
162 // If this is just a call to an external function, emit a branch instead of a
163 // call. The code is the same except for one bit of the last instruction.
164 if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
165 // Branch to the corresponding function addr.
166 if (IsPIC) {
167 // The stub is 16-byte size and 4-aligned.
168 intptr_t LazyPtr = getIndirectSymAddr(Fn);
169 if (!LazyPtr) {
170 // In PIC mode, the function stub is loading a lazy-ptr.
171 LazyPtr= (intptr_t)emitGlobalValueIndirectSym((GlobalValue*)F, Fn, JCE);
172 DEBUG(if (F)
173 errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
174 << "] for GV '" << F->getName() << "'\n";
175 else
176 errs() << "JIT: Stub emitted at [" << LazyPtr
177 << "] for external function at '" << Fn << "'\n");
179 JCE.emitAlignment(4);
180 Addr = (void*)JCE.getCurrentPCValue();
181 if (!sys::Memory::setRangeWritable(Addr, 16)) {
182 llvm_unreachable("ERROR: Unable to mark stub writable");
184 JCE.emitWordLE(0xe59fc004); // ldr ip, [pc, #+4]
185 JCE.emitWordLE(0xe08fc00c); // L_func$scv: add ip, pc, ip
186 JCE.emitWordLE(0xe59cf000); // ldr pc, [ip]
187 JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8)); // func - (L_func$scv+8)
188 sys::Memory::InvalidateInstructionCache(Addr, 16);
189 if (!sys::Memory::setRangeExecutable(Addr, 16)) {
190 llvm_unreachable("ERROR: Unable to mark stub executable");
192 } else {
193 // The stub is 8-byte size and 4-aligned.
194 JCE.emitAlignment(4);
195 Addr = (void*)JCE.getCurrentPCValue();
196 if (!sys::Memory::setRangeWritable(Addr, 8)) {
197 llvm_unreachable("ERROR: Unable to mark stub writable");
199 JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
200 JCE.emitWordLE((intptr_t)Fn); // addr of function
201 sys::Memory::InvalidateInstructionCache(Addr, 8);
202 if (!sys::Memory::setRangeExecutable(Addr, 8)) {
203 llvm_unreachable("ERROR: Unable to mark stub executable");
206 } else {
207 // The compilation callback will overwrite the first two words of this
208 // stub with indirect branch instructions targeting the compiled code.
209 // This stub sets the return address to restart the stub, so that
210 // the new branch will be invoked when we come back.
212 // Branch and link to the compilation callback.
213 // The stub is 16-byte size and 4-byte aligned.
214 JCE.emitAlignment(4);
215 Addr = (void*)JCE.getCurrentPCValue();
216 if (!sys::Memory::setRangeWritable(Addr, 16)) {
217 llvm_unreachable("ERROR: Unable to mark stub writable");
219 // Save LR so the callback can determine which stub called it.
220 // The compilation callback is responsible for popping this prior
221 // to returning.
222 JCE.emitWordLE(0xe92d4000); // push {lr}
223 // Set the return address to go back to the start of this stub.
224 JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
225 // Invoke the compilation callback.
226 JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
227 // The address of the compilation callback.
228 JCE.emitWordLE((intptr_t)ARMCompilationCallback);
229 sys::Memory::InvalidateInstructionCache(Addr, 16);
230 if (!sys::Memory::setRangeExecutable(Addr, 16)) {
231 llvm_unreachable("ERROR: Unable to mark stub executable");
235 return Addr;
238 intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
239 ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
240 switch (RT) {
241 default:
242 return (intptr_t)(MR->getResultPointer());
243 case ARM::reloc_arm_pic_jt:
244 // Destination address - jump table base.
245 return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
246 case ARM::reloc_arm_jt_base:
247 // Jump table base address.
248 return getJumpTableBaseAddr(MR->getJumpTableIndex());
249 case ARM::reloc_arm_cp_entry:
250 case ARM::reloc_arm_vfp_cp_entry:
251 // Constant pool entry address.
252 return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
253 case ARM::reloc_arm_machine_cp_entry: {
254 ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
255 assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
256 "Can't handle this machine constant pool entry yet!");
257 intptr_t Addr = (intptr_t)(MR->getResultPointer());
258 Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
259 return Addr;
264 /// relocate - Before the JIT can run a block of code that has been emitted,
265 /// it must rewrite the code to contain the actual addresses of any
266 /// referenced global symbols.
267 void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
268 unsigned NumRelocs, unsigned char* GOTBase) {
269 for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
270 void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
271 intptr_t ResultPtr = resolveRelocDestAddr(MR);
272 switch ((ARM::RelocationType)MR->getRelocationType()) {
273 case ARM::reloc_arm_cp_entry:
274 case ARM::reloc_arm_vfp_cp_entry:
275 case ARM::reloc_arm_relative: {
276 // It is necessary to calculate the correct PC relative value. We
277 // subtract the base addr from the target addr to form a byte offset.
278 ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
279 // If the result is positive, set bit U(23) to 1.
280 if (ResultPtr >= 0)
281 *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
282 else {
283 // Otherwise, obtain the absolute value and set bit U(23) to 0.
284 *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
285 ResultPtr = - ResultPtr;
287 // Set the immed value calculated.
288 // VFP immediate offset is multiplied by 4.
289 if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
290 ResultPtr = ResultPtr >> 2;
291 *((intptr_t*)RelocPos) |= ResultPtr;
292 // Set register Rn to PC.
293 *((intptr_t*)RelocPos) |=
294 getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
295 break;
297 case ARM::reloc_arm_pic_jt:
298 case ARM::reloc_arm_machine_cp_entry:
299 case ARM::reloc_arm_absolute: {
300 // These addresses have already been resolved.
301 *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
302 break;
304 case ARM::reloc_arm_branch: {
305 // It is necessary to calculate the correct value of signed_immed_24
306 // field. We subtract the base addr from the target addr to form a
307 // byte offset, which must be inside the range -33554432 and +33554428.
308 // Then, we set the signed_immed_24 field of the instruction to bits
309 // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
310 ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
311 ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
312 assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
313 *((intptr_t*)RelocPos) |= ResultPtr;
314 break;
316 case ARM::reloc_arm_jt_base: {
317 // JT base - (instruction addr + 8)
318 ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
319 *((intptr_t*)RelocPos) |= ResultPtr;
320 break;
322 case ARM::reloc_arm_movw: {
323 ResultPtr = ResultPtr & 0xFFFF;
324 *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
325 *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
326 break;
328 case ARM::reloc_arm_movt: {
329 ResultPtr = (ResultPtr >> 16) & 0xFFFF;
330 *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
331 *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
332 break;