1 //===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file describes the Sparc instructions in TableGen format.
12 //===----------------------------------------------------------------------===//
14 //===----------------------------------------------------------------------===//
15 // Instruction format superclass
16 //===----------------------------------------------------------------------===//
18 include "SparcInstrFormats.td"
20 //===----------------------------------------------------------------------===//
21 // Feature predicates.
22 //===----------------------------------------------------------------------===//
24 // HasV9 - This predicate is true when the target processor supports V9
25 // instructions. Note that the machine may be running in 32-bit mode.
26 def HasV9 : Predicate<"Subtarget.isV9()">;
28 // HasNoV9 - This predicate is true when the target doesn't have V9
29 // instructions. Use of this is just a hack for the isel not having proper
30 // costs for V8 instructions that are more expensive than their V9 ones.
31 def HasNoV9 : Predicate<"!Subtarget.isV9()">;
33 // HasVIS - This is true when the target processor has VIS extensions.
34 def HasVIS : Predicate<"Subtarget.isVIS()">;
36 // UseDeprecatedInsts - This predicate is true when the target processor is a
37 // V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38 // to use when appropriate. In either of these cases, the instruction selector
39 // will pick deprecated instructions.
40 def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
42 //===----------------------------------------------------------------------===//
43 // Instruction Pattern Stuff
44 //===----------------------------------------------------------------------===//
46 def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
48 def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
50 def LO10 : SDNodeXForm<imm, [{
51 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
55 def HI22 : SDNodeXForm<imm, [{
56 // Transformation function: shift the immediate value down into the low bits.
57 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
60 def SETHIimm : PatLeaf<(imm), [{
61 return (((unsigned)N->getZExtValue() >> 10) << 10) ==
62 (unsigned)N->getZExtValue();
66 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
67 def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
70 def MEMrr : Operand<i32> {
71 let PrintMethod = "printMemOperand";
72 let MIOperandInfo = (ops IntRegs, IntRegs);
74 def MEMri : Operand<i32> {
75 let PrintMethod = "printMemOperand";
76 let MIOperandInfo = (ops IntRegs, i32imm);
79 // Branch targets have OtherVT type.
80 def brtarget : Operand<OtherVT>;
81 def calltarget : Operand<i32>;
83 // Operand for printing out a condition code.
84 let PrintMethod = "printCCOperand" in
85 def CCOp : Operand<i32>;
88 SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
90 SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
92 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
94 SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
96 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
98 def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
99 def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
100 def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
101 def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
103 def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
104 def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
106 def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
107 def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
109 def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
110 def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
112 // These are target-independent nodes, but have target-specific formats.
113 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
114 def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
117 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
118 [SDNPHasChain, SDNPOutGlue]>;
119 def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
120 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
122 def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
123 def call : SDNode<"SPISD::CALL", SDT_SPCall,
124 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
127 def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
128 def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
129 [SDNPHasChain, SDNPOptInGlue]>;
131 def flushw : SDNode<"SPISD::FLUSHW", SDTNone,
134 def getPCX : Operand<i32> {
135 let PrintMethod = "printGetPCX";
138 //===----------------------------------------------------------------------===//
139 // SPARC Flag Conditions
140 //===----------------------------------------------------------------------===//
142 // Note that these values must be kept in sync with the CCOp::CondCode enum
144 class ICC_VAL<int N> : PatLeaf<(i32 N)>;
145 def ICC_NE : ICC_VAL< 9>; // Not Equal
146 def ICC_E : ICC_VAL< 1>; // Equal
147 def ICC_G : ICC_VAL<10>; // Greater
148 def ICC_LE : ICC_VAL< 2>; // Less or Equal
149 def ICC_GE : ICC_VAL<11>; // Greater or Equal
150 def ICC_L : ICC_VAL< 3>; // Less
151 def ICC_GU : ICC_VAL<12>; // Greater Unsigned
152 def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
153 def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
154 def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
155 def ICC_POS : ICC_VAL<14>; // Positive
156 def ICC_NEG : ICC_VAL< 6>; // Negative
157 def ICC_VC : ICC_VAL<15>; // Overflow Clear
158 def ICC_VS : ICC_VAL< 7>; // Overflow Set
160 class FCC_VAL<int N> : PatLeaf<(i32 N)>;
161 def FCC_U : FCC_VAL<23>; // Unordered
162 def FCC_G : FCC_VAL<22>; // Greater
163 def FCC_UG : FCC_VAL<21>; // Unordered or Greater
164 def FCC_L : FCC_VAL<20>; // Less
165 def FCC_UL : FCC_VAL<19>; // Unordered or Less
166 def FCC_LG : FCC_VAL<18>; // Less or Greater
167 def FCC_NE : FCC_VAL<17>; // Not Equal
168 def FCC_E : FCC_VAL<25>; // Equal
169 def FCC_UE : FCC_VAL<24>; // Unordered or Equal
170 def FCC_GE : FCC_VAL<25>; // Greater or Equal
171 def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
172 def FCC_LE : FCC_VAL<27>; // Less or Equal
173 def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
174 def FCC_O : FCC_VAL<29>; // Ordered
176 //===----------------------------------------------------------------------===//
177 // Instruction Class Templates
178 //===----------------------------------------------------------------------===//
180 /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
181 multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
182 def rr : F3_1<2, Op3Val,
183 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
184 !strconcat(OpcStr, " $b, $c, $dst"),
185 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
186 def ri : F3_2<2, Op3Val,
187 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
188 !strconcat(OpcStr, " $b, $c, $dst"),
189 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
192 /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
194 multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
195 def rr : F3_1<2, Op3Val,
196 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
197 !strconcat(OpcStr, " $b, $c, $dst"), []>;
198 def ri : F3_2<2, Op3Val,
199 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
200 !strconcat(OpcStr, " $b, $c, $dst"), []>;
203 //===----------------------------------------------------------------------===//
205 //===----------------------------------------------------------------------===//
207 // Pseudo instructions.
208 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
209 : InstSP<outs, ins, asmstr, pattern>;
213 def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
216 let Defs = [O6], Uses = [O6] in {
217 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
218 "!ADJCALLSTACKDOWN $amt",
219 [(callseq_start timm:$amt)]>;
220 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
221 "!ADJCALLSTACKUP $amt1",
222 [(callseq_end timm:$amt1, timm:$amt2)]>;
225 let hasSideEffects = 1, mayStore = 1 in {
226 let rd = 0, rs1 = 0, rs2 = 0 in
227 def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
229 [(flushw)]>, Requires<[HasV9]>;
230 let rd = 0, rs1 = 1, simm13 = 3 in
231 def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
236 def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
239 // FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
241 let Predicates = [HasNoV9] in { // Only emit these in V8 mode.
242 def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
243 "!FpMOVD $src, $dst", []>;
244 def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
245 "!FpNEGD $src, $dst",
246 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
247 def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
248 "!FpABSD $src, $dst",
249 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
252 // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
253 // instruction selection into a branch sequence. This has to handle all
254 // permutations of selection between i32/f32/f64 on ICC and FCC.
255 // Expanded after instruction selection.
256 let Uses = [ICC], usesCustomInserter = 1 in {
257 def SELECT_CC_Int_ICC
258 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
259 "; SELECT_CC_Int_ICC PSEUDO!",
260 [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
263 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
264 "; SELECT_CC_FP_ICC PSEUDO!",
265 [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
268 def SELECT_CC_DFP_ICC
269 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
270 "; SELECT_CC_DFP_ICC PSEUDO!",
271 [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
275 let usesCustomInserter = 1, Uses = [FCC] in {
277 def SELECT_CC_Int_FCC
278 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
279 "; SELECT_CC_Int_FCC PSEUDO!",
280 [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
284 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
285 "; SELECT_CC_FP_FCC PSEUDO!",
286 [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
288 def SELECT_CC_DFP_FCC
289 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
290 "; SELECT_CC_DFP_FCC PSEUDO!",
291 [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
296 // Section A.3 - Synthetic Instructions, p. 85
297 // special cases of JMPL:
298 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
299 let rd = O7.Num, rs1 = G0.Num in
300 def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
301 "jmp %o7+$val", [(retflag simm13:$val)]>;
303 let rd = I7.Num, rs1 = G0.Num in
304 def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
308 // Section B.1 - Load Integer Instructions, p. 90
309 def LDSBrr : F3_1<3, 0b001001,
310 (outs IntRegs:$dst), (ins MEMrr:$addr),
311 "ldsb [$addr], $dst",
312 [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
313 def LDSBri : F3_2<3, 0b001001,
314 (outs IntRegs:$dst), (ins MEMri:$addr),
315 "ldsb [$addr], $dst",
316 [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
317 def LDSHrr : F3_1<3, 0b001010,
318 (outs IntRegs:$dst), (ins MEMrr:$addr),
319 "ldsh [$addr], $dst",
320 [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
321 def LDSHri : F3_2<3, 0b001010,
322 (outs IntRegs:$dst), (ins MEMri:$addr),
323 "ldsh [$addr], $dst",
324 [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
325 def LDUBrr : F3_1<3, 0b000001,
326 (outs IntRegs:$dst), (ins MEMrr:$addr),
327 "ldub [$addr], $dst",
328 [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
329 def LDUBri : F3_2<3, 0b000001,
330 (outs IntRegs:$dst), (ins MEMri:$addr),
331 "ldub [$addr], $dst",
332 [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
333 def LDUHrr : F3_1<3, 0b000010,
334 (outs IntRegs:$dst), (ins MEMrr:$addr),
335 "lduh [$addr], $dst",
336 [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
337 def LDUHri : F3_2<3, 0b000010,
338 (outs IntRegs:$dst), (ins MEMri:$addr),
339 "lduh [$addr], $dst",
340 [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
341 def LDrr : F3_1<3, 0b000000,
342 (outs IntRegs:$dst), (ins MEMrr:$addr),
344 [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
345 def LDri : F3_2<3, 0b000000,
346 (outs IntRegs:$dst), (ins MEMri:$addr),
348 [(set IntRegs:$dst, (load ADDRri:$addr))]>;
350 // Section B.2 - Load Floating-point Instructions, p. 92
351 def LDFrr : F3_1<3, 0b100000,
352 (outs FPRegs:$dst), (ins MEMrr:$addr),
354 [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
355 def LDFri : F3_2<3, 0b100000,
356 (outs FPRegs:$dst), (ins MEMri:$addr),
358 [(set FPRegs:$dst, (load ADDRri:$addr))]>;
359 def LDDFrr : F3_1<3, 0b100011,
360 (outs DFPRegs:$dst), (ins MEMrr:$addr),
362 [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
363 def LDDFri : F3_2<3, 0b100011,
364 (outs DFPRegs:$dst), (ins MEMri:$addr),
366 [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
368 // Section B.4 - Store Integer Instructions, p. 95
369 def STBrr : F3_1<3, 0b000101,
370 (outs), (ins MEMrr:$addr, IntRegs:$src),
372 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
373 def STBri : F3_2<3, 0b000101,
374 (outs), (ins MEMri:$addr, IntRegs:$src),
376 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
377 def STHrr : F3_1<3, 0b000110,
378 (outs), (ins MEMrr:$addr, IntRegs:$src),
380 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
381 def STHri : F3_2<3, 0b000110,
382 (outs), (ins MEMri:$addr, IntRegs:$src),
384 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
385 def STrr : F3_1<3, 0b000100,
386 (outs), (ins MEMrr:$addr, IntRegs:$src),
388 [(store IntRegs:$src, ADDRrr:$addr)]>;
389 def STri : F3_2<3, 0b000100,
390 (outs), (ins MEMri:$addr, IntRegs:$src),
392 [(store IntRegs:$src, ADDRri:$addr)]>;
394 // Section B.5 - Store Floating-point Instructions, p. 97
395 def STFrr : F3_1<3, 0b100100,
396 (outs), (ins MEMrr:$addr, FPRegs:$src),
398 [(store FPRegs:$src, ADDRrr:$addr)]>;
399 def STFri : F3_2<3, 0b100100,
400 (outs), (ins MEMri:$addr, FPRegs:$src),
402 [(store FPRegs:$src, ADDRri:$addr)]>;
403 def STDFrr : F3_1<3, 0b100111,
404 (outs), (ins MEMrr:$addr, DFPRegs:$src),
406 [(store DFPRegs:$src, ADDRrr:$addr)]>;
407 def STDFri : F3_2<3, 0b100111,
408 (outs), (ins MEMri:$addr, DFPRegs:$src),
410 [(store DFPRegs:$src, ADDRri:$addr)]>;
412 // Section B.9 - SETHI Instruction, p. 104
413 def SETHIi: F2_1<0b100,
414 (outs IntRegs:$dst), (ins i32imm:$src),
416 [(set IntRegs:$dst, SETHIimm:$src)]>;
418 // Section B.10 - NOP Instruction, p. 105
419 // (It's a special case of SETHI)
420 let rd = 0, imm22 = 0 in
421 def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
423 // Section B.11 - Logical Instructions, p. 106
424 defm AND : F3_12<"and", 0b000001, and>;
426 def ANDNrr : F3_1<2, 0b000101,
427 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
429 [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
430 def ANDNri : F3_2<2, 0b000101,
431 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
432 "andn $b, $c, $dst", []>;
434 defm OR : F3_12<"or", 0b000010, or>;
436 def ORNrr : F3_1<2, 0b000110,
437 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
439 [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
440 def ORNri : F3_2<2, 0b000110,
441 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
442 "orn $b, $c, $dst", []>;
443 defm XOR : F3_12<"xor", 0b000011, xor>;
445 def XNORrr : F3_1<2, 0b000111,
446 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
448 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
449 def XNORri : F3_2<2, 0b000111,
450 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
451 "xnor $b, $c, $dst", []>;
453 // Section B.12 - Shift Instructions, p. 107
454 defm SLL : F3_12<"sll", 0b100101, shl>;
455 defm SRL : F3_12<"srl", 0b100110, srl>;
456 defm SRA : F3_12<"sra", 0b100111, sra>;
458 // Section B.13 - Add Instructions, p. 108
459 defm ADD : F3_12<"add", 0b000000, add>;
461 // "LEA" forms of add (patterns to make tblgen happy)
462 def LEA_ADDri : F3_2<2, 0b000000,
463 (outs IntRegs:$dst), (ins MEMri:$addr),
464 "add ${addr:arith}, $dst",
465 [(set IntRegs:$dst, ADDRri:$addr)]>;
468 defm ADDCC : F3_12<"addcc", 0b010000, addc>;
471 defm ADDX : F3_12<"addx", 0b001000, adde>;
473 // Section B.15 - Subtract Instructions, p. 110
474 defm SUB : F3_12 <"sub" , 0b000100, sub>;
476 defm SUBX : F3_12 <"subx" , 0b001100, sube>;
479 defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
481 let Uses = [ICC], Defs = [ICC] in
482 def SUBXCCrr: F3_1<2, 0b011100,
483 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
484 "subxcc $b, $c, $dst", []>;
487 // Section B.18 - Multiply Instructions, p. 113
489 defm UMUL : F3_12np<"umul", 0b001010>;
490 defm SMUL : F3_12 <"smul", 0b001011, mul>;
493 // Section B.19 - Divide Instructions, p. 115
495 defm UDIV : F3_12np<"udiv", 0b001110>;
496 defm SDIV : F3_12np<"sdiv", 0b001111>;
499 // Section B.20 - SAVE and RESTORE, p. 117
500 defm SAVE : F3_12np<"save" , 0b111100>;
501 defm RESTORE : F3_12np<"restore", 0b111101>;
503 // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
505 // conditional branch class:
506 class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
507 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
509 let isTerminator = 1;
510 let hasDelaySlot = 1;
514 def BA : BranchSP<0b1000, (ins brtarget:$dst),
518 // FIXME: the encoding for the JIT should look at the condition field.
520 def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
522 [(SPbricc bb:$dst, imm:$cc)]>;
525 // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
527 // floating-point conditional branch class:
528 class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
529 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
531 let isTerminator = 1;
532 let hasDelaySlot = 1;
535 // FIXME: the encoding for the JIT should look at the condition field.
537 def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
539 [(SPbrfcc bb:$dst, imm:$cc)]>;
542 // Section B.24 - Call and Link Instruction, p. 125
543 // This is the only Format 1 instruction
545 hasDelaySlot = 1, isCall = 1,
546 Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
547 D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
549 def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
553 let Inst{29-0} = disp;
557 def JMPLrr : F3_1<2, 0b111000,
558 (outs), (ins MEMrr:$ptr, variable_ops),
560 [(call ADDRrr:$ptr)]>;
561 def JMPLri : F3_2<2, 0b111000,
562 (outs), (ins MEMri:$ptr, variable_ops),
564 [(call ADDRri:$ptr)]>;
567 // Section B.28 - Read State Register Instructions
569 def RDY : F3_1<2, 0b101000,
570 (outs IntRegs:$dst), (ins),
573 // Section B.29 - Write State Register Instructions
575 def WRYrr : F3_1<2, 0b110000,
576 (outs), (ins IntRegs:$b, IntRegs:$c),
577 "wr $b, $c, %y", []>;
578 def WRYri : F3_2<2, 0b110000,
579 (outs), (ins IntRegs:$b, i32imm:$c),
580 "wr $b, $c, %y", []>;
582 // Convert Integer to Floating-point Instructions, p. 141
583 def FITOS : F3_3<2, 0b110100, 0b011000100,
584 (outs FPRegs:$dst), (ins FPRegs:$src),
586 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
587 def FITOD : F3_3<2, 0b110100, 0b011001000,
588 (outs DFPRegs:$dst), (ins FPRegs:$src),
590 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
592 // Convert Floating-point to Integer Instructions, p. 142
593 def FSTOI : F3_3<2, 0b110100, 0b011010001,
594 (outs FPRegs:$dst), (ins FPRegs:$src),
596 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
597 def FDTOI : F3_3<2, 0b110100, 0b011010010,
598 (outs FPRegs:$dst), (ins DFPRegs:$src),
600 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
602 // Convert between Floating-point Formats Instructions, p. 143
603 def FSTOD : F3_3<2, 0b110100, 0b011001001,
604 (outs DFPRegs:$dst), (ins FPRegs:$src),
606 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
607 def FDTOS : F3_3<2, 0b110100, 0b011000110,
608 (outs FPRegs:$dst), (ins DFPRegs:$src),
610 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
612 // Floating-point Move Instructions, p. 144
613 def FMOVS : F3_3<2, 0b110100, 0b000000001,
614 (outs FPRegs:$dst), (ins FPRegs:$src),
615 "fmovs $src, $dst", []>;
616 def FNEGS : F3_3<2, 0b110100, 0b000000101,
617 (outs FPRegs:$dst), (ins FPRegs:$src),
619 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
620 def FABSS : F3_3<2, 0b110100, 0b000001001,
621 (outs FPRegs:$dst), (ins FPRegs:$src),
623 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
626 // Floating-point Square Root Instructions, p.145
627 def FSQRTS : F3_3<2, 0b110100, 0b000101001,
628 (outs FPRegs:$dst), (ins FPRegs:$src),
630 [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
631 def FSQRTD : F3_3<2, 0b110100, 0b000101010,
632 (outs DFPRegs:$dst), (ins DFPRegs:$src),
634 [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
638 // Floating-point Add and Subtract Instructions, p. 146
639 def FADDS : F3_3<2, 0b110100, 0b001000001,
640 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
641 "fadds $src1, $src2, $dst",
642 [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
643 def FADDD : F3_3<2, 0b110100, 0b001000010,
644 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
645 "faddd $src1, $src2, $dst",
646 [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
647 def FSUBS : F3_3<2, 0b110100, 0b001000101,
648 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
649 "fsubs $src1, $src2, $dst",
650 [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
651 def FSUBD : F3_3<2, 0b110100, 0b001000110,
652 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
653 "fsubd $src1, $src2, $dst",
654 [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
656 // Floating-point Multiply and Divide Instructions, p. 147
657 def FMULS : F3_3<2, 0b110100, 0b001001001,
658 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
659 "fmuls $src1, $src2, $dst",
660 [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
661 def FMULD : F3_3<2, 0b110100, 0b001001010,
662 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
663 "fmuld $src1, $src2, $dst",
664 [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
665 def FSMULD : F3_3<2, 0b110100, 0b001101001,
666 (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
667 "fsmuld $src1, $src2, $dst",
668 [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
669 (fextend FPRegs:$src2)))]>;
670 def FDIVS : F3_3<2, 0b110100, 0b001001101,
671 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
672 "fdivs $src1, $src2, $dst",
673 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
674 def FDIVD : F3_3<2, 0b110100, 0b001001110,
675 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
676 "fdivd $src1, $src2, $dst",
677 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
679 // Floating-point Compare Instructions, p. 148
680 // Note: the 2nd template arg is different for these guys.
681 // Note 2: the result of a FCMP is not available until the 2nd cycle
682 // after the instr is retired, but there is no interlock. This behavior
683 // is modelled with a forced noop after the instruction.
684 let Defs = [FCC] in {
685 def FCMPS : F3_3<2, 0b110101, 0b001010001,
686 (outs), (ins FPRegs:$src1, FPRegs:$src2),
687 "fcmps $src1, $src2\n\tnop",
688 [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
689 def FCMPD : F3_3<2, 0b110101, 0b001010010,
690 (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
691 "fcmpd $src1, $src2\n\tnop",
692 [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
695 //===----------------------------------------------------------------------===//
697 //===----------------------------------------------------------------------===//
699 // V9 Conditional Moves.
700 let Predicates = [HasV9], Constraints = "$T = $dst" in {
701 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
702 // FIXME: Add instruction encodings for the JIT some day.
703 let Uses = [ICC] in {
705 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
706 "mov$cc %icc, $F, $dst",
708 (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
710 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
711 "mov$cc %icc, $F, $dst",
713 (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
716 let Uses = [FCC] in {
718 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
719 "mov$cc %fcc0, $F, $dst",
721 (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
723 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
724 "mov$cc %fcc0, $F, $dst",
726 (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
729 let Uses = [ICC] in {
731 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
732 "fmovs$cc %icc, $F, $dst",
734 (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
736 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
737 "fmovd$cc %icc, $F, $dst",
739 (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
742 let Uses = [FCC] in {
744 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
745 "fmovs$cc %fcc0, $F, $dst",
747 (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
749 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
750 "fmovd$cc %fcc0, $F, $dst",
752 (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
757 // Floating-Point Move Instructions, p. 164 of the V9 manual.
758 let Predicates = [HasV9] in {
759 def FMOVD : F3_3<2, 0b110100, 0b000000010,
760 (outs DFPRegs:$dst), (ins DFPRegs:$src),
761 "fmovd $src, $dst", []>;
762 def FNEGD : F3_3<2, 0b110100, 0b000000110,
763 (outs DFPRegs:$dst), (ins DFPRegs:$src),
765 [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
766 def FABSD : F3_3<2, 0b110100, 0b000001010,
767 (outs DFPRegs:$dst), (ins DFPRegs:$src),
769 [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
772 // POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
773 // the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
774 def POPCrr : F3_1<2, 0b101110,
775 (outs IntRegs:$dst), (ins IntRegs:$src),
776 "popc $src, $dst", []>, Requires<[HasV9]>;
777 def : Pat<(ctpop IntRegs:$src),
778 (POPCrr (SLLri IntRegs:$src, 0))>;
780 //===----------------------------------------------------------------------===//
781 // Non-Instruction Patterns
782 //===----------------------------------------------------------------------===//
785 def : Pat<(i32 simm13:$val),
786 (ORri G0, imm:$val)>;
787 // Arbitrary immediates.
788 def : Pat<(i32 imm:$val),
789 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
792 def : Pat<(subc IntRegs:$b, IntRegs:$c),
793 (SUBCCrr IntRegs:$b, IntRegs:$c)>;
794 def : Pat<(subc IntRegs:$b, simm13:$val),
795 (SUBCCri IntRegs:$b, imm:$val)>;
797 // Global addresses, constant pool entries
798 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
799 def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
800 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
801 def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
803 // Add reg, lo. This is used when taking the addr of a global/constpool entry.
804 def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
805 (ADDri IntRegs:$r, tglobaladdr:$in)>;
806 def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
807 (ADDri IntRegs:$r, tconstpool:$in)>;
810 def : Pat<(call tglobaladdr:$dst),
811 (CALL tglobaladdr:$dst)>;
812 def : Pat<(call texternalsym:$dst),
813 (CALL texternalsym:$dst)>;
815 // Map integer extload's to zextloads.
816 def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
817 def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
818 def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
819 def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
820 def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
821 def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
823 // zextload bool -> zextload byte
824 def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
825 def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;