Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Scalar / GVN.cpp
blob87b7317ad2dd62a081c5d9ab1a5edd8e39555d29
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "gvn"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
30 #include "llvm/Analysis/PHITransAddr.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Assembly/Writer.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/SSAUpdater.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DepthFirstIterator.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/Allocator.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/IRBuilder.h"
44 using namespace llvm;
46 STATISTIC(NumGVNInstr, "Number of instructions deleted");
47 STATISTIC(NumGVNLoad, "Number of loads deleted");
48 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
49 STATISTIC(NumGVNBlocks, "Number of blocks merged");
50 STATISTIC(NumPRELoad, "Number of loads PRE'd");
52 static cl::opt<bool> EnablePRE("enable-pre",
53 cl::init(true), cl::Hidden);
54 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
56 //===----------------------------------------------------------------------===//
57 // ValueTable Class
58 //===----------------------------------------------------------------------===//
60 /// This class holds the mapping between values and value numbers. It is used
61 /// as an efficient mechanism to determine the expression-wise equivalence of
62 /// two values.
63 namespace {
64 struct Expression {
65 uint32_t opcode;
66 const Type *type;
67 SmallVector<uint32_t, 4> varargs;
69 Expression(uint32_t o = ~2U) : opcode(o) { }
71 bool operator==(const Expression &other) const {
72 if (opcode != other.opcode)
73 return false;
74 if (opcode == ~0U || opcode == ~1U)
75 return true;
76 if (type != other.type)
77 return false;
78 if (varargs != other.varargs)
79 return false;
80 return true;
84 class ValueTable {
85 DenseMap<Value*, uint32_t> valueNumbering;
86 DenseMap<Expression, uint32_t> expressionNumbering;
87 AliasAnalysis *AA;
88 MemoryDependenceAnalysis *MD;
89 DominatorTree *DT;
91 uint32_t nextValueNumber;
93 Expression create_expression(Instruction* I);
94 Expression create_extractvalue_expression(ExtractValueInst* EI);
95 uint32_t lookup_or_add_call(CallInst* C);
96 public:
97 ValueTable() : nextValueNumber(1) { }
98 uint32_t lookup_or_add(Value *V);
99 uint32_t lookup(Value *V) const;
100 void add(Value *V, uint32_t num);
101 void clear();
102 void erase(Value *v);
103 void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
104 AliasAnalysis *getAliasAnalysis() const { return AA; }
105 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
106 void setDomTree(DominatorTree* D) { DT = D; }
107 uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
108 void verifyRemoved(const Value *) const;
112 namespace llvm {
113 template <> struct DenseMapInfo<Expression> {
114 static inline Expression getEmptyKey() {
115 return ~0U;
118 static inline Expression getTombstoneKey() {
119 return ~1U;
122 static unsigned getHashValue(const Expression e) {
123 unsigned hash = e.opcode;
125 hash = ((unsigned)((uintptr_t)e.type >> 4) ^
126 (unsigned)((uintptr_t)e.type >> 9));
128 for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
129 E = e.varargs.end(); I != E; ++I)
130 hash = *I + hash * 37;
132 return hash;
134 static bool isEqual(const Expression &LHS, const Expression &RHS) {
135 return LHS == RHS;
141 //===----------------------------------------------------------------------===//
142 // ValueTable Internal Functions
143 //===----------------------------------------------------------------------===//
145 Expression ValueTable::create_expression(Instruction *I) {
146 Expression e;
147 e.type = I->getType();
148 e.opcode = I->getOpcode();
149 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
150 OI != OE; ++OI)
151 e.varargs.push_back(lookup_or_add(*OI));
153 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
154 e.opcode = (C->getOpcode() << 8) | C->getPredicate();
155 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
156 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
157 II != IE; ++II)
158 e.varargs.push_back(*II);
161 return e;
164 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
165 assert(EI != 0 && "Not an ExtractValueInst?");
166 Expression e;
167 e.type = EI->getType();
168 e.opcode = 0;
170 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
171 if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
172 // EI might be an extract from one of our recognised intrinsics. If it
173 // is we'll synthesize a semantically equivalent expression instead on
174 // an extract value expression.
175 switch (I->getIntrinsicID()) {
176 case Intrinsic::sadd_with_overflow:
177 case Intrinsic::uadd_with_overflow:
178 e.opcode = Instruction::Add;
179 break;
180 case Intrinsic::ssub_with_overflow:
181 case Intrinsic::usub_with_overflow:
182 e.opcode = Instruction::Sub;
183 break;
184 case Intrinsic::smul_with_overflow:
185 case Intrinsic::umul_with_overflow:
186 e.opcode = Instruction::Mul;
187 break;
188 default:
189 break;
192 if (e.opcode != 0) {
193 // Intrinsic recognized. Grab its args to finish building the expression.
194 assert(I->getNumArgOperands() == 2 &&
195 "Expect two args for recognised intrinsics.");
196 e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
197 e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
198 return e;
202 // Not a recognised intrinsic. Fall back to producing an extract value
203 // expression.
204 e.opcode = EI->getOpcode();
205 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
206 OI != OE; ++OI)
207 e.varargs.push_back(lookup_or_add(*OI));
209 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
210 II != IE; ++II)
211 e.varargs.push_back(*II);
213 return e;
216 //===----------------------------------------------------------------------===//
217 // ValueTable External Functions
218 //===----------------------------------------------------------------------===//
220 /// add - Insert a value into the table with a specified value number.
221 void ValueTable::add(Value *V, uint32_t num) {
222 valueNumbering.insert(std::make_pair(V, num));
225 uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
226 if (AA->doesNotAccessMemory(C)) {
227 Expression exp = create_expression(C);
228 uint32_t& e = expressionNumbering[exp];
229 if (!e) e = nextValueNumber++;
230 valueNumbering[C] = e;
231 return e;
232 } else if (AA->onlyReadsMemory(C)) {
233 Expression exp = create_expression(C);
234 uint32_t& e = expressionNumbering[exp];
235 if (!e) {
236 e = nextValueNumber++;
237 valueNumbering[C] = e;
238 return e;
240 if (!MD) {
241 e = nextValueNumber++;
242 valueNumbering[C] = e;
243 return e;
246 MemDepResult local_dep = MD->getDependency(C);
248 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
249 valueNumbering[C] = nextValueNumber;
250 return nextValueNumber++;
253 if (local_dep.isDef()) {
254 CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
256 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
257 valueNumbering[C] = nextValueNumber;
258 return nextValueNumber++;
261 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
262 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
263 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
264 if (c_vn != cd_vn) {
265 valueNumbering[C] = nextValueNumber;
266 return nextValueNumber++;
270 uint32_t v = lookup_or_add(local_cdep);
271 valueNumbering[C] = v;
272 return v;
275 // Non-local case.
276 const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
277 MD->getNonLocalCallDependency(CallSite(C));
278 // FIXME: Move the checking logic to MemDep!
279 CallInst* cdep = 0;
281 // Check to see if we have a single dominating call instruction that is
282 // identical to C.
283 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
284 const NonLocalDepEntry *I = &deps[i];
285 if (I->getResult().isNonLocal())
286 continue;
288 // We don't handle non-definitions. If we already have a call, reject
289 // instruction dependencies.
290 if (!I->getResult().isDef() || cdep != 0) {
291 cdep = 0;
292 break;
295 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
296 // FIXME: All duplicated with non-local case.
297 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
298 cdep = NonLocalDepCall;
299 continue;
302 cdep = 0;
303 break;
306 if (!cdep) {
307 valueNumbering[C] = nextValueNumber;
308 return nextValueNumber++;
311 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
312 valueNumbering[C] = nextValueNumber;
313 return nextValueNumber++;
315 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
316 uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
317 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
318 if (c_vn != cd_vn) {
319 valueNumbering[C] = nextValueNumber;
320 return nextValueNumber++;
324 uint32_t v = lookup_or_add(cdep);
325 valueNumbering[C] = v;
326 return v;
328 } else {
329 valueNumbering[C] = nextValueNumber;
330 return nextValueNumber++;
334 /// lookup_or_add - Returns the value number for the specified value, assigning
335 /// it a new number if it did not have one before.
336 uint32_t ValueTable::lookup_or_add(Value *V) {
337 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
338 if (VI != valueNumbering.end())
339 return VI->second;
341 if (!isa<Instruction>(V)) {
342 valueNumbering[V] = nextValueNumber;
343 return nextValueNumber++;
346 Instruction* I = cast<Instruction>(V);
347 Expression exp;
348 switch (I->getOpcode()) {
349 case Instruction::Call:
350 return lookup_or_add_call(cast<CallInst>(I));
351 case Instruction::Add:
352 case Instruction::FAdd:
353 case Instruction::Sub:
354 case Instruction::FSub:
355 case Instruction::Mul:
356 case Instruction::FMul:
357 case Instruction::UDiv:
358 case Instruction::SDiv:
359 case Instruction::FDiv:
360 case Instruction::URem:
361 case Instruction::SRem:
362 case Instruction::FRem:
363 case Instruction::Shl:
364 case Instruction::LShr:
365 case Instruction::AShr:
366 case Instruction::And:
367 case Instruction::Or :
368 case Instruction::Xor:
369 case Instruction::ICmp:
370 case Instruction::FCmp:
371 case Instruction::Trunc:
372 case Instruction::ZExt:
373 case Instruction::SExt:
374 case Instruction::FPToUI:
375 case Instruction::FPToSI:
376 case Instruction::UIToFP:
377 case Instruction::SIToFP:
378 case Instruction::FPTrunc:
379 case Instruction::FPExt:
380 case Instruction::PtrToInt:
381 case Instruction::IntToPtr:
382 case Instruction::BitCast:
383 case Instruction::Select:
384 case Instruction::ExtractElement:
385 case Instruction::InsertElement:
386 case Instruction::ShuffleVector:
387 case Instruction::InsertValue:
388 case Instruction::GetElementPtr:
389 exp = create_expression(I);
390 break;
391 case Instruction::ExtractValue:
392 exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
393 break;
394 default:
395 valueNumbering[V] = nextValueNumber;
396 return nextValueNumber++;
399 uint32_t& e = expressionNumbering[exp];
400 if (!e) e = nextValueNumber++;
401 valueNumbering[V] = e;
402 return e;
405 /// lookup - Returns the value number of the specified value. Fails if
406 /// the value has not yet been numbered.
407 uint32_t ValueTable::lookup(Value *V) const {
408 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
409 assert(VI != valueNumbering.end() && "Value not numbered?");
410 return VI->second;
413 /// clear - Remove all entries from the ValueTable.
414 void ValueTable::clear() {
415 valueNumbering.clear();
416 expressionNumbering.clear();
417 nextValueNumber = 1;
420 /// erase - Remove a value from the value numbering.
421 void ValueTable::erase(Value *V) {
422 valueNumbering.erase(V);
425 /// verifyRemoved - Verify that the value is removed from all internal data
426 /// structures.
427 void ValueTable::verifyRemoved(const Value *V) const {
428 for (DenseMap<Value*, uint32_t>::const_iterator
429 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
430 assert(I->first != V && "Inst still occurs in value numbering map!");
434 //===----------------------------------------------------------------------===//
435 // GVN Pass
436 //===----------------------------------------------------------------------===//
438 namespace {
440 class GVN : public FunctionPass {
441 bool NoLoads;
442 MemoryDependenceAnalysis *MD;
443 DominatorTree *DT;
444 const TargetData *TD;
446 ValueTable VN;
448 /// LeaderTable - A mapping from value numbers to lists of Value*'s that
449 /// have that value number. Use findLeader to query it.
450 struct LeaderTableEntry {
451 Value *Val;
452 BasicBlock *BB;
453 LeaderTableEntry *Next;
455 DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
456 BumpPtrAllocator TableAllocator;
458 SmallVector<Instruction*, 8> InstrsToErase;
459 public:
460 static char ID; // Pass identification, replacement for typeid
461 explicit GVN(bool noloads = false)
462 : FunctionPass(ID), NoLoads(noloads), MD(0) {
463 initializeGVNPass(*PassRegistry::getPassRegistry());
466 bool runOnFunction(Function &F);
468 /// markInstructionForDeletion - This removes the specified instruction from
469 /// our various maps and marks it for deletion.
470 void markInstructionForDeletion(Instruction *I) {
471 VN.erase(I);
472 InstrsToErase.push_back(I);
475 const TargetData *getTargetData() const { return TD; }
476 DominatorTree &getDominatorTree() const { return *DT; }
477 AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
478 MemoryDependenceAnalysis &getMemDep() const { return *MD; }
479 private:
480 /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
481 /// its value number.
482 void addToLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
483 LeaderTableEntry &Curr = LeaderTable[N];
484 if (!Curr.Val) {
485 Curr.Val = V;
486 Curr.BB = BB;
487 return;
490 LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
491 Node->Val = V;
492 Node->BB = BB;
493 Node->Next = Curr.Next;
494 Curr.Next = Node;
497 /// removeFromLeaderTable - Scan the list of values corresponding to a given
498 /// value number, and remove the given value if encountered.
499 void removeFromLeaderTable(uint32_t N, Value *V, BasicBlock *BB) {
500 LeaderTableEntry* Prev = 0;
501 LeaderTableEntry* Curr = &LeaderTable[N];
503 while (Curr->Val != V || Curr->BB != BB) {
504 Prev = Curr;
505 Curr = Curr->Next;
508 if (Prev) {
509 Prev->Next = Curr->Next;
510 } else {
511 if (!Curr->Next) {
512 Curr->Val = 0;
513 Curr->BB = 0;
514 } else {
515 LeaderTableEntry* Next = Curr->Next;
516 Curr->Val = Next->Val;
517 Curr->BB = Next->BB;
518 Curr->Next = Next->Next;
523 // List of critical edges to be split between iterations.
524 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
526 // This transformation requires dominator postdominator info
527 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
528 AU.addRequired<DominatorTree>();
529 if (!NoLoads)
530 AU.addRequired<MemoryDependenceAnalysis>();
531 AU.addRequired<AliasAnalysis>();
533 AU.addPreserved<DominatorTree>();
534 AU.addPreserved<AliasAnalysis>();
538 // Helper fuctions
539 // FIXME: eliminate or document these better
540 bool processLoad(LoadInst *L);
541 bool processInstruction(Instruction *I);
542 bool processNonLocalLoad(LoadInst *L);
543 bool processBlock(BasicBlock *BB);
544 void dump(DenseMap<uint32_t, Value*> &d);
545 bool iterateOnFunction(Function &F);
546 bool performPRE(Function &F);
547 Value *findLeader(BasicBlock *BB, uint32_t num);
548 void cleanupGlobalSets();
549 void verifyRemoved(const Instruction *I) const;
550 bool splitCriticalEdges();
553 char GVN::ID = 0;
556 // createGVNPass - The public interface to this file...
557 FunctionPass *llvm::createGVNPass(bool NoLoads) {
558 return new GVN(NoLoads);
561 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
562 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
563 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
564 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
565 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
567 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
568 errs() << "{\n";
569 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
570 E = d.end(); I != E; ++I) {
571 errs() << I->first << "\n";
572 I->second->dump();
574 errs() << "}\n";
577 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
578 /// we're analyzing is fully available in the specified block. As we go, keep
579 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
580 /// map is actually a tri-state map with the following values:
581 /// 0) we know the block *is not* fully available.
582 /// 1) we know the block *is* fully available.
583 /// 2) we do not know whether the block is fully available or not, but we are
584 /// currently speculating that it will be.
585 /// 3) we are speculating for this block and have used that to speculate for
586 /// other blocks.
587 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
588 DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
589 // Optimistically assume that the block is fully available and check to see
590 // if we already know about this block in one lookup.
591 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
592 FullyAvailableBlocks.insert(std::make_pair(BB, 2));
594 // If the entry already existed for this block, return the precomputed value.
595 if (!IV.second) {
596 // If this is a speculative "available" value, mark it as being used for
597 // speculation of other blocks.
598 if (IV.first->second == 2)
599 IV.first->second = 3;
600 return IV.first->second != 0;
603 // Otherwise, see if it is fully available in all predecessors.
604 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
606 // If this block has no predecessors, it isn't live-in here.
607 if (PI == PE)
608 goto SpeculationFailure;
610 for (; PI != PE; ++PI)
611 // If the value isn't fully available in one of our predecessors, then it
612 // isn't fully available in this block either. Undo our previous
613 // optimistic assumption and bail out.
614 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
615 goto SpeculationFailure;
617 return true;
619 // SpeculationFailure - If we get here, we found out that this is not, after
620 // all, a fully-available block. We have a problem if we speculated on this and
621 // used the speculation to mark other blocks as available.
622 SpeculationFailure:
623 char &BBVal = FullyAvailableBlocks[BB];
625 // If we didn't speculate on this, just return with it set to false.
626 if (BBVal == 2) {
627 BBVal = 0;
628 return false;
631 // If we did speculate on this value, we could have blocks set to 1 that are
632 // incorrect. Walk the (transitive) successors of this block and mark them as
633 // 0 if set to one.
634 SmallVector<BasicBlock*, 32> BBWorklist;
635 BBWorklist.push_back(BB);
637 do {
638 BasicBlock *Entry = BBWorklist.pop_back_val();
639 // Note that this sets blocks to 0 (unavailable) if they happen to not
640 // already be in FullyAvailableBlocks. This is safe.
641 char &EntryVal = FullyAvailableBlocks[Entry];
642 if (EntryVal == 0) continue; // Already unavailable.
644 // Mark as unavailable.
645 EntryVal = 0;
647 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
648 BBWorklist.push_back(*I);
649 } while (!BBWorklist.empty());
651 return false;
655 /// CanCoerceMustAliasedValueToLoad - Return true if
656 /// CoerceAvailableValueToLoadType will succeed.
657 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
658 const Type *LoadTy,
659 const TargetData &TD) {
660 // If the loaded or stored value is an first class array or struct, don't try
661 // to transform them. We need to be able to bitcast to integer.
662 if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
663 StoredVal->getType()->isStructTy() ||
664 StoredVal->getType()->isArrayTy())
665 return false;
667 // The store has to be at least as big as the load.
668 if (TD.getTypeSizeInBits(StoredVal->getType()) <
669 TD.getTypeSizeInBits(LoadTy))
670 return false;
672 return true;
676 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
677 /// then a load from a must-aliased pointer of a different type, try to coerce
678 /// the stored value. LoadedTy is the type of the load we want to replace and
679 /// InsertPt is the place to insert new instructions.
681 /// If we can't do it, return null.
682 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
683 const Type *LoadedTy,
684 Instruction *InsertPt,
685 const TargetData &TD) {
686 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
687 return 0;
689 // If this is already the right type, just return it.
690 const Type *StoredValTy = StoredVal->getType();
692 uint64_t StoreSize = TD.getTypeStoreSizeInBits(StoredValTy);
693 uint64_t LoadSize = TD.getTypeStoreSizeInBits(LoadedTy);
695 // If the store and reload are the same size, we can always reuse it.
696 if (StoreSize == LoadSize) {
697 // Pointer to Pointer -> use bitcast.
698 if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy())
699 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
701 // Convert source pointers to integers, which can be bitcast.
702 if (StoredValTy->isPointerTy()) {
703 StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
704 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
707 const Type *TypeToCastTo = LoadedTy;
708 if (TypeToCastTo->isPointerTy())
709 TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
711 if (StoredValTy != TypeToCastTo)
712 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
714 // Cast to pointer if the load needs a pointer type.
715 if (LoadedTy->isPointerTy())
716 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
718 return StoredVal;
721 // If the loaded value is smaller than the available value, then we can
722 // extract out a piece from it. If the available value is too small, then we
723 // can't do anything.
724 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
726 // Convert source pointers to integers, which can be manipulated.
727 if (StoredValTy->isPointerTy()) {
728 StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
729 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
732 // Convert vectors and fp to integer, which can be manipulated.
733 if (!StoredValTy->isIntegerTy()) {
734 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
735 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
738 // If this is a big-endian system, we need to shift the value down to the low
739 // bits so that a truncate will work.
740 if (TD.isBigEndian()) {
741 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
742 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
745 // Truncate the integer to the right size now.
746 const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
747 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
749 if (LoadedTy == NewIntTy)
750 return StoredVal;
752 // If the result is a pointer, inttoptr.
753 if (LoadedTy->isPointerTy())
754 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
756 // Otherwise, bitcast.
757 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
760 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
761 /// memdep query of a load that ends up being a clobbering memory write (store,
762 /// memset, memcpy, memmove). This means that the write *may* provide bits used
763 /// by the load but we can't be sure because the pointers don't mustalias.
765 /// Check this case to see if there is anything more we can do before we give
766 /// up. This returns -1 if we have to give up, or a byte number in the stored
767 /// value of the piece that feeds the load.
768 static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
769 Value *WritePtr,
770 uint64_t WriteSizeInBits,
771 const TargetData &TD) {
772 // If the loaded or stored value is an first class array or struct, don't try
773 // to transform them. We need to be able to bitcast to integer.
774 if (LoadTy->isStructTy() || LoadTy->isArrayTy())
775 return -1;
777 int64_t StoreOffset = 0, LoadOffset = 0;
778 Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD);
779 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
780 if (StoreBase != LoadBase)
781 return -1;
783 // If the load and store are to the exact same address, they should have been
784 // a must alias. AA must have gotten confused.
785 // FIXME: Study to see if/when this happens. One case is forwarding a memset
786 // to a load from the base of the memset.
787 #if 0
788 if (LoadOffset == StoreOffset) {
789 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
790 << "Base = " << *StoreBase << "\n"
791 << "Store Ptr = " << *WritePtr << "\n"
792 << "Store Offs = " << StoreOffset << "\n"
793 << "Load Ptr = " << *LoadPtr << "\n";
794 abort();
796 #endif
798 // If the load and store don't overlap at all, the store doesn't provide
799 // anything to the load. In this case, they really don't alias at all, AA
800 // must have gotten confused.
801 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
803 if ((WriteSizeInBits & 7) | (LoadSize & 7))
804 return -1;
805 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
806 LoadSize >>= 3;
809 bool isAAFailure = false;
810 if (StoreOffset < LoadOffset)
811 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
812 else
813 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
815 if (isAAFailure) {
816 #if 0
817 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
818 << "Base = " << *StoreBase << "\n"
819 << "Store Ptr = " << *WritePtr << "\n"
820 << "Store Offs = " << StoreOffset << "\n"
821 << "Load Ptr = " << *LoadPtr << "\n";
822 abort();
823 #endif
824 return -1;
827 // If the Load isn't completely contained within the stored bits, we don't
828 // have all the bits to feed it. We could do something crazy in the future
829 // (issue a smaller load then merge the bits in) but this seems unlikely to be
830 // valuable.
831 if (StoreOffset > LoadOffset ||
832 StoreOffset+StoreSize < LoadOffset+LoadSize)
833 return -1;
835 // Okay, we can do this transformation. Return the number of bytes into the
836 // store that the load is.
837 return LoadOffset-StoreOffset;
840 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
841 /// memdep query of a load that ends up being a clobbering store.
842 static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
843 StoreInst *DepSI,
844 const TargetData &TD) {
845 // Cannot handle reading from store of first-class aggregate yet.
846 if (DepSI->getValueOperand()->getType()->isStructTy() ||
847 DepSI->getValueOperand()->getType()->isArrayTy())
848 return -1;
850 Value *StorePtr = DepSI->getPointerOperand();
851 uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
852 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
853 StorePtr, StoreSize, TD);
856 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
857 /// memdep query of a load that ends up being clobbered by another load. See if
858 /// the other load can feed into the second load.
859 static int AnalyzeLoadFromClobberingLoad(const Type *LoadTy, Value *LoadPtr,
860 LoadInst *DepLI, const TargetData &TD){
861 // Cannot handle reading from store of first-class aggregate yet.
862 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
863 return -1;
865 Value *DepPtr = DepLI->getPointerOperand();
866 uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
867 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
868 if (R != -1) return R;
870 // If we have a load/load clobber an DepLI can be widened to cover this load,
871 // then we should widen it!
872 int64_t LoadOffs = 0;
873 const Value *LoadBase =
874 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD);
875 unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
877 unsigned Size = MemoryDependenceAnalysis::
878 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
879 if (Size == 0) return -1;
881 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
886 static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
887 MemIntrinsic *MI,
888 const TargetData &TD) {
889 // If the mem operation is a non-constant size, we can't handle it.
890 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
891 if (SizeCst == 0) return -1;
892 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
894 // If this is memset, we just need to see if the offset is valid in the size
895 // of the memset..
896 if (MI->getIntrinsicID() == Intrinsic::memset)
897 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
898 MemSizeInBits, TD);
900 // If we have a memcpy/memmove, the only case we can handle is if this is a
901 // copy from constant memory. In that case, we can read directly from the
902 // constant memory.
903 MemTransferInst *MTI = cast<MemTransferInst>(MI);
905 Constant *Src = dyn_cast<Constant>(MTI->getSource());
906 if (Src == 0) return -1;
908 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD));
909 if (GV == 0 || !GV->isConstant()) return -1;
911 // See if the access is within the bounds of the transfer.
912 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
913 MI->getDest(), MemSizeInBits, TD);
914 if (Offset == -1)
915 return Offset;
917 // Otherwise, see if we can constant fold a load from the constant with the
918 // offset applied as appropriate.
919 Src = ConstantExpr::getBitCast(Src,
920 llvm::Type::getInt8PtrTy(Src->getContext()));
921 Constant *OffsetCst =
922 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
923 Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
924 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
925 if (ConstantFoldLoadFromConstPtr(Src, &TD))
926 return Offset;
927 return -1;
931 /// GetStoreValueForLoad - This function is called when we have a
932 /// memdep query of a load that ends up being a clobbering store. This means
933 /// that the store provides bits used by the load but we the pointers don't
934 /// mustalias. Check this case to see if there is anything more we can do
935 /// before we give up.
936 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
937 const Type *LoadTy,
938 Instruction *InsertPt, const TargetData &TD){
939 LLVMContext &Ctx = SrcVal->getType()->getContext();
941 uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
942 uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
944 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
946 // Compute which bits of the stored value are being used by the load. Convert
947 // to an integer type to start with.
948 if (SrcVal->getType()->isPointerTy())
949 SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
950 if (!SrcVal->getType()->isIntegerTy())
951 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
952 "tmp");
954 // Shift the bits to the least significant depending on endianness.
955 unsigned ShiftAmt;
956 if (TD.isLittleEndian())
957 ShiftAmt = Offset*8;
958 else
959 ShiftAmt = (StoreSize-LoadSize-Offset)*8;
961 if (ShiftAmt)
962 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
964 if (LoadSize != StoreSize)
965 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
966 "tmp");
968 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
971 /// GetStoreValueForLoad - This function is called when we have a
972 /// memdep query of a load that ends up being a clobbering load. This means
973 /// that the load *may* provide bits used by the load but we can't be sure
974 /// because the pointers don't mustalias. Check this case to see if there is
975 /// anything more we can do before we give up.
976 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
977 const Type *LoadTy, Instruction *InsertPt,
978 GVN &gvn) {
979 const TargetData &TD = *gvn.getTargetData();
980 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
981 // widen SrcVal out to a larger load.
982 unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
983 unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
984 if (Offset+LoadSize > SrcValSize) {
985 assert(!SrcVal->isVolatile() && "Cannot widen volatile load!");
986 assert(isa<IntegerType>(SrcVal->getType())&&"Can't widen non-integer load");
987 // If we have a load/load clobber an DepLI can be widened to cover this
988 // load, then we should widen it to the next power of 2 size big enough!
989 unsigned NewLoadSize = Offset+LoadSize;
990 if (!isPowerOf2_32(NewLoadSize))
991 NewLoadSize = NextPowerOf2(NewLoadSize);
993 Value *PtrVal = SrcVal->getPointerOperand();
995 // Insert the new load after the old load. This ensures that subsequent
996 // memdep queries will find the new load. We can't easily remove the old
997 // load completely because it is already in the value numbering table.
998 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
999 const Type *DestPTy =
1000 IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1001 DestPTy = PointerType::get(DestPTy,
1002 cast<PointerType>(PtrVal->getType())->getAddressSpace());
1003 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1004 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1005 LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1006 NewLoad->takeName(SrcVal);
1007 NewLoad->setAlignment(SrcVal->getAlignment());
1009 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1010 DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1012 // Replace uses of the original load with the wider load. On a big endian
1013 // system, we need to shift down to get the relevant bits.
1014 Value *RV = NewLoad;
1015 if (TD.isBigEndian())
1016 RV = Builder.CreateLShr(RV,
1017 NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1018 RV = Builder.CreateTrunc(RV, SrcVal->getType());
1019 SrcVal->replaceAllUsesWith(RV);
1021 // We would like to use gvn.markInstructionForDeletion here, but we can't
1022 // because the load is already memoized into the leader map table that GVN
1023 // tracks. It is potentially possible to remove the load from the table,
1024 // but then there all of the operations based on it would need to be
1025 // rehashed. Just leave the dead load around.
1026 gvn.getMemDep().removeInstruction(SrcVal);
1027 SrcVal = NewLoad;
1030 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1034 /// GetMemInstValueForLoad - This function is called when we have a
1035 /// memdep query of a load that ends up being a clobbering mem intrinsic.
1036 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1037 const Type *LoadTy, Instruction *InsertPt,
1038 const TargetData &TD){
1039 LLVMContext &Ctx = LoadTy->getContext();
1040 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1042 IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1044 // We know that this method is only called when the mem transfer fully
1045 // provides the bits for the load.
1046 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1047 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1048 // independently of what the offset is.
1049 Value *Val = MSI->getValue();
1050 if (LoadSize != 1)
1051 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1053 Value *OneElt = Val;
1055 // Splat the value out to the right number of bits.
1056 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1057 // If we can double the number of bytes set, do it.
1058 if (NumBytesSet*2 <= LoadSize) {
1059 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1060 Val = Builder.CreateOr(Val, ShVal);
1061 NumBytesSet <<= 1;
1062 continue;
1065 // Otherwise insert one byte at a time.
1066 Value *ShVal = Builder.CreateShl(Val, 1*8);
1067 Val = Builder.CreateOr(OneElt, ShVal);
1068 ++NumBytesSet;
1071 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1074 // Otherwise, this is a memcpy/memmove from a constant global.
1075 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1076 Constant *Src = cast<Constant>(MTI->getSource());
1078 // Otherwise, see if we can constant fold a load from the constant with the
1079 // offset applied as appropriate.
1080 Src = ConstantExpr::getBitCast(Src,
1081 llvm::Type::getInt8PtrTy(Src->getContext()));
1082 Constant *OffsetCst =
1083 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1084 Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
1085 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
1086 return ConstantFoldLoadFromConstPtr(Src, &TD);
1089 namespace {
1091 struct AvailableValueInBlock {
1092 /// BB - The basic block in question.
1093 BasicBlock *BB;
1094 enum ValType {
1095 SimpleVal, // A simple offsetted value that is accessed.
1096 LoadVal, // A value produced by a load.
1097 MemIntrin // A memory intrinsic which is loaded from.
1100 /// V - The value that is live out of the block.
1101 PointerIntPair<Value *, 2, ValType> Val;
1103 /// Offset - The byte offset in Val that is interesting for the load query.
1104 unsigned Offset;
1106 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1107 unsigned Offset = 0) {
1108 AvailableValueInBlock Res;
1109 Res.BB = BB;
1110 Res.Val.setPointer(V);
1111 Res.Val.setInt(SimpleVal);
1112 Res.Offset = Offset;
1113 return Res;
1116 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
1117 unsigned Offset = 0) {
1118 AvailableValueInBlock Res;
1119 Res.BB = BB;
1120 Res.Val.setPointer(MI);
1121 Res.Val.setInt(MemIntrin);
1122 Res.Offset = Offset;
1123 return Res;
1126 static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
1127 unsigned Offset = 0) {
1128 AvailableValueInBlock Res;
1129 Res.BB = BB;
1130 Res.Val.setPointer(LI);
1131 Res.Val.setInt(LoadVal);
1132 Res.Offset = Offset;
1133 return Res;
1136 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
1137 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
1138 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
1140 Value *getSimpleValue() const {
1141 assert(isSimpleValue() && "Wrong accessor");
1142 return Val.getPointer();
1145 LoadInst *getCoercedLoadValue() const {
1146 assert(isCoercedLoadValue() && "Wrong accessor");
1147 return cast<LoadInst>(Val.getPointer());
1150 MemIntrinsic *getMemIntrinValue() const {
1151 assert(isMemIntrinValue() && "Wrong accessor");
1152 return cast<MemIntrinsic>(Val.getPointer());
1155 /// MaterializeAdjustedValue - Emit code into this block to adjust the value
1156 /// defined here to the specified type. This handles various coercion cases.
1157 Value *MaterializeAdjustedValue(const Type *LoadTy, GVN &gvn) const {
1158 Value *Res;
1159 if (isSimpleValue()) {
1160 Res = getSimpleValue();
1161 if (Res->getType() != LoadTy) {
1162 const TargetData *TD = gvn.getTargetData();
1163 assert(TD && "Need target data to handle type mismatch case");
1164 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1165 *TD);
1167 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
1168 << *getSimpleValue() << '\n'
1169 << *Res << '\n' << "\n\n\n");
1171 } else if (isCoercedLoadValue()) {
1172 LoadInst *Load = getCoercedLoadValue();
1173 if (Load->getType() == LoadTy && Offset == 0) {
1174 Res = Load;
1175 } else {
1176 Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1177 gvn);
1179 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
1180 << *getCoercedLoadValue() << '\n'
1181 << *Res << '\n' << "\n\n\n");
1183 } else {
1184 const TargetData *TD = gvn.getTargetData();
1185 assert(TD && "Need target data to handle type mismatch case");
1186 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1187 LoadTy, BB->getTerminator(), *TD);
1188 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1189 << " " << *getMemIntrinValue() << '\n'
1190 << *Res << '\n' << "\n\n\n");
1192 return Res;
1196 } // end anonymous namespace
1198 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1199 /// construct SSA form, allowing us to eliminate LI. This returns the value
1200 /// that should be used at LI's definition site.
1201 static Value *ConstructSSAForLoadSet(LoadInst *LI,
1202 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
1203 GVN &gvn) {
1204 // Check for the fully redundant, dominating load case. In this case, we can
1205 // just use the dominating value directly.
1206 if (ValuesPerBlock.size() == 1 &&
1207 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1208 LI->getParent()))
1209 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1211 // Otherwise, we have to construct SSA form.
1212 SmallVector<PHINode*, 8> NewPHIs;
1213 SSAUpdater SSAUpdate(&NewPHIs);
1214 SSAUpdate.Initialize(LI->getType(), LI->getName());
1216 const Type *LoadTy = LI->getType();
1218 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1219 const AvailableValueInBlock &AV = ValuesPerBlock[i];
1220 BasicBlock *BB = AV.BB;
1222 if (SSAUpdate.HasValueForBlock(BB))
1223 continue;
1225 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1228 // Perform PHI construction.
1229 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1231 // If new PHI nodes were created, notify alias analysis.
1232 if (V->getType()->isPointerTy()) {
1233 AliasAnalysis *AA = gvn.getAliasAnalysis();
1235 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1236 AA->copyValue(LI, NewPHIs[i]);
1238 // Now that we've copied information to the new PHIs, scan through
1239 // them again and inform alias analysis that we've added potentially
1240 // escaping uses to any values that are operands to these PHIs.
1241 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1242 PHINode *P = NewPHIs[i];
1243 for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1244 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1245 AA->addEscapingUse(P->getOperandUse(jj));
1250 return V;
1253 static bool isLifetimeStart(const Instruction *Inst) {
1254 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1255 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1256 return false;
1259 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1260 /// non-local by performing PHI construction.
1261 bool GVN::processNonLocalLoad(LoadInst *LI) {
1262 // Find the non-local dependencies of the load.
1263 SmallVector<NonLocalDepResult, 64> Deps;
1264 AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1265 MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1266 //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
1267 // << Deps.size() << *LI << '\n');
1269 // If we had to process more than one hundred blocks to find the
1270 // dependencies, this load isn't worth worrying about. Optimizing
1271 // it will be too expensive.
1272 if (Deps.size() > 100)
1273 return false;
1275 // If we had a phi translation failure, we'll have a single entry which is a
1276 // clobber in the current block. Reject this early.
1277 if (Deps.size() == 1 && Deps[0].getResult().isUnknown()) {
1278 DEBUG(
1279 dbgs() << "GVN: non-local load ";
1280 WriteAsOperand(dbgs(), LI);
1281 dbgs() << " has unknown dependencies\n";
1283 return false;
1286 // Filter out useless results (non-locals, etc). Keep track of the blocks
1287 // where we have a value available in repl, also keep track of whether we see
1288 // dependencies that produce an unknown value for the load (such as a call
1289 // that could potentially clobber the load).
1290 SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1291 SmallVector<BasicBlock*, 16> UnavailableBlocks;
1293 for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1294 BasicBlock *DepBB = Deps[i].getBB();
1295 MemDepResult DepInfo = Deps[i].getResult();
1297 if (DepInfo.isUnknown()) {
1298 UnavailableBlocks.push_back(DepBB);
1299 continue;
1302 if (DepInfo.isClobber()) {
1303 // The address being loaded in this non-local block may not be the same as
1304 // the pointer operand of the load if PHI translation occurs. Make sure
1305 // to consider the right address.
1306 Value *Address = Deps[i].getAddress();
1308 // If the dependence is to a store that writes to a superset of the bits
1309 // read by the load, we can extract the bits we need for the load from the
1310 // stored value.
1311 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1312 if (TD && Address) {
1313 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1314 DepSI, *TD);
1315 if (Offset != -1) {
1316 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1317 DepSI->getValueOperand(),
1318 Offset));
1319 continue;
1324 // Check to see if we have something like this:
1325 // load i32* P
1326 // load i8* (P+1)
1327 // if we have this, replace the later with an extraction from the former.
1328 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1329 // If this is a clobber and L is the first instruction in its block, then
1330 // we have the first instruction in the entry block.
1331 if (DepLI != LI && Address && TD) {
1332 int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1333 LI->getPointerOperand(),
1334 DepLI, *TD);
1336 if (Offset != -1) {
1337 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1338 Offset));
1339 continue;
1344 // If the clobbering value is a memset/memcpy/memmove, see if we can
1345 // forward a value on from it.
1346 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1347 if (TD && Address) {
1348 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1349 DepMI, *TD);
1350 if (Offset != -1) {
1351 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1352 Offset));
1353 continue;
1358 UnavailableBlocks.push_back(DepBB);
1359 continue;
1362 assert(DepInfo.isDef() && "Expecting def here");
1364 Instruction *DepInst = DepInfo.getInst();
1366 // Loading the allocation -> undef.
1367 if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
1368 // Loading immediately after lifetime begin -> undef.
1369 isLifetimeStart(DepInst)) {
1370 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1371 UndefValue::get(LI->getType())));
1372 continue;
1375 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1376 // Reject loads and stores that are to the same address but are of
1377 // different types if we have to.
1378 if (S->getValueOperand()->getType() != LI->getType()) {
1379 // If the stored value is larger or equal to the loaded value, we can
1380 // reuse it.
1381 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1382 LI->getType(), *TD)) {
1383 UnavailableBlocks.push_back(DepBB);
1384 continue;
1388 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1389 S->getValueOperand()));
1390 continue;
1393 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1394 // If the types mismatch and we can't handle it, reject reuse of the load.
1395 if (LD->getType() != LI->getType()) {
1396 // If the stored value is larger or equal to the loaded value, we can
1397 // reuse it.
1398 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1399 UnavailableBlocks.push_back(DepBB);
1400 continue;
1403 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1404 continue;
1407 UnavailableBlocks.push_back(DepBB);
1408 continue;
1411 // If we have no predecessors that produce a known value for this load, exit
1412 // early.
1413 if (ValuesPerBlock.empty()) return false;
1415 // If all of the instructions we depend on produce a known value for this
1416 // load, then it is fully redundant and we can use PHI insertion to compute
1417 // its value. Insert PHIs and remove the fully redundant value now.
1418 if (UnavailableBlocks.empty()) {
1419 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1421 // Perform PHI construction.
1422 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1423 LI->replaceAllUsesWith(V);
1425 if (isa<PHINode>(V))
1426 V->takeName(LI);
1427 if (V->getType()->isPointerTy())
1428 MD->invalidateCachedPointerInfo(V);
1429 markInstructionForDeletion(LI);
1430 ++NumGVNLoad;
1431 return true;
1434 if (!EnablePRE || !EnableLoadPRE)
1435 return false;
1437 // Okay, we have *some* definitions of the value. This means that the value
1438 // is available in some of our (transitive) predecessors. Lets think about
1439 // doing PRE of this load. This will involve inserting a new load into the
1440 // predecessor when it's not available. We could do this in general, but
1441 // prefer to not increase code size. As such, we only do this when we know
1442 // that we only have to insert *one* load (which means we're basically moving
1443 // the load, not inserting a new one).
1445 SmallPtrSet<BasicBlock *, 4> Blockers;
1446 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1447 Blockers.insert(UnavailableBlocks[i]);
1449 // Lets find first basic block with more than one predecessor. Walk backwards
1450 // through predecessors if needed.
1451 BasicBlock *LoadBB = LI->getParent();
1452 BasicBlock *TmpBB = LoadBB;
1454 bool isSinglePred = false;
1455 bool allSingleSucc = true;
1456 while (TmpBB->getSinglePredecessor()) {
1457 isSinglePred = true;
1458 TmpBB = TmpBB->getSinglePredecessor();
1459 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1460 return false;
1461 if (Blockers.count(TmpBB))
1462 return false;
1464 // If any of these blocks has more than one successor (i.e. if the edge we
1465 // just traversed was critical), then there are other paths through this
1466 // block along which the load may not be anticipated. Hoisting the load
1467 // above this block would be adding the load to execution paths along
1468 // which it was not previously executed.
1469 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1470 return false;
1473 assert(TmpBB);
1474 LoadBB = TmpBB;
1476 // FIXME: It is extremely unclear what this loop is doing, other than
1477 // artificially restricting loadpre.
1478 if (isSinglePred) {
1479 bool isHot = false;
1480 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1481 const AvailableValueInBlock &AV = ValuesPerBlock[i];
1482 if (AV.isSimpleValue())
1483 // "Hot" Instruction is in some loop (because it dominates its dep.
1484 // instruction).
1485 if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
1486 if (DT->dominates(LI, I)) {
1487 isHot = true;
1488 break;
1492 // We are interested only in "hot" instructions. We don't want to do any
1493 // mis-optimizations here.
1494 if (!isHot)
1495 return false;
1498 // Check to see how many predecessors have the loaded value fully
1499 // available.
1500 DenseMap<BasicBlock*, Value*> PredLoads;
1501 DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1502 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1503 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1504 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1505 FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1507 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
1508 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1509 PI != E; ++PI) {
1510 BasicBlock *Pred = *PI;
1511 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1512 continue;
1514 PredLoads[Pred] = 0;
1516 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1517 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1518 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1519 << Pred->getName() << "': " << *LI << '\n');
1520 return false;
1522 unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
1523 NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
1526 if (!NeedToSplit.empty()) {
1527 toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
1528 return false;
1531 // Decide whether PRE is profitable for this load.
1532 unsigned NumUnavailablePreds = PredLoads.size();
1533 assert(NumUnavailablePreds != 0 &&
1534 "Fully available value should be eliminated above!");
1536 // If this load is unavailable in multiple predecessors, reject it.
1537 // FIXME: If we could restructure the CFG, we could make a common pred with
1538 // all the preds that don't have an available LI and insert a new load into
1539 // that one block.
1540 if (NumUnavailablePreds != 1)
1541 return false;
1543 // Check if the load can safely be moved to all the unavailable predecessors.
1544 bool CanDoPRE = true;
1545 SmallVector<Instruction*, 8> NewInsts;
1546 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1547 E = PredLoads.end(); I != E; ++I) {
1548 BasicBlock *UnavailablePred = I->first;
1550 // Do PHI translation to get its value in the predecessor if necessary. The
1551 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1553 // If all preds have a single successor, then we know it is safe to insert
1554 // the load on the pred (?!?), so we can insert code to materialize the
1555 // pointer if it is not available.
1556 PHITransAddr Address(LI->getPointerOperand(), TD);
1557 Value *LoadPtr = 0;
1558 if (allSingleSucc) {
1559 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1560 *DT, NewInsts);
1561 } else {
1562 Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
1563 LoadPtr = Address.getAddr();
1566 // If we couldn't find or insert a computation of this phi translated value,
1567 // we fail PRE.
1568 if (LoadPtr == 0) {
1569 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1570 << *LI->getPointerOperand() << "\n");
1571 CanDoPRE = false;
1572 break;
1575 // Make sure it is valid to move this load here. We have to watch out for:
1576 // @1 = getelementptr (i8* p, ...
1577 // test p and branch if == 0
1578 // load @1
1579 // It is valid to have the getelementptr before the test, even if p can
1580 // be 0, as getelementptr only does address arithmetic.
1581 // If we are not pushing the value through any multiple-successor blocks
1582 // we do not have this case. Otherwise, check that the load is safe to
1583 // put anywhere; this can be improved, but should be conservatively safe.
1584 if (!allSingleSucc &&
1585 // FIXME: REEVALUTE THIS.
1586 !isSafeToLoadUnconditionally(LoadPtr,
1587 UnavailablePred->getTerminator(),
1588 LI->getAlignment(), TD)) {
1589 CanDoPRE = false;
1590 break;
1593 I->second = LoadPtr;
1596 if (!CanDoPRE) {
1597 while (!NewInsts.empty()) {
1598 Instruction *I = NewInsts.pop_back_val();
1599 if (MD) MD->removeInstruction(I);
1600 I->eraseFromParent();
1602 return false;
1605 // Okay, we can eliminate this load by inserting a reload in the predecessor
1606 // and using PHI construction to get the value in the other predecessors, do
1607 // it.
1608 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1609 DEBUG(if (!NewInsts.empty())
1610 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1611 << *NewInsts.back() << '\n');
1613 // Assign value numbers to the new instructions.
1614 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1615 // FIXME: We really _ought_ to insert these value numbers into their
1616 // parent's availability map. However, in doing so, we risk getting into
1617 // ordering issues. If a block hasn't been processed yet, we would be
1618 // marking a value as AVAIL-IN, which isn't what we intend.
1619 VN.lookup_or_add(NewInsts[i]);
1622 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1623 E = PredLoads.end(); I != E; ++I) {
1624 BasicBlock *UnavailablePred = I->first;
1625 Value *LoadPtr = I->second;
1627 Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1628 LI->getAlignment(),
1629 UnavailablePred->getTerminator());
1631 // Transfer the old load's TBAA tag to the new load.
1632 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1633 NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1635 // Transfer DebugLoc.
1636 NewLoad->setDebugLoc(LI->getDebugLoc());
1638 // Add the newly created load.
1639 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1640 NewLoad));
1641 MD->invalidateCachedPointerInfo(LoadPtr);
1642 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1645 // Perform PHI construction.
1646 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1647 LI->replaceAllUsesWith(V);
1648 if (isa<PHINode>(V))
1649 V->takeName(LI);
1650 if (V->getType()->isPointerTy())
1651 MD->invalidateCachedPointerInfo(V);
1652 markInstructionForDeletion(LI);
1653 ++NumPRELoad;
1654 return true;
1657 /// processLoad - Attempt to eliminate a load, first by eliminating it
1658 /// locally, and then attempting non-local elimination if that fails.
1659 bool GVN::processLoad(LoadInst *L) {
1660 if (!MD)
1661 return false;
1663 if (L->isVolatile())
1664 return false;
1666 if (L->use_empty()) {
1667 markInstructionForDeletion(L);
1668 return true;
1671 // ... to a pointer that has been loaded from before...
1672 MemDepResult Dep = MD->getDependency(L);
1674 // If we have a clobber and target data is around, see if this is a clobber
1675 // that we can fix up through code synthesis.
1676 if (Dep.isClobber() && TD) {
1677 // Check to see if we have something like this:
1678 // store i32 123, i32* %P
1679 // %A = bitcast i32* %P to i8*
1680 // %B = gep i8* %A, i32 1
1681 // %C = load i8* %B
1683 // We could do that by recognizing if the clobber instructions are obviously
1684 // a common base + constant offset, and if the previous store (or memset)
1685 // completely covers this load. This sort of thing can happen in bitfield
1686 // access code.
1687 Value *AvailVal = 0;
1688 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1689 int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1690 L->getPointerOperand(),
1691 DepSI, *TD);
1692 if (Offset != -1)
1693 AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1694 L->getType(), L, *TD);
1697 // Check to see if we have something like this:
1698 // load i32* P
1699 // load i8* (P+1)
1700 // if we have this, replace the later with an extraction from the former.
1701 if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1702 // If this is a clobber and L is the first instruction in its block, then
1703 // we have the first instruction in the entry block.
1704 if (DepLI == L)
1705 return false;
1707 int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1708 L->getPointerOperand(),
1709 DepLI, *TD);
1710 if (Offset != -1)
1711 AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1714 // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1715 // a value on from it.
1716 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1717 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1718 L->getPointerOperand(),
1719 DepMI, *TD);
1720 if (Offset != -1)
1721 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1724 if (AvailVal) {
1725 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1726 << *AvailVal << '\n' << *L << "\n\n\n");
1728 // Replace the load!
1729 L->replaceAllUsesWith(AvailVal);
1730 if (AvailVal->getType()->isPointerTy())
1731 MD->invalidateCachedPointerInfo(AvailVal);
1732 markInstructionForDeletion(L);
1733 ++NumGVNLoad;
1734 return true;
1738 // If the value isn't available, don't do anything!
1739 if (Dep.isClobber()) {
1740 DEBUG(
1741 // fast print dep, using operator<< on instruction is too slow.
1742 dbgs() << "GVN: load ";
1743 WriteAsOperand(dbgs(), L);
1744 Instruction *I = Dep.getInst();
1745 dbgs() << " is clobbered by " << *I << '\n';
1747 return false;
1750 if (Dep.isUnknown()) {
1751 DEBUG(
1752 // fast print dep, using operator<< on instruction is too slow.
1753 dbgs() << "GVN: load ";
1754 WriteAsOperand(dbgs(), L);
1755 dbgs() << " has unknown dependence\n";
1757 return false;
1760 // If it is defined in another block, try harder.
1761 if (Dep.isNonLocal())
1762 return processNonLocalLoad(L);
1764 assert(Dep.isDef() && "Expecting def here");
1766 Instruction *DepInst = Dep.getInst();
1767 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1768 Value *StoredVal = DepSI->getValueOperand();
1770 // The store and load are to a must-aliased pointer, but they may not
1771 // actually have the same type. See if we know how to reuse the stored
1772 // value (depending on its type).
1773 if (StoredVal->getType() != L->getType()) {
1774 if (TD) {
1775 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1776 L, *TD);
1777 if (StoredVal == 0)
1778 return false;
1780 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1781 << '\n' << *L << "\n\n\n");
1783 else
1784 return false;
1787 // Remove it!
1788 L->replaceAllUsesWith(StoredVal);
1789 if (StoredVal->getType()->isPointerTy())
1790 MD->invalidateCachedPointerInfo(StoredVal);
1791 markInstructionForDeletion(L);
1792 ++NumGVNLoad;
1793 return true;
1796 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1797 Value *AvailableVal = DepLI;
1799 // The loads are of a must-aliased pointer, but they may not actually have
1800 // the same type. See if we know how to reuse the previously loaded value
1801 // (depending on its type).
1802 if (DepLI->getType() != L->getType()) {
1803 if (TD) {
1804 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1805 L, *TD);
1806 if (AvailableVal == 0)
1807 return false;
1809 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1810 << "\n" << *L << "\n\n\n");
1812 else
1813 return false;
1816 // Remove it!
1817 L->replaceAllUsesWith(AvailableVal);
1818 if (DepLI->getType()->isPointerTy())
1819 MD->invalidateCachedPointerInfo(DepLI);
1820 markInstructionForDeletion(L);
1821 ++NumGVNLoad;
1822 return true;
1825 // If this load really doesn't depend on anything, then we must be loading an
1826 // undef value. This can happen when loading for a fresh allocation with no
1827 // intervening stores, for example.
1828 if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
1829 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1830 markInstructionForDeletion(L);
1831 ++NumGVNLoad;
1832 return true;
1835 // If this load occurs either right after a lifetime begin,
1836 // then the loaded value is undefined.
1837 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1838 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1839 L->replaceAllUsesWith(UndefValue::get(L->getType()));
1840 markInstructionForDeletion(L);
1841 ++NumGVNLoad;
1842 return true;
1846 return false;
1849 // findLeader - In order to find a leader for a given value number at a
1850 // specific basic block, we first obtain the list of all Values for that number,
1851 // and then scan the list to find one whose block dominates the block in
1852 // question. This is fast because dominator tree queries consist of only
1853 // a few comparisons of DFS numbers.
1854 Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
1855 LeaderTableEntry Vals = LeaderTable[num];
1856 if (!Vals.Val) return 0;
1858 Value *Val = 0;
1859 if (DT->dominates(Vals.BB, BB)) {
1860 Val = Vals.Val;
1861 if (isa<Constant>(Val)) return Val;
1864 LeaderTableEntry* Next = Vals.Next;
1865 while (Next) {
1866 if (DT->dominates(Next->BB, BB)) {
1867 if (isa<Constant>(Next->Val)) return Next->Val;
1868 if (!Val) Val = Next->Val;
1871 Next = Next->Next;
1874 return Val;
1878 /// processInstruction - When calculating availability, handle an instruction
1879 /// by inserting it into the appropriate sets
1880 bool GVN::processInstruction(Instruction *I) {
1881 // Ignore dbg info intrinsics.
1882 if (isa<DbgInfoIntrinsic>(I))
1883 return false;
1885 // If the instruction can be easily simplified then do so now in preference
1886 // to value numbering it. Value numbering often exposes redundancies, for
1887 // example if it determines that %y is equal to %x then the instruction
1888 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
1889 if (Value *V = SimplifyInstruction(I, TD, DT)) {
1890 I->replaceAllUsesWith(V);
1891 if (MD && V->getType()->isPointerTy())
1892 MD->invalidateCachedPointerInfo(V);
1893 markInstructionForDeletion(I);
1894 return true;
1897 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1898 if (processLoad(LI))
1899 return true;
1901 unsigned Num = VN.lookup_or_add(LI);
1902 addToLeaderTable(Num, LI, LI->getParent());
1903 return false;
1906 // For conditions branches, we can perform simple conditional propagation on
1907 // the condition value itself.
1908 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1909 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1910 return false;
1912 Value *BranchCond = BI->getCondition();
1913 uint32_t CondVN = VN.lookup_or_add(BranchCond);
1915 BasicBlock *TrueSucc = BI->getSuccessor(0);
1916 BasicBlock *FalseSucc = BI->getSuccessor(1);
1918 if (TrueSucc->getSinglePredecessor())
1919 addToLeaderTable(CondVN,
1920 ConstantInt::getTrue(TrueSucc->getContext()),
1921 TrueSucc);
1922 if (FalseSucc->getSinglePredecessor())
1923 addToLeaderTable(CondVN,
1924 ConstantInt::getFalse(TrueSucc->getContext()),
1925 FalseSucc);
1927 return false;
1930 // Instructions with void type don't return a value, so there's
1931 // no point in trying to find redudancies in them.
1932 if (I->getType()->isVoidTy()) return false;
1934 uint32_t NextNum = VN.getNextUnusedValueNumber();
1935 unsigned Num = VN.lookup_or_add(I);
1937 // Allocations are always uniquely numbered, so we can save time and memory
1938 // by fast failing them.
1939 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
1940 addToLeaderTable(Num, I, I->getParent());
1941 return false;
1944 // If the number we were assigned was a brand new VN, then we don't
1945 // need to do a lookup to see if the number already exists
1946 // somewhere in the domtree: it can't!
1947 if (Num == NextNum) {
1948 addToLeaderTable(Num, I, I->getParent());
1949 return false;
1952 // Perform fast-path value-number based elimination of values inherited from
1953 // dominators.
1954 Value *repl = findLeader(I->getParent(), Num);
1955 if (repl == 0) {
1956 // Failure, just remember this instance for future use.
1957 addToLeaderTable(Num, I, I->getParent());
1958 return false;
1961 // Remove it!
1962 I->replaceAllUsesWith(repl);
1963 if (MD && repl->getType()->isPointerTy())
1964 MD->invalidateCachedPointerInfo(repl);
1965 markInstructionForDeletion(I);
1966 return true;
1969 /// runOnFunction - This is the main transformation entry point for a function.
1970 bool GVN::runOnFunction(Function& F) {
1971 if (!NoLoads)
1972 MD = &getAnalysis<MemoryDependenceAnalysis>();
1973 DT = &getAnalysis<DominatorTree>();
1974 TD = getAnalysisIfAvailable<TargetData>();
1975 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1976 VN.setMemDep(MD);
1977 VN.setDomTree(DT);
1979 bool Changed = false;
1980 bool ShouldContinue = true;
1982 // Merge unconditional branches, allowing PRE to catch more
1983 // optimization opportunities.
1984 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1985 BasicBlock *BB = FI++;
1987 bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1988 if (removedBlock) ++NumGVNBlocks;
1990 Changed |= removedBlock;
1993 unsigned Iteration = 0;
1994 while (ShouldContinue) {
1995 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
1996 ShouldContinue = iterateOnFunction(F);
1997 if (splitCriticalEdges())
1998 ShouldContinue = true;
1999 Changed |= ShouldContinue;
2000 ++Iteration;
2003 if (EnablePRE) {
2004 bool PREChanged = true;
2005 while (PREChanged) {
2006 PREChanged = performPRE(F);
2007 Changed |= PREChanged;
2010 // FIXME: Should perform GVN again after PRE does something. PRE can move
2011 // computations into blocks where they become fully redundant. Note that
2012 // we can't do this until PRE's critical edge splitting updates memdep.
2013 // Actually, when this happens, we should just fully integrate PRE into GVN.
2015 cleanupGlobalSets();
2017 return Changed;
2021 bool GVN::processBlock(BasicBlock *BB) {
2022 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2023 // (and incrementing BI before processing an instruction).
2024 assert(InstrsToErase.empty() &&
2025 "We expect InstrsToErase to be empty across iterations");
2026 bool ChangedFunction = false;
2028 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2029 BI != BE;) {
2030 ChangedFunction |= processInstruction(BI);
2031 if (InstrsToErase.empty()) {
2032 ++BI;
2033 continue;
2036 // If we need some instructions deleted, do it now.
2037 NumGVNInstr += InstrsToErase.size();
2039 // Avoid iterator invalidation.
2040 bool AtStart = BI == BB->begin();
2041 if (!AtStart)
2042 --BI;
2044 for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
2045 E = InstrsToErase.end(); I != E; ++I) {
2046 DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2047 if (MD) MD->removeInstruction(*I);
2048 (*I)->eraseFromParent();
2049 DEBUG(verifyRemoved(*I));
2051 InstrsToErase.clear();
2053 if (AtStart)
2054 BI = BB->begin();
2055 else
2056 ++BI;
2059 return ChangedFunction;
2062 /// performPRE - Perform a purely local form of PRE that looks for diamond
2063 /// control flow patterns and attempts to perform simple PRE at the join point.
2064 bool GVN::performPRE(Function &F) {
2065 bool Changed = false;
2066 DenseMap<BasicBlock*, Value*> predMap;
2067 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
2068 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2069 BasicBlock *CurrentBlock = *DI;
2071 // Nothing to PRE in the entry block.
2072 if (CurrentBlock == &F.getEntryBlock()) continue;
2074 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2075 BE = CurrentBlock->end(); BI != BE; ) {
2076 Instruction *CurInst = BI++;
2078 if (isa<AllocaInst>(CurInst) ||
2079 isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2080 CurInst->getType()->isVoidTy() ||
2081 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2082 isa<DbgInfoIntrinsic>(CurInst))
2083 continue;
2085 // We don't currently value number ANY inline asm calls.
2086 if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2087 if (CallI->isInlineAsm())
2088 continue;
2090 uint32_t ValNo = VN.lookup(CurInst);
2092 // Look for the predecessors for PRE opportunities. We're
2093 // only trying to solve the basic diamond case, where
2094 // a value is computed in the successor and one predecessor,
2095 // but not the other. We also explicitly disallow cases
2096 // where the successor is its own predecessor, because they're
2097 // more complicated to get right.
2098 unsigned NumWith = 0;
2099 unsigned NumWithout = 0;
2100 BasicBlock *PREPred = 0;
2101 predMap.clear();
2103 for (pred_iterator PI = pred_begin(CurrentBlock),
2104 PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2105 BasicBlock *P = *PI;
2106 // We're not interested in PRE where the block is its
2107 // own predecessor, or in blocks with predecessors
2108 // that are not reachable.
2109 if (P == CurrentBlock) {
2110 NumWithout = 2;
2111 break;
2112 } else if (!DT->dominates(&F.getEntryBlock(), P)) {
2113 NumWithout = 2;
2114 break;
2117 Value* predV = findLeader(P, ValNo);
2118 if (predV == 0) {
2119 PREPred = P;
2120 ++NumWithout;
2121 } else if (predV == CurInst) {
2122 NumWithout = 2;
2123 } else {
2124 predMap[P] = predV;
2125 ++NumWith;
2129 // Don't do PRE when it might increase code size, i.e. when
2130 // we would need to insert instructions in more than one pred.
2131 if (NumWithout != 1 || NumWith == 0)
2132 continue;
2134 // Don't do PRE across indirect branch.
2135 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2136 continue;
2138 // We can't do PRE safely on a critical edge, so instead we schedule
2139 // the edge to be split and perform the PRE the next time we iterate
2140 // on the function.
2141 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2142 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2143 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2144 continue;
2147 // Instantiate the expression in the predecessor that lacked it.
2148 // Because we are going top-down through the block, all value numbers
2149 // will be available in the predecessor by the time we need them. Any
2150 // that weren't originally present will have been instantiated earlier
2151 // in this loop.
2152 Instruction *PREInstr = CurInst->clone();
2153 bool success = true;
2154 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2155 Value *Op = PREInstr->getOperand(i);
2156 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2157 continue;
2159 if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2160 PREInstr->setOperand(i, V);
2161 } else {
2162 success = false;
2163 break;
2167 // Fail out if we encounter an operand that is not available in
2168 // the PRE predecessor. This is typically because of loads which
2169 // are not value numbered precisely.
2170 if (!success) {
2171 delete PREInstr;
2172 DEBUG(verifyRemoved(PREInstr));
2173 continue;
2176 PREInstr->insertBefore(PREPred->getTerminator());
2177 PREInstr->setName(CurInst->getName() + ".pre");
2178 PREInstr->setDebugLoc(CurInst->getDebugLoc());
2179 predMap[PREPred] = PREInstr;
2180 VN.add(PREInstr, ValNo);
2181 ++NumGVNPRE;
2183 // Update the availability map to include the new instruction.
2184 addToLeaderTable(ValNo, PREInstr, PREPred);
2186 // Create a PHI to make the value available in this block.
2187 pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
2188 PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE),
2189 CurInst->getName() + ".pre-phi",
2190 CurrentBlock->begin());
2191 for (pred_iterator PI = PB; PI != PE; ++PI) {
2192 BasicBlock *P = *PI;
2193 Phi->addIncoming(predMap[P], P);
2196 VN.add(Phi, ValNo);
2197 addToLeaderTable(ValNo, Phi, CurrentBlock);
2198 Phi->setDebugLoc(CurInst->getDebugLoc());
2199 CurInst->replaceAllUsesWith(Phi);
2200 if (Phi->getType()->isPointerTy()) {
2201 // Because we have added a PHI-use of the pointer value, it has now
2202 // "escaped" from alias analysis' perspective. We need to inform
2203 // AA of this.
2204 for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2205 ++ii) {
2206 unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2207 VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2210 if (MD)
2211 MD->invalidateCachedPointerInfo(Phi);
2213 VN.erase(CurInst);
2214 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2216 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2217 if (MD) MD->removeInstruction(CurInst);
2218 CurInst->eraseFromParent();
2219 DEBUG(verifyRemoved(CurInst));
2220 Changed = true;
2224 if (splitCriticalEdges())
2225 Changed = true;
2227 return Changed;
2230 /// splitCriticalEdges - Split critical edges found during the previous
2231 /// iteration that may enable further optimization.
2232 bool GVN::splitCriticalEdges() {
2233 if (toSplit.empty())
2234 return false;
2235 do {
2236 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2237 SplitCriticalEdge(Edge.first, Edge.second, this);
2238 } while (!toSplit.empty());
2239 if (MD) MD->invalidateCachedPredecessors();
2240 return true;
2243 /// iterateOnFunction - Executes one iteration of GVN
2244 bool GVN::iterateOnFunction(Function &F) {
2245 cleanupGlobalSets();
2247 // Top-down walk of the dominator tree
2248 bool Changed = false;
2249 #if 0
2250 // Needed for value numbering with phi construction to work.
2251 ReversePostOrderTraversal<Function*> RPOT(&F);
2252 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2253 RE = RPOT.end(); RI != RE; ++RI)
2254 Changed |= processBlock(*RI);
2255 #else
2256 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2257 DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2258 Changed |= processBlock(DI->getBlock());
2259 #endif
2261 return Changed;
2264 void GVN::cleanupGlobalSets() {
2265 VN.clear();
2266 LeaderTable.clear();
2267 TableAllocator.Reset();
2270 /// verifyRemoved - Verify that the specified instruction does not occur in our
2271 /// internal data structures.
2272 void GVN::verifyRemoved(const Instruction *Inst) const {
2273 VN.verifyRemoved(Inst);
2275 // Walk through the value number scope to make sure the instruction isn't
2276 // ferreted away in it.
2277 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
2278 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2279 const LeaderTableEntry *Node = &I->second;
2280 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2282 while (Node->Next) {
2283 Node = Node->Next;
2284 assert(Node->Val != Inst && "Inst still in value numbering scope!");