Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Scalar / LoopIdiomRecognize.cpp
bloba7bc0e0b43791dede1b56d4ed41b8bf67378135b
1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form. In cases that this kicks in, it can be a significant
12 // performance win.
14 //===----------------------------------------------------------------------===//
16 // TODO List:
18 // Future loop memory idioms to recognize:
19 // memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 // fpowi
22 // Future integer operation idioms to recognize:
23 // ctpop, ctlz, cttz
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set. It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
29 // We should enhance the memset/memcpy recognition to handle multiple stores in
30 // the loop. This would handle things like:
31 // void foo(_Complex float *P)
32 // for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
34 // We should enhance this to handle negative strides through memory.
35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
36 // forward iteration through memory, which is generally better for cache
37 // behavior. Negative strides *do* happen for memset/memcpy loops.
39 // This could recognize common matrix multiplies and dot product idioms and
40 // replace them with calls to BLAS (if linked in??).
42 //===----------------------------------------------------------------------===//
44 #define DEBUG_TYPE "loop-idiom"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/Module.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/LoopPass.h"
50 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/Target/TargetData.h"
54 #include "llvm/Target/TargetLibraryInfo.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/IRBuilder.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/ADT/Statistic.h"
60 using namespace llvm;
62 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
63 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
65 namespace {
66 class LoopIdiomRecognize : public LoopPass {
67 Loop *CurLoop;
68 const TargetData *TD;
69 DominatorTree *DT;
70 ScalarEvolution *SE;
71 TargetLibraryInfo *TLI;
72 public:
73 static char ID;
74 explicit LoopIdiomRecognize() : LoopPass(ID) {
75 initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
78 bool runOnLoop(Loop *L, LPPassManager &LPM);
79 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
80 SmallVectorImpl<BasicBlock*> &ExitBlocks);
82 bool processLoopStore(StoreInst *SI, const SCEV *BECount);
83 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
85 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
86 unsigned StoreAlignment,
87 Value *SplatValue, Instruction *TheStore,
88 const SCEVAddRecExpr *Ev,
89 const SCEV *BECount);
90 bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
91 const SCEVAddRecExpr *StoreEv,
92 const SCEVAddRecExpr *LoadEv,
93 const SCEV *BECount);
95 /// This transformation requires natural loop information & requires that
96 /// loop preheaders be inserted into the CFG.
97 ///
98 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
99 AU.addRequired<LoopInfo>();
100 AU.addPreserved<LoopInfo>();
101 AU.addRequiredID(LoopSimplifyID);
102 AU.addPreservedID(LoopSimplifyID);
103 AU.addRequiredID(LCSSAID);
104 AU.addPreservedID(LCSSAID);
105 AU.addRequired<AliasAnalysis>();
106 AU.addPreserved<AliasAnalysis>();
107 AU.addRequired<ScalarEvolution>();
108 AU.addPreserved<ScalarEvolution>();
109 AU.addPreserved<DominatorTree>();
110 AU.addRequired<DominatorTree>();
111 AU.addRequired<TargetLibraryInfo>();
116 char LoopIdiomRecognize::ID = 0;
117 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
118 false, false)
119 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
120 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
121 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
122 INITIALIZE_PASS_DEPENDENCY(LCSSA)
123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
124 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
125 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
126 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
127 false, false)
129 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
131 /// deleteDeadInstruction - Delete this instruction. Before we do, go through
132 /// and zero out all the operands of this instruction. If any of them become
133 /// dead, delete them and the computation tree that feeds them.
135 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE) {
136 SmallVector<Instruction*, 32> NowDeadInsts;
138 NowDeadInsts.push_back(I);
140 // Before we touch this instruction, remove it from SE!
141 do {
142 Instruction *DeadInst = NowDeadInsts.pop_back_val();
144 // This instruction is dead, zap it, in stages. Start by removing it from
145 // SCEV.
146 SE.forgetValue(DeadInst);
148 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
149 Value *Op = DeadInst->getOperand(op);
150 DeadInst->setOperand(op, 0);
152 // If this operand just became dead, add it to the NowDeadInsts list.
153 if (!Op->use_empty()) continue;
155 if (Instruction *OpI = dyn_cast<Instruction>(Op))
156 if (isInstructionTriviallyDead(OpI))
157 NowDeadInsts.push_back(OpI);
160 DeadInst->eraseFromParent();
162 } while (!NowDeadInsts.empty());
165 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
166 /// delete it and any recursively used instructions.
167 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE) {
168 if (Instruction *I = dyn_cast<Instruction>(V))
169 if (isInstructionTriviallyDead(I))
170 deleteDeadInstruction(I, SE);
173 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
174 CurLoop = L;
176 // The trip count of the loop must be analyzable.
177 SE = &getAnalysis<ScalarEvolution>();
178 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
179 return false;
180 const SCEV *BECount = SE->getBackedgeTakenCount(L);
181 if (isa<SCEVCouldNotCompute>(BECount)) return false;
183 // If this loop executes exactly one time, then it should be peeled, not
184 // optimized by this pass.
185 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
186 if (BECst->getValue()->getValue() == 0)
187 return false;
189 // We require target data for now.
190 TD = getAnalysisIfAvailable<TargetData>();
191 if (TD == 0) return false;
193 DT = &getAnalysis<DominatorTree>();
194 LoopInfo &LI = getAnalysis<LoopInfo>();
195 TLI = &getAnalysis<TargetLibraryInfo>();
197 SmallVector<BasicBlock*, 8> ExitBlocks;
198 CurLoop->getUniqueExitBlocks(ExitBlocks);
200 DEBUG(dbgs() << "loop-idiom Scanning: F["
201 << L->getHeader()->getParent()->getName()
202 << "] Loop %" << L->getHeader()->getName() << "\n");
204 bool MadeChange = false;
205 // Scan all the blocks in the loop that are not in subloops.
206 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
207 ++BI) {
208 // Ignore blocks in subloops.
209 if (LI.getLoopFor(*BI) != CurLoop)
210 continue;
212 MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
214 return MadeChange;
217 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
218 /// with the specified backedge count. This block is known to be in the current
219 /// loop and not in any subloops.
220 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
221 SmallVectorImpl<BasicBlock*> &ExitBlocks) {
222 // We can only promote stores in this block if they are unconditionally
223 // executed in the loop. For a block to be unconditionally executed, it has
224 // to dominate all the exit blocks of the loop. Verify this now.
225 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
226 if (!DT->dominates(BB, ExitBlocks[i]))
227 return false;
229 bool MadeChange = false;
230 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
231 Instruction *Inst = I++;
232 // Look for store instructions, which may be optimized to memset/memcpy.
233 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
234 WeakVH InstPtr(I);
235 if (!processLoopStore(SI, BECount)) continue;
236 MadeChange = true;
238 // If processing the store invalidated our iterator, start over from the
239 // top of the block.
240 if (InstPtr == 0)
241 I = BB->begin();
242 continue;
245 // Look for memset instructions, which may be optimized to a larger memset.
246 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
247 WeakVH InstPtr(I);
248 if (!processLoopMemSet(MSI, BECount)) continue;
249 MadeChange = true;
251 // If processing the memset invalidated our iterator, start over from the
252 // top of the block.
253 if (InstPtr == 0)
254 I = BB->begin();
255 continue;
259 return MadeChange;
263 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
264 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
265 if (SI->isVolatile()) return false;
267 Value *StoredVal = SI->getValueOperand();
268 Value *StorePtr = SI->getPointerOperand();
270 // Reject stores that are so large that they overflow an unsigned.
271 uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
272 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
273 return false;
275 // See if the pointer expression is an AddRec like {base,+,1} on the current
276 // loop, which indicates a strided store. If we have something else, it's a
277 // random store we can't handle.
278 const SCEVAddRecExpr *StoreEv =
279 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
280 if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
281 return false;
283 // Check to see if the stride matches the size of the store. If so, then we
284 // know that every byte is touched in the loop.
285 unsigned StoreSize = (unsigned)SizeInBits >> 3;
286 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
288 if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
289 // TODO: Could also handle negative stride here someday, that will require
290 // the validity check in mayLoopAccessLocation to be updated though.
291 // Enable this to print exact negative strides.
292 if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
293 dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
294 dbgs() << "BB: " << *SI->getParent();
297 return false;
300 // See if we can optimize just this store in isolation.
301 if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
302 StoredVal, SI, StoreEv, BECount))
303 return true;
305 // If the stored value is a strided load in the same loop with the same stride
306 // this this may be transformable into a memcpy. This kicks in for stuff like
307 // for (i) A[i] = B[i];
308 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
309 const SCEVAddRecExpr *LoadEv =
310 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
311 if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
312 StoreEv->getOperand(1) == LoadEv->getOperand(1) && !LI->isVolatile())
313 if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
314 return true;
316 //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
318 return false;
321 /// processLoopMemSet - See if this memset can be promoted to a large memset.
322 bool LoopIdiomRecognize::
323 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
324 // We can only handle non-volatile memsets with a constant size.
325 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
327 // If we're not allowed to hack on memset, we fail.
328 if (!TLI->has(LibFunc::memset))
329 return false;
331 Value *Pointer = MSI->getDest();
333 // See if the pointer expression is an AddRec like {base,+,1} on the current
334 // loop, which indicates a strided store. If we have something else, it's a
335 // random store we can't handle.
336 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
337 if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
338 return false;
340 // Reject memsets that are so large that they overflow an unsigned.
341 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
342 if ((SizeInBytes >> 32) != 0)
343 return false;
345 // Check to see if the stride matches the size of the memset. If so, then we
346 // know that every byte is touched in the loop.
347 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
349 // TODO: Could also handle negative stride here someday, that will require the
350 // validity check in mayLoopAccessLocation to be updated though.
351 if (Stride == 0 || MSI->getLength() != Stride->getValue())
352 return false;
354 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
355 MSI->getAlignment(), MSI->getValue(),
356 MSI, Ev, BECount);
360 /// mayLoopAccessLocation - Return true if the specified loop might access the
361 /// specified pointer location, which is a loop-strided access. The 'Access'
362 /// argument specifies what the verboten forms of access are (read or write).
363 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
364 Loop *L, const SCEV *BECount,
365 unsigned StoreSize, AliasAnalysis &AA,
366 Instruction *IgnoredStore) {
367 // Get the location that may be stored across the loop. Since the access is
368 // strided positively through memory, we say that the modified location starts
369 // at the pointer and has infinite size.
370 uint64_t AccessSize = AliasAnalysis::UnknownSize;
372 // If the loop iterates a fixed number of times, we can refine the access size
373 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
374 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
375 AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
377 // TODO: For this to be really effective, we have to dive into the pointer
378 // operand in the store. Store to &A[i] of 100 will always return may alias
379 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
380 // which will then no-alias a store to &A[100].
381 AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
383 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
384 ++BI)
385 for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
386 if (&*I != IgnoredStore &&
387 (AA.getModRefInfo(I, StoreLoc) & Access))
388 return true;
390 return false;
393 /// getMemSetPatternValue - If a strided store of the specified value is safe to
394 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
395 /// be passed in. Otherwise, return null.
397 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
398 /// just replicate their input array and then pass on to memset_pattern16.
399 static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) {
400 // If the value isn't a constant, we can't promote it to being in a constant
401 // array. We could theoretically do a store to an alloca or something, but
402 // that doesn't seem worthwhile.
403 Constant *C = dyn_cast<Constant>(V);
404 if (C == 0) return 0;
406 // Only handle simple values that are a power of two bytes in size.
407 uint64_t Size = TD.getTypeSizeInBits(V->getType());
408 if (Size == 0 || (Size & 7) || (Size & (Size-1)))
409 return 0;
411 // Don't care enough about darwin/ppc to implement this.
412 if (TD.isBigEndian())
413 return 0;
415 // Convert to size in bytes.
416 Size /= 8;
418 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
419 // if the top and bottom are the same (e.g. for vectors and large integers).
420 if (Size > 16) return 0;
422 // If the constant is exactly 16 bytes, just use it.
423 if (Size == 16) return C;
425 // Otherwise, we'll use an array of the constants.
426 unsigned ArraySize = 16/Size;
427 ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
428 return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
432 /// processLoopStridedStore - We see a strided store of some value. If we can
433 /// transform this into a memset or memset_pattern in the loop preheader, do so.
434 bool LoopIdiomRecognize::
435 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
436 unsigned StoreAlignment, Value *StoredVal,
437 Instruction *TheStore, const SCEVAddRecExpr *Ev,
438 const SCEV *BECount) {
440 // If the stored value is a byte-wise value (like i32 -1), then it may be
441 // turned into a memset of i8 -1, assuming that all the consecutive bytes
442 // are stored. A store of i32 0x01020304 can never be turned into a memset,
443 // but it can be turned into memset_pattern if the target supports it.
444 Value *SplatValue = isBytewiseValue(StoredVal);
445 Constant *PatternValue = 0;
447 // If we're allowed to form a memset, and the stored value would be acceptable
448 // for memset, use it.
449 if (SplatValue && TLI->has(LibFunc::memset) &&
450 // Verify that the stored value is loop invariant. If not, we can't
451 // promote the memset.
452 CurLoop->isLoopInvariant(SplatValue)) {
453 // Keep and use SplatValue.
454 PatternValue = 0;
455 } else if (TLI->has(LibFunc::memset_pattern16) &&
456 (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
457 // It looks like we can use PatternValue!
458 SplatValue = 0;
459 } else {
460 // Otherwise, this isn't an idiom we can transform. For example, we can't
461 // do anything with a 3-byte store, for example.
462 return false;
465 // The trip count of the loop and the base pointer of the addrec SCEV is
466 // guaranteed to be loop invariant, which means that it should dominate the
467 // header. This allows us to insert code for it in the preheader.
468 BasicBlock *Preheader = CurLoop->getLoopPreheader();
469 IRBuilder<> Builder(Preheader->getTerminator());
470 SCEVExpander Expander(*SE, "loop-idiom");
472 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
473 // this into a memset in the loop preheader now if we want. However, this
474 // would be unsafe to do if there is anything else in the loop that may read
475 // or write to the aliased location. Check for any overlap by generating the
476 // base pointer and checking the region.
477 unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
478 Value *BasePtr =
479 Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
480 Preheader->getTerminator());
483 if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
484 CurLoop, BECount,
485 StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
486 Expander.clear();
487 // If we generated new code for the base pointer, clean up.
488 deleteIfDeadInstruction(BasePtr, *SE);
489 return false;
492 // Okay, everything looks good, insert the memset.
494 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
495 // pointer size if it isn't already.
496 const Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
497 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
499 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
500 SCEV::FlagNUW);
501 if (StoreSize != 1)
502 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
503 SCEV::FlagNUW);
505 Value *NumBytes =
506 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
508 CallInst *NewCall;
509 if (SplatValue)
510 NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
511 else {
512 Module *M = TheStore->getParent()->getParent()->getParent();
513 Value *MSP = M->getOrInsertFunction("memset_pattern16",
514 Builder.getVoidTy(),
515 Builder.getInt8PtrTy(),
516 Builder.getInt8PtrTy(), IntPtr,
517 (void*)0);
519 // Otherwise we should form a memset_pattern16. PatternValue is known to be
520 // an constant array of 16-bytes. Plop the value into a mergable global.
521 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
522 GlobalValue::InternalLinkage,
523 PatternValue, ".memset_pattern");
524 GV->setUnnamedAddr(true); // Ok to merge these.
525 GV->setAlignment(16);
526 Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
527 NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
530 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
531 << " from store to: " << *Ev << " at: " << *TheStore << "\n");
532 NewCall->setDebugLoc(TheStore->getDebugLoc());
534 // Okay, the memset has been formed. Zap the original store and anything that
535 // feeds into it.
536 deleteDeadInstruction(TheStore, *SE);
537 ++NumMemSet;
538 return true;
541 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
542 /// same-strided load.
543 bool LoopIdiomRecognize::
544 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
545 const SCEVAddRecExpr *StoreEv,
546 const SCEVAddRecExpr *LoadEv,
547 const SCEV *BECount) {
548 // If we're not allowed to form memcpy, we fail.
549 if (!TLI->has(LibFunc::memcpy))
550 return false;
552 LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
554 // The trip count of the loop and the base pointer of the addrec SCEV is
555 // guaranteed to be loop invariant, which means that it should dominate the
556 // header. This allows us to insert code for it in the preheader.
557 BasicBlock *Preheader = CurLoop->getLoopPreheader();
558 IRBuilder<> Builder(Preheader->getTerminator());
559 SCEVExpander Expander(*SE, "loop-idiom");
561 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
562 // this into a memcpy in the loop preheader now if we want. However, this
563 // would be unsafe to do if there is anything else in the loop that may read
564 // or write the memory region we're storing to. This includes the load that
565 // feeds the stores. Check for an alias by generating the base address and
566 // checking everything.
567 Value *StoreBasePtr =
568 Expander.expandCodeFor(StoreEv->getStart(),
569 Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
570 Preheader->getTerminator());
572 if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
573 CurLoop, BECount, StoreSize,
574 getAnalysis<AliasAnalysis>(), SI)) {
575 Expander.clear();
576 // If we generated new code for the base pointer, clean up.
577 deleteIfDeadInstruction(StoreBasePtr, *SE);
578 return false;
581 // For a memcpy, we have to make sure that the input array is not being
582 // mutated by the loop.
583 Value *LoadBasePtr =
584 Expander.expandCodeFor(LoadEv->getStart(),
585 Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
586 Preheader->getTerminator());
588 if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
589 StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
590 Expander.clear();
591 // If we generated new code for the base pointer, clean up.
592 deleteIfDeadInstruction(LoadBasePtr, *SE);
593 deleteIfDeadInstruction(StoreBasePtr, *SE);
594 return false;
597 // Okay, everything is safe, we can transform this!
600 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
601 // pointer size if it isn't already.
602 const Type *IntPtr = TD->getIntPtrType(SI->getContext());
603 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
605 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
606 SCEV::FlagNUW);
607 if (StoreSize != 1)
608 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
609 SCEV::FlagNUW);
611 Value *NumBytes =
612 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
614 CallInst *NewCall =
615 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
616 std::min(SI->getAlignment(), LI->getAlignment()));
617 NewCall->setDebugLoc(SI->getDebugLoc());
619 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
620 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
621 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
624 // Okay, the memset has been formed. Zap the original store and anything that
625 // feeds into it.
626 deleteDeadInstruction(SI, *SE);
627 ++NumMemCpy;
628 return true;