1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/Analysis/InlineCost.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
54 STATISTIC(NumBranches
, "Number of branches unswitched");
55 STATISTIC(NumSwitches
, "Number of switches unswitched");
56 STATISTIC(NumSelects
, "Number of selects unswitched");
57 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
58 STATISTIC(NumSimplify
, "Number of simplifications of unswitched code");
60 // The specific value of 50 here was chosen based only on intuition and a
61 // few specific examples.
62 static cl::opt
<unsigned>
63 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
64 cl::init(50), cl::Hidden
);
67 class LoopUnswitch
: public LoopPass
{
68 LoopInfo
*LI
; // Loop information
71 // LoopProcessWorklist - Used to check if second loop needs processing
72 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
73 std::vector
<Loop
*> LoopProcessWorklist
;
74 SmallPtrSet
<Value
*,8> UnswitchedVals
;
81 BasicBlock
*loopHeader
;
82 BasicBlock
*loopPreheader
;
84 // LoopBlocks contains all of the basic blocks of the loop, including the
85 // preheader of the loop, the body of the loop, and the exit blocks of the
86 // loop, in that order.
87 std::vector
<BasicBlock
*> LoopBlocks
;
88 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
89 std::vector
<BasicBlock
*> NewBlocks
;
92 static char ID
; // Pass ID, replacement for typeid
93 explicit LoopUnswitch(bool Os
= false) :
94 LoopPass(ID
), OptimizeForSize(Os
), redoLoop(false),
95 currentLoop(NULL
), DT(NULL
), loopHeader(NULL
),
97 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
100 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
101 bool processCurrentLoop();
103 /// This transformation requires natural loop information & requires that
104 /// loop preheaders be inserted into the CFG.
106 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
107 AU
.addRequiredID(LoopSimplifyID
);
108 AU
.addPreservedID(LoopSimplifyID
);
109 AU
.addRequired
<LoopInfo
>();
110 AU
.addPreserved
<LoopInfo
>();
111 AU
.addRequiredID(LCSSAID
);
112 AU
.addPreservedID(LCSSAID
);
113 AU
.addPreserved
<DominatorTree
>();
114 AU
.addPreserved
<ScalarEvolution
>();
119 virtual void releaseMemory() {
120 UnswitchedVals
.clear();
123 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
125 void RemoveLoopFromWorklist(Loop
*L
) {
126 std::vector
<Loop
*>::iterator I
= std::find(LoopProcessWorklist
.begin(),
127 LoopProcessWorklist
.end(), L
);
128 if (I
!= LoopProcessWorklist
.end())
129 LoopProcessWorklist
.erase(I
);
132 void initLoopData() {
133 loopHeader
= currentLoop
->getHeader();
134 loopPreheader
= currentLoop
->getLoopPreheader();
137 /// Split all of the edges from inside the loop to their exit blocks.
138 /// Update the appropriate Phi nodes as we do so.
139 void SplitExitEdges(Loop
*L
, const SmallVector
<BasicBlock
*, 8> &ExitBlocks
);
141 bool UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
);
142 void UnswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
143 BasicBlock
*ExitBlock
);
144 void UnswitchNontrivialCondition(Value
*LIC
, Constant
*OnVal
, Loop
*L
);
146 void RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
147 Constant
*Val
, bool isEqual
);
149 void EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
150 BasicBlock
*TrueDest
,
151 BasicBlock
*FalseDest
,
152 Instruction
*InsertPt
);
154 void SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
);
155 void RemoveBlockIfDead(BasicBlock
*BB
,
156 std::vector
<Instruction
*> &Worklist
, Loop
*l
);
157 void RemoveLoopFromHierarchy(Loop
*L
);
158 bool IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
= 0,
159 BasicBlock
**LoopExit
= 0);
163 char LoopUnswitch::ID
= 0;
164 INITIALIZE_PASS_BEGIN(LoopUnswitch
, "loop-unswitch", "Unswitch loops",
166 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
167 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
168 INITIALIZE_PASS_DEPENDENCY(LCSSA
)
169 INITIALIZE_PASS_END(LoopUnswitch
, "loop-unswitch", "Unswitch loops",
172 Pass
*llvm::createLoopUnswitchPass(bool Os
) {
173 return new LoopUnswitch(Os
);
176 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
177 /// invariant in the loop, or has an invariant piece, return the invariant.
178 /// Otherwise, return null.
179 static Value
*FindLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
) {
180 // We can never unswitch on vector conditions.
181 if (Cond
->getType()->isVectorTy())
184 // Constants should be folded, not unswitched on!
185 if (isa
<Constant
>(Cond
)) return 0;
187 // TODO: Handle: br (VARIANT|INVARIANT).
189 // Hoist simple values out.
190 if (L
->makeLoopInvariant(Cond
, Changed
))
193 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
))
194 if (BO
->getOpcode() == Instruction::And
||
195 BO
->getOpcode() == Instruction::Or
) {
196 // If either the left or right side is invariant, we can unswitch on this,
197 // which will cause the branch to go away in one loop and the condition to
198 // simplify in the other one.
199 if (Value
*LHS
= FindLIVLoopCondition(BO
->getOperand(0), L
, Changed
))
201 if (Value
*RHS
= FindLIVLoopCondition(BO
->getOperand(1), L
, Changed
))
208 bool LoopUnswitch::runOnLoop(Loop
*L
, LPPassManager
&LPM_Ref
) {
209 LI
= &getAnalysis
<LoopInfo
>();
211 DT
= getAnalysisIfAvailable
<DominatorTree
>();
213 Function
*F
= currentLoop
->getHeader()->getParent();
214 bool Changed
= false;
216 assert(currentLoop
->isLCSSAForm(*DT
));
218 Changed
|= processCurrentLoop();
222 // FIXME: Reconstruct dom info, because it is not preserved properly.
224 DT
->runOnFunction(*F
);
229 /// processCurrentLoop - Do actual work and unswitch loop if possible
231 bool LoopUnswitch::processCurrentLoop() {
232 bool Changed
= false;
233 LLVMContext
&Context
= currentLoop
->getHeader()->getContext();
235 // Loop over all of the basic blocks in the loop. If we find an interior
236 // block that is branching on a loop-invariant condition, we can unswitch this
238 for (Loop::block_iterator I
= currentLoop
->block_begin(),
239 E
= currentLoop
->block_end(); I
!= E
; ++I
) {
240 TerminatorInst
*TI
= (*I
)->getTerminator();
241 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
242 // If this isn't branching on an invariant condition, we can't unswitch
244 if (BI
->isConditional()) {
245 // See if this, or some part of it, is loop invariant. If so, we can
246 // unswitch on it if we desire.
247 Value
*LoopCond
= FindLIVLoopCondition(BI
->getCondition(),
248 currentLoop
, Changed
);
249 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
250 ConstantInt::getTrue(Context
))) {
255 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
256 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
257 currentLoop
, Changed
);
258 if (LoopCond
&& SI
->getNumCases() > 1) {
259 // Find a value to unswitch on:
260 // FIXME: this should chose the most expensive case!
261 // FIXME: scan for a case with a non-critical edge?
262 Constant
*UnswitchVal
= SI
->getCaseValue(1);
263 // Do not process same value again and again.
264 if (!UnswitchedVals
.insert(UnswitchVal
))
267 if (UnswitchIfProfitable(LoopCond
, UnswitchVal
)) {
274 // Scan the instructions to check for unswitchable values.
275 for (BasicBlock::iterator BBI
= (*I
)->begin(), E
= (*I
)->end();
277 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(BBI
)) {
278 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
279 currentLoop
, Changed
);
280 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
281 ConstantInt::getTrue(Context
))) {
290 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
291 /// loop with no side effects (including infinite loops).
293 /// If true, we return true and set ExitBB to the block we
296 static bool isTrivialLoopExitBlockHelper(Loop
*L
, BasicBlock
*BB
,
298 std::set
<BasicBlock
*> &Visited
) {
299 if (!Visited
.insert(BB
).second
) {
300 // Already visited. Without more analysis, this could indicate an infinte loop.
302 } else if (!L
->contains(BB
)) {
303 // Otherwise, this is a loop exit, this is fine so long as this is the
305 if (ExitBB
!= 0) return false;
310 // Otherwise, this is an unvisited intra-loop node. Check all successors.
311 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
) {
312 // Check to see if the successor is a trivial loop exit.
313 if (!isTrivialLoopExitBlockHelper(L
, *SI
, ExitBB
, Visited
))
317 // Okay, everything after this looks good, check to make sure that this block
318 // doesn't include any side effects.
319 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
320 if (I
->mayHaveSideEffects())
326 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
327 /// leads to an exit from the specified loop, and has no side-effects in the
328 /// process. If so, return the block that is exited to, otherwise return null.
329 static BasicBlock
*isTrivialLoopExitBlock(Loop
*L
, BasicBlock
*BB
) {
330 std::set
<BasicBlock
*> Visited
;
331 Visited
.insert(L
->getHeader()); // Branches to header make infinite loops.
332 BasicBlock
*ExitBB
= 0;
333 if (isTrivialLoopExitBlockHelper(L
, BB
, ExitBB
, Visited
))
338 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
339 /// trivial: that is, that the condition controls whether or not the loop does
340 /// anything at all. If this is a trivial condition, unswitching produces no
341 /// code duplications (equivalently, it produces a simpler loop and a new empty
342 /// loop, which gets deleted).
344 /// If this is a trivial condition, return true, otherwise return false. When
345 /// returning true, this sets Cond and Val to the condition that controls the
346 /// trivial condition: when Cond dynamically equals Val, the loop is known to
347 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
350 bool LoopUnswitch::IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
,
351 BasicBlock
**LoopExit
) {
352 BasicBlock
*Header
= currentLoop
->getHeader();
353 TerminatorInst
*HeaderTerm
= Header
->getTerminator();
354 LLVMContext
&Context
= Header
->getContext();
356 BasicBlock
*LoopExitBB
= 0;
357 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(HeaderTerm
)) {
358 // If the header block doesn't end with a conditional branch on Cond, we
360 if (!BI
->isConditional() || BI
->getCondition() != Cond
)
363 // Check to see if a successor of the branch is guaranteed to
364 // exit through a unique exit block without having any
365 // side-effects. If so, determine the value of Cond that causes it to do
367 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
368 BI
->getSuccessor(0)))) {
369 if (Val
) *Val
= ConstantInt::getTrue(Context
);
370 } else if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
371 BI
->getSuccessor(1)))) {
372 if (Val
) *Val
= ConstantInt::getFalse(Context
);
374 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(HeaderTerm
)) {
375 // If this isn't a switch on Cond, we can't handle it.
376 if (SI
->getCondition() != Cond
) return false;
378 // Check to see if a successor of the switch is guaranteed to go to the
379 // latch block or exit through a one exit block without having any
380 // side-effects. If so, determine the value of Cond that causes it to do
381 // this. Note that we can't trivially unswitch on the default case.
382 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
)
383 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
384 SI
->getSuccessor(i
)))) {
385 // Okay, we found a trivial case, remember the value that is trivial.
386 if (Val
) *Val
= SI
->getCaseValue(i
);
391 // If we didn't find a single unique LoopExit block, or if the loop exit block
392 // contains phi nodes, this isn't trivial.
393 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
394 return false; // Can't handle this.
396 if (LoopExit
) *LoopExit
= LoopExitBB
;
398 // We already know that nothing uses any scalar values defined inside of this
399 // loop. As such, we just have to check to see if this loop will execute any
400 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
401 // part of the loop that the code *would* execute. We already checked the
402 // tail, check the header now.
403 for (BasicBlock::iterator I
= Header
->begin(), E
= Header
->end(); I
!= E
; ++I
)
404 if (I
->mayHaveSideEffects())
409 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
410 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
411 /// unswitch the loop, reprocess the pieces, then return true.
412 bool LoopUnswitch::UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
) {
416 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
420 Function
*F
= loopHeader
->getParent();
422 Constant
*CondVal
= 0;
423 BasicBlock
*ExitBlock
= 0;
424 if (IsTrivialUnswitchCondition(LoopCond
, &CondVal
, &ExitBlock
)) {
425 // If the condition is trivial, always unswitch. There is no code growth
427 UnswitchTrivialCondition(currentLoop
, LoopCond
, CondVal
, ExitBlock
);
431 // Check to see if it would be profitable to unswitch current loop.
433 // Do not do non-trivial unswitch while optimizing for size.
434 if (OptimizeForSize
|| F
->hasFnAttr(Attribute::OptimizeForSize
))
437 // FIXME: This is overly conservative because it does not take into
438 // consideration code simplification opportunities and code that can
439 // be shared by the resultant unswitched loops.
441 for (Loop::block_iterator I
= currentLoop
->block_begin(),
442 E
= currentLoop
->block_end();
444 Metrics
.analyzeBasicBlock(*I
);
446 // Limit the number of instructions to avoid causing significant code
447 // expansion, and the number of basic blocks, to avoid loops with
448 // large numbers of branches which cause loop unswitching to go crazy.
449 // This is a very ad-hoc heuristic.
450 if (Metrics
.NumInsts
> Threshold
||
451 Metrics
.NumBlocks
* 5 > Threshold
||
452 Metrics
.containsIndirectBr
|| Metrics
.isRecursive
) {
453 DEBUG(dbgs() << "NOT unswitching loop %"
454 << currentLoop
->getHeader()->getName() << ", cost too high: "
455 << currentLoop
->getBlocks().size() << "\n");
459 UnswitchNontrivialCondition(LoopCond
, Val
, currentLoop
);
463 /// CloneLoop - Recursively clone the specified loop and all of its children,
464 /// mapping the blocks with the specified map.
465 static Loop
*CloneLoop(Loop
*L
, Loop
*PL
, ValueToValueMapTy
&VM
,
466 LoopInfo
*LI
, LPPassManager
*LPM
) {
467 Loop
*New
= new Loop();
468 LPM
->insertLoop(New
, PL
);
470 // Add all of the blocks in L to the new loop.
471 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
473 if (LI
->getLoopFor(*I
) == L
)
474 New
->addBasicBlockToLoop(cast
<BasicBlock
>(VM
[*I
]), LI
->getBase());
476 // Add all of the subloops to the new loop.
477 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
478 CloneLoop(*I
, New
, VM
, LI
, LPM
);
483 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
484 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
485 /// code immediately before InsertPt.
486 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
487 BasicBlock
*TrueDest
,
488 BasicBlock
*FalseDest
,
489 Instruction
*InsertPt
) {
490 // Insert a conditional branch on LIC to the two preheaders. The original
491 // code is the true version and the new code is the false version.
492 Value
*BranchVal
= LIC
;
493 if (!isa
<ConstantInt
>(Val
) ||
494 Val
->getType() != Type::getInt1Ty(LIC
->getContext()))
495 BranchVal
= new ICmpInst(InsertPt
, ICmpInst::ICMP_EQ
, LIC
, Val
, "tmp");
496 else if (Val
!= ConstantInt::getTrue(Val
->getContext()))
497 // We want to enter the new loop when the condition is true.
498 std::swap(TrueDest
, FalseDest
);
500 // Insert the new branch.
501 BranchInst
*BI
= BranchInst::Create(TrueDest
, FalseDest
, BranchVal
, InsertPt
);
503 // If either edge is critical, split it. This helps preserve LoopSimplify
504 // form for enclosing loops.
505 SplitCriticalEdge(BI
, 0, this);
506 SplitCriticalEdge(BI
, 1, this);
509 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
510 /// condition in it (a cond branch from its header block to its latch block,
511 /// where the path through the loop that doesn't execute its body has no
512 /// side-effects), unswitch it. This doesn't involve any code duplication, just
513 /// moving the conditional branch outside of the loop and updating loop info.
514 void LoopUnswitch::UnswitchTrivialCondition(Loop
*L
, Value
*Cond
,
516 BasicBlock
*ExitBlock
) {
517 DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
518 << loopHeader
->getName() << " [" << L
->getBlocks().size()
519 << " blocks] in Function " << L
->getHeader()->getParent()->getName()
520 << " on cond: " << *Val
<< " == " << *Cond
<< "\n");
522 // First step, split the preheader, so that we know that there is a safe place
523 // to insert the conditional branch. We will change loopPreheader to have a
524 // conditional branch on Cond.
525 BasicBlock
*NewPH
= SplitEdge(loopPreheader
, loopHeader
, this);
527 // Now that we have a place to insert the conditional branch, create a place
528 // to branch to: this is the exit block out of the loop that we should
531 // Split this block now, so that the loop maintains its exit block, and so
532 // that the jump from the preheader can execute the contents of the exit block
533 // without actually branching to it (the exit block should be dominated by the
534 // loop header, not the preheader).
535 assert(!L
->contains(ExitBlock
) && "Exit block is in the loop?");
536 BasicBlock
*NewExit
= SplitBlock(ExitBlock
, ExitBlock
->begin(), this);
538 // Okay, now we have a position to branch from and a position to branch to,
539 // insert the new conditional branch.
540 EmitPreheaderBranchOnCondition(Cond
, Val
, NewExit
, NewPH
,
541 loopPreheader
->getTerminator());
542 LPM
->deleteSimpleAnalysisValue(loopPreheader
->getTerminator(), L
);
543 loopPreheader
->getTerminator()->eraseFromParent();
545 // We need to reprocess this loop, it could be unswitched again.
548 // Now that we know that the loop is never entered when this condition is a
549 // particular value, rewrite the loop with this info. We know that this will
550 // at least eliminate the old branch.
551 RewriteLoopBodyWithConditionConstant(L
, Cond
, Val
, false);
555 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
556 /// blocks. Update the appropriate Phi nodes as we do so.
557 void LoopUnswitch::SplitExitEdges(Loop
*L
,
558 const SmallVector
<BasicBlock
*, 8> &ExitBlocks
){
560 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
561 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
562 SmallVector
<BasicBlock
*, 4> Preds(pred_begin(ExitBlock
),
563 pred_end(ExitBlock
));
564 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
565 // general, if we call it on all predecessors of all exits then it does.
566 SplitBlockPredecessors(ExitBlock
, Preds
.data(), Preds
.size(),
571 /// UnswitchNontrivialCondition - We determined that the loop is profitable
572 /// to unswitch when LIC equal Val. Split it into loop versions and test the
573 /// condition outside of either loop. Return the loops created as Out1/Out2.
574 void LoopUnswitch::UnswitchNontrivialCondition(Value
*LIC
, Constant
*Val
,
576 Function
*F
= loopHeader
->getParent();
577 DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
578 << loopHeader
->getName() << " [" << L
->getBlocks().size()
579 << " blocks] in Function " << F
->getName()
580 << " when '" << *Val
<< "' == " << *LIC
<< "\n");
582 if (ScalarEvolution
*SE
= getAnalysisIfAvailable
<ScalarEvolution
>())
588 // First step, split the preheader and exit blocks, and add these blocks to
589 // the LoopBlocks list.
590 BasicBlock
*NewPreheader
= SplitEdge(loopPreheader
, loopHeader
, this);
591 LoopBlocks
.push_back(NewPreheader
);
593 // We want the loop to come after the preheader, but before the exit blocks.
594 LoopBlocks
.insert(LoopBlocks
.end(), L
->block_begin(), L
->block_end());
596 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
597 L
->getUniqueExitBlocks(ExitBlocks
);
599 // Split all of the edges from inside the loop to their exit blocks. Update
600 // the appropriate Phi nodes as we do so.
601 SplitExitEdges(L
, ExitBlocks
);
603 // The exit blocks may have been changed due to edge splitting, recompute.
605 L
->getUniqueExitBlocks(ExitBlocks
);
607 // Add exit blocks to the loop blocks.
608 LoopBlocks
.insert(LoopBlocks
.end(), ExitBlocks
.begin(), ExitBlocks
.end());
610 // Next step, clone all of the basic blocks that make up the loop (including
611 // the loop preheader and exit blocks), keeping track of the mapping between
612 // the instructions and blocks.
613 NewBlocks
.reserve(LoopBlocks
.size());
614 ValueToValueMapTy VMap
;
615 for (unsigned i
= 0, e
= LoopBlocks
.size(); i
!= e
; ++i
) {
616 BasicBlock
*NewBB
= CloneBasicBlock(LoopBlocks
[i
], VMap
, ".us", F
);
617 NewBlocks
.push_back(NewBB
);
618 VMap
[LoopBlocks
[i
]] = NewBB
; // Keep the BB mapping.
619 LPM
->cloneBasicBlockSimpleAnalysis(LoopBlocks
[i
], NewBB
, L
);
622 // Splice the newly inserted blocks into the function right before the
623 // original preheader.
624 F
->getBasicBlockList().splice(NewPreheader
, F
->getBasicBlockList(),
625 NewBlocks
[0], F
->end());
627 // Now we create the new Loop object for the versioned loop.
628 Loop
*NewLoop
= CloneLoop(L
, L
->getParentLoop(), VMap
, LI
, LPM
);
629 Loop
*ParentLoop
= L
->getParentLoop();
631 // Make sure to add the cloned preheader and exit blocks to the parent loop
633 ParentLoop
->addBasicBlockToLoop(NewBlocks
[0], LI
->getBase());
636 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
637 BasicBlock
*NewExit
= cast
<BasicBlock
>(VMap
[ExitBlocks
[i
]]);
638 // The new exit block should be in the same loop as the old one.
639 if (Loop
*ExitBBLoop
= LI
->getLoopFor(ExitBlocks
[i
]))
640 ExitBBLoop
->addBasicBlockToLoop(NewExit
, LI
->getBase());
642 assert(NewExit
->getTerminator()->getNumSuccessors() == 1 &&
643 "Exit block should have been split to have one successor!");
644 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
646 // If the successor of the exit block had PHI nodes, add an entry for
649 for (BasicBlock::iterator I
= ExitSucc
->begin(); isa
<PHINode
>(I
); ++I
) {
650 PN
= cast
<PHINode
>(I
);
651 Value
*V
= PN
->getIncomingValueForBlock(ExitBlocks
[i
]);
652 ValueToValueMapTy::iterator It
= VMap
.find(V
);
653 if (It
!= VMap
.end()) V
= It
->second
;
654 PN
->addIncoming(V
, NewExit
);
658 // Rewrite the code to refer to itself.
659 for (unsigned i
= 0, e
= NewBlocks
.size(); i
!= e
; ++i
)
660 for (BasicBlock::iterator I
= NewBlocks
[i
]->begin(),
661 E
= NewBlocks
[i
]->end(); I
!= E
; ++I
)
662 RemapInstruction(I
, VMap
,RF_NoModuleLevelChanges
|RF_IgnoreMissingEntries
);
664 // Rewrite the original preheader to select between versions of the loop.
665 BranchInst
*OldBR
= cast
<BranchInst
>(loopPreheader
->getTerminator());
666 assert(OldBR
->isUnconditional() && OldBR
->getSuccessor(0) == LoopBlocks
[0] &&
667 "Preheader splitting did not work correctly!");
669 // Emit the new branch that selects between the two versions of this loop.
670 EmitPreheaderBranchOnCondition(LIC
, Val
, NewBlocks
[0], LoopBlocks
[0], OldBR
);
671 LPM
->deleteSimpleAnalysisValue(OldBR
, L
);
672 OldBR
->eraseFromParent();
674 LoopProcessWorklist
.push_back(NewLoop
);
677 // Keep a WeakVH holding onto LIC. If the first call to RewriteLoopBody
678 // deletes the instruction (for example by simplifying a PHI that feeds into
679 // the condition that we're unswitching on), we don't rewrite the second
681 WeakVH
LICHandle(LIC
);
683 // Now we rewrite the original code to know that the condition is true and the
684 // new code to know that the condition is false.
685 RewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, false);
687 // It's possible that simplifying one loop could cause the other to be
688 // changed to another value or a constant. If its a constant, don't simplify
690 if (!LoopProcessWorklist
.empty() && LoopProcessWorklist
.back() == NewLoop
&&
691 LICHandle
&& !isa
<Constant
>(LICHandle
))
692 RewriteLoopBodyWithConditionConstant(NewLoop
, LICHandle
, Val
, true);
695 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
697 static void RemoveFromWorklist(Instruction
*I
,
698 std::vector
<Instruction
*> &Worklist
) {
699 std::vector
<Instruction
*>::iterator WI
= std::find(Worklist
.begin(),
701 while (WI
!= Worklist
.end()) {
702 unsigned Offset
= WI
-Worklist
.begin();
704 WI
= std::find(Worklist
.begin()+Offset
, Worklist
.end(), I
);
708 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
709 /// program, replacing all uses with V and update the worklist.
710 static void ReplaceUsesOfWith(Instruction
*I
, Value
*V
,
711 std::vector
<Instruction
*> &Worklist
,
712 Loop
*L
, LPPassManager
*LPM
) {
713 DEBUG(dbgs() << "Replace with '" << *V
<< "': " << *I
);
715 // Add uses to the worklist, which may be dead now.
716 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
717 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
718 Worklist
.push_back(Use
);
720 // Add users to the worklist which may be simplified now.
721 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
723 Worklist
.push_back(cast
<Instruction
>(*UI
));
724 LPM
->deleteSimpleAnalysisValue(I
, L
);
725 RemoveFromWorklist(I
, Worklist
);
726 I
->replaceAllUsesWith(V
);
727 I
->eraseFromParent();
731 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
732 /// information, and remove any dead successors it has.
734 void LoopUnswitch::RemoveBlockIfDead(BasicBlock
*BB
,
735 std::vector
<Instruction
*> &Worklist
,
737 if (pred_begin(BB
) != pred_end(BB
)) {
738 // This block isn't dead, since an edge to BB was just removed, see if there
739 // are any easy simplifications we can do now.
740 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
741 // If it has one pred, fold phi nodes in BB.
742 while (isa
<PHINode
>(BB
->begin()))
743 ReplaceUsesOfWith(BB
->begin(),
744 cast
<PHINode
>(BB
->begin())->getIncomingValue(0),
747 // If this is the header of a loop and the only pred is the latch, we now
748 // have an unreachable loop.
749 if (Loop
*L
= LI
->getLoopFor(BB
))
750 if (loopHeader
== BB
&& L
->contains(Pred
)) {
751 // Remove the branch from the latch to the header block, this makes
752 // the header dead, which will make the latch dead (because the header
753 // dominates the latch).
754 LPM
->deleteSimpleAnalysisValue(Pred
->getTerminator(), L
);
755 Pred
->getTerminator()->eraseFromParent();
756 new UnreachableInst(BB
->getContext(), Pred
);
758 // The loop is now broken, remove it from LI.
759 RemoveLoopFromHierarchy(L
);
761 // Reprocess the header, which now IS dead.
762 RemoveBlockIfDead(BB
, Worklist
, L
);
766 // If pred ends in a uncond branch, add uncond branch to worklist so that
767 // the two blocks will get merged.
768 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
769 if (BI
->isUnconditional())
770 Worklist
.push_back(BI
);
775 DEBUG(dbgs() << "Nuking dead block: " << *BB
);
777 // Remove the instructions in the basic block from the worklist.
778 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
779 RemoveFromWorklist(I
, Worklist
);
781 // Anything that uses the instructions in this basic block should have their
782 // uses replaced with undefs.
783 // If I is not void type then replaceAllUsesWith undef.
784 // This allows ValueHandlers and custom metadata to adjust itself.
785 if (!I
->getType()->isVoidTy())
786 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
789 // If this is the edge to the header block for a loop, remove the loop and
790 // promote all subloops.
791 if (Loop
*BBLoop
= LI
->getLoopFor(BB
)) {
792 if (BBLoop
->getLoopLatch() == BB
) {
793 RemoveLoopFromHierarchy(BBLoop
);
794 if (currentLoop
== BBLoop
) {
801 // Remove the block from the loop info, which removes it from any loops it
806 // Remove phi node entries in successors for this block.
807 TerminatorInst
*TI
= BB
->getTerminator();
808 SmallVector
<BasicBlock
*, 4> Succs
;
809 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
810 Succs
.push_back(TI
->getSuccessor(i
));
811 TI
->getSuccessor(i
)->removePredecessor(BB
);
814 // Unique the successors, remove anything with multiple uses.
815 array_pod_sort(Succs
.begin(), Succs
.end());
816 Succs
.erase(std::unique(Succs
.begin(), Succs
.end()), Succs
.end());
818 // Remove the basic block, including all of the instructions contained in it.
819 LPM
->deleteSimpleAnalysisValue(BB
, L
);
820 BB
->eraseFromParent();
821 // Remove successor blocks here that are not dead, so that we know we only
822 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
823 // then getting removed before we revisit them, which is badness.
825 for (unsigned i
= 0; i
!= Succs
.size(); ++i
)
826 if (pred_begin(Succs
[i
]) != pred_end(Succs
[i
])) {
827 // One exception is loop headers. If this block was the preheader for a
828 // loop, then we DO want to visit the loop so the loop gets deleted.
829 // We know that if the successor is a loop header, that this loop had to
830 // be the preheader: the case where this was the latch block was handled
831 // above and headers can only have two predecessors.
832 if (!LI
->isLoopHeader(Succs
[i
])) {
833 Succs
.erase(Succs
.begin()+i
);
838 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
839 RemoveBlockIfDead(Succs
[i
], Worklist
, L
);
842 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
843 /// become unwrapped, either because the backedge was deleted, or because the
844 /// edge into the header was removed. If the edge into the header from the
845 /// latch block was removed, the loop is unwrapped but subloops are still alive,
846 /// so they just reparent loops. If the loops are actually dead, they will be
848 void LoopUnswitch::RemoveLoopFromHierarchy(Loop
*L
) {
849 LPM
->deleteLoopFromQueue(L
);
850 RemoveLoopFromWorklist(L
);
853 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
854 // the value specified by Val in the specified loop, or we know it does NOT have
855 // that value. Rewrite any uses of LIC or of properties correlated to it.
856 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
859 assert(!isa
<Constant
>(LIC
) && "Why are we unswitching on a constant?");
861 // FIXME: Support correlated properties, like:
868 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
869 // selects, switches.
870 std::vector
<Instruction
*> Worklist
;
871 LLVMContext
&Context
= Val
->getContext();
874 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
875 // in the loop with the appropriate one directly.
876 if (IsEqual
|| (isa
<ConstantInt
>(Val
) &&
877 Val
->getType()->isIntegerTy(1))) {
882 Replacement
= ConstantInt::get(Type::getInt1Ty(Val
->getContext()),
883 !cast
<ConstantInt
>(Val
)->getZExtValue());
885 for (Value::use_iterator UI
= LIC
->use_begin(), E
= LIC
->use_end();
887 Instruction
*U
= dyn_cast
<Instruction
>(*UI
);
888 if (!U
|| !L
->contains(U
))
890 U
->replaceUsesOfWith(LIC
, Replacement
);
891 Worklist
.push_back(U
);
893 SimplifyCode(Worklist
, L
);
897 // Otherwise, we don't know the precise value of LIC, but we do know that it
898 // is certainly NOT "Val". As such, simplify any uses in the loop that we
899 // can. This case occurs when we unswitch switch statements.
900 for (Value::use_iterator UI
= LIC
->use_begin(), E
= LIC
->use_end();
902 Instruction
*U
= dyn_cast
<Instruction
>(*UI
);
903 if (!U
|| !L
->contains(U
))
906 Worklist
.push_back(U
);
908 // TODO: We could do other simplifications, for example, turning
909 // 'icmp eq LIC, Val' -> false.
911 // If we know that LIC is not Val, use this info to simplify code.
912 SwitchInst
*SI
= dyn_cast
<SwitchInst
>(U
);
913 if (SI
== 0 || !isa
<ConstantInt
>(Val
)) continue;
915 unsigned DeadCase
= SI
->findCaseValue(cast
<ConstantInt
>(Val
));
916 if (DeadCase
== 0) continue; // Default case is live for multiple values.
918 // Found a dead case value. Don't remove PHI nodes in the
919 // successor if they become single-entry, those PHI nodes may
920 // be in the Users list.
922 BasicBlock
*Switch
= SI
->getParent();
923 BasicBlock
*SISucc
= SI
->getSuccessor(DeadCase
);
924 BasicBlock
*Latch
= L
->getLoopLatch();
925 if (!SI
->findCaseDest(SISucc
)) continue; // Edge is critical.
926 // If the DeadCase successor dominates the loop latch, then the
927 // transformation isn't safe since it will delete the sole predecessor edge
929 if (Latch
&& DT
->dominates(SISucc
, Latch
))
932 // FIXME: This is a hack. We need to keep the successor around
933 // and hooked up so as to preserve the loop structure, because
934 // trying to update it is complicated. So instead we preserve the
935 // loop structure and put the block on a dead code path.
936 SplitEdge(Switch
, SISucc
, this);
937 // Compute the successors instead of relying on the return value
938 // of SplitEdge, since it may have split the switch successor
940 BasicBlock
*NewSISucc
= SI
->getSuccessor(DeadCase
);
941 BasicBlock
*OldSISucc
= *succ_begin(NewSISucc
);
942 // Create an "unreachable" destination.
943 BasicBlock
*Abort
= BasicBlock::Create(Context
, "us-unreachable",
946 new UnreachableInst(Context
, Abort
);
947 // Force the new case destination to branch to the "unreachable"
948 // block while maintaining a (dead) CFG edge to the old block.
949 NewSISucc
->getTerminator()->eraseFromParent();
950 BranchInst::Create(Abort
, OldSISucc
,
951 ConstantInt::getTrue(Context
), NewSISucc
);
952 // Release the PHI operands for this edge.
953 for (BasicBlock::iterator II
= NewSISucc
->begin();
954 PHINode
*PN
= dyn_cast
<PHINode
>(II
); ++II
)
955 PN
->setIncomingValue(PN
->getBasicBlockIndex(Switch
),
956 UndefValue::get(PN
->getType()));
957 // Tell the domtree about the new block. We don't fully update the
958 // domtree here -- instead we force it to do a full recomputation
959 // after the pass is complete -- but we do need to inform it of
962 DT
->addNewBlock(Abort
, NewSISucc
);
965 SimplifyCode(Worklist
, L
);
968 /// SimplifyCode - Okay, now that we have simplified some instructions in the
969 /// loop, walk over it and constant prop, dce, and fold control flow where
970 /// possible. Note that this is effectively a very simple loop-structure-aware
971 /// optimizer. During processing of this loop, L could very well be deleted, so
972 /// it must not be used.
974 /// FIXME: When the loop optimizer is more mature, separate this out to a new
977 void LoopUnswitch::SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
) {
978 while (!Worklist
.empty()) {
979 Instruction
*I
= Worklist
.back();
983 if (isInstructionTriviallyDead(I
)) {
984 DEBUG(dbgs() << "Remove dead instruction '" << *I
);
986 // Add uses to the worklist, which may be dead now.
987 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
988 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
989 Worklist
.push_back(Use
);
990 LPM
->deleteSimpleAnalysisValue(I
, L
);
991 RemoveFromWorklist(I
, Worklist
);
992 I
->eraseFromParent();
997 // See if instruction simplification can hack this up. This is common for
998 // things like "select false, X, Y" after unswitching made the condition be
1000 if (Value
*V
= SimplifyInstruction(I
, 0, DT
))
1001 if (LI
->replacementPreservesLCSSAForm(I
, V
)) {
1002 ReplaceUsesOfWith(I
, V
, Worklist
, L
, LPM
);
1006 // Special case hacks that appear commonly in unswitched code.
1007 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1008 if (BI
->isUnconditional()) {
1009 // If BI's parent is the only pred of the successor, fold the two blocks
1011 BasicBlock
*Pred
= BI
->getParent();
1012 BasicBlock
*Succ
= BI
->getSuccessor(0);
1013 BasicBlock
*SinglePred
= Succ
->getSinglePredecessor();
1014 if (!SinglePred
) continue; // Nothing to do.
1015 assert(SinglePred
== Pred
&& "CFG broken");
1017 DEBUG(dbgs() << "Merging blocks: " << Pred
->getName() << " <- "
1018 << Succ
->getName() << "\n");
1020 // Resolve any single entry PHI nodes in Succ.
1021 while (PHINode
*PN
= dyn_cast
<PHINode
>(Succ
->begin()))
1022 ReplaceUsesOfWith(PN
, PN
->getIncomingValue(0), Worklist
, L
, LPM
);
1024 // If Succ has any successors with PHI nodes, update them to have
1025 // entries coming from Pred instead of Succ.
1026 Succ
->replaceAllUsesWith(Pred
);
1028 // Move all of the successor contents from Succ to Pred.
1029 Pred
->getInstList().splice(BI
, Succ
->getInstList(), Succ
->begin(),
1031 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1032 BI
->eraseFromParent();
1033 RemoveFromWorklist(BI
, Worklist
);
1035 // Remove Succ from the loop tree.
1036 LI
->removeBlock(Succ
);
1037 LPM
->deleteSimpleAnalysisValue(Succ
, L
);
1038 Succ
->eraseFromParent();
1043 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(BI
->getCondition())){
1044 // Conditional branch. Turn it into an unconditional branch, then
1045 // remove dead blocks.
1046 continue; // FIXME: Enable.
1048 DEBUG(dbgs() << "Folded branch: " << *BI
);
1049 BasicBlock
*DeadSucc
= BI
->getSuccessor(CB
->getZExtValue());
1050 BasicBlock
*LiveSucc
= BI
->getSuccessor(!CB
->getZExtValue());
1051 DeadSucc
->removePredecessor(BI
->getParent(), true);
1052 Worklist
.push_back(BranchInst::Create(LiveSucc
, BI
));
1053 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1054 BI
->eraseFromParent();
1055 RemoveFromWorklist(BI
, Worklist
);
1058 RemoveBlockIfDead(DeadSucc
, Worklist
, L
);