Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Scalar / ObjCARC.cpp
blob89a451ef7ad7e77a6c097aa19dcadf17a1ed52f5
1 //===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines ObjC ARC optimizations. ARC stands for
11 // Automatic Reference Counting and is a system for managing reference counts
12 // for objects in Objective C.
14 // The optimizations performed include elimination of redundant, partially
15 // redundant, and inconsequential reference count operations, elimination of
16 // redundant weak pointer operations, pattern-matching and replacement of
17 // low-level operations into higher-level operations, and numerous minor
18 // simplifications.
20 // This file also defines a simple ARC-aware AliasAnalysis.
22 // WARNING: This file knows about certain library functions. It recognizes them
23 // by name, and hardwires knowedge of their semantics.
25 // WARNING: This file knows about how certain Objective-C library functions are
26 // used. Naive LLVM IR transformations which would otherwise be
27 // behavior-preserving may break these assumptions.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "objc-arc"
32 #include "llvm/Function.h"
33 #include "llvm/Intrinsics.h"
34 #include "llvm/GlobalVariable.h"
35 #include "llvm/DerivedTypes.h"
36 #include "llvm/Module.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 using namespace llvm;
46 // A handy option to enable/disable all optimizations in this file.
47 static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
49 //===----------------------------------------------------------------------===//
50 // Misc. Utilities
51 //===----------------------------------------------------------------------===//
53 namespace {
54 /// MapVector - An associative container with fast insertion-order
55 /// (deterministic) iteration over its elements. Plus the special
56 /// blot operation.
57 template<class KeyT, class ValueT>
58 class MapVector {
59 /// Map - Map keys to indices in Vector.
60 typedef DenseMap<KeyT, size_t> MapTy;
61 MapTy Map;
63 /// Vector - Keys and values.
64 typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
65 VectorTy Vector;
67 public:
68 typedef typename VectorTy::iterator iterator;
69 typedef typename VectorTy::const_iterator const_iterator;
70 iterator begin() { return Vector.begin(); }
71 iterator end() { return Vector.end(); }
72 const_iterator begin() const { return Vector.begin(); }
73 const_iterator end() const { return Vector.end(); }
75 #ifdef XDEBUG
76 ~MapVector() {
77 assert(Vector.size() >= Map.size()); // May differ due to blotting.
78 for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
79 I != E; ++I) {
80 assert(I->second < Vector.size());
81 assert(Vector[I->second].first == I->first);
83 for (typename VectorTy::const_iterator I = Vector.begin(),
84 E = Vector.end(); I != E; ++I)
85 assert(!I->first ||
86 (Map.count(I->first) &&
87 Map[I->first] == size_t(I - Vector.begin())));
89 #endif
91 ValueT &operator[](KeyT Arg) {
92 std::pair<typename MapTy::iterator, bool> Pair =
93 Map.insert(std::make_pair(Arg, size_t(0)));
94 if (Pair.second) {
95 Pair.first->second = Vector.size();
96 Vector.push_back(std::make_pair(Arg, ValueT()));
97 return Vector.back().second;
99 return Vector[Pair.first->second].second;
102 std::pair<iterator, bool>
103 insert(const std::pair<KeyT, ValueT> &InsertPair) {
104 std::pair<typename MapTy::iterator, bool> Pair =
105 Map.insert(std::make_pair(InsertPair.first, size_t(0)));
106 if (Pair.second) {
107 Pair.first->second = Vector.size();
108 Vector.push_back(InsertPair);
109 return std::make_pair(llvm::prior(Vector.end()), true);
111 return std::make_pair(Vector.begin() + Pair.first->second, false);
114 const_iterator find(KeyT Key) const {
115 typename MapTy::const_iterator It = Map.find(Key);
116 if (It == Map.end()) return Vector.end();
117 return Vector.begin() + It->second;
120 /// blot - This is similar to erase, but instead of removing the element
121 /// from the vector, it just zeros out the key in the vector. This leaves
122 /// iterators intact, but clients must be prepared for zeroed-out keys when
123 /// iterating.
124 void blot(KeyT Key) {
125 typename MapTy::iterator It = Map.find(Key);
126 if (It == Map.end()) return;
127 Vector[It->second].first = KeyT();
128 Map.erase(It);
131 void clear() {
132 Map.clear();
133 Vector.clear();
138 //===----------------------------------------------------------------------===//
139 // ARC Utilities.
140 //===----------------------------------------------------------------------===//
142 namespace {
143 /// InstructionClass - A simple classification for instructions.
144 enum InstructionClass {
145 IC_Retain, ///< objc_retain
146 IC_RetainRV, ///< objc_retainAutoreleasedReturnValue
147 IC_RetainBlock, ///< objc_retainBlock
148 IC_Release, ///< objc_release
149 IC_Autorelease, ///< objc_autorelease
150 IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue
151 IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
152 IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop
153 IC_NoopCast, ///< objc_retainedObject, etc.
154 IC_FusedRetainAutorelease, ///< objc_retainAutorelease
155 IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
156 IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive)
157 IC_StoreWeak, ///< objc_storeWeak (primitive)
158 IC_InitWeak, ///< objc_initWeak (derived)
159 IC_LoadWeak, ///< objc_loadWeak (derived)
160 IC_MoveWeak, ///< objc_moveWeak (derived)
161 IC_CopyWeak, ///< objc_copyWeak (derived)
162 IC_DestroyWeak, ///< objc_destroyWeak (derived)
163 IC_CallOrUser, ///< could call objc_release and/or "use" pointers
164 IC_Call, ///< could call objc_release
165 IC_User, ///< could "use" a pointer
166 IC_None ///< anything else
170 /// IsPotentialUse - Test whether the given value is possible a
171 /// reference-counted pointer.
172 static bool IsPotentialUse(const Value *Op) {
173 // Pointers to static or stack storage are not reference-counted pointers.
174 if (isa<Constant>(Op) || isa<AllocaInst>(Op))
175 return false;
176 // Special arguments are not reference-counted.
177 if (const Argument *Arg = dyn_cast<Argument>(Op))
178 if (Arg->hasByValAttr() ||
179 Arg->hasNestAttr() ||
180 Arg->hasStructRetAttr())
181 return false;
182 // Only consider values with pointer types, and not function pointers.
183 const PointerType *Ty = dyn_cast<PointerType>(Op->getType());
184 if (!Ty || isa<FunctionType>(Ty->getElementType()))
185 return false;
186 // Conservatively assume anything else is a potential use.
187 return true;
190 /// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
191 /// of construct CS is.
192 static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
193 for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
194 I != E; ++I)
195 if (IsPotentialUse(*I))
196 return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
198 return CS.onlyReadsMemory() ? IC_None : IC_Call;
201 /// GetFunctionClass - Determine if F is one of the special known Functions.
202 /// If it isn't, return IC_CallOrUser.
203 static InstructionClass GetFunctionClass(const Function *F) {
204 Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
206 // No arguments.
207 if (AI == AE)
208 return StringSwitch<InstructionClass>(F->getName())
209 .Case("objc_autoreleasePoolPush", IC_AutoreleasepoolPush)
210 .Default(IC_CallOrUser);
212 // One argument.
213 const Argument *A0 = AI++;
214 if (AI == AE)
215 // Argument is a pointer.
216 if (const PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
217 const Type *ETy = PTy->getElementType();
218 // Argument is i8*.
219 if (ETy->isIntegerTy(8))
220 return StringSwitch<InstructionClass>(F->getName())
221 .Case("objc_retain", IC_Retain)
222 .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
223 .Case("objc_retainBlock", IC_RetainBlock)
224 .Case("objc_release", IC_Release)
225 .Case("objc_autorelease", IC_Autorelease)
226 .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
227 .Case("objc_autoreleasePoolPop", IC_AutoreleasepoolPop)
228 .Case("objc_retainedObject", IC_NoopCast)
229 .Case("objc_unretainedObject", IC_NoopCast)
230 .Case("objc_unretainedPointer", IC_NoopCast)
231 .Case("objc_retain_autorelease", IC_FusedRetainAutorelease)
232 .Case("objc_retainAutorelease", IC_FusedRetainAutorelease)
233 .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
234 .Default(IC_CallOrUser);
236 // Argument is i8**
237 if (const PointerType *Pte = dyn_cast<PointerType>(ETy))
238 if (Pte->getElementType()->isIntegerTy(8))
239 return StringSwitch<InstructionClass>(F->getName())
240 .Case("objc_loadWeakRetained", IC_LoadWeakRetained)
241 .Case("objc_loadWeak", IC_LoadWeak)
242 .Case("objc_destroyWeak", IC_DestroyWeak)
243 .Default(IC_CallOrUser);
246 // Two arguments, first is i8**.
247 const Argument *A1 = AI++;
248 if (AI == AE)
249 if (const PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
250 if (const PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
251 if (Pte->getElementType()->isIntegerTy(8))
252 if (const PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
253 const Type *ETy1 = PTy1->getElementType();
254 // Second argument is i8*
255 if (ETy1->isIntegerTy(8))
256 return StringSwitch<InstructionClass>(F->getName())
257 .Case("objc_storeWeak", IC_StoreWeak)
258 .Case("objc_initWeak", IC_InitWeak)
259 .Default(IC_CallOrUser);
260 // Second argument is i8**.
261 if (const PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
262 if (Pte1->getElementType()->isIntegerTy(8))
263 return StringSwitch<InstructionClass>(F->getName())
264 .Case("objc_moveWeak", IC_MoveWeak)
265 .Case("objc_copyWeak", IC_CopyWeak)
266 .Default(IC_CallOrUser);
269 // Anything else.
270 return IC_CallOrUser;
273 /// GetInstructionClass - Determine what kind of construct V is.
274 static InstructionClass GetInstructionClass(const Value *V) {
275 if (const Instruction *I = dyn_cast<Instruction>(V)) {
276 // Any instruction other than bitcast and gep with a pointer operand have a
277 // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
278 // to a subsequent use, rather than using it themselves, in this sense.
279 // As a short cut, several other opcodes are known to have no pointer
280 // operands of interest. And ret is never followed by a release, so it's
281 // not interesting to examine.
282 switch (I->getOpcode()) {
283 case Instruction::Call: {
284 const CallInst *CI = cast<CallInst>(I);
285 // Check for calls to special functions.
286 if (const Function *F = CI->getCalledFunction()) {
287 InstructionClass Class = GetFunctionClass(F);
288 if (Class != IC_CallOrUser)
289 return Class;
291 // None of the intrinsic functions do objc_release. For intrinsics, the
292 // only question is whether or not they may be users.
293 switch (F->getIntrinsicID()) {
294 case 0: break;
295 case Intrinsic::bswap: case Intrinsic::ctpop:
296 case Intrinsic::ctlz: case Intrinsic::cttz:
297 case Intrinsic::returnaddress: case Intrinsic::frameaddress:
298 case Intrinsic::stacksave: case Intrinsic::stackrestore:
299 case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
300 // Don't let dbg info affect our results.
301 case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
302 // Short cut: Some intrinsics obviously don't use ObjC pointers.
303 return IC_None;
304 default:
305 for (Function::const_arg_iterator AI = F->arg_begin(),
306 AE = F->arg_end(); AI != AE; ++AI)
307 if (IsPotentialUse(AI))
308 return IC_User;
309 return IC_None;
312 return GetCallSiteClass(CI);
314 case Instruction::Invoke:
315 return GetCallSiteClass(cast<InvokeInst>(I));
316 case Instruction::BitCast:
317 case Instruction::GetElementPtr:
318 case Instruction::Select: case Instruction::PHI:
319 case Instruction::Ret: case Instruction::Br:
320 case Instruction::Switch: case Instruction::IndirectBr:
321 case Instruction::Alloca: case Instruction::VAArg:
322 case Instruction::Add: case Instruction::FAdd:
323 case Instruction::Sub: case Instruction::FSub:
324 case Instruction::Mul: case Instruction::FMul:
325 case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
326 case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
327 case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
328 case Instruction::And: case Instruction::Or: case Instruction::Xor:
329 case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
330 case Instruction::IntToPtr: case Instruction::FCmp:
331 case Instruction::FPTrunc: case Instruction::FPExt:
332 case Instruction::FPToUI: case Instruction::FPToSI:
333 case Instruction::UIToFP: case Instruction::SIToFP:
334 case Instruction::InsertElement: case Instruction::ExtractElement:
335 case Instruction::ShuffleVector:
336 case Instruction::ExtractValue:
337 break;
338 case Instruction::ICmp:
339 // Comparing a pointer with null, or any other constant, isn't an
340 // interesting use, because we don't care what the pointer points to, or
341 // about the values of any other dynamic reference-counted pointers.
342 if (IsPotentialUse(I->getOperand(1)))
343 return IC_User;
344 break;
345 default:
346 // For anything else, check all the operands.
347 for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
348 OI != OE; ++OI)
349 if (IsPotentialUse(*OI))
350 return IC_User;
354 // Otherwise, it's totally inert for ARC purposes.
355 return IC_None;
358 /// GetBasicInstructionClass - Determine what kind of construct V is. This is
359 /// similar to GetInstructionClass except that it only detects objc runtine
360 /// calls. This allows it to be faster.
361 static InstructionClass GetBasicInstructionClass(const Value *V) {
362 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
363 if (const Function *F = CI->getCalledFunction())
364 return GetFunctionClass(F);
365 // Otherwise, be conservative.
366 return IC_CallOrUser;
369 // Otherwise, be conservative.
370 return IC_User;
373 /// IsRetain - Test if the the given class is objc_retain or
374 /// equivalent.
375 static bool IsRetain(InstructionClass Class) {
376 return Class == IC_Retain ||
377 Class == IC_RetainRV;
380 /// IsAutorelease - Test if the the given class is objc_autorelease or
381 /// equivalent.
382 static bool IsAutorelease(InstructionClass Class) {
383 return Class == IC_Autorelease ||
384 Class == IC_AutoreleaseRV;
387 /// IsForwarding - Test if the given class represents instructions which return
388 /// their argument verbatim.
389 static bool IsForwarding(InstructionClass Class) {
390 // objc_retainBlock technically doesn't always return its argument
391 // verbatim, but it doesn't matter for our purposes here.
392 return Class == IC_Retain ||
393 Class == IC_RetainRV ||
394 Class == IC_Autorelease ||
395 Class == IC_AutoreleaseRV ||
396 Class == IC_RetainBlock ||
397 Class == IC_NoopCast;
400 /// IsNoopOnNull - Test if the given class represents instructions which do
401 /// nothing if passed a null pointer.
402 static bool IsNoopOnNull(InstructionClass Class) {
403 return Class == IC_Retain ||
404 Class == IC_RetainRV ||
405 Class == IC_Release ||
406 Class == IC_Autorelease ||
407 Class == IC_AutoreleaseRV ||
408 Class == IC_RetainBlock;
411 /// IsAlwaysTail - Test if the given class represents instructions which are
412 /// always safe to mark with the "tail" keyword.
413 static bool IsAlwaysTail(InstructionClass Class) {
414 // IC_RetainBlock may be given a stack argument.
415 return Class == IC_Retain ||
416 Class == IC_RetainRV ||
417 Class == IC_Autorelease ||
418 Class == IC_AutoreleaseRV;
421 /// IsNoThrow - Test if the given class represents instructions which are always
422 /// safe to mark with the nounwind attribute..
423 static bool IsNoThrow(InstructionClass Class) {
424 return Class == IC_Retain ||
425 Class == IC_RetainRV ||
426 Class == IC_RetainBlock ||
427 Class == IC_Release ||
428 Class == IC_Autorelease ||
429 Class == IC_AutoreleaseRV ||
430 Class == IC_AutoreleasepoolPush ||
431 Class == IC_AutoreleasepoolPop;
434 /// EraseInstruction - Erase the given instruction. ObjC calls return their
435 /// argument verbatim, so if it's such a call and the return value has users,
436 /// replace them with the argument value.
437 static void EraseInstruction(Instruction *CI) {
438 Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
440 bool Unused = CI->use_empty();
442 if (!Unused) {
443 // Replace the return value with the argument.
444 assert(IsForwarding(GetBasicInstructionClass(CI)) &&
445 "Can't delete non-forwarding instruction with users!");
446 CI->replaceAllUsesWith(OldArg);
449 CI->eraseFromParent();
451 if (Unused)
452 RecursivelyDeleteTriviallyDeadInstructions(OldArg);
455 /// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
456 /// also knows how to look through objc_retain and objc_autorelease calls, which
457 /// we know to return their argument verbatim.
458 static const Value *GetUnderlyingObjCPtr(const Value *V) {
459 for (;;) {
460 V = GetUnderlyingObject(V);
461 if (!IsForwarding(GetBasicInstructionClass(V)))
462 break;
463 V = cast<CallInst>(V)->getArgOperand(0);
466 return V;
469 /// StripPointerCastsAndObjCCalls - This is a wrapper around
470 /// Value::stripPointerCasts which also knows how to look through objc_retain
471 /// and objc_autorelease calls, which we know to return their argument verbatim.
472 static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
473 for (;;) {
474 V = V->stripPointerCasts();
475 if (!IsForwarding(GetBasicInstructionClass(V)))
476 break;
477 V = cast<CallInst>(V)->getArgOperand(0);
479 return V;
482 /// StripPointerCastsAndObjCCalls - This is a wrapper around
483 /// Value::stripPointerCasts which also knows how to look through objc_retain
484 /// and objc_autorelease calls, which we know to return their argument verbatim.
485 static Value *StripPointerCastsAndObjCCalls(Value *V) {
486 for (;;) {
487 V = V->stripPointerCasts();
488 if (!IsForwarding(GetBasicInstructionClass(V)))
489 break;
490 V = cast<CallInst>(V)->getArgOperand(0);
492 return V;
495 /// GetObjCArg - Assuming the given instruction is one of the special calls such
496 /// as objc_retain or objc_release, return the argument value, stripped of no-op
497 /// casts and forwarding calls.
498 static Value *GetObjCArg(Value *Inst) {
499 return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
502 /// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
503 /// isObjCIdentifiedObject, except that it uses special knowledge of
504 /// ObjC conventions...
505 static bool IsObjCIdentifiedObject(const Value *V) {
506 // Assume that call results and arguments have their own "provenance".
507 // Constants (including GlobalVariables) and Allocas are never
508 // reference-counted.
509 if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
510 isa<Argument>(V) || isa<Constant>(V) ||
511 isa<AllocaInst>(V))
512 return true;
514 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
515 const Value *Pointer =
516 StripPointerCastsAndObjCCalls(LI->getPointerOperand());
517 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
518 StringRef Name = GV->getName();
519 // These special variables are known to hold values which are not
520 // reference-counted pointers.
521 if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
522 Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
523 Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
524 Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
525 Name.startswith("\01l_objc_msgSend_fixup_"))
526 return true;
530 return false;
533 /// FindSingleUseIdentifiedObject - This is similar to
534 /// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
535 /// with multiple uses.
536 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
537 if (Arg->hasOneUse()) {
538 if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
539 return FindSingleUseIdentifiedObject(BC->getOperand(0));
540 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
541 if (GEP->hasAllZeroIndices())
542 return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
543 if (IsForwarding(GetBasicInstructionClass(Arg)))
544 return FindSingleUseIdentifiedObject(
545 cast<CallInst>(Arg)->getArgOperand(0));
546 if (!IsObjCIdentifiedObject(Arg))
547 return 0;
548 return Arg;
551 // If we found an identifiable object but it has multiple uses, but they
552 // are trivial uses, we can still consider this to be a single-use
553 // value.
554 if (IsObjCIdentifiedObject(Arg)) {
555 for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
556 UI != UE; ++UI) {
557 const User *U = *UI;
558 if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
559 return 0;
562 return Arg;
565 return 0;
568 /// ModuleHasARC - Test if the given module looks interesting to run ARC
569 /// optimization on.
570 static bool ModuleHasARC(const Module &M) {
571 return
572 M.getNamedValue("objc_retain") ||
573 M.getNamedValue("objc_release") ||
574 M.getNamedValue("objc_autorelease") ||
575 M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
576 M.getNamedValue("objc_retainBlock") ||
577 M.getNamedValue("objc_autoreleaseReturnValue") ||
578 M.getNamedValue("objc_autoreleasePoolPush") ||
579 M.getNamedValue("objc_loadWeakRetained") ||
580 M.getNamedValue("objc_loadWeak") ||
581 M.getNamedValue("objc_destroyWeak") ||
582 M.getNamedValue("objc_storeWeak") ||
583 M.getNamedValue("objc_initWeak") ||
584 M.getNamedValue("objc_moveWeak") ||
585 M.getNamedValue("objc_copyWeak") ||
586 M.getNamedValue("objc_retainedObject") ||
587 M.getNamedValue("objc_unretainedObject") ||
588 M.getNamedValue("objc_unretainedPointer");
591 //===----------------------------------------------------------------------===//
592 // ARC AliasAnalysis.
593 //===----------------------------------------------------------------------===//
595 #include "llvm/Pass.h"
596 #include "llvm/Analysis/AliasAnalysis.h"
597 #include "llvm/Analysis/Passes.h"
599 namespace {
600 /// ObjCARCAliasAnalysis - This is a simple alias analysis
601 /// implementation that uses knowledge of ARC constructs to answer queries.
603 /// TODO: This class could be generalized to know about other ObjC-specific
604 /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
605 /// even though their offsets are dynamic.
606 class ObjCARCAliasAnalysis : public ImmutablePass,
607 public AliasAnalysis {
608 public:
609 static char ID; // Class identification, replacement for typeinfo
610 ObjCARCAliasAnalysis() : ImmutablePass(ID) {
611 initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
614 private:
615 virtual void initializePass() {
616 InitializeAliasAnalysis(this);
619 /// getAdjustedAnalysisPointer - This method is used when a pass implements
620 /// an analysis interface through multiple inheritance. If needed, it
621 /// should override this to adjust the this pointer as needed for the
622 /// specified pass info.
623 virtual void *getAdjustedAnalysisPointer(const void *PI) {
624 if (PI == &AliasAnalysis::ID)
625 return (AliasAnalysis*)this;
626 return this;
629 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
630 virtual AliasResult alias(const Location &LocA, const Location &LocB);
631 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
632 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
633 virtual ModRefBehavior getModRefBehavior(const Function *F);
634 virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
635 const Location &Loc);
636 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
637 ImmutableCallSite CS2);
639 } // End of anonymous namespace
641 // Register this pass...
642 char ObjCARCAliasAnalysis::ID = 0;
643 INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
644 "ObjC-ARC-Based Alias Analysis", false, true, false)
646 ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
647 return new ObjCARCAliasAnalysis();
650 void
651 ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
652 AU.setPreservesAll();
653 AliasAnalysis::getAnalysisUsage(AU);
656 AliasAnalysis::AliasResult
657 ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
658 if (!EnableARCOpts)
659 return AliasAnalysis::alias(LocA, LocB);
661 // First, strip off no-ops, including ObjC-specific no-ops, and try making a
662 // precise alias query.
663 const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
664 const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
665 AliasResult Result =
666 AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
667 Location(SB, LocB.Size, LocB.TBAATag));
668 if (Result != MayAlias)
669 return Result;
671 // If that failed, climb to the underlying object, including climbing through
672 // ObjC-specific no-ops, and try making an imprecise alias query.
673 const Value *UA = GetUnderlyingObjCPtr(SA);
674 const Value *UB = GetUnderlyingObjCPtr(SB);
675 if (UA != SA || UB != SB) {
676 Result = AliasAnalysis::alias(Location(UA), Location(UB));
677 // We can't use MustAlias or PartialAlias results here because
678 // GetUnderlyingObjCPtr may return an offsetted pointer value.
679 if (Result == NoAlias)
680 return NoAlias;
683 // If that failed, fail. We don't need to chain here, since that's covered
684 // by the earlier precise query.
685 return MayAlias;
688 bool
689 ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
690 bool OrLocal) {
691 if (!EnableARCOpts)
692 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
694 // First, strip off no-ops, including ObjC-specific no-ops, and try making
695 // a precise alias query.
696 const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
697 if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
698 OrLocal))
699 return true;
701 // If that failed, climb to the underlying object, including climbing through
702 // ObjC-specific no-ops, and try making an imprecise alias query.
703 const Value *U = GetUnderlyingObjCPtr(S);
704 if (U != S)
705 return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
707 // If that failed, fail. We don't need to chain here, since that's covered
708 // by the earlier precise query.
709 return false;
712 AliasAnalysis::ModRefBehavior
713 ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
714 // We have nothing to do. Just chain to the next AliasAnalysis.
715 return AliasAnalysis::getModRefBehavior(CS);
718 AliasAnalysis::ModRefBehavior
719 ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
720 if (!EnableARCOpts)
721 return AliasAnalysis::getModRefBehavior(F);
723 switch (GetFunctionClass(F)) {
724 case IC_NoopCast:
725 return DoesNotAccessMemory;
726 default:
727 break;
730 return AliasAnalysis::getModRefBehavior(F);
733 AliasAnalysis::ModRefResult
734 ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
735 if (!EnableARCOpts)
736 return AliasAnalysis::getModRefInfo(CS, Loc);
738 switch (GetBasicInstructionClass(CS.getInstruction())) {
739 case IC_Retain:
740 case IC_RetainRV:
741 case IC_RetainBlock:
742 case IC_Autorelease:
743 case IC_AutoreleaseRV:
744 case IC_NoopCast:
745 case IC_AutoreleasepoolPush:
746 case IC_FusedRetainAutorelease:
747 case IC_FusedRetainAutoreleaseRV:
748 // These functions don't access any memory visible to the compiler.
749 return NoModRef;
750 default:
751 break;
754 return AliasAnalysis::getModRefInfo(CS, Loc);
757 AliasAnalysis::ModRefResult
758 ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
759 ImmutableCallSite CS2) {
760 // TODO: Theoretically we could check for dependencies between objc_* calls
761 // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
762 return AliasAnalysis::getModRefInfo(CS1, CS2);
765 //===----------------------------------------------------------------------===//
766 // ARC expansion.
767 //===----------------------------------------------------------------------===//
769 #include "llvm/Support/InstIterator.h"
770 #include "llvm/Transforms/Scalar.h"
772 namespace {
773 /// ObjCARCExpand - Early ARC transformations.
774 class ObjCARCExpand : public FunctionPass {
775 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
776 virtual bool doInitialization(Module &M);
777 virtual bool runOnFunction(Function &F);
779 /// Run - A flag indicating whether this optimization pass should run.
780 bool Run;
782 public:
783 static char ID;
784 ObjCARCExpand() : FunctionPass(ID) {
785 initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
790 char ObjCARCExpand::ID = 0;
791 INITIALIZE_PASS(ObjCARCExpand,
792 "objc-arc-expand", "ObjC ARC expansion", false, false)
794 Pass *llvm::createObjCARCExpandPass() {
795 return new ObjCARCExpand();
798 void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
799 AU.setPreservesCFG();
802 bool ObjCARCExpand::doInitialization(Module &M) {
803 Run = ModuleHasARC(M);
804 return false;
807 bool ObjCARCExpand::runOnFunction(Function &F) {
808 if (!EnableARCOpts)
809 return false;
811 // If nothing in the Module uses ARC, don't do anything.
812 if (!Run)
813 return false;
815 bool Changed = false;
817 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
818 Instruction *Inst = &*I;
820 switch (GetBasicInstructionClass(Inst)) {
821 case IC_Retain:
822 case IC_RetainRV:
823 case IC_Autorelease:
824 case IC_AutoreleaseRV:
825 case IC_FusedRetainAutorelease:
826 case IC_FusedRetainAutoreleaseRV:
827 // These calls return their argument verbatim, as a low-level
828 // optimization. However, this makes high-level optimizations
829 // harder. Undo any uses of this optimization that the front-end
830 // emitted here. We'll redo them in a later pass.
831 Changed = true;
832 Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
833 break;
834 default:
835 break;
839 return Changed;
842 //===----------------------------------------------------------------------===//
843 // ARC optimization.
844 //===----------------------------------------------------------------------===//
846 // TODO: On code like this:
848 // objc_retain(%x)
849 // stuff_that_cannot_release()
850 // objc_autorelease(%x)
851 // stuff_that_cannot_release()
852 // objc_retain(%x)
853 // stuff_that_cannot_release()
854 // objc_autorelease(%x)
856 // The second retain and autorelease can be deleted.
858 // TODO: It should be possible to delete
859 // objc_autoreleasePoolPush and objc_autoreleasePoolPop
860 // pairs if nothing is actually autoreleased between them. Also, autorelease
861 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
862 // after inlining) can be turned into plain release calls.
864 // TODO: Critical-edge splitting. If the optimial insertion point is
865 // a critical edge, the current algorithm has to fail, because it doesn't
866 // know how to split edges. It should be possible to make the optimizer
867 // think in terms of edges, rather than blocks, and then split critical
868 // edges on demand.
870 // TODO: OptimizeSequences could generalized to be Interprocedural.
872 // TODO: Recognize that a bunch of other objc runtime calls have
873 // non-escaping arguments and non-releasing arguments, and may be
874 // non-autoreleasing.
876 // TODO: Sink autorelease calls as far as possible. Unfortunately we
877 // usually can't sink them past other calls, which would be the main
878 // case where it would be useful.
880 /// TODO: The pointer returned from objc_loadWeakRetained is retained.
882 #include "llvm/GlobalAlias.h"
883 #include "llvm/Constants.h"
884 #include "llvm/LLVMContext.h"
885 #include "llvm/Support/ErrorHandling.h"
886 #include "llvm/Support/CFG.h"
887 #include "llvm/ADT/PostOrderIterator.h"
888 #include "llvm/ADT/Statistic.h"
890 STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
891 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
892 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
893 STATISTIC(NumRets, "Number of return value forwarding "
894 "retain+autoreleaes eliminated");
895 STATISTIC(NumRRs, "Number of retain+release paths eliminated");
896 STATISTIC(NumPeeps, "Number of calls peephole-optimized");
898 namespace {
899 /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
900 /// uses many of the same techniques, except it uses special ObjC-specific
901 /// reasoning about pointer relationships.
902 class ProvenanceAnalysis {
903 AliasAnalysis *AA;
905 typedef std::pair<const Value *, const Value *> ValuePairTy;
906 typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
907 CachedResultsTy CachedResults;
909 bool relatedCheck(const Value *A, const Value *B);
910 bool relatedSelect(const SelectInst *A, const Value *B);
911 bool relatedPHI(const PHINode *A, const Value *B);
913 // Do not implement.
914 void operator=(const ProvenanceAnalysis &);
915 ProvenanceAnalysis(const ProvenanceAnalysis &);
917 public:
918 ProvenanceAnalysis() {}
920 void setAA(AliasAnalysis *aa) { AA = aa; }
922 AliasAnalysis *getAA() const { return AA; }
924 bool related(const Value *A, const Value *B);
926 void clear() {
927 CachedResults.clear();
932 bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
933 // If the values are Selects with the same condition, we can do a more precise
934 // check: just check for relations between the values on corresponding arms.
935 if (const SelectInst *SB = dyn_cast<SelectInst>(B))
936 if (A->getCondition() == SB->getCondition()) {
937 if (related(A->getTrueValue(), SB->getTrueValue()))
938 return true;
939 if (related(A->getFalseValue(), SB->getFalseValue()))
940 return true;
941 return false;
944 // Check both arms of the Select node individually.
945 if (related(A->getTrueValue(), B))
946 return true;
947 if (related(A->getFalseValue(), B))
948 return true;
950 // The arms both checked out.
951 return false;
954 bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
955 // If the values are PHIs in the same block, we can do a more precise as well
956 // as efficient check: just check for relations between the values on
957 // corresponding edges.
958 if (const PHINode *PNB = dyn_cast<PHINode>(B))
959 if (PNB->getParent() == A->getParent()) {
960 for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
961 if (related(A->getIncomingValue(i),
962 PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
963 return true;
964 return false;
967 // Check each unique source of the PHI node against B.
968 SmallPtrSet<const Value *, 4> UniqueSrc;
969 for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
970 const Value *PV1 = A->getIncomingValue(i);
971 if (UniqueSrc.insert(PV1) && related(PV1, B))
972 return true;
975 // All of the arms checked out.
976 return false;
979 /// isStoredObjCPointer - Test if the value of P, or any value covered by its
980 /// provenance, is ever stored within the function (not counting callees).
981 static bool isStoredObjCPointer(const Value *P) {
982 SmallPtrSet<const Value *, 8> Visited;
983 SmallVector<const Value *, 8> Worklist;
984 Worklist.push_back(P);
985 Visited.insert(P);
986 do {
987 P = Worklist.pop_back_val();
988 for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
989 UI != UE; ++UI) {
990 const User *Ur = *UI;
991 if (isa<StoreInst>(Ur)) {
992 if (UI.getOperandNo() == 0)
993 // The pointer is stored.
994 return true;
995 // The pointed is stored through.
996 continue;
998 if (isa<CallInst>(Ur))
999 // The pointer is passed as an argument, ignore this.
1000 continue;
1001 if (isa<PtrToIntInst>(P))
1002 // Assume the worst.
1003 return true;
1004 if (Visited.insert(Ur))
1005 Worklist.push_back(Ur);
1007 } while (!Worklist.empty());
1009 // Everything checked out.
1010 return false;
1013 bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
1014 // Skip past provenance pass-throughs.
1015 A = GetUnderlyingObjCPtr(A);
1016 B = GetUnderlyingObjCPtr(B);
1018 // Quick check.
1019 if (A == B)
1020 return true;
1022 // Ask regular AliasAnalysis, for a first approximation.
1023 switch (AA->alias(A, B)) {
1024 case AliasAnalysis::NoAlias:
1025 return false;
1026 case AliasAnalysis::MustAlias:
1027 case AliasAnalysis::PartialAlias:
1028 return true;
1029 case AliasAnalysis::MayAlias:
1030 break;
1033 bool AIsIdentified = IsObjCIdentifiedObject(A);
1034 bool BIsIdentified = IsObjCIdentifiedObject(B);
1036 // An ObjC-Identified object can't alias a load if it is never locally stored.
1037 if (AIsIdentified) {
1038 if (BIsIdentified) {
1039 // If both pointers have provenance, they can be directly compared.
1040 if (A != B)
1041 return false;
1042 } else {
1043 if (isa<LoadInst>(B))
1044 return isStoredObjCPointer(A);
1046 } else {
1047 if (BIsIdentified && isa<LoadInst>(A))
1048 return isStoredObjCPointer(B);
1051 // Special handling for PHI and Select.
1052 if (const PHINode *PN = dyn_cast<PHINode>(A))
1053 return relatedPHI(PN, B);
1054 if (const PHINode *PN = dyn_cast<PHINode>(B))
1055 return relatedPHI(PN, A);
1056 if (const SelectInst *S = dyn_cast<SelectInst>(A))
1057 return relatedSelect(S, B);
1058 if (const SelectInst *S = dyn_cast<SelectInst>(B))
1059 return relatedSelect(S, A);
1061 // Conservative.
1062 return true;
1065 bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
1066 // Begin by inserting a conservative value into the map. If the insertion
1067 // fails, we have the answer already. If it succeeds, leave it there until we
1068 // compute the real answer to guard against recursive queries.
1069 if (A > B) std::swap(A, B);
1070 std::pair<CachedResultsTy::iterator, bool> Pair =
1071 CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
1072 if (!Pair.second)
1073 return Pair.first->second;
1075 bool Result = relatedCheck(A, B);
1076 CachedResults[ValuePairTy(A, B)] = Result;
1077 return Result;
1080 namespace {
1081 // Sequence - A sequence of states that a pointer may go through in which an
1082 // objc_retain and objc_release are actually needed.
1083 enum Sequence {
1084 S_None,
1085 S_Retain, ///< objc_retain(x)
1086 S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement
1087 S_Use, ///< any use of x
1088 S_Stop, ///< like S_Release, but code motion is stopped
1089 S_Release, ///< objc_release(x)
1090 S_MovableRelease ///< objc_release(x), !clang.imprecise_release
1094 static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
1095 // The easy cases.
1096 if (A == B)
1097 return A;
1098 if (A == S_None || B == S_None)
1099 return S_None;
1101 // Note that we can't merge S_CanRelease and S_Use.
1102 if (A > B) std::swap(A, B);
1103 if (TopDown) {
1104 // Choose the side which is further along in the sequence.
1105 if (A == S_Retain && (B == S_CanRelease || B == S_Use))
1106 return B;
1107 } else {
1108 // Choose the side which is further along in the sequence.
1109 if ((A == S_Use || A == S_CanRelease) &&
1110 (B == S_Release || B == S_Stop || B == S_MovableRelease))
1111 return A;
1112 // If both sides are releases, choose the more conservative one.
1113 if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
1114 return A;
1115 if (A == S_Release && B == S_MovableRelease)
1116 return A;
1119 return S_None;
1122 namespace {
1123 /// RRInfo - Unidirectional information about either a
1124 /// retain-decrement-use-release sequence or release-use-decrement-retain
1125 /// reverese sequence.
1126 struct RRInfo {
1127 /// KnownIncremented - After an objc_retain, the reference count of the
1128 /// referenced object is known to be positive. Similarly, before an
1129 /// objc_release, the reference count of the referenced object is known to
1130 /// be positive. If there are retain-release pairs in code regions where the
1131 /// retain count is known to be positive, they can be eliminated, regardless
1132 /// of any side effects between them.
1133 bool KnownIncremented;
1135 /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
1136 /// opposed to objc_retain calls).
1137 bool IsRetainBlock;
1139 /// IsTailCallRelease - True of the objc_release calls are all marked
1140 /// with the "tail" keyword.
1141 bool IsTailCallRelease;
1143 /// ReleaseMetadata - If the Calls are objc_release calls and they all have
1144 /// a clang.imprecise_release tag, this is the metadata tag.
1145 MDNode *ReleaseMetadata;
1147 /// Calls - For a top-down sequence, the set of objc_retains or
1148 /// objc_retainBlocks. For bottom-up, the set of objc_releases.
1149 SmallPtrSet<Instruction *, 2> Calls;
1151 /// ReverseInsertPts - The set of optimal insert positions for
1152 /// moving calls in the opposite sequence.
1153 SmallPtrSet<Instruction *, 2> ReverseInsertPts;
1155 RRInfo() :
1156 KnownIncremented(false), IsRetainBlock(false), IsTailCallRelease(false),
1157 ReleaseMetadata(0) {}
1159 void clear();
1163 void RRInfo::clear() {
1164 KnownIncremented = false;
1165 IsRetainBlock = false;
1166 IsTailCallRelease = false;
1167 ReleaseMetadata = 0;
1168 Calls.clear();
1169 ReverseInsertPts.clear();
1172 namespace {
1173 /// PtrState - This class summarizes several per-pointer runtime properties
1174 /// which are propogated through the flow graph.
1175 class PtrState {
1176 /// RefCount - The known minimum number of reference count increments.
1177 unsigned RefCount;
1179 /// Seq - The current position in the sequence.
1180 Sequence Seq;
1182 public:
1183 /// RRI - Unidirectional information about the current sequence.
1184 /// TODO: Encapsulate this better.
1185 RRInfo RRI;
1187 PtrState() : RefCount(0), Seq(S_None) {}
1189 void IncrementRefCount() {
1190 if (RefCount != UINT_MAX) ++RefCount;
1193 void DecrementRefCount() {
1194 if (RefCount != 0) --RefCount;
1197 void ClearRefCount() {
1198 RefCount = 0;
1201 bool IsKnownIncremented() const {
1202 return RefCount > 0;
1205 void SetSeq(Sequence NewSeq) {
1206 Seq = NewSeq;
1209 void SetSeqToRelease(MDNode *M) {
1210 if (Seq == S_None || Seq == S_Use) {
1211 Seq = M ? S_MovableRelease : S_Release;
1212 RRI.ReleaseMetadata = M;
1213 } else if (Seq != S_MovableRelease || RRI.ReleaseMetadata != M) {
1214 Seq = S_Release;
1215 RRI.ReleaseMetadata = 0;
1219 Sequence GetSeq() const {
1220 return Seq;
1223 void ClearSequenceProgress() {
1224 Seq = S_None;
1225 RRI.clear();
1228 void Merge(const PtrState &Other, bool TopDown);
1232 void
1233 PtrState::Merge(const PtrState &Other, bool TopDown) {
1234 Seq = MergeSeqs(Seq, Other.Seq, TopDown);
1235 RefCount = std::min(RefCount, Other.RefCount);
1237 // We can't merge a plain objc_retain with an objc_retainBlock.
1238 if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
1239 Seq = S_None;
1241 if (Seq == S_None) {
1242 RRI.clear();
1243 } else {
1244 // Conservatively merge the ReleaseMetadata information.
1245 if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
1246 RRI.ReleaseMetadata = 0;
1248 RRI.KnownIncremented = RRI.KnownIncremented && Other.RRI.KnownIncremented;
1249 RRI.IsTailCallRelease = RRI.IsTailCallRelease && Other.RRI.IsTailCallRelease;
1250 RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
1251 RRI.ReverseInsertPts.insert(Other.RRI.ReverseInsertPts.begin(),
1252 Other.RRI.ReverseInsertPts.end());
1256 namespace {
1257 /// BBState - Per-BasicBlock state.
1258 class BBState {
1259 /// TopDownPathCount - The number of unique control paths from the entry
1260 /// which can reach this block.
1261 unsigned TopDownPathCount;
1263 /// BottomUpPathCount - The number of unique control paths to exits
1264 /// from this block.
1265 unsigned BottomUpPathCount;
1267 /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
1268 typedef MapVector<const Value *, PtrState> MapTy;
1270 /// PerPtrTopDown - The top-down traversal uses this to record information
1271 /// known about a pointer at the bottom of each block.
1272 MapTy PerPtrTopDown;
1274 /// PerPtrBottomUp - The bottom-up traversal uses this to record information
1275 /// known about a pointer at the top of each block.
1276 MapTy PerPtrBottomUp;
1278 public:
1279 BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
1281 typedef MapTy::iterator ptr_iterator;
1282 typedef MapTy::const_iterator ptr_const_iterator;
1284 ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
1285 ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
1286 ptr_const_iterator top_down_ptr_begin() const {
1287 return PerPtrTopDown.begin();
1289 ptr_const_iterator top_down_ptr_end() const {
1290 return PerPtrTopDown.end();
1293 ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
1294 ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
1295 ptr_const_iterator bottom_up_ptr_begin() const {
1296 return PerPtrBottomUp.begin();
1298 ptr_const_iterator bottom_up_ptr_end() const {
1299 return PerPtrBottomUp.end();
1302 /// SetAsEntry - Mark this block as being an entry block, which has one
1303 /// path from the entry by definition.
1304 void SetAsEntry() { TopDownPathCount = 1; }
1306 /// SetAsExit - Mark this block as being an exit block, which has one
1307 /// path to an exit by definition.
1308 void SetAsExit() { BottomUpPathCount = 1; }
1310 PtrState &getPtrTopDownState(const Value *Arg) {
1311 return PerPtrTopDown[Arg];
1314 PtrState &getPtrBottomUpState(const Value *Arg) {
1315 return PerPtrBottomUp[Arg];
1318 void clearBottomUpPointers() {
1319 PerPtrTopDown.clear();
1322 void clearTopDownPointers() {
1323 PerPtrTopDown.clear();
1326 void InitFromPred(const BBState &Other);
1327 void InitFromSucc(const BBState &Other);
1328 void MergePred(const BBState &Other);
1329 void MergeSucc(const BBState &Other);
1331 /// GetAllPathCount - Return the number of possible unique paths from an
1332 /// entry to an exit which pass through this block. This is only valid
1333 /// after both the top-down and bottom-up traversals are complete.
1334 unsigned GetAllPathCount() const {
1335 return TopDownPathCount * BottomUpPathCount;
1340 void BBState::InitFromPred(const BBState &Other) {
1341 PerPtrTopDown = Other.PerPtrTopDown;
1342 TopDownPathCount = Other.TopDownPathCount;
1345 void BBState::InitFromSucc(const BBState &Other) {
1346 PerPtrBottomUp = Other.PerPtrBottomUp;
1347 BottomUpPathCount = Other.BottomUpPathCount;
1350 /// MergePred - The top-down traversal uses this to merge information about
1351 /// predecessors to form the initial state for a new block.
1352 void BBState::MergePred(const BBState &Other) {
1353 // Other.TopDownPathCount can be 0, in which case it is either dead or a
1354 // loop backedge. Loop backedges are special.
1355 TopDownPathCount += Other.TopDownPathCount;
1357 // For each entry in the other set, if our set has an entry with the same key,
1358 // merge the entries. Otherwise, copy the entry and merge it with an empty
1359 // entry.
1360 for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
1361 ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
1362 std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
1363 Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1364 /*TopDown=*/true);
1367 // For each entry in our set, if the other set doens't have an entry with the
1368 // same key, force it to merge with an empty entry.
1369 for (ptr_iterator MI = top_down_ptr_begin(),
1370 ME = top_down_ptr_end(); MI != ME; ++MI)
1371 if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
1372 MI->second.Merge(PtrState(), /*TopDown=*/true);
1375 /// MergeSucc - The bottom-up traversal uses this to merge information about
1376 /// successors to form the initial state for a new block.
1377 void BBState::MergeSucc(const BBState &Other) {
1378 // Other.BottomUpPathCount can be 0, in which case it is either dead or a
1379 // loop backedge. Loop backedges are special.
1380 BottomUpPathCount += Other.BottomUpPathCount;
1382 // For each entry in the other set, if our set has an entry with the
1383 // same key, merge the entries. Otherwise, copy the entry and merge
1384 // it with an empty entry.
1385 for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
1386 ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
1387 std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
1388 Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1389 /*TopDown=*/false);
1392 // For each entry in our set, if the other set doens't have an entry
1393 // with the same key, force it to merge with an empty entry.
1394 for (ptr_iterator MI = bottom_up_ptr_begin(),
1395 ME = bottom_up_ptr_end(); MI != ME; ++MI)
1396 if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
1397 MI->second.Merge(PtrState(), /*TopDown=*/false);
1400 namespace {
1401 /// ObjCARCOpt - The main ARC optimization pass.
1402 class ObjCARCOpt : public FunctionPass {
1403 bool Changed;
1404 ProvenanceAnalysis PA;
1406 /// Run - A flag indicating whether this optimization pass should run.
1407 bool Run;
1409 /// RetainFunc, RelaseFunc - Declarations for objc_retain,
1410 /// objc_retainBlock, and objc_release.
1411 Function *RetainFunc, *RetainBlockFunc, *RetainRVFunc, *ReleaseFunc;
1413 /// RetainRVCallee, etc. - Declarations for ObjC runtime
1414 /// functions, for use in creating calls to them. These are initialized
1415 /// lazily to avoid cluttering up the Module with unused declarations.
1416 Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
1417 *RetainCallee, *AutoreleaseCallee;
1419 /// UsedInThisFunciton - Flags which determine whether each of the
1420 /// interesting runtine functions is in fact used in the current function.
1421 unsigned UsedInThisFunction;
1423 /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
1424 /// metadata.
1425 unsigned ImpreciseReleaseMDKind;
1427 Constant *getRetainRVCallee(Module *M);
1428 Constant *getAutoreleaseRVCallee(Module *M);
1429 Constant *getReleaseCallee(Module *M);
1430 Constant *getRetainCallee(Module *M);
1431 Constant *getAutoreleaseCallee(Module *M);
1433 void OptimizeRetainCall(Function &F, Instruction *Retain);
1434 bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
1435 void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
1436 void OptimizeIndividualCalls(Function &F);
1438 void CheckForCFGHazards(const BasicBlock *BB,
1439 DenseMap<const BasicBlock *, BBState> &BBStates,
1440 BBState &MyStates) const;
1441 bool VisitBottomUp(BasicBlock *BB,
1442 DenseMap<const BasicBlock *, BBState> &BBStates,
1443 MapVector<Value *, RRInfo> &Retains);
1444 bool VisitTopDown(BasicBlock *BB,
1445 DenseMap<const BasicBlock *, BBState> &BBStates,
1446 DenseMap<Value *, RRInfo> &Releases);
1447 bool Visit(Function &F,
1448 DenseMap<const BasicBlock *, BBState> &BBStates,
1449 MapVector<Value *, RRInfo> &Retains,
1450 DenseMap<Value *, RRInfo> &Releases);
1452 void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
1453 MapVector<Value *, RRInfo> &Retains,
1454 DenseMap<Value *, RRInfo> &Releases,
1455 SmallVectorImpl<Instruction *> &DeadInsts);
1457 bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
1458 MapVector<Value *, RRInfo> &Retains,
1459 DenseMap<Value *, RRInfo> &Releases);
1461 void OptimizeWeakCalls(Function &F);
1463 bool OptimizeSequences(Function &F);
1465 void OptimizeReturns(Function &F);
1467 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1468 virtual bool doInitialization(Module &M);
1469 virtual bool runOnFunction(Function &F);
1470 virtual void releaseMemory();
1472 public:
1473 static char ID;
1474 ObjCARCOpt() : FunctionPass(ID) {
1475 initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
1480 char ObjCARCOpt::ID = 0;
1481 INITIALIZE_PASS_BEGIN(ObjCARCOpt,
1482 "objc-arc", "ObjC ARC optimization", false, false)
1483 INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
1484 INITIALIZE_PASS_END(ObjCARCOpt,
1485 "objc-arc", "ObjC ARC optimization", false, false)
1487 Pass *llvm::createObjCARCOptPass() {
1488 return new ObjCARCOpt();
1491 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
1492 AU.addRequired<ObjCARCAliasAnalysis>();
1493 AU.addRequired<AliasAnalysis>();
1494 // ARC optimization doesn't currently split critical edges.
1495 AU.setPreservesCFG();
1498 Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
1499 if (!RetainRVCallee) {
1500 LLVMContext &C = M->getContext();
1501 const Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1502 std::vector<const Type *> Params;
1503 Params.push_back(I8X);
1504 const FunctionType *FTy =
1505 FunctionType::get(I8X, Params, /*isVarArg=*/false);
1506 AttrListPtr Attributes;
1507 Attributes.addAttr(~0u, Attribute::NoUnwind);
1508 RetainRVCallee =
1509 M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
1510 Attributes);
1512 return RetainRVCallee;
1515 Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
1516 if (!AutoreleaseRVCallee) {
1517 LLVMContext &C = M->getContext();
1518 const Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1519 std::vector<const Type *> Params;
1520 Params.push_back(I8X);
1521 const FunctionType *FTy =
1522 FunctionType::get(I8X, Params, /*isVarArg=*/false);
1523 AttrListPtr Attributes;
1524 Attributes.addAttr(~0u, Attribute::NoUnwind);
1525 AutoreleaseRVCallee =
1526 M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
1527 Attributes);
1529 return AutoreleaseRVCallee;
1532 Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
1533 if (!ReleaseCallee) {
1534 LLVMContext &C = M->getContext();
1535 std::vector<const Type *> Params;
1536 Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1537 AttrListPtr Attributes;
1538 Attributes.addAttr(~0u, Attribute::NoUnwind);
1539 ReleaseCallee =
1540 M->getOrInsertFunction(
1541 "objc_release",
1542 FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
1543 Attributes);
1545 return ReleaseCallee;
1548 Constant *ObjCARCOpt::getRetainCallee(Module *M) {
1549 if (!RetainCallee) {
1550 LLVMContext &C = M->getContext();
1551 std::vector<const Type *> Params;
1552 Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1553 AttrListPtr Attributes;
1554 Attributes.addAttr(~0u, Attribute::NoUnwind);
1555 RetainCallee =
1556 M->getOrInsertFunction(
1557 "objc_retain",
1558 FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1559 Attributes);
1561 return RetainCallee;
1564 Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
1565 if (!AutoreleaseCallee) {
1566 LLVMContext &C = M->getContext();
1567 std::vector<const Type *> Params;
1568 Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1569 AttrListPtr Attributes;
1570 Attributes.addAttr(~0u, Attribute::NoUnwind);
1571 AutoreleaseCallee =
1572 M->getOrInsertFunction(
1573 "objc_autorelease",
1574 FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1575 Attributes);
1577 return AutoreleaseCallee;
1580 /// CanAlterRefCount - Test whether the given instruction can result in a
1581 /// reference count modification (positive or negative) for the pointer's
1582 /// object.
1583 static bool
1584 CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
1585 ProvenanceAnalysis &PA, InstructionClass Class) {
1586 switch (Class) {
1587 case IC_Autorelease:
1588 case IC_AutoreleaseRV:
1589 case IC_User:
1590 // These operations never directly modify a reference count.
1591 return false;
1592 default: break;
1595 ImmutableCallSite CS = static_cast<const Value *>(Inst);
1596 assert(CS && "Only calls can alter reference counts!");
1598 // See if AliasAnalysis can help us with the call.
1599 AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
1600 if (AliasAnalysis::onlyReadsMemory(MRB))
1601 return false;
1602 if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
1603 for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1604 I != E; ++I) {
1605 const Value *Op = *I;
1606 if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1607 return true;
1609 return false;
1612 // Assume the worst.
1613 return true;
1616 /// CanUse - Test whether the given instruction can "use" the given pointer's
1617 /// object in a way that requires the reference count to be positive.
1618 static bool
1619 CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
1620 InstructionClass Class) {
1621 // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
1622 if (Class == IC_Call)
1623 return false;
1625 // Consider various instructions which may have pointer arguments which are
1626 // not "uses".
1627 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
1628 // Comparing a pointer with null, or any other constant, isn't really a use,
1629 // because we don't care what the pointer points to, or about the values
1630 // of any other dynamic reference-counted pointers.
1631 if (!IsPotentialUse(ICI->getOperand(1)))
1632 return false;
1633 } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
1634 // For calls, just check the arguments (and not the callee operand).
1635 for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
1636 OE = CS.arg_end(); OI != OE; ++OI) {
1637 const Value *Op = *OI;
1638 if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1639 return true;
1641 return false;
1642 } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1643 // Special-case stores, because we don't care about the stored value, just
1644 // the store address.
1645 const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
1646 // If we can't tell what the underlying object was, assume there is a
1647 // dependence.
1648 return IsPotentialUse(Op) && PA.related(Op, Ptr);
1651 // Check each operand for a match.
1652 for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
1653 OI != OE; ++OI) {
1654 const Value *Op = *OI;
1655 if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1656 return true;
1658 return false;
1661 /// CanInterruptRV - Test whether the given instruction can autorelease
1662 /// any pointer or cause an autoreleasepool pop.
1663 static bool
1664 CanInterruptRV(InstructionClass Class) {
1665 switch (Class) {
1666 case IC_AutoreleasepoolPop:
1667 case IC_CallOrUser:
1668 case IC_Call:
1669 case IC_Autorelease:
1670 case IC_AutoreleaseRV:
1671 case IC_FusedRetainAutorelease:
1672 case IC_FusedRetainAutoreleaseRV:
1673 return true;
1674 default:
1675 return false;
1679 namespace {
1680 /// DependenceKind - There are several kinds of dependence-like concepts in
1681 /// use here.
1682 enum DependenceKind {
1683 NeedsPositiveRetainCount,
1684 CanChangeRetainCount,
1685 RetainAutoreleaseDep, ///< Blocks objc_retainAutorelease.
1686 RetainAutoreleaseRVDep, ///< Blocks objc_retainAutoreleaseReturnValue.
1687 RetainRVDep ///< Blocks objc_retainAutoreleasedReturnValue.
1691 /// Depends - Test if there can be dependencies on Inst through Arg. This
1692 /// function only tests dependencies relevant for removing pairs of calls.
1693 static bool
1694 Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
1695 ProvenanceAnalysis &PA) {
1696 // If we've reached the definition of Arg, stop.
1697 if (Inst == Arg)
1698 return true;
1700 switch (Flavor) {
1701 case NeedsPositiveRetainCount: {
1702 InstructionClass Class = GetInstructionClass(Inst);
1703 switch (Class) {
1704 case IC_AutoreleasepoolPop:
1705 case IC_AutoreleasepoolPush:
1706 case IC_None:
1707 return false;
1708 default:
1709 return CanUse(Inst, Arg, PA, Class);
1713 case CanChangeRetainCount: {
1714 InstructionClass Class = GetInstructionClass(Inst);
1715 switch (Class) {
1716 case IC_AutoreleasepoolPop:
1717 // Conservatively assume this can decrement any count.
1718 return true;
1719 case IC_AutoreleasepoolPush:
1720 case IC_None:
1721 return false;
1722 default:
1723 return CanAlterRefCount(Inst, Arg, PA, Class);
1727 case RetainAutoreleaseDep:
1728 switch (GetBasicInstructionClass(Inst)) {
1729 case IC_AutoreleasepoolPop:
1730 // Don't merge an objc_autorelease with an objc_retain inside a different
1731 // autoreleasepool scope.
1732 return true;
1733 case IC_Retain:
1734 case IC_RetainRV:
1735 // Check for a retain of the same pointer for merging.
1736 return GetObjCArg(Inst) == Arg;
1737 default:
1738 // Nothing else matters for objc_retainAutorelease formation.
1739 return false;
1741 break;
1743 case RetainAutoreleaseRVDep: {
1744 InstructionClass Class = GetBasicInstructionClass(Inst);
1745 switch (Class) {
1746 case IC_Retain:
1747 case IC_RetainRV:
1748 // Check for a retain of the same pointer for merging.
1749 return GetObjCArg(Inst) == Arg;
1750 default:
1751 // Anything that can autorelease interrupts
1752 // retainAutoreleaseReturnValue formation.
1753 return CanInterruptRV(Class);
1755 break;
1758 case RetainRVDep:
1759 return CanInterruptRV(GetBasicInstructionClass(Inst));
1762 llvm_unreachable("Invalid dependence flavor");
1763 return true;
1766 /// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
1767 /// find local and non-local dependencies on Arg.
1768 /// TODO: Cache results?
1769 static void
1770 FindDependencies(DependenceKind Flavor,
1771 const Value *Arg,
1772 BasicBlock *StartBB, Instruction *StartInst,
1773 SmallPtrSet<Instruction *, 4> &DependingInstructions,
1774 SmallPtrSet<const BasicBlock *, 4> &Visited,
1775 ProvenanceAnalysis &PA) {
1776 BasicBlock::iterator StartPos = StartInst;
1778 SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
1779 Worklist.push_back(std::make_pair(StartBB, StartPos));
1780 do {
1781 std::pair<BasicBlock *, BasicBlock::iterator> Pair =
1782 Worklist.pop_back_val();
1783 BasicBlock *LocalStartBB = Pair.first;
1784 BasicBlock::iterator LocalStartPos = Pair.second;
1785 BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
1786 for (;;) {
1787 if (LocalStartPos == StartBBBegin) {
1788 pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
1789 if (PI == PE)
1790 // If we've reached the function entry, produce a null dependence.
1791 DependingInstructions.insert(0);
1792 else
1793 // Add the predecessors to the worklist.
1794 do {
1795 BasicBlock *PredBB = *PI;
1796 if (Visited.insert(PredBB))
1797 Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
1798 } while (++PI != PE);
1799 break;
1802 Instruction *Inst = --LocalStartPos;
1803 if (Depends(Flavor, Inst, Arg, PA)) {
1804 DependingInstructions.insert(Inst);
1805 break;
1808 } while (!Worklist.empty());
1810 // Determine whether the original StartBB post-dominates all of the blocks we
1811 // visited. If not, insert a sentinal indicating that most optimizations are
1812 // not safe.
1813 for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
1814 E = Visited.end(); I != E; ++I) {
1815 const BasicBlock *BB = *I;
1816 if (BB == StartBB)
1817 continue;
1818 const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
1819 for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
1820 const BasicBlock *Succ = *SI;
1821 if (Succ != StartBB && !Visited.count(Succ)) {
1822 DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
1823 return;
1829 static bool isNullOrUndef(const Value *V) {
1830 return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
1833 static bool isNoopInstruction(const Instruction *I) {
1834 return isa<BitCastInst>(I) ||
1835 (isa<GetElementPtrInst>(I) &&
1836 cast<GetElementPtrInst>(I)->hasAllZeroIndices());
1839 /// OptimizeRetainCall - Turn objc_retain into
1840 /// objc_retainAutoreleasedReturnValue if the operand is a return value.
1841 void
1842 ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
1843 CallSite CS(GetObjCArg(Retain));
1844 Instruction *Call = CS.getInstruction();
1845 if (!Call) return;
1846 if (Call->getParent() != Retain->getParent()) return;
1848 // Check that the call is next to the retain.
1849 BasicBlock::iterator I = Call;
1850 ++I;
1851 while (isNoopInstruction(I)) ++I;
1852 if (&*I != Retain)
1853 return;
1855 // Turn it to an objc_retainAutoreleasedReturnValue..
1856 Changed = true;
1857 ++NumPeeps;
1858 cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
1861 /// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
1862 /// objc_retain if the operand is not a return value. Or, if it can be
1863 /// paired with an objc_autoreleaseReturnValue, delete the pair and
1864 /// return true.
1865 bool
1866 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
1867 // Check for the argument being from an immediately preceding call.
1868 Value *Arg = GetObjCArg(RetainRV);
1869 CallSite CS(Arg);
1870 if (Instruction *Call = CS.getInstruction())
1871 if (Call->getParent() == RetainRV->getParent()) {
1872 BasicBlock::iterator I = Call;
1873 ++I;
1874 while (isNoopInstruction(I)) ++I;
1875 if (&*I == RetainRV)
1876 return false;
1879 // Check for being preceded by an objc_autoreleaseReturnValue on the same
1880 // pointer. In this case, we can delete the pair.
1881 BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
1882 if (I != Begin) {
1883 do --I; while (I != Begin && isNoopInstruction(I));
1884 if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
1885 GetObjCArg(I) == Arg) {
1886 Changed = true;
1887 ++NumPeeps;
1888 EraseInstruction(I);
1889 EraseInstruction(RetainRV);
1890 return true;
1894 // Turn it to a plain objc_retain.
1895 Changed = true;
1896 ++NumPeeps;
1897 cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
1898 return false;
1901 /// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
1902 /// objc_autorelease if the result is not used as a return value.
1903 void
1904 ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
1905 // Check for a return of the pointer value.
1906 const Value *Ptr = GetObjCArg(AutoreleaseRV);
1907 for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
1908 UI != UE; ++UI) {
1909 const User *I = *UI;
1910 if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
1911 return;
1914 Changed = true;
1915 ++NumPeeps;
1916 cast<CallInst>(AutoreleaseRV)->
1917 setCalledFunction(getAutoreleaseCallee(F.getParent()));
1920 /// OptimizeIndividualCalls - Visit each call, one at a time, and make
1921 /// simplifications without doing any additional analysis.
1922 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
1923 // Reset all the flags in preparation for recomputing them.
1924 UsedInThisFunction = 0;
1926 // Visit all objc_* calls in F.
1927 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1928 Instruction *Inst = &*I++;
1929 InstructionClass Class = GetBasicInstructionClass(Inst);
1931 switch (Class) {
1932 default: break;
1934 // Delete no-op casts. These function calls have special semantics, but
1935 // the semantics are entirely implemented via lowering in the front-end,
1936 // so by the time they reach the optimizer, they are just no-op calls
1937 // which return their argument.
1939 // There are gray areas here, as the ability to cast reference-counted
1940 // pointers to raw void* and back allows code to break ARC assumptions,
1941 // however these are currently considered to be unimportant.
1942 case IC_NoopCast:
1943 Changed = true;
1944 ++NumNoops;
1945 EraseInstruction(Inst);
1946 continue;
1948 // If the pointer-to-weak-pointer is null, it's undefined behavior.
1949 case IC_StoreWeak:
1950 case IC_LoadWeak:
1951 case IC_LoadWeakRetained:
1952 case IC_InitWeak:
1953 case IC_DestroyWeak: {
1954 CallInst *CI = cast<CallInst>(Inst);
1955 if (isNullOrUndef(CI->getArgOperand(0))) {
1956 const Type *Ty = CI->getArgOperand(0)->getType();
1957 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
1958 Constant::getNullValue(Ty),
1959 CI);
1960 CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
1961 CI->eraseFromParent();
1962 continue;
1964 break;
1966 case IC_CopyWeak:
1967 case IC_MoveWeak: {
1968 CallInst *CI = cast<CallInst>(Inst);
1969 if (isNullOrUndef(CI->getArgOperand(0)) ||
1970 isNullOrUndef(CI->getArgOperand(1))) {
1971 const Type *Ty = CI->getArgOperand(0)->getType();
1972 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
1973 Constant::getNullValue(Ty),
1974 CI);
1975 CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
1976 CI->eraseFromParent();
1977 continue;
1979 break;
1981 case IC_Retain:
1982 OptimizeRetainCall(F, Inst);
1983 break;
1984 case IC_RetainRV:
1985 if (OptimizeRetainRVCall(F, Inst))
1986 continue;
1987 break;
1988 case IC_AutoreleaseRV:
1989 OptimizeAutoreleaseRVCall(F, Inst);
1990 break;
1993 // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
1994 if (IsAutorelease(Class) && Inst->use_empty()) {
1995 CallInst *Call = cast<CallInst>(Inst);
1996 const Value *Arg = Call->getArgOperand(0);
1997 Arg = FindSingleUseIdentifiedObject(Arg);
1998 if (Arg) {
1999 Changed = true;
2000 ++NumAutoreleases;
2002 // Create the declaration lazily.
2003 LLVMContext &C = Inst->getContext();
2004 CallInst *NewCall =
2005 CallInst::Create(getReleaseCallee(F.getParent()),
2006 Call->getArgOperand(0), "", Call);
2007 NewCall->setMetadata(ImpreciseReleaseMDKind,
2008 MDNode::get(C, ArrayRef<Value *>()));
2009 EraseInstruction(Call);
2010 Inst = NewCall;
2011 Class = IC_Release;
2015 // For functions which can never be passed stack arguments, add
2016 // a tail keyword.
2017 if (IsAlwaysTail(Class)) {
2018 Changed = true;
2019 cast<CallInst>(Inst)->setTailCall();
2022 // Set nounwind as needed.
2023 if (IsNoThrow(Class)) {
2024 Changed = true;
2025 cast<CallInst>(Inst)->setDoesNotThrow();
2028 if (!IsNoopOnNull(Class)) {
2029 UsedInThisFunction |= 1 << Class;
2030 continue;
2033 const Value *Arg = GetObjCArg(Inst);
2035 // ARC calls with null are no-ops. Delete them.
2036 if (isNullOrUndef(Arg)) {
2037 Changed = true;
2038 ++NumNoops;
2039 EraseInstruction(Inst);
2040 continue;
2043 // Keep track of which of retain, release, autorelease, and retain_block
2044 // are actually present in this function.
2045 UsedInThisFunction |= 1 << Class;
2047 // If Arg is a PHI, and one or more incoming values to the
2048 // PHI are null, and the call is control-equivalent to the PHI, and there
2049 // are no relevant side effects between the PHI and the call, the call
2050 // could be pushed up to just those paths with non-null incoming values.
2051 // For now, don't bother splitting critical edges for this.
2052 SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
2053 Worklist.push_back(std::make_pair(Inst, Arg));
2054 do {
2055 std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
2056 Inst = Pair.first;
2057 Arg = Pair.second;
2059 const PHINode *PN = dyn_cast<PHINode>(Arg);
2060 if (!PN) continue;
2062 // Determine if the PHI has any null operands, or any incoming
2063 // critical edges.
2064 bool HasNull = false;
2065 bool HasCriticalEdges = false;
2066 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2067 Value *Incoming =
2068 StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2069 if (isNullOrUndef(Incoming))
2070 HasNull = true;
2071 else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
2072 .getNumSuccessors() != 1) {
2073 HasCriticalEdges = true;
2074 break;
2077 // If we have null operands and no critical edges, optimize.
2078 if (!HasCriticalEdges && HasNull) {
2079 SmallPtrSet<Instruction *, 4> DependingInstructions;
2080 SmallPtrSet<const BasicBlock *, 4> Visited;
2082 // Check that there is nothing that cares about the reference
2083 // count between the call and the phi.
2084 FindDependencies(NeedsPositiveRetainCount, Arg,
2085 Inst->getParent(), Inst,
2086 DependingInstructions, Visited, PA);
2087 if (DependingInstructions.size() == 1 &&
2088 *DependingInstructions.begin() == PN) {
2089 Changed = true;
2090 ++NumPartialNoops;
2091 // Clone the call into each predecessor that has a non-null value.
2092 CallInst *CInst = cast<CallInst>(Inst);
2093 const Type *ParamTy = CInst->getArgOperand(0)->getType();
2094 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2095 Value *Incoming =
2096 StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2097 if (!isNullOrUndef(Incoming)) {
2098 CallInst *Clone = cast<CallInst>(CInst->clone());
2099 Value *Op = PN->getIncomingValue(i);
2100 Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
2101 if (Op->getType() != ParamTy)
2102 Op = new BitCastInst(Op, ParamTy, "", InsertPos);
2103 Clone->setArgOperand(0, Op);
2104 Clone->insertBefore(InsertPos);
2105 Worklist.push_back(std::make_pair(Clone, Incoming));
2108 // Erase the original call.
2109 EraseInstruction(CInst);
2110 continue;
2113 } while (!Worklist.empty());
2117 /// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
2118 /// control flow, or other CFG structures where moving code across the edge
2119 /// would result in it being executed more.
2120 void
2121 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
2122 DenseMap<const BasicBlock *, BBState> &BBStates,
2123 BBState &MyStates) const {
2124 // If any top-down local-use or possible-dec has a succ which is earlier in
2125 // the sequence, forget it.
2126 for (BBState::ptr_const_iterator I = MyStates.top_down_ptr_begin(),
2127 E = MyStates.top_down_ptr_end(); I != E; ++I)
2128 switch (I->second.GetSeq()) {
2129 default: break;
2130 case S_Use: {
2131 const Value *Arg = I->first;
2132 const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2133 bool SomeSuccHasSame = false;
2134 bool AllSuccsHaveSame = true;
2135 for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI)
2136 switch (BBStates[*SI].getPtrBottomUpState(Arg).GetSeq()) {
2137 case S_None:
2138 case S_CanRelease:
2139 MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2140 SomeSuccHasSame = false;
2141 break;
2142 case S_Use:
2143 SomeSuccHasSame = true;
2144 break;
2145 case S_Stop:
2146 case S_Release:
2147 case S_MovableRelease:
2148 AllSuccsHaveSame = false;
2149 break;
2150 case S_Retain:
2151 llvm_unreachable("bottom-up pointer in retain state!");
2153 // If the state at the other end of any of the successor edges
2154 // matches the current state, require all edges to match. This
2155 // guards against loops in the middle of a sequence.
2156 if (SomeSuccHasSame && !AllSuccsHaveSame)
2157 MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2159 case S_CanRelease: {
2160 const Value *Arg = I->first;
2161 const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2162 bool SomeSuccHasSame = false;
2163 bool AllSuccsHaveSame = true;
2164 for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI)
2165 switch (BBStates[*SI].getPtrBottomUpState(Arg).GetSeq()) {
2166 case S_None:
2167 MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2168 SomeSuccHasSame = false;
2169 break;
2170 case S_CanRelease:
2171 SomeSuccHasSame = true;
2172 break;
2173 case S_Stop:
2174 case S_Release:
2175 case S_MovableRelease:
2176 case S_Use:
2177 AllSuccsHaveSame = false;
2178 break;
2179 case S_Retain:
2180 llvm_unreachable("bottom-up pointer in retain state!");
2182 // If the state at the other end of any of the successor edges
2183 // matches the current state, require all edges to match. This
2184 // guards against loops in the middle of a sequence.
2185 if (SomeSuccHasSame && !AllSuccsHaveSame)
2186 MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2191 bool
2192 ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
2193 DenseMap<const BasicBlock *, BBState> &BBStates,
2194 MapVector<Value *, RRInfo> &Retains) {
2195 bool NestingDetected = false;
2196 BBState &MyStates = BBStates[BB];
2198 // Merge the states from each successor to compute the initial state
2199 // for the current block.
2200 const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2201 succ_const_iterator SI(TI), SE(TI, false);
2202 if (SI == SE)
2203 MyStates.SetAsExit();
2204 else
2205 do {
2206 const BasicBlock *Succ = *SI++;
2207 if (Succ == BB)
2208 continue;
2209 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
2210 if (I == BBStates.end())
2211 continue;
2212 MyStates.InitFromSucc(I->second);
2213 while (SI != SE) {
2214 Succ = *SI++;
2215 if (Succ != BB) {
2216 I = BBStates.find(Succ);
2217 if (I != BBStates.end())
2218 MyStates.MergeSucc(I->second);
2221 break;
2222 } while (SI != SE);
2224 // Visit all the instructions, bottom-up.
2225 for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
2226 Instruction *Inst = llvm::prior(I);
2227 InstructionClass Class = GetInstructionClass(Inst);
2228 const Value *Arg = 0;
2230 switch (Class) {
2231 case IC_Release: {
2232 Arg = GetObjCArg(Inst);
2234 PtrState &S = MyStates.getPtrBottomUpState(Arg);
2236 // If we see two releases in a row on the same pointer. If so, make
2237 // a note, and we'll cicle back to revisit it after we've
2238 // hopefully eliminated the second release, which may allow us to
2239 // eliminate the first release too.
2240 // Theoretically we could implement removal of nested retain+release
2241 // pairs by making PtrState hold a stack of states, but this is
2242 // simple and avoids adding overhead for the non-nested case.
2243 if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
2244 NestingDetected = true;
2246 S.SetSeqToRelease(Inst->getMetadata(ImpreciseReleaseMDKind));
2247 S.RRI.clear();
2248 S.RRI.KnownIncremented = S.IsKnownIncremented();
2249 S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2250 S.RRI.Calls.insert(Inst);
2252 S.IncrementRefCount();
2253 break;
2255 case IC_RetainBlock:
2256 case IC_Retain:
2257 case IC_RetainRV: {
2258 Arg = GetObjCArg(Inst);
2260 PtrState &S = MyStates.getPtrBottomUpState(Arg);
2261 S.DecrementRefCount();
2263 switch (S.GetSeq()) {
2264 case S_Stop:
2265 case S_Release:
2266 case S_MovableRelease:
2267 case S_Use:
2268 S.RRI.ReverseInsertPts.clear();
2269 // FALL THROUGH
2270 case S_CanRelease:
2271 // Don't do retain+release tracking for IC_RetainRV, because it's
2272 // better to let it remain as the first instruction after a call.
2273 if (Class != IC_RetainRV) {
2274 S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2275 Retains[Inst] = S.RRI;
2277 S.ClearSequenceProgress();
2278 break;
2279 case S_None:
2280 break;
2281 case S_Retain:
2282 llvm_unreachable("bottom-up pointer in retain state!");
2284 break;
2286 case IC_AutoreleasepoolPop:
2287 // Conservatively, clear MyStates for all known pointers.
2288 MyStates.clearBottomUpPointers();
2289 continue;
2290 case IC_AutoreleasepoolPush:
2291 case IC_None:
2292 // These are irrelevant.
2293 continue;
2294 default:
2295 break;
2298 // Consider any other possible effects of this instruction on each
2299 // pointer being tracked.
2300 for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
2301 ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
2302 const Value *Ptr = MI->first;
2303 if (Ptr == Arg)
2304 continue; // Handled above.
2305 PtrState &S = MI->second;
2306 Sequence Seq = S.GetSeq();
2308 // Check for possible retains and releases.
2309 if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
2310 // Check for a retain (we're going bottom-up here).
2311 S.DecrementRefCount();
2313 // Check for a release.
2314 if (!IsRetain(Class) && Class != IC_RetainBlock)
2315 switch (Seq) {
2316 case S_Use:
2317 S.SetSeq(S_CanRelease);
2318 continue;
2319 case S_CanRelease:
2320 case S_Release:
2321 case S_MovableRelease:
2322 case S_Stop:
2323 case S_None:
2324 break;
2325 case S_Retain:
2326 llvm_unreachable("bottom-up pointer in retain state!");
2330 // Check for possible direct uses.
2331 switch (Seq) {
2332 case S_Release:
2333 case S_MovableRelease:
2334 if (CanUse(Inst, Ptr, PA, Class)) {
2335 S.RRI.ReverseInsertPts.clear();
2336 S.RRI.ReverseInsertPts.insert(Inst);
2337 S.SetSeq(S_Use);
2338 } else if (Seq == S_Release &&
2339 (Class == IC_User || Class == IC_CallOrUser)) {
2340 // Non-movable releases depend on any possible objc pointer use.
2341 S.SetSeq(S_Stop);
2342 S.RRI.ReverseInsertPts.clear();
2343 S.RRI.ReverseInsertPts.insert(Inst);
2345 break;
2346 case S_Stop:
2347 if (CanUse(Inst, Ptr, PA, Class))
2348 S.SetSeq(S_Use);
2349 break;
2350 case S_CanRelease:
2351 case S_Use:
2352 case S_None:
2353 break;
2354 case S_Retain:
2355 llvm_unreachable("bottom-up pointer in retain state!");
2360 return NestingDetected;
2363 bool
2364 ObjCARCOpt::VisitTopDown(BasicBlock *BB,
2365 DenseMap<const BasicBlock *, BBState> &BBStates,
2366 DenseMap<Value *, RRInfo> &Releases) {
2367 bool NestingDetected = false;
2368 BBState &MyStates = BBStates[BB];
2370 // Merge the states from each predecessor to compute the initial state
2371 // for the current block.
2372 const_pred_iterator PI(BB), PE(BB, false);
2373 if (PI == PE)
2374 MyStates.SetAsEntry();
2375 else
2376 do {
2377 const BasicBlock *Pred = *PI++;
2378 if (Pred == BB)
2379 continue;
2380 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
2381 if (I == BBStates.end())
2382 continue;
2383 MyStates.InitFromPred(I->second);
2384 while (PI != PE) {
2385 Pred = *PI++;
2386 if (Pred != BB) {
2387 I = BBStates.find(Pred);
2388 if (I != BBStates.end())
2389 MyStates.MergePred(I->second);
2392 break;
2393 } while (PI != PE);
2395 // Visit all the instructions, top-down.
2396 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2397 Instruction *Inst = I;
2398 InstructionClass Class = GetInstructionClass(Inst);
2399 const Value *Arg = 0;
2401 switch (Class) {
2402 case IC_RetainBlock:
2403 case IC_Retain:
2404 case IC_RetainRV: {
2405 Arg = GetObjCArg(Inst);
2407 PtrState &S = MyStates.getPtrTopDownState(Arg);
2409 // Don't do retain+release tracking for IC_RetainRV, because it's
2410 // better to let it remain as the first instruction after a call.
2411 if (Class != IC_RetainRV) {
2412 // If we see two retains in a row on the same pointer. If so, make
2413 // a note, and we'll cicle back to revisit it after we've
2414 // hopefully eliminated the second retain, which may allow us to
2415 // eliminate the first retain too.
2416 // Theoretically we could implement removal of nested retain+release
2417 // pairs by making PtrState hold a stack of states, but this is
2418 // simple and avoids adding overhead for the non-nested case.
2419 if (S.GetSeq() == S_Retain)
2420 NestingDetected = true;
2422 S.SetSeq(S_Retain);
2423 S.RRI.clear();
2424 S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2425 S.RRI.KnownIncremented = S.IsKnownIncremented();
2426 S.RRI.Calls.insert(Inst);
2429 S.IncrementRefCount();
2430 break;
2432 case IC_Release: {
2433 Arg = GetObjCArg(Inst);
2435 PtrState &S = MyStates.getPtrTopDownState(Arg);
2436 S.DecrementRefCount();
2438 switch (S.GetSeq()) {
2439 case S_Retain:
2440 case S_CanRelease:
2441 S.RRI.ReverseInsertPts.clear();
2442 // FALL THROUGH
2443 case S_Use:
2444 S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
2445 S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2446 Releases[Inst] = S.RRI;
2447 S.ClearSequenceProgress();
2448 break;
2449 case S_None:
2450 break;
2451 case S_Stop:
2452 case S_Release:
2453 case S_MovableRelease:
2454 llvm_unreachable("top-down pointer in release state!");
2456 break;
2458 case IC_AutoreleasepoolPop:
2459 // Conservatively, clear MyStates for all known pointers.
2460 MyStates.clearTopDownPointers();
2461 continue;
2462 case IC_AutoreleasepoolPush:
2463 case IC_None:
2464 // These are irrelevant.
2465 continue;
2466 default:
2467 break;
2470 // Consider any other possible effects of this instruction on each
2471 // pointer being tracked.
2472 for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
2473 ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
2474 const Value *Ptr = MI->first;
2475 if (Ptr == Arg)
2476 continue; // Handled above.
2477 PtrState &S = MI->second;
2478 Sequence Seq = S.GetSeq();
2480 // Check for possible releases.
2481 if (!IsRetain(Class) && Class != IC_RetainBlock &&
2482 CanAlterRefCount(Inst, Ptr, PA, Class)) {
2483 // Check for a release.
2484 S.DecrementRefCount();
2486 // Check for a release.
2487 switch (Seq) {
2488 case S_Retain:
2489 S.SetSeq(S_CanRelease);
2490 S.RRI.ReverseInsertPts.clear();
2491 S.RRI.ReverseInsertPts.insert(Inst);
2493 // One call can't cause a transition from S_Retain to S_CanRelease
2494 // and S_CanRelease to S_Use. If we've made the first transition,
2495 // we're done.
2496 continue;
2497 case S_Use:
2498 case S_CanRelease:
2499 case S_None:
2500 break;
2501 case S_Stop:
2502 case S_Release:
2503 case S_MovableRelease:
2504 llvm_unreachable("top-down pointer in release state!");
2508 // Check for possible direct uses.
2509 switch (Seq) {
2510 case S_CanRelease:
2511 if (CanUse(Inst, Ptr, PA, Class))
2512 S.SetSeq(S_Use);
2513 break;
2514 case S_Use:
2515 case S_Retain:
2516 case S_None:
2517 break;
2518 case S_Stop:
2519 case S_Release:
2520 case S_MovableRelease:
2521 llvm_unreachable("top-down pointer in release state!");
2526 CheckForCFGHazards(BB, BBStates, MyStates);
2527 return NestingDetected;
2530 // Visit - Visit the function both top-down and bottom-up.
2531 bool
2532 ObjCARCOpt::Visit(Function &F,
2533 DenseMap<const BasicBlock *, BBState> &BBStates,
2534 MapVector<Value *, RRInfo> &Retains,
2535 DenseMap<Value *, RRInfo> &Releases) {
2536 // Use postorder for bottom-up, and reverse-postorder for top-down, because we
2537 // magically know that loops will be well behaved, i.e. they won't repeatedly
2538 // call retain on a single pointer without doing a release.
2539 bool BottomUpNestingDetected = false;
2540 SmallVector<BasicBlock *, 8> PostOrder;
2541 for (po_iterator<Function *> I = po_begin(&F), E = po_end(&F); I != E; ++I) {
2542 BasicBlock *BB = *I;
2543 PostOrder.push_back(BB);
2545 BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
2548 // Iterate through the post-order in reverse order, achieving a
2549 // reverse-postorder traversal. We don't use the ReversePostOrderTraversal
2550 // class here because it works by computing its own full postorder iteration,
2551 // recording the sequence, and playing it back in reverse. Since we're already
2552 // doing a full iteration above, we can just record the sequence manually and
2553 // avoid the cost of having ReversePostOrderTraversal compute it.
2554 bool TopDownNestingDetected = false;
2555 for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator
2556 RI = PostOrder.rbegin(), RE = PostOrder.rend(); RI != RE; ++RI)
2557 TopDownNestingDetected |= VisitTopDown(*RI, BBStates, Releases);
2559 return TopDownNestingDetected && BottomUpNestingDetected;
2562 /// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
2563 void ObjCARCOpt::MoveCalls(Value *Arg,
2564 RRInfo &RetainsToMove,
2565 RRInfo &ReleasesToMove,
2566 MapVector<Value *, RRInfo> &Retains,
2567 DenseMap<Value *, RRInfo> &Releases,
2568 SmallVectorImpl<Instruction *> &DeadInsts) {
2569 const Type *ArgTy = Arg->getType();
2570 const Type *ParamTy =
2571 (RetainRVFunc ? RetainRVFunc :
2572 RetainFunc ? RetainFunc :
2573 RetainBlockFunc)->arg_begin()->getType();
2575 // Insert the new retain and release calls.
2576 for (SmallPtrSet<Instruction *, 2>::const_iterator
2577 PI = ReleasesToMove.ReverseInsertPts.begin(),
2578 PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2579 Instruction *InsertPt = *PI;
2580 Value *MyArg = ArgTy == ParamTy ? Arg :
2581 new BitCastInst(Arg, ParamTy, "", InsertPt);
2582 CallInst *Call =
2583 CallInst::Create(RetainsToMove.IsRetainBlock ?
2584 RetainBlockFunc : RetainFunc,
2585 MyArg, "", InsertPt);
2586 Call->setDoesNotThrow();
2587 if (!RetainsToMove.IsRetainBlock)
2588 Call->setTailCall();
2590 for (SmallPtrSet<Instruction *, 2>::const_iterator
2591 PI = RetainsToMove.ReverseInsertPts.begin(),
2592 PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2593 Instruction *LastUse = *PI;
2594 Instruction *InsertPts[] = { 0, 0, 0 };
2595 if (InvokeInst *II = dyn_cast<InvokeInst>(LastUse)) {
2596 // We can't insert code immediately after an invoke instruction, so
2597 // insert code at the beginning of both successor blocks instead.
2598 // The invoke's return value isn't available in the unwind block,
2599 // but our releases will never depend on it, because they must be
2600 // paired with retains from before the invoke.
2601 InsertPts[0] = II->getNormalDest()->getFirstNonPHI();
2602 InsertPts[1] = II->getUnwindDest()->getFirstNonPHI();
2603 } else {
2604 // Insert code immediately after the last use.
2605 InsertPts[0] = llvm::next(BasicBlock::iterator(LastUse));
2608 for (Instruction **I = InsertPts; *I; ++I) {
2609 Instruction *InsertPt = *I;
2610 Value *MyArg = ArgTy == ParamTy ? Arg :
2611 new BitCastInst(Arg, ParamTy, "", InsertPt);
2612 CallInst *Call = CallInst::Create(ReleaseFunc, MyArg, "", InsertPt);
2613 // Attach a clang.imprecise_release metadata tag, if appropriate.
2614 if (MDNode *M = ReleasesToMove.ReleaseMetadata)
2615 Call->setMetadata(ImpreciseReleaseMDKind, M);
2616 Call->setDoesNotThrow();
2617 if (ReleasesToMove.IsTailCallRelease)
2618 Call->setTailCall();
2622 // Delete the original retain and release calls.
2623 for (SmallPtrSet<Instruction *, 2>::const_iterator
2624 AI = RetainsToMove.Calls.begin(),
2625 AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
2626 Instruction *OrigRetain = *AI;
2627 Retains.blot(OrigRetain);
2628 DeadInsts.push_back(OrigRetain);
2630 for (SmallPtrSet<Instruction *, 2>::const_iterator
2631 AI = ReleasesToMove.Calls.begin(),
2632 AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
2633 Instruction *OrigRelease = *AI;
2634 Releases.erase(OrigRelease);
2635 DeadInsts.push_back(OrigRelease);
2639 bool
2640 ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
2641 &BBStates,
2642 MapVector<Value *, RRInfo> &Retains,
2643 DenseMap<Value *, RRInfo> &Releases) {
2644 bool AnyPairsCompletelyEliminated = false;
2645 RRInfo RetainsToMove;
2646 RRInfo ReleasesToMove;
2647 SmallVector<Instruction *, 4> NewRetains;
2648 SmallVector<Instruction *, 4> NewReleases;
2649 SmallVector<Instruction *, 8> DeadInsts;
2651 for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
2652 E = Retains.end(); I != E; ) {
2653 Value *V = (I++)->first;
2654 if (!V) continue; // blotted
2656 Instruction *Retain = cast<Instruction>(V);
2657 Value *Arg = GetObjCArg(Retain);
2659 // If the object being released is in static or stack storage, we know it's
2660 // not being managed by ObjC reference counting, so we can delete pairs
2661 // regardless of what possible decrements or uses lie between them.
2662 bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
2664 // If a pair happens in a region where it is known that the reference count
2665 // is already incremented, we can similarly ignore possible decrements.
2666 bool KnownIncrementedTD = true, KnownIncrementedBU = true;
2668 // Connect the dots between the top-down-collected RetainsToMove and
2669 // bottom-up-collected ReleasesToMove to form sets of related calls.
2670 // This is an iterative process so that we connect multiple releases
2671 // to multiple retains if needed.
2672 unsigned OldDelta = 0;
2673 unsigned NewDelta = 0;
2674 unsigned OldCount = 0;
2675 unsigned NewCount = 0;
2676 bool FirstRelease = true;
2677 bool FirstRetain = true;
2678 NewRetains.push_back(Retain);
2679 for (;;) {
2680 for (SmallVectorImpl<Instruction *>::const_iterator
2681 NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
2682 Instruction *NewRetain = *NI;
2683 MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
2684 assert(It != Retains.end());
2685 const RRInfo &NewRetainRRI = It->second;
2686 KnownIncrementedTD &= NewRetainRRI.KnownIncremented;
2687 for (SmallPtrSet<Instruction *, 2>::const_iterator
2688 LI = NewRetainRRI.Calls.begin(),
2689 LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
2690 Instruction *NewRetainRelease = *LI;
2691 DenseMap<Value *, RRInfo>::const_iterator Jt =
2692 Releases.find(NewRetainRelease);
2693 if (Jt == Releases.end())
2694 goto next_retain;
2695 const RRInfo &NewRetainReleaseRRI = Jt->second;
2696 assert(NewRetainReleaseRRI.Calls.count(NewRetain));
2697 if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
2698 OldDelta -=
2699 BBStates[NewRetainRelease->getParent()].GetAllPathCount();
2701 // Merge the ReleaseMetadata and IsTailCallRelease values.
2702 if (FirstRelease) {
2703 ReleasesToMove.ReleaseMetadata =
2704 NewRetainReleaseRRI.ReleaseMetadata;
2705 ReleasesToMove.IsTailCallRelease =
2706 NewRetainReleaseRRI.IsTailCallRelease;
2707 FirstRelease = false;
2708 } else {
2709 if (ReleasesToMove.ReleaseMetadata !=
2710 NewRetainReleaseRRI.ReleaseMetadata)
2711 ReleasesToMove.ReleaseMetadata = 0;
2712 if (ReleasesToMove.IsTailCallRelease !=
2713 NewRetainReleaseRRI.IsTailCallRelease)
2714 ReleasesToMove.IsTailCallRelease = false;
2717 // Collect the optimal insertion points.
2718 if (!KnownSafe)
2719 for (SmallPtrSet<Instruction *, 2>::const_iterator
2720 RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
2721 RE = NewRetainReleaseRRI.ReverseInsertPts.end();
2722 RI != RE; ++RI) {
2723 Instruction *RIP = *RI;
2724 if (ReleasesToMove.ReverseInsertPts.insert(RIP))
2725 NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
2727 NewReleases.push_back(NewRetainRelease);
2731 NewRetains.clear();
2732 if (NewReleases.empty()) break;
2734 // Back the other way.
2735 for (SmallVectorImpl<Instruction *>::const_iterator
2736 NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
2737 Instruction *NewRelease = *NI;
2738 DenseMap<Value *, RRInfo>::const_iterator It =
2739 Releases.find(NewRelease);
2740 assert(It != Releases.end());
2741 const RRInfo &NewReleaseRRI = It->second;
2742 KnownIncrementedBU &= NewReleaseRRI.KnownIncremented;
2743 for (SmallPtrSet<Instruction *, 2>::const_iterator
2744 LI = NewReleaseRRI.Calls.begin(),
2745 LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
2746 Instruction *NewReleaseRetain = *LI;
2747 MapVector<Value *, RRInfo>::const_iterator Jt =
2748 Retains.find(NewReleaseRetain);
2749 if (Jt == Retains.end())
2750 goto next_retain;
2751 const RRInfo &NewReleaseRetainRRI = Jt->second;
2752 assert(NewReleaseRetainRRI.Calls.count(NewRelease));
2753 if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
2754 unsigned PathCount =
2755 BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
2756 OldDelta += PathCount;
2757 OldCount += PathCount;
2759 // Merge the IsRetainBlock values.
2760 if (FirstRetain) {
2761 RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
2762 FirstRetain = false;
2763 } else if (ReleasesToMove.IsRetainBlock !=
2764 NewReleaseRetainRRI.IsRetainBlock)
2765 // It's not possible to merge the sequences if one uses
2766 // objc_retain and the other uses objc_retainBlock.
2767 goto next_retain;
2769 // Collect the optimal insertion points.
2770 if (!KnownSafe)
2771 for (SmallPtrSet<Instruction *, 2>::const_iterator
2772 RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
2773 RE = NewReleaseRetainRRI.ReverseInsertPts.end();
2774 RI != RE; ++RI) {
2775 Instruction *RIP = *RI;
2776 if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
2777 PathCount = BBStates[RIP->getParent()].GetAllPathCount();
2778 NewDelta += PathCount;
2779 NewCount += PathCount;
2782 NewRetains.push_back(NewReleaseRetain);
2786 NewReleases.clear();
2787 if (NewRetains.empty()) break;
2790 // If the pointer is known incremented, we can safely delete the pair
2791 // regardless of what's between them.
2792 if (KnownIncrementedTD || KnownIncrementedBU) {
2793 RetainsToMove.ReverseInsertPts.clear();
2794 ReleasesToMove.ReverseInsertPts.clear();
2795 NewCount = 0;
2798 // Determine whether the original call points are balanced in the retain and
2799 // release calls through the program. If not, conservatively don't touch
2800 // them.
2801 // TODO: It's theoretically possible to do code motion in this case, as
2802 // long as the existing imbalances are maintained.
2803 if (OldDelta != 0)
2804 goto next_retain;
2806 // Determine whether the new insertion points we computed preserve the
2807 // balance of retain and release calls through the program.
2808 // TODO: If the fully aggressive solution isn't valid, try to find a
2809 // less aggressive solution which is.
2810 if (NewDelta != 0)
2811 goto next_retain;
2813 // Ok, everything checks out and we're all set. Let's move some code!
2814 Changed = true;
2815 AnyPairsCompletelyEliminated = NewCount == 0;
2816 NumRRs += OldCount - NewCount;
2817 MoveCalls(Arg, RetainsToMove, ReleasesToMove, Retains, Releases, DeadInsts);
2819 next_retain:
2820 NewReleases.clear();
2821 NewRetains.clear();
2822 RetainsToMove.clear();
2823 ReleasesToMove.clear();
2826 // Now that we're done moving everything, we can delete the newly dead
2827 // instructions, as we no longer need them as insert points.
2828 while (!DeadInsts.empty())
2829 EraseInstruction(DeadInsts.pop_back_val());
2831 return AnyPairsCompletelyEliminated;
2834 /// OptimizeWeakCalls - Weak pointer optimizations.
2835 void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
2836 // First, do memdep-style RLE and S2L optimizations. We can't use memdep
2837 // itself because it uses AliasAnalysis and we need to do provenance
2838 // queries instead.
2839 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2840 Instruction *Inst = &*I++;
2841 InstructionClass Class = GetBasicInstructionClass(Inst);
2842 if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
2843 continue;
2845 // Delete objc_loadWeak calls with no users.
2846 if (Class == IC_LoadWeak && Inst->use_empty()) {
2847 Inst->eraseFromParent();
2848 continue;
2851 // TODO: For now, just look for an earlier available version of this value
2852 // within the same block. Theoretically, we could do memdep-style non-local
2853 // analysis too, but that would want caching. A better approach would be to
2854 // use the technique that EarlyCSE uses.
2855 inst_iterator Current = llvm::prior(I);
2856 BasicBlock *CurrentBB = Current.getBasicBlockIterator();
2857 for (BasicBlock::iterator B = CurrentBB->begin(),
2858 J = Current.getInstructionIterator();
2859 J != B; --J) {
2860 Instruction *EarlierInst = &*llvm::prior(J);
2861 InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
2862 switch (EarlierClass) {
2863 case IC_LoadWeak:
2864 case IC_LoadWeakRetained: {
2865 // If this is loading from the same pointer, replace this load's value
2866 // with that one.
2867 CallInst *Call = cast<CallInst>(Inst);
2868 CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2869 Value *Arg = Call->getArgOperand(0);
2870 Value *EarlierArg = EarlierCall->getArgOperand(0);
2871 switch (PA.getAA()->alias(Arg, EarlierArg)) {
2872 case AliasAnalysis::MustAlias:
2873 Changed = true;
2874 // If the load has a builtin retain, insert a plain retain for it.
2875 if (Class == IC_LoadWeakRetained) {
2876 CallInst *CI =
2877 CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
2878 "", Call);
2879 CI->setTailCall();
2881 // Zap the fully redundant load.
2882 Call->replaceAllUsesWith(EarlierCall);
2883 Call->eraseFromParent();
2884 goto clobbered;
2885 case AliasAnalysis::MayAlias:
2886 case AliasAnalysis::PartialAlias:
2887 goto clobbered;
2888 case AliasAnalysis::NoAlias:
2889 break;
2891 break;
2893 case IC_StoreWeak:
2894 case IC_InitWeak: {
2895 // If this is storing to the same pointer and has the same size etc.
2896 // replace this load's value with the stored value.
2897 CallInst *Call = cast<CallInst>(Inst);
2898 CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2899 Value *Arg = Call->getArgOperand(0);
2900 Value *EarlierArg = EarlierCall->getArgOperand(0);
2901 switch (PA.getAA()->alias(Arg, EarlierArg)) {
2902 case AliasAnalysis::MustAlias:
2903 Changed = true;
2904 // If the load has a builtin retain, insert a plain retain for it.
2905 if (Class == IC_LoadWeakRetained) {
2906 CallInst *CI =
2907 CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
2908 "", Call);
2909 CI->setTailCall();
2911 // Zap the fully redundant load.
2912 Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
2913 Call->eraseFromParent();
2914 goto clobbered;
2915 case AliasAnalysis::MayAlias:
2916 case AliasAnalysis::PartialAlias:
2917 goto clobbered;
2918 case AliasAnalysis::NoAlias:
2919 break;
2921 break;
2923 case IC_MoveWeak:
2924 case IC_CopyWeak:
2925 // TOOD: Grab the copied value.
2926 goto clobbered;
2927 case IC_AutoreleasepoolPush:
2928 case IC_None:
2929 case IC_User:
2930 // Weak pointers are only modified through the weak entry points
2931 // (and arbitrary calls, which could call the weak entry points).
2932 break;
2933 default:
2934 // Anything else could modify the weak pointer.
2935 goto clobbered;
2938 clobbered:;
2941 // Then, for each destroyWeak with an alloca operand, check to see if
2942 // the alloca and all its users can be zapped.
2943 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2944 Instruction *Inst = &*I++;
2945 InstructionClass Class = GetBasicInstructionClass(Inst);
2946 if (Class != IC_DestroyWeak)
2947 continue;
2949 CallInst *Call = cast<CallInst>(Inst);
2950 Value *Arg = Call->getArgOperand(0);
2951 if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
2952 for (Value::use_iterator UI = Alloca->use_begin(),
2953 UE = Alloca->use_end(); UI != UE; ++UI) {
2954 Instruction *UserInst = cast<Instruction>(*UI);
2955 switch (GetBasicInstructionClass(UserInst)) {
2956 case IC_InitWeak:
2957 case IC_StoreWeak:
2958 case IC_DestroyWeak:
2959 continue;
2960 default:
2961 goto done;
2964 Changed = true;
2965 for (Value::use_iterator UI = Alloca->use_begin(),
2966 UE = Alloca->use_end(); UI != UE; ) {
2967 CallInst *UserInst = cast<CallInst>(*UI++);
2968 if (!UserInst->use_empty())
2969 UserInst->replaceAllUsesWith(UserInst->getOperand(1));
2970 UserInst->eraseFromParent();
2972 Alloca->eraseFromParent();
2973 done:;
2978 /// OptimizeSequences - Identify program paths which execute sequences of
2979 /// retains and releases which can be eliminated.
2980 bool ObjCARCOpt::OptimizeSequences(Function &F) {
2981 /// Releases, Retains - These are used to store the results of the main flow
2982 /// analysis. These use Value* as the key instead of Instruction* so that the
2983 /// map stays valid when we get around to rewriting code and calls get
2984 /// replaced by arguments.
2985 DenseMap<Value *, RRInfo> Releases;
2986 MapVector<Value *, RRInfo> Retains;
2988 /// BBStates, This is used during the traversal of the function to track the
2989 /// states for each identified object at each block.
2990 DenseMap<const BasicBlock *, BBState> BBStates;
2992 // Analyze the CFG of the function, and all instructions.
2993 bool NestingDetected = Visit(F, BBStates, Retains, Releases);
2995 // Transform.
2996 return PerformCodePlacement(BBStates, Retains, Releases) && NestingDetected;
2999 /// OptimizeReturns - Look for this pattern:
3001 /// %call = call i8* @something(...)
3002 /// %2 = call i8* @objc_retain(i8* %call)
3003 /// %3 = call i8* @objc_autorelease(i8* %2)
3004 /// ret i8* %3
3006 /// And delete the retain and autorelease.
3008 /// Otherwise if it's just this:
3010 /// %3 = call i8* @objc_autorelease(i8* %2)
3011 /// ret i8* %3
3013 /// convert the autorelease to autoreleaseRV.
3014 void ObjCARCOpt::OptimizeReturns(Function &F) {
3015 if (!F.getReturnType()->isPointerTy())
3016 return;
3018 SmallPtrSet<Instruction *, 4> DependingInstructions;
3019 SmallPtrSet<const BasicBlock *, 4> Visited;
3020 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
3021 BasicBlock *BB = FI;
3022 ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
3023 if (!Ret) continue;
3025 const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
3026 FindDependencies(NeedsPositiveRetainCount, Arg,
3027 BB, Ret, DependingInstructions, Visited, PA);
3028 if (DependingInstructions.size() != 1)
3029 goto next_block;
3032 CallInst *Autorelease =
3033 dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3034 if (!Autorelease)
3035 goto next_block;
3036 InstructionClass AutoreleaseClass =
3037 GetBasicInstructionClass(Autorelease);
3038 if (!IsAutorelease(AutoreleaseClass))
3039 goto next_block;
3040 if (GetObjCArg(Autorelease) != Arg)
3041 goto next_block;
3043 DependingInstructions.clear();
3044 Visited.clear();
3046 // Check that there is nothing that can affect the reference
3047 // count between the autorelease and the retain.
3048 FindDependencies(CanChangeRetainCount, Arg,
3049 BB, Autorelease, DependingInstructions, Visited, PA);
3050 if (DependingInstructions.size() != 1)
3051 goto next_block;
3054 CallInst *Retain =
3055 dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3057 // Check that we found a retain with the same argument.
3058 if (!Retain ||
3059 !IsRetain(GetBasicInstructionClass(Retain)) ||
3060 GetObjCArg(Retain) != Arg)
3061 goto next_block;
3063 DependingInstructions.clear();
3064 Visited.clear();
3066 // Convert the autorelease to an autoreleaseRV, since it's
3067 // returning the value.
3068 if (AutoreleaseClass == IC_Autorelease) {
3069 Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
3070 AutoreleaseClass = IC_AutoreleaseRV;
3073 // Check that there is nothing that can affect the reference
3074 // count between the retain and the call.
3075 FindDependencies(CanChangeRetainCount, Arg, BB, Retain,
3076 DependingInstructions, Visited, PA);
3077 if (DependingInstructions.size() != 1)
3078 goto next_block;
3081 CallInst *Call =
3082 dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3084 // Check that the pointer is the return value of the call.
3085 if (!Call || Arg != Call)
3086 goto next_block;
3088 // Check that the call is a regular call.
3089 InstructionClass Class = GetBasicInstructionClass(Call);
3090 if (Class != IC_CallOrUser && Class != IC_Call)
3091 goto next_block;
3093 // If so, we can zap the retain and autorelease.
3094 Changed = true;
3095 ++NumRets;
3096 EraseInstruction(Retain);
3097 EraseInstruction(Autorelease);
3102 next_block:
3103 DependingInstructions.clear();
3104 Visited.clear();
3108 bool ObjCARCOpt::doInitialization(Module &M) {
3109 if (!EnableARCOpts)
3110 return false;
3112 Run = ModuleHasARC(M);
3113 if (!Run)
3114 return false;
3116 // Identify the imprecise release metadata kind.
3117 ImpreciseReleaseMDKind =
3118 M.getContext().getMDKindID("clang.imprecise_release");
3120 // Identify the declarations for objc_retain and friends.
3121 RetainFunc = M.getFunction("objc_retain");
3122 RetainBlockFunc = M.getFunction("objc_retainBlock");
3123 RetainRVFunc = M.getFunction("objc_retainAutoreleasedReturnValue");
3124 ReleaseFunc = M.getFunction("objc_release");
3126 // Intuitively, objc_retain and others are nocapture, however in practice
3127 // they are not, because they return their argument value. And objc_release
3128 // calls finalizers.
3130 // These are initialized lazily.
3131 RetainRVCallee = 0;
3132 AutoreleaseRVCallee = 0;
3133 ReleaseCallee = 0;
3134 RetainCallee = 0;
3135 AutoreleaseCallee = 0;
3137 return false;
3140 bool ObjCARCOpt::runOnFunction(Function &F) {
3141 if (!EnableARCOpts)
3142 return false;
3144 // If nothing in the Module uses ARC, don't do anything.
3145 if (!Run)
3146 return false;
3148 Changed = false;
3150 PA.setAA(&getAnalysis<AliasAnalysis>());
3152 // This pass performs several distinct transformations. As a compile-time aid
3153 // when compiling code that isn't ObjC, skip these if the relevant ObjC
3154 // library functions aren't declared.
3156 // Preliminary optimizations. This also computs UsedInThisFunction.
3157 OptimizeIndividualCalls(F);
3159 // Optimizations for weak pointers.
3160 if (UsedInThisFunction & ((1 << IC_LoadWeak) |
3161 (1 << IC_LoadWeakRetained) |
3162 (1 << IC_StoreWeak) |
3163 (1 << IC_InitWeak) |
3164 (1 << IC_CopyWeak) |
3165 (1 << IC_MoveWeak) |
3166 (1 << IC_DestroyWeak)))
3167 OptimizeWeakCalls(F);
3169 // Optimizations for retain+release pairs.
3170 if (UsedInThisFunction & ((1 << IC_Retain) |
3171 (1 << IC_RetainRV) |
3172 (1 << IC_RetainBlock)))
3173 if (UsedInThisFunction & (1 << IC_Release))
3174 // Run OptimizeSequences until it either stops making changes or
3175 // no retain+release pair nesting is detected.
3176 while (OptimizeSequences(F)) {}
3178 // Optimizations if objc_autorelease is used.
3179 if (UsedInThisFunction &
3180 ((1 << IC_Autorelease) | (1 << IC_AutoreleaseRV)))
3181 OptimizeReturns(F);
3183 return Changed;
3186 void ObjCARCOpt::releaseMemory() {
3187 PA.clear();
3190 //===----------------------------------------------------------------------===//
3191 // ARC contraction.
3192 //===----------------------------------------------------------------------===//
3194 // TODO: ObjCARCContract could insert PHI nodes when uses aren't
3195 // dominated by single calls.
3197 #include "llvm/Operator.h"
3198 #include "llvm/InlineAsm.h"
3199 #include "llvm/Analysis/Dominators.h"
3201 STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
3203 namespace {
3204 /// ObjCARCContract - Late ARC optimizations. These change the IR in a way
3205 /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
3206 class ObjCARCContract : public FunctionPass {
3207 bool Changed;
3208 AliasAnalysis *AA;
3209 DominatorTree *DT;
3210 ProvenanceAnalysis PA;
3212 /// Run - A flag indicating whether this optimization pass should run.
3213 bool Run;
3215 /// StoreStrongCallee, etc. - Declarations for ObjC runtime
3216 /// functions, for use in creating calls to them. These are initialized
3217 /// lazily to avoid cluttering up the Module with unused declarations.
3218 Constant *StoreStrongCallee,
3219 *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
3221 /// RetainRVMarker - The inline asm string to insert between calls and
3222 /// RetainRV calls to make the optimization work on targets which need it.
3223 const MDString *RetainRVMarker;
3225 Constant *getStoreStrongCallee(Module *M);
3226 Constant *getRetainAutoreleaseCallee(Module *M);
3227 Constant *getRetainAutoreleaseRVCallee(Module *M);
3229 bool ContractAutorelease(Function &F, Instruction *Autorelease,
3230 InstructionClass Class,
3231 SmallPtrSet<Instruction *, 4>
3232 &DependingInstructions,
3233 SmallPtrSet<const BasicBlock *, 4>
3234 &Visited);
3236 void ContractRelease(Instruction *Release,
3237 inst_iterator &Iter);
3239 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
3240 virtual bool doInitialization(Module &M);
3241 virtual bool runOnFunction(Function &F);
3243 public:
3244 static char ID;
3245 ObjCARCContract() : FunctionPass(ID) {
3246 initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
3251 char ObjCARCContract::ID = 0;
3252 INITIALIZE_PASS_BEGIN(ObjCARCContract,
3253 "objc-arc-contract", "ObjC ARC contraction", false, false)
3254 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3255 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3256 INITIALIZE_PASS_END(ObjCARCContract,
3257 "objc-arc-contract", "ObjC ARC contraction", false, false)
3259 Pass *llvm::createObjCARCContractPass() {
3260 return new ObjCARCContract();
3263 void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
3264 AU.addRequired<AliasAnalysis>();
3265 AU.addRequired<DominatorTree>();
3266 AU.setPreservesCFG();
3269 Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
3270 if (!StoreStrongCallee) {
3271 LLVMContext &C = M->getContext();
3272 const Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3273 const Type *I8XX = PointerType::getUnqual(I8X);
3274 std::vector<const Type *> Params;
3275 Params.push_back(I8XX);
3276 Params.push_back(I8X);
3278 AttrListPtr Attributes;
3279 Attributes.addAttr(~0u, Attribute::NoUnwind);
3280 Attributes.addAttr(1, Attribute::NoCapture);
3282 StoreStrongCallee =
3283 M->getOrInsertFunction(
3284 "objc_storeStrong",
3285 FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
3286 Attributes);
3288 return StoreStrongCallee;
3291 Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
3292 if (!RetainAutoreleaseCallee) {
3293 LLVMContext &C = M->getContext();
3294 const Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3295 std::vector<const Type *> Params;
3296 Params.push_back(I8X);
3297 const FunctionType *FTy =
3298 FunctionType::get(I8X, Params, /*isVarArg=*/false);
3299 AttrListPtr Attributes;
3300 Attributes.addAttr(~0u, Attribute::NoUnwind);
3301 RetainAutoreleaseCallee =
3302 M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
3304 return RetainAutoreleaseCallee;
3307 Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
3308 if (!RetainAutoreleaseRVCallee) {
3309 LLVMContext &C = M->getContext();
3310 const Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3311 std::vector<const Type *> Params;
3312 Params.push_back(I8X);
3313 const FunctionType *FTy =
3314 FunctionType::get(I8X, Params, /*isVarArg=*/false);
3315 AttrListPtr Attributes;
3316 Attributes.addAttr(~0u, Attribute::NoUnwind);
3317 RetainAutoreleaseRVCallee =
3318 M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
3319 Attributes);
3321 return RetainAutoreleaseRVCallee;
3324 /// ContractAutorelease - Merge an autorelease with a retain into a fused
3325 /// call.
3326 bool
3327 ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
3328 InstructionClass Class,
3329 SmallPtrSet<Instruction *, 4>
3330 &DependingInstructions,
3331 SmallPtrSet<const BasicBlock *, 4>
3332 &Visited) {
3333 const Value *Arg = GetObjCArg(Autorelease);
3335 // Check that there are no instructions between the retain and the autorelease
3336 // (such as an autorelease_pop) which may change the count.
3337 CallInst *Retain = 0;
3338 if (Class == IC_AutoreleaseRV)
3339 FindDependencies(RetainAutoreleaseRVDep, Arg,
3340 Autorelease->getParent(), Autorelease,
3341 DependingInstructions, Visited, PA);
3342 else
3343 FindDependencies(RetainAutoreleaseDep, Arg,
3344 Autorelease->getParent(), Autorelease,
3345 DependingInstructions, Visited, PA);
3347 Visited.clear();
3348 if (DependingInstructions.size() != 1) {
3349 DependingInstructions.clear();
3350 return false;
3353 Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3354 DependingInstructions.clear();
3356 if (!Retain ||
3357 GetBasicInstructionClass(Retain) != IC_Retain ||
3358 GetObjCArg(Retain) != Arg)
3359 return false;
3361 Changed = true;
3362 ++NumPeeps;
3364 if (Class == IC_AutoreleaseRV)
3365 Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
3366 else
3367 Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
3369 EraseInstruction(Autorelease);
3370 return true;
3373 /// ContractRelease - Attempt to merge an objc_release with a store, load, and
3374 /// objc_retain to form an objc_storeStrong. This can be a little tricky because
3375 /// the instructions don't always appear in order, and there may be unrelated
3376 /// intervening instructions.
3377 void ObjCARCContract::ContractRelease(Instruction *Release,
3378 inst_iterator &Iter) {
3379 LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
3380 if (!Load || Load->isVolatile()) return;
3382 // For now, require everything to be in one basic block.
3383 BasicBlock *BB = Release->getParent();
3384 if (Load->getParent() != BB) return;
3386 // Walk down to find the store.
3387 BasicBlock::iterator I = Load, End = BB->end();
3388 ++I;
3389 AliasAnalysis::Location Loc = AA->getLocation(Load);
3390 while (I != End &&
3391 (&*I == Release ||
3392 IsRetain(GetBasicInstructionClass(I)) ||
3393 !(AA->getModRefInfo(I, Loc) & AliasAnalysis::Mod)))
3394 ++I;
3395 StoreInst *Store = dyn_cast<StoreInst>(I);
3396 if (!Store || Store->isVolatile()) return;
3397 if (Store->getPointerOperand() != Loc.Ptr) return;
3399 Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
3401 // Walk up to find the retain.
3402 I = Store;
3403 BasicBlock::iterator Begin = BB->begin();
3404 while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
3405 --I;
3406 Instruction *Retain = I;
3407 if (GetBasicInstructionClass(Retain) != IC_Retain) return;
3408 if (GetObjCArg(Retain) != New) return;
3410 Changed = true;
3411 ++NumStoreStrongs;
3413 LLVMContext &C = Release->getContext();
3414 const Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3415 const Type *I8XX = PointerType::getUnqual(I8X);
3417 Value *Args[] = { Load->getPointerOperand(), New };
3418 if (Args[0]->getType() != I8XX)
3419 Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
3420 if (Args[1]->getType() != I8X)
3421 Args[1] = new BitCastInst(Args[1], I8X, "", Store);
3422 CallInst *StoreStrong =
3423 CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
3424 Args, array_endof(Args), "", Store);
3425 StoreStrong->setDoesNotThrow();
3426 StoreStrong->setDebugLoc(Store->getDebugLoc());
3428 if (&*Iter == Store) ++Iter;
3429 Store->eraseFromParent();
3430 Release->eraseFromParent();
3431 EraseInstruction(Retain);
3432 if (Load->use_empty())
3433 Load->eraseFromParent();
3436 bool ObjCARCContract::doInitialization(Module &M) {
3437 Run = ModuleHasARC(M);
3438 if (!Run)
3439 return false;
3441 // These are initialized lazily.
3442 StoreStrongCallee = 0;
3443 RetainAutoreleaseCallee = 0;
3444 RetainAutoreleaseRVCallee = 0;
3446 // Initialize RetainRVMarker.
3447 RetainRVMarker = 0;
3448 if (NamedMDNode *NMD =
3449 M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
3450 if (NMD->getNumOperands() == 1) {
3451 const MDNode *N = NMD->getOperand(0);
3452 if (N->getNumOperands() == 1)
3453 if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
3454 RetainRVMarker = S;
3457 return false;
3460 bool ObjCARCContract::runOnFunction(Function &F) {
3461 if (!EnableARCOpts)
3462 return false;
3464 // If nothing in the Module uses ARC, don't do anything.
3465 if (!Run)
3466 return false;
3468 Changed = false;
3469 AA = &getAnalysis<AliasAnalysis>();
3470 DT = &getAnalysis<DominatorTree>();
3472 PA.setAA(&getAnalysis<AliasAnalysis>());
3474 // For ObjC library calls which return their argument, replace uses of the
3475 // argument with uses of the call return value, if it dominates the use. This
3476 // reduces register pressure.
3477 SmallPtrSet<Instruction *, 4> DependingInstructions;
3478 SmallPtrSet<const BasicBlock *, 4> Visited;
3479 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3480 Instruction *Inst = &*I++;
3482 // Only these library routines return their argument. In particular,
3483 // objc_retainBlock does not necessarily return its argument.
3484 InstructionClass Class = GetBasicInstructionClass(Inst);
3485 switch (Class) {
3486 case IC_Retain:
3487 case IC_FusedRetainAutorelease:
3488 case IC_FusedRetainAutoreleaseRV:
3489 break;
3490 case IC_Autorelease:
3491 case IC_AutoreleaseRV:
3492 if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
3493 continue;
3494 break;
3495 case IC_RetainRV: {
3496 // If we're compiling for a target which needs a special inline-asm
3497 // marker to do the retainAutoreleasedReturnValue optimization,
3498 // insert it now.
3499 if (!RetainRVMarker)
3500 break;
3501 BasicBlock::iterator BBI = Inst;
3502 --BBI;
3503 while (isNoopInstruction(BBI)) --BBI;
3504 if (&*BBI == GetObjCArg(Inst)) {
3505 InlineAsm *IA =
3506 InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
3507 /*isVarArg=*/false),
3508 RetainRVMarker->getString(),
3509 /*Constraints=*/"", /*hasSideEffects=*/true);
3510 CallInst::Create(IA, "", Inst);
3512 break;
3514 case IC_InitWeak: {
3515 // objc_initWeak(p, null) => *p = null
3516 CallInst *CI = cast<CallInst>(Inst);
3517 if (isNullOrUndef(CI->getArgOperand(1))) {
3518 Value *Null =
3519 ConstantPointerNull::get(cast<PointerType>(CI->getType()));
3520 Changed = true;
3521 new StoreInst(Null, CI->getArgOperand(0), CI);
3522 CI->replaceAllUsesWith(Null);
3523 CI->eraseFromParent();
3525 continue;
3527 case IC_Release:
3528 ContractRelease(Inst, I);
3529 continue;
3530 default:
3531 continue;
3534 // Don't use GetObjCArg because we don't want to look through bitcasts
3535 // and such; to do the replacement, the argument must have type i8*.
3536 const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
3537 for (;;) {
3538 // If we're compiling bugpointed code, don't get in trouble.
3539 if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
3540 break;
3541 // Look through the uses of the pointer.
3542 for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
3543 UI != UE; ) {
3544 Use &U = UI.getUse();
3545 unsigned OperandNo = UI.getOperandNo();
3546 ++UI; // Increment UI now, because we may unlink its element.
3547 if (Instruction *UserInst = dyn_cast<Instruction>(U.getUser()))
3548 if (Inst != UserInst && DT->dominates(Inst, UserInst)) {
3549 Changed = true;
3550 Instruction *Replacement = Inst;
3551 const Type *UseTy = U.get()->getType();
3552 if (PHINode *PHI = dyn_cast<PHINode>(UserInst)) {
3553 // For PHI nodes, insert the bitcast in the predecessor block.
3554 unsigned ValNo =
3555 PHINode::getIncomingValueNumForOperand(OperandNo);
3556 BasicBlock *BB =
3557 PHI->getIncomingBlock(ValNo);
3558 if (Replacement->getType() != UseTy)
3559 Replacement = new BitCastInst(Replacement, UseTy, "",
3560 &BB->back());
3561 for (unsigned i = 0, e = PHI->getNumIncomingValues();
3562 i != e; ++i)
3563 if (PHI->getIncomingBlock(i) == BB) {
3564 // Keep the UI iterator valid.
3565 if (&PHI->getOperandUse(
3566 PHINode::getOperandNumForIncomingValue(i)) ==
3567 &UI.getUse())
3568 ++UI;
3569 PHI->setIncomingValue(i, Replacement);
3571 } else {
3572 if (Replacement->getType() != UseTy)
3573 Replacement = new BitCastInst(Replacement, UseTy, "", UserInst);
3574 U.set(Replacement);
3579 // If Arg is a no-op casted pointer, strip one level of casts and
3580 // iterate.
3581 if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
3582 Arg = BI->getOperand(0);
3583 else if (isa<GEPOperator>(Arg) &&
3584 cast<GEPOperator>(Arg)->hasAllZeroIndices())
3585 Arg = cast<GEPOperator>(Arg)->getPointerOperand();
3586 else if (isa<GlobalAlias>(Arg) &&
3587 !cast<GlobalAlias>(Arg)->mayBeOverridden())
3588 Arg = cast<GlobalAlias>(Arg)->getAliasee();
3589 else
3590 break;
3594 return Changed;