Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Scalar / SCCP.cpp
blob083412ed942dfd352cf098fe2e5613027725b700
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "sccp"
21 #include "llvm/Transforms/Scalar.h"
22 #include "llvm/Transforms/IPO.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Target/TargetData.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/InstVisitor.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/PointerIntPair.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include <algorithm>
44 #include <map>
45 using namespace llvm;
47 STATISTIC(NumInstRemoved, "Number of instructions removed");
48 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
50 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
51 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
52 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
54 namespace {
55 /// LatticeVal class - This class represents the different lattice values that
56 /// an LLVM value may occupy. It is a simple class with value semantics.
57 ///
58 class LatticeVal {
59 enum LatticeValueTy {
60 /// undefined - This LLVM Value has no known value yet.
61 undefined,
63 /// constant - This LLVM Value has a specific constant value.
64 constant,
66 /// forcedconstant - This LLVM Value was thought to be undef until
67 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
68 /// with another (different) constant, it goes to overdefined, instead of
69 /// asserting.
70 forcedconstant,
72 /// overdefined - This instruction is not known to be constant, and we know
73 /// it has a value.
74 overdefined
77 /// Val: This stores the current lattice value along with the Constant* for
78 /// the constant if this is a 'constant' or 'forcedconstant' value.
79 PointerIntPair<Constant *, 2, LatticeValueTy> Val;
81 LatticeValueTy getLatticeValue() const {
82 return Val.getInt();
85 public:
86 LatticeVal() : Val(0, undefined) {}
88 bool isUndefined() const { return getLatticeValue() == undefined; }
89 bool isConstant() const {
90 return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
92 bool isOverdefined() const { return getLatticeValue() == overdefined; }
94 Constant *getConstant() const {
95 assert(isConstant() && "Cannot get the constant of a non-constant!");
96 return Val.getPointer();
99 /// markOverdefined - Return true if this is a change in status.
100 bool markOverdefined() {
101 if (isOverdefined())
102 return false;
104 Val.setInt(overdefined);
105 return true;
108 /// markConstant - Return true if this is a change in status.
109 bool markConstant(Constant *V) {
110 if (getLatticeValue() == constant) { // Constant but not forcedconstant.
111 assert(getConstant() == V && "Marking constant with different value");
112 return false;
115 if (isUndefined()) {
116 Val.setInt(constant);
117 assert(V && "Marking constant with NULL");
118 Val.setPointer(V);
119 } else {
120 assert(getLatticeValue() == forcedconstant &&
121 "Cannot move from overdefined to constant!");
122 // Stay at forcedconstant if the constant is the same.
123 if (V == getConstant()) return false;
125 // Otherwise, we go to overdefined. Assumptions made based on the
126 // forced value are possibly wrong. Assuming this is another constant
127 // could expose a contradiction.
128 Val.setInt(overdefined);
130 return true;
133 /// getConstantInt - If this is a constant with a ConstantInt value, return it
134 /// otherwise return null.
135 ConstantInt *getConstantInt() const {
136 if (isConstant())
137 return dyn_cast<ConstantInt>(getConstant());
138 return 0;
141 void markForcedConstant(Constant *V) {
142 assert(isUndefined() && "Can't force a defined value!");
143 Val.setInt(forcedconstant);
144 Val.setPointer(V);
147 } // end anonymous namespace.
150 namespace {
152 //===----------------------------------------------------------------------===//
154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
155 /// Constant Propagation.
157 class SCCPSolver : public InstVisitor<SCCPSolver> {
158 const TargetData *TD;
159 SmallPtrSet<BasicBlock*, 8> BBExecutable;// The BBs that are executable.
160 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
162 /// StructValueState - This maintains ValueState for values that have
163 /// StructType, for example for formal arguments, calls, insertelement, etc.
165 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
167 /// GlobalValue - If we are tracking any values for the contents of a global
168 /// variable, we keep a mapping from the constant accessor to the element of
169 /// the global, to the currently known value. If the value becomes
170 /// overdefined, it's entry is simply removed from this map.
171 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
173 /// TrackedRetVals - If we are tracking arguments into and the return
174 /// value out of a function, it will have an entry in this map, indicating
175 /// what the known return value for the function is.
176 DenseMap<Function*, LatticeVal> TrackedRetVals;
178 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179 /// that return multiple values.
180 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
182 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183 /// represented here for efficient lookup.
184 SmallPtrSet<Function*, 16> MRVFunctionsTracked;
186 /// TrackingIncomingArguments - This is the set of functions for whose
187 /// arguments we make optimistic assumptions about and try to prove as
188 /// constants.
189 SmallPtrSet<Function*, 16> TrackingIncomingArguments;
191 /// The reason for two worklists is that overdefined is the lowest state
192 /// on the lattice, and moving things to overdefined as fast as possible
193 /// makes SCCP converge much faster.
195 /// By having a separate worklist, we accomplish this because everything
196 /// possibly overdefined will become overdefined at the soonest possible
197 /// point.
198 SmallVector<Value*, 64> OverdefinedInstWorkList;
199 SmallVector<Value*, 64> InstWorkList;
202 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
204 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
205 /// overdefined, despite the fact that the PHI node is overdefined.
206 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
208 /// KnownFeasibleEdges - Entries in this set are edges which have already had
209 /// PHI nodes retriggered.
210 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
211 DenseSet<Edge> KnownFeasibleEdges;
212 public:
213 SCCPSolver(const TargetData *td) : TD(td) {}
215 /// MarkBlockExecutable - This method can be used by clients to mark all of
216 /// the blocks that are known to be intrinsically live in the processed unit.
218 /// This returns true if the block was not considered live before.
219 bool MarkBlockExecutable(BasicBlock *BB) {
220 if (!BBExecutable.insert(BB)) return false;
221 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
222 BBWorkList.push_back(BB); // Add the block to the work list!
223 return true;
226 /// TrackValueOfGlobalVariable - Clients can use this method to
227 /// inform the SCCPSolver that it should track loads and stores to the
228 /// specified global variable if it can. This is only legal to call if
229 /// performing Interprocedural SCCP.
230 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
231 // We only track the contents of scalar globals.
232 if (GV->getType()->getElementType()->isSingleValueType()) {
233 LatticeVal &IV = TrackedGlobals[GV];
234 if (!isa<UndefValue>(GV->getInitializer()))
235 IV.markConstant(GV->getInitializer());
239 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
240 /// and out of the specified function (which cannot have its address taken),
241 /// this method must be called.
242 void AddTrackedFunction(Function *F) {
243 // Add an entry, F -> undef.
244 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
245 MRVFunctionsTracked.insert(F);
246 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
247 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
248 LatticeVal()));
249 } else
250 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
253 void AddArgumentTrackedFunction(Function *F) {
254 TrackingIncomingArguments.insert(F);
257 /// Solve - Solve for constants and executable blocks.
259 void Solve();
261 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
262 /// that branches on undef values cannot reach any of their successors.
263 /// However, this is not a safe assumption. After we solve dataflow, this
264 /// method should be use to handle this. If this returns true, the solver
265 /// should be rerun.
266 bool ResolvedUndefsIn(Function &F);
268 bool isBlockExecutable(BasicBlock *BB) const {
269 return BBExecutable.count(BB);
272 LatticeVal getLatticeValueFor(Value *V) const {
273 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
274 assert(I != ValueState.end() && "V is not in valuemap!");
275 return I->second;
278 /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
279 DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
280 StructValueState.find(std::make_pair(V, i));
281 assert(I != StructValueState.end() && "V is not in valuemap!");
282 return I->second;
285 /// getTrackedRetVals - Get the inferred return value map.
287 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
288 return TrackedRetVals;
291 /// getTrackedGlobals - Get and return the set of inferred initializers for
292 /// global variables.
293 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
294 return TrackedGlobals;
297 void markOverdefined(Value *V) {
298 assert(!V->getType()->isStructTy() && "Should use other method");
299 markOverdefined(ValueState[V], V);
302 /// markAnythingOverdefined - Mark the specified value overdefined. This
303 /// works with both scalars and structs.
304 void markAnythingOverdefined(Value *V) {
305 if (const StructType *STy = dyn_cast<StructType>(V->getType()))
306 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
307 markOverdefined(getStructValueState(V, i), V);
308 else
309 markOverdefined(V);
312 private:
313 // markConstant - Make a value be marked as "constant". If the value
314 // is not already a constant, add it to the instruction work list so that
315 // the users of the instruction are updated later.
317 void markConstant(LatticeVal &IV, Value *V, Constant *C) {
318 if (!IV.markConstant(C)) return;
319 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
320 if (IV.isOverdefined())
321 OverdefinedInstWorkList.push_back(V);
322 else
323 InstWorkList.push_back(V);
326 void markConstant(Value *V, Constant *C) {
327 assert(!V->getType()->isStructTy() && "Should use other method");
328 markConstant(ValueState[V], V, C);
331 void markForcedConstant(Value *V, Constant *C) {
332 assert(!V->getType()->isStructTy() && "Should use other method");
333 LatticeVal &IV = ValueState[V];
334 IV.markForcedConstant(C);
335 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
336 if (IV.isOverdefined())
337 OverdefinedInstWorkList.push_back(V);
338 else
339 InstWorkList.push_back(V);
343 // markOverdefined - Make a value be marked as "overdefined". If the
344 // value is not already overdefined, add it to the overdefined instruction
345 // work list so that the users of the instruction are updated later.
346 void markOverdefined(LatticeVal &IV, Value *V) {
347 if (!IV.markOverdefined()) return;
349 DEBUG(dbgs() << "markOverdefined: ";
350 if (Function *F = dyn_cast<Function>(V))
351 dbgs() << "Function '" << F->getName() << "'\n";
352 else
353 dbgs() << *V << '\n');
354 // Only instructions go on the work list
355 OverdefinedInstWorkList.push_back(V);
358 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
359 if (IV.isOverdefined() || MergeWithV.isUndefined())
360 return; // Noop.
361 if (MergeWithV.isOverdefined())
362 markOverdefined(IV, V);
363 else if (IV.isUndefined())
364 markConstant(IV, V, MergeWithV.getConstant());
365 else if (IV.getConstant() != MergeWithV.getConstant())
366 markOverdefined(IV, V);
369 void mergeInValue(Value *V, LatticeVal MergeWithV) {
370 assert(!V->getType()->isStructTy() && "Should use other method");
371 mergeInValue(ValueState[V], V, MergeWithV);
375 /// getValueState - Return the LatticeVal object that corresponds to the
376 /// value. This function handles the case when the value hasn't been seen yet
377 /// by properly seeding constants etc.
378 LatticeVal &getValueState(Value *V) {
379 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
381 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
382 ValueState.insert(std::make_pair(V, LatticeVal()));
383 LatticeVal &LV = I.first->second;
385 if (!I.second)
386 return LV; // Common case, already in the map.
388 if (Constant *C = dyn_cast<Constant>(V)) {
389 // Undef values remain undefined.
390 if (!isa<UndefValue>(V))
391 LV.markConstant(C); // Constants are constant
394 // All others are underdefined by default.
395 return LV;
398 /// getStructValueState - Return the LatticeVal object that corresponds to the
399 /// value/field pair. This function handles the case when the value hasn't
400 /// been seen yet by properly seeding constants etc.
401 LatticeVal &getStructValueState(Value *V, unsigned i) {
402 assert(V->getType()->isStructTy() && "Should use getValueState");
403 assert(i < cast<StructType>(V->getType())->getNumElements() &&
404 "Invalid element #");
406 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
407 bool> I = StructValueState.insert(
408 std::make_pair(std::make_pair(V, i), LatticeVal()));
409 LatticeVal &LV = I.first->second;
411 if (!I.second)
412 return LV; // Common case, already in the map.
414 if (Constant *C = dyn_cast<Constant>(V)) {
415 if (isa<UndefValue>(C))
416 ; // Undef values remain undefined.
417 else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
418 LV.markConstant(CS->getOperand(i)); // Constants are constant.
419 else if (isa<ConstantAggregateZero>(C)) {
420 const Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
421 LV.markConstant(Constant::getNullValue(FieldTy));
422 } else
423 LV.markOverdefined(); // Unknown sort of constant.
426 // All others are underdefined by default.
427 return LV;
431 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
432 /// work list if it is not already executable.
433 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
434 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
435 return; // This edge is already known to be executable!
437 if (!MarkBlockExecutable(Dest)) {
438 // If the destination is already executable, we just made an *edge*
439 // feasible that wasn't before. Revisit the PHI nodes in the block
440 // because they have potentially new operands.
441 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
442 << " -> " << Dest->getName() << "\n");
444 PHINode *PN;
445 for (BasicBlock::iterator I = Dest->begin();
446 (PN = dyn_cast<PHINode>(I)); ++I)
447 visitPHINode(*PN);
451 // getFeasibleSuccessors - Return a vector of booleans to indicate which
452 // successors are reachable from a given terminator instruction.
454 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
456 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
457 // block to the 'To' basic block is currently feasible.
459 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
461 // OperandChangedState - This method is invoked on all of the users of an
462 // instruction that was just changed state somehow. Based on this
463 // information, we need to update the specified user of this instruction.
465 void OperandChangedState(Instruction *I) {
466 if (BBExecutable.count(I->getParent())) // Inst is executable?
467 visit(*I);
470 /// RemoveFromOverdefinedPHIs - If I has any entries in the
471 /// UsersOfOverdefinedPHIs map for PN, remove them now.
472 void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) {
473 if (UsersOfOverdefinedPHIs.empty()) return;
474 std::multimap<PHINode*, Instruction*>::iterator It, E;
475 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN);
476 while (It != E) {
477 if (It->second == I)
478 UsersOfOverdefinedPHIs.erase(It++);
479 else
480 ++It;
484 /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS
485 /// map for I and PN, but if one is there already, do not create another.
486 /// (Duplicate entries do not break anything directly, but can lead to
487 /// exponential growth of the table in rare cases.)
488 void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) {
489 std::multimap<PHINode*, Instruction*>::iterator J, E;
490 tie(J, E) = UsersOfOverdefinedPHIs.equal_range(PN);
491 for (; J != E; ++J)
492 if (J->second == I)
493 return;
494 UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I));
497 private:
498 friend class InstVisitor<SCCPSolver>;
500 // visit implementations - Something changed in this instruction. Either an
501 // operand made a transition, or the instruction is newly executable. Change
502 // the value type of I to reflect these changes if appropriate.
503 void visitPHINode(PHINode &I);
505 // Terminators
506 void visitReturnInst(ReturnInst &I);
507 void visitTerminatorInst(TerminatorInst &TI);
509 void visitCastInst(CastInst &I);
510 void visitSelectInst(SelectInst &I);
511 void visitBinaryOperator(Instruction &I);
512 void visitCmpInst(CmpInst &I);
513 void visitExtractElementInst(ExtractElementInst &I);
514 void visitInsertElementInst(InsertElementInst &I);
515 void visitShuffleVectorInst(ShuffleVectorInst &I);
516 void visitExtractValueInst(ExtractValueInst &EVI);
517 void visitInsertValueInst(InsertValueInst &IVI);
519 // Instructions that cannot be folded away.
520 void visitStoreInst (StoreInst &I);
521 void visitLoadInst (LoadInst &I);
522 void visitGetElementPtrInst(GetElementPtrInst &I);
523 void visitCallInst (CallInst &I) {
524 visitCallSite(&I);
526 void visitInvokeInst (InvokeInst &II) {
527 visitCallSite(&II);
528 visitTerminatorInst(II);
530 void visitCallSite (CallSite CS);
531 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
532 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
533 void visitAllocaInst (Instruction &I) { markOverdefined(&I); }
534 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); }
536 void visitInstruction(Instruction &I) {
537 // If a new instruction is added to LLVM that we don't handle.
538 dbgs() << "SCCP: Don't know how to handle: " << I;
539 markAnythingOverdefined(&I); // Just in case
543 } // end anonymous namespace
546 // getFeasibleSuccessors - Return a vector of booleans to indicate which
547 // successors are reachable from a given terminator instruction.
549 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
550 SmallVector<bool, 16> &Succs) {
551 Succs.resize(TI.getNumSuccessors());
552 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
553 if (BI->isUnconditional()) {
554 Succs[0] = true;
555 return;
558 LatticeVal BCValue = getValueState(BI->getCondition());
559 ConstantInt *CI = BCValue.getConstantInt();
560 if (CI == 0) {
561 // Overdefined condition variables, and branches on unfoldable constant
562 // conditions, mean the branch could go either way.
563 if (!BCValue.isUndefined())
564 Succs[0] = Succs[1] = true;
565 return;
568 // Constant condition variables mean the branch can only go a single way.
569 Succs[CI->isZero()] = true;
570 return;
573 if (isa<InvokeInst>(TI)) {
574 // Invoke instructions successors are always executable.
575 Succs[0] = Succs[1] = true;
576 return;
579 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
580 LatticeVal SCValue = getValueState(SI->getCondition());
581 ConstantInt *CI = SCValue.getConstantInt();
583 if (CI == 0) { // Overdefined or undefined condition?
584 // All destinations are executable!
585 if (!SCValue.isUndefined())
586 Succs.assign(TI.getNumSuccessors(), true);
587 return;
590 Succs[SI->findCaseValue(CI)] = true;
591 return;
594 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
595 if (isa<IndirectBrInst>(&TI)) {
596 // Just mark all destinations executable!
597 Succs.assign(TI.getNumSuccessors(), true);
598 return;
601 #ifndef NDEBUG
602 dbgs() << "Unknown terminator instruction: " << TI << '\n';
603 #endif
604 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
608 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
609 // block to the 'To' basic block is currently feasible.
611 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
612 assert(BBExecutable.count(To) && "Dest should always be alive!");
614 // Make sure the source basic block is executable!!
615 if (!BBExecutable.count(From)) return false;
617 // Check to make sure this edge itself is actually feasible now.
618 TerminatorInst *TI = From->getTerminator();
619 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
620 if (BI->isUnconditional())
621 return true;
623 LatticeVal BCValue = getValueState(BI->getCondition());
625 // Overdefined condition variables mean the branch could go either way,
626 // undef conditions mean that neither edge is feasible yet.
627 ConstantInt *CI = BCValue.getConstantInt();
628 if (CI == 0)
629 return !BCValue.isUndefined();
631 // Constant condition variables mean the branch can only go a single way.
632 return BI->getSuccessor(CI->isZero()) == To;
635 // Invoke instructions successors are always executable.
636 if (isa<InvokeInst>(TI))
637 return true;
639 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
640 LatticeVal SCValue = getValueState(SI->getCondition());
641 ConstantInt *CI = SCValue.getConstantInt();
643 if (CI == 0)
644 return !SCValue.isUndefined();
646 // Make sure to skip the "default value" which isn't a value
647 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
648 if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
649 return SI->getSuccessor(i) == To;
651 // If the constant value is not equal to any of the branches, we must
652 // execute default branch.
653 return SI->getDefaultDest() == To;
656 // Just mark all destinations executable!
657 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
658 if (isa<IndirectBrInst>(TI))
659 return true;
661 #ifndef NDEBUG
662 dbgs() << "Unknown terminator instruction: " << *TI << '\n';
663 #endif
664 llvm_unreachable(0);
667 // visit Implementations - Something changed in this instruction, either an
668 // operand made a transition, or the instruction is newly executable. Change
669 // the value type of I to reflect these changes if appropriate. This method
670 // makes sure to do the following actions:
672 // 1. If a phi node merges two constants in, and has conflicting value coming
673 // from different branches, or if the PHI node merges in an overdefined
674 // value, then the PHI node becomes overdefined.
675 // 2. If a phi node merges only constants in, and they all agree on value, the
676 // PHI node becomes a constant value equal to that.
677 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
678 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
679 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
680 // 6. If a conditional branch has a value that is constant, make the selected
681 // destination executable
682 // 7. If a conditional branch has a value that is overdefined, make all
683 // successors executable.
685 void SCCPSolver::visitPHINode(PHINode &PN) {
686 // If this PN returns a struct, just mark the result overdefined.
687 // TODO: We could do a lot better than this if code actually uses this.
688 if (PN.getType()->isStructTy())
689 return markAnythingOverdefined(&PN);
691 if (getValueState(&PN).isOverdefined()) {
692 // There may be instructions using this PHI node that are not overdefined
693 // themselves. If so, make sure that they know that the PHI node operand
694 // changed.
695 std::multimap<PHINode*, Instruction*>::iterator I, E;
696 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
697 if (I == E)
698 return;
700 SmallVector<Instruction*, 16> Users;
701 for (; I != E; ++I)
702 Users.push_back(I->second);
703 while (!Users.empty())
704 visit(Users.pop_back_val());
705 return; // Quick exit
708 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
709 // and slow us down a lot. Just mark them overdefined.
710 if (PN.getNumIncomingValues() > 64)
711 return markOverdefined(&PN);
713 // Look at all of the executable operands of the PHI node. If any of them
714 // are overdefined, the PHI becomes overdefined as well. If they are all
715 // constant, and they agree with each other, the PHI becomes the identical
716 // constant. If they are constant and don't agree, the PHI is overdefined.
717 // If there are no executable operands, the PHI remains undefined.
719 Constant *OperandVal = 0;
720 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
721 LatticeVal IV = getValueState(PN.getIncomingValue(i));
722 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
724 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
725 continue;
727 if (IV.isOverdefined()) // PHI node becomes overdefined!
728 return markOverdefined(&PN);
730 if (OperandVal == 0) { // Grab the first value.
731 OperandVal = IV.getConstant();
732 continue;
735 // There is already a reachable operand. If we conflict with it,
736 // then the PHI node becomes overdefined. If we agree with it, we
737 // can continue on.
739 // Check to see if there are two different constants merging, if so, the PHI
740 // node is overdefined.
741 if (IV.getConstant() != OperandVal)
742 return markOverdefined(&PN);
745 // If we exited the loop, this means that the PHI node only has constant
746 // arguments that agree with each other(and OperandVal is the constant) or
747 // OperandVal is null because there are no defined incoming arguments. If
748 // this is the case, the PHI remains undefined.
750 if (OperandVal)
751 markConstant(&PN, OperandVal); // Acquire operand value
757 void SCCPSolver::visitReturnInst(ReturnInst &I) {
758 if (I.getNumOperands() == 0) return; // ret void
760 Function *F = I.getParent()->getParent();
761 Value *ResultOp = I.getOperand(0);
763 // If we are tracking the return value of this function, merge it in.
764 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
765 DenseMap<Function*, LatticeVal>::iterator TFRVI =
766 TrackedRetVals.find(F);
767 if (TFRVI != TrackedRetVals.end()) {
768 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
769 return;
773 // Handle functions that return multiple values.
774 if (!TrackedMultipleRetVals.empty()) {
775 if (const StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
776 if (MRVFunctionsTracked.count(F))
777 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
778 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
779 getStructValueState(ResultOp, i));
784 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
785 SmallVector<bool, 16> SuccFeasible;
786 getFeasibleSuccessors(TI, SuccFeasible);
788 BasicBlock *BB = TI.getParent();
790 // Mark all feasible successors executable.
791 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
792 if (SuccFeasible[i])
793 markEdgeExecutable(BB, TI.getSuccessor(i));
796 void SCCPSolver::visitCastInst(CastInst &I) {
797 LatticeVal OpSt = getValueState(I.getOperand(0));
798 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
799 markOverdefined(&I);
800 else if (OpSt.isConstant()) // Propagate constant value
801 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
802 OpSt.getConstant(), I.getType()));
806 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
807 // If this returns a struct, mark all elements over defined, we don't track
808 // structs in structs.
809 if (EVI.getType()->isStructTy())
810 return markAnythingOverdefined(&EVI);
812 // If this is extracting from more than one level of struct, we don't know.
813 if (EVI.getNumIndices() != 1)
814 return markOverdefined(&EVI);
816 Value *AggVal = EVI.getAggregateOperand();
817 if (AggVal->getType()->isStructTy()) {
818 unsigned i = *EVI.idx_begin();
819 LatticeVal EltVal = getStructValueState(AggVal, i);
820 mergeInValue(getValueState(&EVI), &EVI, EltVal);
821 } else {
822 // Otherwise, must be extracting from an array.
823 return markOverdefined(&EVI);
827 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
828 const StructType *STy = dyn_cast<StructType>(IVI.getType());
829 if (STy == 0)
830 return markOverdefined(&IVI);
832 // If this has more than one index, we can't handle it, drive all results to
833 // undef.
834 if (IVI.getNumIndices() != 1)
835 return markAnythingOverdefined(&IVI);
837 Value *Aggr = IVI.getAggregateOperand();
838 unsigned Idx = *IVI.idx_begin();
840 // Compute the result based on what we're inserting.
841 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
842 // This passes through all values that aren't the inserted element.
843 if (i != Idx) {
844 LatticeVal EltVal = getStructValueState(Aggr, i);
845 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
846 continue;
849 Value *Val = IVI.getInsertedValueOperand();
850 if (Val->getType()->isStructTy())
851 // We don't track structs in structs.
852 markOverdefined(getStructValueState(&IVI, i), &IVI);
853 else {
854 LatticeVal InVal = getValueState(Val);
855 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
860 void SCCPSolver::visitSelectInst(SelectInst &I) {
861 // If this select returns a struct, just mark the result overdefined.
862 // TODO: We could do a lot better than this if code actually uses this.
863 if (I.getType()->isStructTy())
864 return markAnythingOverdefined(&I);
866 LatticeVal CondValue = getValueState(I.getCondition());
867 if (CondValue.isUndefined())
868 return;
870 if (ConstantInt *CondCB = CondValue.getConstantInt()) {
871 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
872 mergeInValue(&I, getValueState(OpVal));
873 return;
876 // Otherwise, the condition is overdefined or a constant we can't evaluate.
877 // See if we can produce something better than overdefined based on the T/F
878 // value.
879 LatticeVal TVal = getValueState(I.getTrueValue());
880 LatticeVal FVal = getValueState(I.getFalseValue());
882 // select ?, C, C -> C.
883 if (TVal.isConstant() && FVal.isConstant() &&
884 TVal.getConstant() == FVal.getConstant())
885 return markConstant(&I, FVal.getConstant());
887 if (TVal.isUndefined()) // select ?, undef, X -> X.
888 return mergeInValue(&I, FVal);
889 if (FVal.isUndefined()) // select ?, X, undef -> X.
890 return mergeInValue(&I, TVal);
891 markOverdefined(&I);
894 // Handle Binary Operators.
895 void SCCPSolver::visitBinaryOperator(Instruction &I) {
896 LatticeVal V1State = getValueState(I.getOperand(0));
897 LatticeVal V2State = getValueState(I.getOperand(1));
899 LatticeVal &IV = ValueState[&I];
900 if (IV.isOverdefined()) return;
902 if (V1State.isConstant() && V2State.isConstant())
903 return markConstant(IV, &I,
904 ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
905 V2State.getConstant()));
907 // If something is undef, wait for it to resolve.
908 if (!V1State.isOverdefined() && !V2State.isOverdefined())
909 return;
911 // Otherwise, one of our operands is overdefined. Try to produce something
912 // better than overdefined with some tricks.
914 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
915 // operand is overdefined.
916 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
917 LatticeVal *NonOverdefVal = 0;
918 if (!V1State.isOverdefined())
919 NonOverdefVal = &V1State;
920 else if (!V2State.isOverdefined())
921 NonOverdefVal = &V2State;
923 if (NonOverdefVal) {
924 if (NonOverdefVal->isUndefined()) {
925 // Could annihilate value.
926 if (I.getOpcode() == Instruction::And)
927 markConstant(IV, &I, Constant::getNullValue(I.getType()));
928 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
929 markConstant(IV, &I, Constant::getAllOnesValue(PT));
930 else
931 markConstant(IV, &I,
932 Constant::getAllOnesValue(I.getType()));
933 return;
936 if (I.getOpcode() == Instruction::And) {
937 // X and 0 = 0
938 if (NonOverdefVal->getConstant()->isNullValue())
939 return markConstant(IV, &I, NonOverdefVal->getConstant());
940 } else {
941 if (ConstantInt *CI = NonOverdefVal->getConstantInt())
942 if (CI->isAllOnesValue()) // X or -1 = -1
943 return markConstant(IV, &I, NonOverdefVal->getConstant());
949 // If both operands are PHI nodes, it is possible that this instruction has
950 // a constant value, despite the fact that the PHI node doesn't. Check for
951 // this condition now.
952 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
953 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
954 if (PN1->getParent() == PN2->getParent()) {
955 // Since the two PHI nodes are in the same basic block, they must have
956 // entries for the same predecessors. Walk the predecessor list, and
957 // if all of the incoming values are constants, and the result of
958 // evaluating this expression with all incoming value pairs is the
959 // same, then this expression is a constant even though the PHI node
960 // is not a constant!
961 LatticeVal Result;
962 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
963 LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
964 BasicBlock *InBlock = PN1->getIncomingBlock(i);
965 LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
967 if (In1.isOverdefined() || In2.isOverdefined()) {
968 Result.markOverdefined();
969 break; // Cannot fold this operation over the PHI nodes!
972 if (In1.isConstant() && In2.isConstant()) {
973 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
974 In2.getConstant());
975 if (Result.isUndefined())
976 Result.markConstant(V);
977 else if (Result.isConstant() && Result.getConstant() != V) {
978 Result.markOverdefined();
979 break;
984 // If we found a constant value here, then we know the instruction is
985 // constant despite the fact that the PHI nodes are overdefined.
986 if (Result.isConstant()) {
987 markConstant(IV, &I, Result.getConstant());
988 // Remember that this instruction is virtually using the PHI node
989 // operands.
990 InsertInOverdefinedPHIs(&I, PN1);
991 InsertInOverdefinedPHIs(&I, PN2);
992 return;
995 if (Result.isUndefined())
996 return;
998 // Okay, this really is overdefined now. Since we might have
999 // speculatively thought that this was not overdefined before, and
1000 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1001 // make sure to clean out any entries that we put there, for
1002 // efficiency.
1003 RemoveFromOverdefinedPHIs(&I, PN1);
1004 RemoveFromOverdefinedPHIs(&I, PN2);
1007 markOverdefined(&I);
1010 // Handle ICmpInst instruction.
1011 void SCCPSolver::visitCmpInst(CmpInst &I) {
1012 LatticeVal V1State = getValueState(I.getOperand(0));
1013 LatticeVal V2State = getValueState(I.getOperand(1));
1015 LatticeVal &IV = ValueState[&I];
1016 if (IV.isOverdefined()) return;
1018 if (V1State.isConstant() && V2State.isConstant())
1019 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1020 V1State.getConstant(),
1021 V2State.getConstant()));
1023 // If operands are still undefined, wait for it to resolve.
1024 if (!V1State.isOverdefined() && !V2State.isOverdefined())
1025 return;
1027 // If something is overdefined, use some tricks to avoid ending up and over
1028 // defined if we can.
1030 // If both operands are PHI nodes, it is possible that this instruction has
1031 // a constant value, despite the fact that the PHI node doesn't. Check for
1032 // this condition now.
1033 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
1034 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
1035 if (PN1->getParent() == PN2->getParent()) {
1036 // Since the two PHI nodes are in the same basic block, they must have
1037 // entries for the same predecessors. Walk the predecessor list, and
1038 // if all of the incoming values are constants, and the result of
1039 // evaluating this expression with all incoming value pairs is the
1040 // same, then this expression is a constant even though the PHI node
1041 // is not a constant!
1042 LatticeVal Result;
1043 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
1044 LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
1045 BasicBlock *InBlock = PN1->getIncomingBlock(i);
1046 LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
1048 if (In1.isOverdefined() || In2.isOverdefined()) {
1049 Result.markOverdefined();
1050 break; // Cannot fold this operation over the PHI nodes!
1053 if (In1.isConstant() && In2.isConstant()) {
1054 Constant *V = ConstantExpr::getCompare(I.getPredicate(),
1055 In1.getConstant(),
1056 In2.getConstant());
1057 if (Result.isUndefined())
1058 Result.markConstant(V);
1059 else if (Result.isConstant() && Result.getConstant() != V) {
1060 Result.markOverdefined();
1061 break;
1066 // If we found a constant value here, then we know the instruction is
1067 // constant despite the fact that the PHI nodes are overdefined.
1068 if (Result.isConstant()) {
1069 markConstant(&I, Result.getConstant());
1070 // Remember that this instruction is virtually using the PHI node
1071 // operands.
1072 InsertInOverdefinedPHIs(&I, PN1);
1073 InsertInOverdefinedPHIs(&I, PN2);
1074 return;
1077 if (Result.isUndefined())
1078 return;
1080 // Okay, this really is overdefined now. Since we might have
1081 // speculatively thought that this was not overdefined before, and
1082 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1083 // make sure to clean out any entries that we put there, for
1084 // efficiency.
1085 RemoveFromOverdefinedPHIs(&I, PN1);
1086 RemoveFromOverdefinedPHIs(&I, PN2);
1089 markOverdefined(&I);
1092 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1093 // TODO : SCCP does not handle vectors properly.
1094 return markOverdefined(&I);
1096 #if 0
1097 LatticeVal &ValState = getValueState(I.getOperand(0));
1098 LatticeVal &IdxState = getValueState(I.getOperand(1));
1100 if (ValState.isOverdefined() || IdxState.isOverdefined())
1101 markOverdefined(&I);
1102 else if(ValState.isConstant() && IdxState.isConstant())
1103 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1104 IdxState.getConstant()));
1105 #endif
1108 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1109 // TODO : SCCP does not handle vectors properly.
1110 return markOverdefined(&I);
1111 #if 0
1112 LatticeVal &ValState = getValueState(I.getOperand(0));
1113 LatticeVal &EltState = getValueState(I.getOperand(1));
1114 LatticeVal &IdxState = getValueState(I.getOperand(2));
1116 if (ValState.isOverdefined() || EltState.isOverdefined() ||
1117 IdxState.isOverdefined())
1118 markOverdefined(&I);
1119 else if(ValState.isConstant() && EltState.isConstant() &&
1120 IdxState.isConstant())
1121 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1122 EltState.getConstant(),
1123 IdxState.getConstant()));
1124 else if (ValState.isUndefined() && EltState.isConstant() &&
1125 IdxState.isConstant())
1126 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1127 EltState.getConstant(),
1128 IdxState.getConstant()));
1129 #endif
1132 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1133 // TODO : SCCP does not handle vectors properly.
1134 return markOverdefined(&I);
1135 #if 0
1136 LatticeVal &V1State = getValueState(I.getOperand(0));
1137 LatticeVal &V2State = getValueState(I.getOperand(1));
1138 LatticeVal &MaskState = getValueState(I.getOperand(2));
1140 if (MaskState.isUndefined() ||
1141 (V1State.isUndefined() && V2State.isUndefined()))
1142 return; // Undefined output if mask or both inputs undefined.
1144 if (V1State.isOverdefined() || V2State.isOverdefined() ||
1145 MaskState.isOverdefined()) {
1146 markOverdefined(&I);
1147 } else {
1148 // A mix of constant/undef inputs.
1149 Constant *V1 = V1State.isConstant() ?
1150 V1State.getConstant() : UndefValue::get(I.getType());
1151 Constant *V2 = V2State.isConstant() ?
1152 V2State.getConstant() : UndefValue::get(I.getType());
1153 Constant *Mask = MaskState.isConstant() ?
1154 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1155 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1157 #endif
1160 // Handle getelementptr instructions. If all operands are constants then we
1161 // can turn this into a getelementptr ConstantExpr.
1163 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1164 if (ValueState[&I].isOverdefined()) return;
1166 SmallVector<Constant*, 8> Operands;
1167 Operands.reserve(I.getNumOperands());
1169 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1170 LatticeVal State = getValueState(I.getOperand(i));
1171 if (State.isUndefined())
1172 return; // Operands are not resolved yet.
1174 if (State.isOverdefined())
1175 return markOverdefined(&I);
1177 assert(State.isConstant() && "Unknown state!");
1178 Operands.push_back(State.getConstant());
1181 Constant *Ptr = Operands[0];
1182 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0]+1,
1183 Operands.size()-1));
1186 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1187 // If this store is of a struct, ignore it.
1188 if (SI.getOperand(0)->getType()->isStructTy())
1189 return;
1191 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1192 return;
1194 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1195 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1196 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1198 // Get the value we are storing into the global, then merge it.
1199 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1200 if (I->second.isOverdefined())
1201 TrackedGlobals.erase(I); // No need to keep tracking this!
1205 // Handle load instructions. If the operand is a constant pointer to a constant
1206 // global, we can replace the load with the loaded constant value!
1207 void SCCPSolver::visitLoadInst(LoadInst &I) {
1208 // If this load is of a struct, just mark the result overdefined.
1209 if (I.getType()->isStructTy())
1210 return markAnythingOverdefined(&I);
1212 LatticeVal PtrVal = getValueState(I.getOperand(0));
1213 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1215 LatticeVal &IV = ValueState[&I];
1216 if (IV.isOverdefined()) return;
1218 if (!PtrVal.isConstant() || I.isVolatile())
1219 return markOverdefined(IV, &I);
1221 Constant *Ptr = PtrVal.getConstant();
1223 // load null -> null
1224 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1225 return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1227 // Transform load (constant global) into the value loaded.
1228 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1229 if (!TrackedGlobals.empty()) {
1230 // If we are tracking this global, merge in the known value for it.
1231 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1232 TrackedGlobals.find(GV);
1233 if (It != TrackedGlobals.end()) {
1234 mergeInValue(IV, &I, It->second);
1235 return;
1240 // Transform load from a constant into a constant if possible.
1241 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
1242 return markConstant(IV, &I, C);
1244 // Otherwise we cannot say for certain what value this load will produce.
1245 // Bail out.
1246 markOverdefined(IV, &I);
1249 void SCCPSolver::visitCallSite(CallSite CS) {
1250 Function *F = CS.getCalledFunction();
1251 Instruction *I = CS.getInstruction();
1253 // The common case is that we aren't tracking the callee, either because we
1254 // are not doing interprocedural analysis or the callee is indirect, or is
1255 // external. Handle these cases first.
1256 if (F == 0 || F->isDeclaration()) {
1257 CallOverdefined:
1258 // Void return and not tracking callee, just bail.
1259 if (I->getType()->isVoidTy()) return;
1261 // Otherwise, if we have a single return value case, and if the function is
1262 // a declaration, maybe we can constant fold it.
1263 if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1264 canConstantFoldCallTo(F)) {
1266 SmallVector<Constant*, 8> Operands;
1267 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1268 AI != E; ++AI) {
1269 LatticeVal State = getValueState(*AI);
1271 if (State.isUndefined())
1272 return; // Operands are not resolved yet.
1273 if (State.isOverdefined())
1274 return markOverdefined(I);
1275 assert(State.isConstant() && "Unknown state!");
1276 Operands.push_back(State.getConstant());
1279 // If we can constant fold this, mark the result of the call as a
1280 // constant.
1281 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size()))
1282 return markConstant(I, C);
1285 // Otherwise, we don't know anything about this call, mark it overdefined.
1286 return markAnythingOverdefined(I);
1289 // If this is a local function that doesn't have its address taken, mark its
1290 // entry block executable and merge in the actual arguments to the call into
1291 // the formal arguments of the function.
1292 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1293 MarkBlockExecutable(F->begin());
1295 // Propagate information from this call site into the callee.
1296 CallSite::arg_iterator CAI = CS.arg_begin();
1297 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1298 AI != E; ++AI, ++CAI) {
1299 // If this argument is byval, and if the function is not readonly, there
1300 // will be an implicit copy formed of the input aggregate.
1301 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1302 markOverdefined(AI);
1303 continue;
1306 if (const StructType *STy = dyn_cast<StructType>(AI->getType())) {
1307 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1308 LatticeVal CallArg = getStructValueState(*CAI, i);
1309 mergeInValue(getStructValueState(AI, i), AI, CallArg);
1311 } else {
1312 mergeInValue(AI, getValueState(*CAI));
1317 // If this is a single/zero retval case, see if we're tracking the function.
1318 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1319 if (!MRVFunctionsTracked.count(F))
1320 goto CallOverdefined; // Not tracking this callee.
1322 // If we are tracking this callee, propagate the result of the function
1323 // into this call site.
1324 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1325 mergeInValue(getStructValueState(I, i), I,
1326 TrackedMultipleRetVals[std::make_pair(F, i)]);
1327 } else {
1328 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1329 if (TFRVI == TrackedRetVals.end())
1330 goto CallOverdefined; // Not tracking this callee.
1332 // If so, propagate the return value of the callee into this call result.
1333 mergeInValue(I, TFRVI->second);
1337 void SCCPSolver::Solve() {
1338 // Process the work lists until they are empty!
1339 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1340 !OverdefinedInstWorkList.empty()) {
1341 // Process the overdefined instruction's work list first, which drives other
1342 // things to overdefined more quickly.
1343 while (!OverdefinedInstWorkList.empty()) {
1344 Value *I = OverdefinedInstWorkList.pop_back_val();
1346 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1348 // "I" got into the work list because it either made the transition from
1349 // bottom to constant
1351 // Anything on this worklist that is overdefined need not be visited
1352 // since all of its users will have already been marked as overdefined
1353 // Update all of the users of this instruction's value.
1355 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1356 UI != E; ++UI)
1357 if (Instruction *I = dyn_cast<Instruction>(*UI))
1358 OperandChangedState(I);
1361 // Process the instruction work list.
1362 while (!InstWorkList.empty()) {
1363 Value *I = InstWorkList.pop_back_val();
1365 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1367 // "I" got into the work list because it made the transition from undef to
1368 // constant.
1370 // Anything on this worklist that is overdefined need not be visited
1371 // since all of its users will have already been marked as overdefined.
1372 // Update all of the users of this instruction's value.
1374 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1375 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1376 UI != E; ++UI)
1377 if (Instruction *I = dyn_cast<Instruction>(*UI))
1378 OperandChangedState(I);
1381 // Process the basic block work list.
1382 while (!BBWorkList.empty()) {
1383 BasicBlock *BB = BBWorkList.back();
1384 BBWorkList.pop_back();
1386 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1388 // Notify all instructions in this basic block that they are newly
1389 // executable.
1390 visit(BB);
1395 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1396 /// that branches on undef values cannot reach any of their successors.
1397 /// However, this is not a safe assumption. After we solve dataflow, this
1398 /// method should be use to handle this. If this returns true, the solver
1399 /// should be rerun.
1401 /// This method handles this by finding an unresolved branch and marking it one
1402 /// of the edges from the block as being feasible, even though the condition
1403 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1404 /// CFG and only slightly pessimizes the analysis results (by marking one,
1405 /// potentially infeasible, edge feasible). This cannot usefully modify the
1406 /// constraints on the condition of the branch, as that would impact other users
1407 /// of the value.
1409 /// This scan also checks for values that use undefs, whose results are actually
1410 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1411 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1412 /// even if X isn't defined.
1413 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1414 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1415 if (!BBExecutable.count(BB))
1416 continue;
1418 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1419 // Look for instructions which produce undef values.
1420 if (I->getType()->isVoidTy()) continue;
1422 if (const StructType *STy = dyn_cast<StructType>(I->getType())) {
1423 // Only a few things that can be structs matter for undef. Just send
1424 // all their results to overdefined. We could be more precise than this
1425 // but it isn't worth bothering.
1426 if (isa<CallInst>(I) || isa<SelectInst>(I)) {
1427 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1428 LatticeVal &LV = getStructValueState(I, i);
1429 if (LV.isUndefined())
1430 markOverdefined(LV, I);
1433 continue;
1436 LatticeVal &LV = getValueState(I);
1437 if (!LV.isUndefined()) continue;
1439 // No instructions using structs need disambiguation.
1440 if (I->getOperand(0)->getType()->isStructTy())
1441 continue;
1443 // Get the lattice values of the first two operands for use below.
1444 LatticeVal Op0LV = getValueState(I->getOperand(0));
1445 LatticeVal Op1LV;
1446 if (I->getNumOperands() == 2) {
1447 // No instructions using structs need disambiguation.
1448 if (I->getOperand(1)->getType()->isStructTy())
1449 continue;
1451 // If this is a two-operand instruction, and if both operands are
1452 // undefs, the result stays undef.
1453 Op1LV = getValueState(I->getOperand(1));
1454 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1455 continue;
1458 // If this is an instructions whose result is defined even if the input is
1459 // not fully defined, propagate the information.
1460 const Type *ITy = I->getType();
1461 switch (I->getOpcode()) {
1462 default: break; // Leave the instruction as an undef.
1463 case Instruction::ZExt:
1464 // After a zero extend, we know the top part is zero. SExt doesn't have
1465 // to be handled here, because we don't know whether the top part is 1's
1466 // or 0's.
1467 case Instruction::SIToFP: // some FP values are not possible, just use 0.
1468 case Instruction::UIToFP: // some FP values are not possible, just use 0.
1469 markForcedConstant(I, Constant::getNullValue(ITy));
1470 return true;
1471 case Instruction::Mul:
1472 case Instruction::And:
1473 // undef * X -> 0. X could be zero.
1474 // undef & X -> 0. X could be zero.
1475 markForcedConstant(I, Constant::getNullValue(ITy));
1476 return true;
1478 case Instruction::Or:
1479 // undef | X -> -1. X could be -1.
1480 markForcedConstant(I, Constant::getAllOnesValue(ITy));
1481 return true;
1483 case Instruction::SDiv:
1484 case Instruction::UDiv:
1485 case Instruction::SRem:
1486 case Instruction::URem:
1487 // X / undef -> undef. No change.
1488 // X % undef -> undef. No change.
1489 if (Op1LV.isUndefined()) break;
1491 // undef / X -> 0. X could be maxint.
1492 // undef % X -> 0. X could be 1.
1493 markForcedConstant(I, Constant::getNullValue(ITy));
1494 return true;
1496 case Instruction::AShr:
1497 // undef >>s X -> undef. No change.
1498 if (Op0LV.isUndefined()) break;
1500 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1501 if (Op0LV.isConstant())
1502 markForcedConstant(I, Op0LV.getConstant());
1503 else
1504 markOverdefined(I);
1505 return true;
1506 case Instruction::LShr:
1507 case Instruction::Shl:
1508 // undef >> X -> undef. No change.
1509 // undef << X -> undef. No change.
1510 if (Op0LV.isUndefined()) break;
1512 // X >> undef -> 0. X could be 0.
1513 // X << undef -> 0. X could be 0.
1514 markForcedConstant(I, Constant::getNullValue(ITy));
1515 return true;
1516 case Instruction::Select:
1517 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1518 if (Op0LV.isUndefined()) {
1519 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1520 Op1LV = getValueState(I->getOperand(2));
1521 } else if (Op1LV.isUndefined()) {
1522 // c ? undef : undef -> undef. No change.
1523 Op1LV = getValueState(I->getOperand(2));
1524 if (Op1LV.isUndefined())
1525 break;
1526 // Otherwise, c ? undef : x -> x.
1527 } else {
1528 // Leave Op1LV as Operand(1)'s LatticeValue.
1531 if (Op1LV.isConstant())
1532 markForcedConstant(I, Op1LV.getConstant());
1533 else
1534 markOverdefined(I);
1535 return true;
1536 case Instruction::Call:
1537 // If a call has an undef result, it is because it is constant foldable
1538 // but one of the inputs was undef. Just force the result to
1539 // overdefined.
1540 markOverdefined(I);
1541 return true;
1545 // Check to see if we have a branch or switch on an undefined value. If so
1546 // we force the branch to go one way or the other to make the successor
1547 // values live. It doesn't really matter which way we force it.
1548 TerminatorInst *TI = BB->getTerminator();
1549 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1550 if (!BI->isConditional()) continue;
1551 if (!getValueState(BI->getCondition()).isUndefined())
1552 continue;
1554 // If the input to SCCP is actually branch on undef, fix the undef to
1555 // false.
1556 if (isa<UndefValue>(BI->getCondition())) {
1557 BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1558 markEdgeExecutable(BB, TI->getSuccessor(1));
1559 return true;
1562 // Otherwise, it is a branch on a symbolic value which is currently
1563 // considered to be undef. Handle this by forcing the input value to the
1564 // branch to false.
1565 markForcedConstant(BI->getCondition(),
1566 ConstantInt::getFalse(TI->getContext()));
1567 return true;
1570 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1571 if (SI->getNumSuccessors() < 2) // no cases
1572 continue;
1573 if (!getValueState(SI->getCondition()).isUndefined())
1574 continue;
1576 // If the input to SCCP is actually switch on undef, fix the undef to
1577 // the first constant.
1578 if (isa<UndefValue>(SI->getCondition())) {
1579 SI->setCondition(SI->getCaseValue(1));
1580 markEdgeExecutable(BB, TI->getSuccessor(1));
1581 return true;
1584 markForcedConstant(SI->getCondition(), SI->getCaseValue(1));
1585 return true;
1589 return false;
1593 namespace {
1594 //===--------------------------------------------------------------------===//
1596 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1597 /// Sparse Conditional Constant Propagator.
1599 struct SCCP : public FunctionPass {
1600 static char ID; // Pass identification, replacement for typeid
1601 SCCP() : FunctionPass(ID) {
1602 initializeSCCPPass(*PassRegistry::getPassRegistry());
1605 // runOnFunction - Run the Sparse Conditional Constant Propagation
1606 // algorithm, and return true if the function was modified.
1608 bool runOnFunction(Function &F);
1610 } // end anonymous namespace
1612 char SCCP::ID = 0;
1613 INITIALIZE_PASS(SCCP, "sccp",
1614 "Sparse Conditional Constant Propagation", false, false)
1616 // createSCCPPass - This is the public interface to this file.
1617 FunctionPass *llvm::createSCCPPass() {
1618 return new SCCP();
1621 static void DeleteInstructionInBlock(BasicBlock *BB) {
1622 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
1623 ++NumDeadBlocks;
1625 // Delete the instructions backwards, as it has a reduced likelihood of
1626 // having to update as many def-use and use-def chains.
1627 while (!isa<TerminatorInst>(BB->begin())) {
1628 Instruction *I = --BasicBlock::iterator(BB->getTerminator());
1630 if (!I->use_empty())
1631 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1632 BB->getInstList().erase(I);
1633 ++NumInstRemoved;
1637 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1638 // and return true if the function was modified.
1640 bool SCCP::runOnFunction(Function &F) {
1641 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1642 SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1644 // Mark the first block of the function as being executable.
1645 Solver.MarkBlockExecutable(F.begin());
1647 // Mark all arguments to the function as being overdefined.
1648 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1649 Solver.markAnythingOverdefined(AI);
1651 // Solve for constants.
1652 bool ResolvedUndefs = true;
1653 while (ResolvedUndefs) {
1654 Solver.Solve();
1655 DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1656 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1659 bool MadeChanges = false;
1661 // If we decided that there are basic blocks that are dead in this function,
1662 // delete their contents now. Note that we cannot actually delete the blocks,
1663 // as we cannot modify the CFG of the function.
1665 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1666 if (!Solver.isBlockExecutable(BB)) {
1667 DeleteInstructionInBlock(BB);
1668 MadeChanges = true;
1669 continue;
1672 // Iterate over all of the instructions in a function, replacing them with
1673 // constants if we have found them to be of constant values.
1675 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1676 Instruction *Inst = BI++;
1677 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1678 continue;
1680 // TODO: Reconstruct structs from their elements.
1681 if (Inst->getType()->isStructTy())
1682 continue;
1684 LatticeVal IV = Solver.getLatticeValueFor(Inst);
1685 if (IV.isOverdefined())
1686 continue;
1688 Constant *Const = IV.isConstant()
1689 ? IV.getConstant() : UndefValue::get(Inst->getType());
1690 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst);
1692 // Replaces all of the uses of a variable with uses of the constant.
1693 Inst->replaceAllUsesWith(Const);
1695 // Delete the instruction.
1696 Inst->eraseFromParent();
1698 // Hey, we just changed something!
1699 MadeChanges = true;
1700 ++NumInstRemoved;
1704 return MadeChanges;
1707 namespace {
1708 //===--------------------------------------------------------------------===//
1710 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1711 /// Constant Propagation.
1713 struct IPSCCP : public ModulePass {
1714 static char ID;
1715 IPSCCP() : ModulePass(ID) {
1716 initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1718 bool runOnModule(Module &M);
1720 } // end anonymous namespace
1722 char IPSCCP::ID = 0;
1723 INITIALIZE_PASS(IPSCCP, "ipsccp",
1724 "Interprocedural Sparse Conditional Constant Propagation",
1725 false, false)
1727 // createIPSCCPPass - This is the public interface to this file.
1728 ModulePass *llvm::createIPSCCPPass() {
1729 return new IPSCCP();
1733 static bool AddressIsTaken(const GlobalValue *GV) {
1734 // Delete any dead constantexpr klingons.
1735 GV->removeDeadConstantUsers();
1737 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1738 UI != E; ++UI) {
1739 const User *U = *UI;
1740 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
1741 if (SI->getOperand(0) == GV || SI->isVolatile())
1742 return true; // Storing addr of GV.
1743 } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
1744 // Make sure we are calling the function, not passing the address.
1745 ImmutableCallSite CS(cast<Instruction>(U));
1746 if (!CS.isCallee(UI))
1747 return true;
1748 } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1749 if (LI->isVolatile())
1750 return true;
1751 } else if (isa<BlockAddress>(U)) {
1752 // blockaddress doesn't take the address of the function, it takes addr
1753 // of label.
1754 } else {
1755 return true;
1758 return false;
1761 bool IPSCCP::runOnModule(Module &M) {
1762 SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1764 // AddressTakenFunctions - This set keeps track of the address-taken functions
1765 // that are in the input. As IPSCCP runs through and simplifies code,
1766 // functions that were address taken can end up losing their
1767 // address-taken-ness. Because of this, we keep track of their addresses from
1768 // the first pass so we can use them for the later simplification pass.
1769 SmallPtrSet<Function*, 32> AddressTakenFunctions;
1771 // Loop over all functions, marking arguments to those with their addresses
1772 // taken or that are external as overdefined.
1774 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1775 if (F->isDeclaration())
1776 continue;
1778 // If this is a strong or ODR definition of this function, then we can
1779 // propagate information about its result into callsites of it.
1780 if (!F->mayBeOverridden())
1781 Solver.AddTrackedFunction(F);
1783 // If this function only has direct calls that we can see, we can track its
1784 // arguments and return value aggressively, and can assume it is not called
1785 // unless we see evidence to the contrary.
1786 if (F->hasLocalLinkage()) {
1787 if (AddressIsTaken(F))
1788 AddressTakenFunctions.insert(F);
1789 else {
1790 Solver.AddArgumentTrackedFunction(F);
1791 continue;
1795 // Assume the function is called.
1796 Solver.MarkBlockExecutable(F->begin());
1798 // Assume nothing about the incoming arguments.
1799 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1800 AI != E; ++AI)
1801 Solver.markAnythingOverdefined(AI);
1804 // Loop over global variables. We inform the solver about any internal global
1805 // variables that do not have their 'addresses taken'. If they don't have
1806 // their addresses taken, we can propagate constants through them.
1807 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1808 G != E; ++G)
1809 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1810 Solver.TrackValueOfGlobalVariable(G);
1812 // Solve for constants.
1813 bool ResolvedUndefs = true;
1814 while (ResolvedUndefs) {
1815 Solver.Solve();
1817 DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1818 ResolvedUndefs = false;
1819 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1820 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1823 bool MadeChanges = false;
1825 // Iterate over all of the instructions in the module, replacing them with
1826 // constants if we have found them to be of constant values.
1828 SmallVector<BasicBlock*, 512> BlocksToErase;
1830 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1831 if (Solver.isBlockExecutable(F->begin())) {
1832 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1833 AI != E; ++AI) {
1834 if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1836 // TODO: Could use getStructLatticeValueFor to find out if the entire
1837 // result is a constant and replace it entirely if so.
1839 LatticeVal IV = Solver.getLatticeValueFor(AI);
1840 if (IV.isOverdefined()) continue;
1842 Constant *CST = IV.isConstant() ?
1843 IV.getConstant() : UndefValue::get(AI->getType());
1844 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n");
1846 // Replaces all of the uses of a variable with uses of the
1847 // constant.
1848 AI->replaceAllUsesWith(CST);
1849 ++IPNumArgsElimed;
1853 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1854 if (!Solver.isBlockExecutable(BB)) {
1855 DeleteInstructionInBlock(BB);
1856 MadeChanges = true;
1858 TerminatorInst *TI = BB->getTerminator();
1859 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1860 BasicBlock *Succ = TI->getSuccessor(i);
1861 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1862 TI->getSuccessor(i)->removePredecessor(BB);
1864 if (!TI->use_empty())
1865 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1866 TI->eraseFromParent();
1868 if (&*BB != &F->front())
1869 BlocksToErase.push_back(BB);
1870 else
1871 new UnreachableInst(M.getContext(), BB);
1872 continue;
1875 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1876 Instruction *Inst = BI++;
1877 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1878 continue;
1880 // TODO: Could use getStructLatticeValueFor to find out if the entire
1881 // result is a constant and replace it entirely if so.
1883 LatticeVal IV = Solver.getLatticeValueFor(Inst);
1884 if (IV.isOverdefined())
1885 continue;
1887 Constant *Const = IV.isConstant()
1888 ? IV.getConstant() : UndefValue::get(Inst->getType());
1889 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst);
1891 // Replaces all of the uses of a variable with uses of the
1892 // constant.
1893 Inst->replaceAllUsesWith(Const);
1895 // Delete the instruction.
1896 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1897 Inst->eraseFromParent();
1899 // Hey, we just changed something!
1900 MadeChanges = true;
1901 ++IPNumInstRemoved;
1905 // Now that all instructions in the function are constant folded, erase dead
1906 // blocks, because we can now use ConstantFoldTerminator to get rid of
1907 // in-edges.
1908 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1909 // If there are any PHI nodes in this successor, drop entries for BB now.
1910 BasicBlock *DeadBB = BlocksToErase[i];
1911 for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
1912 UI != UE; ) {
1913 // Grab the user and then increment the iterator early, as the user
1914 // will be deleted. Step past all adjacent uses from the same user.
1915 Instruction *I = dyn_cast<Instruction>(*UI);
1916 do { ++UI; } while (UI != UE && *UI == I);
1918 // Ignore blockaddress users; BasicBlock's dtor will handle them.
1919 if (!I) continue;
1921 bool Folded = ConstantFoldTerminator(I->getParent());
1922 if (!Folded) {
1923 // The constant folder may not have been able to fold the terminator
1924 // if this is a branch or switch on undef. Fold it manually as a
1925 // branch to the first successor.
1926 #ifndef NDEBUG
1927 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1928 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1929 "Branch should be foldable!");
1930 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1931 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1932 } else {
1933 llvm_unreachable("Didn't fold away reference to block!");
1935 #endif
1937 // Make this an uncond branch to the first successor.
1938 TerminatorInst *TI = I->getParent()->getTerminator();
1939 BranchInst::Create(TI->getSuccessor(0), TI);
1941 // Remove entries in successor phi nodes to remove edges.
1942 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1943 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1945 // Remove the old terminator.
1946 TI->eraseFromParent();
1950 // Finally, delete the basic block.
1951 F->getBasicBlockList().erase(DeadBB);
1953 BlocksToErase.clear();
1956 // If we inferred constant or undef return values for a function, we replaced
1957 // all call uses with the inferred value. This means we don't need to bother
1958 // actually returning anything from the function. Replace all return
1959 // instructions with return undef.
1961 // Do this in two stages: first identify the functions we should process, then
1962 // actually zap their returns. This is important because we can only do this
1963 // if the address of the function isn't taken. In cases where a return is the
1964 // last use of a function, the order of processing functions would affect
1965 // whether other functions are optimizable.
1966 SmallVector<ReturnInst*, 8> ReturnsToZap;
1968 // TODO: Process multiple value ret instructions also.
1969 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1970 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1971 E = RV.end(); I != E; ++I) {
1972 Function *F = I->first;
1973 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1974 continue;
1976 // We can only do this if we know that nothing else can call the function.
1977 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1978 continue;
1980 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1981 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1982 if (!isa<UndefValue>(RI->getOperand(0)))
1983 ReturnsToZap.push_back(RI);
1986 // Zap all returns which we've identified as zap to change.
1987 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1988 Function *F = ReturnsToZap[i]->getParent()->getParent();
1989 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1992 // If we inferred constant or undef values for globals variables, we can delete
1993 // the global and any stores that remain to it.
1994 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1995 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1996 E = TG.end(); I != E; ++I) {
1997 GlobalVariable *GV = I->first;
1998 assert(!I->second.isOverdefined() &&
1999 "Overdefined values should have been taken out of the map!");
2000 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
2001 while (!GV->use_empty()) {
2002 StoreInst *SI = cast<StoreInst>(GV->use_back());
2003 SI->eraseFromParent();
2005 M.getGlobalList().erase(GV);
2006 ++IPNumGlobalConst;
2009 return MadeChanges;