Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Scalar / SimplifyCFGPass.cpp
blob7e9cc807b21482cf83c6de54feb87cd19e317584
1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements dead code elimination and basic block merging, along
11 // with a collection of other peephole control flow optimizations. For example:
13 // * Removes basic blocks with no predecessors.
14 // * Merges a basic block into its predecessor if there is only one and the
15 // predecessor only has one successor.
16 // * Eliminates PHI nodes for basic blocks with a single predecessor.
17 // * Eliminates a basic block that only contains an unconditional branch.
18 // * Changes invoke instructions to nounwind functions to be calls.
19 // * Change things like "if (x) if (y)" into "if (x&y)".
20 // * etc..
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "simplifycfg"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Constants.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Module.h"
31 #include "llvm/Attributes.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/Statistic.h"
38 using namespace llvm;
40 STATISTIC(NumSimpl, "Number of blocks simplified");
42 namespace {
43 struct CFGSimplifyPass : public FunctionPass {
44 static char ID; // Pass identification, replacement for typeid
45 CFGSimplifyPass() : FunctionPass(ID) {
46 initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
49 virtual bool runOnFunction(Function &F);
53 char CFGSimplifyPass::ID = 0;
54 INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
55 "Simplify the CFG", false, false)
57 // Public interface to the CFGSimplification pass
58 FunctionPass *llvm::createCFGSimplificationPass() {
59 return new CFGSimplifyPass();
62 /// ChangeToUnreachable - Insert an unreachable instruction before the specified
63 /// instruction, making it and the rest of the code in the block dead.
64 static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) {
65 BasicBlock *BB = I->getParent();
66 // Loop over all of the successors, removing BB's entry from any PHI
67 // nodes.
68 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
69 (*SI)->removePredecessor(BB);
71 // Insert a call to llvm.trap right before this. This turns the undefined
72 // behavior into a hard fail instead of falling through into random code.
73 if (UseLLVMTrap) {
74 Function *TrapFn =
75 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
76 CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
77 CallTrap->setDebugLoc(I->getDebugLoc());
79 new UnreachableInst(I->getContext(), I);
81 // All instructions after this are dead.
82 BasicBlock::iterator BBI = I, BBE = BB->end();
83 while (BBI != BBE) {
84 if (!BBI->use_empty())
85 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
86 BB->getInstList().erase(BBI++);
90 /// ChangeToCall - Convert the specified invoke into a normal call.
91 static void ChangeToCall(InvokeInst *II) {
92 BasicBlock *BB = II->getParent();
93 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
94 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args.begin(),
95 Args.end(), "", II);
96 NewCall->takeName(II);
97 NewCall->setCallingConv(II->getCallingConv());
98 NewCall->setAttributes(II->getAttributes());
99 NewCall->setDebugLoc(II->getDebugLoc());
100 II->replaceAllUsesWith(NewCall);
102 // Follow the call by a branch to the normal destination.
103 BranchInst::Create(II->getNormalDest(), II);
105 // Update PHI nodes in the unwind destination
106 II->getUnwindDest()->removePredecessor(BB);
107 BB->getInstList().erase(II);
110 static bool MarkAliveBlocks(BasicBlock *BB,
111 SmallPtrSet<BasicBlock*, 128> &Reachable) {
113 SmallVector<BasicBlock*, 128> Worklist;
114 Worklist.push_back(BB);
115 bool Changed = false;
116 do {
117 BB = Worklist.pop_back_val();
119 if (!Reachable.insert(BB))
120 continue;
122 // Do a quick scan of the basic block, turning any obviously unreachable
123 // instructions into LLVM unreachable insts. The instruction combining pass
124 // canonicalizes unreachable insts into stores to null or undef.
125 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
126 if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
127 if (CI->doesNotReturn()) {
128 // If we found a call to a no-return function, insert an unreachable
129 // instruction after it. Make sure there isn't *already* one there
130 // though.
131 ++BBI;
132 if (!isa<UnreachableInst>(BBI)) {
133 // Don't insert a call to llvm.trap right before the unreachable.
134 ChangeToUnreachable(BBI, false);
135 Changed = true;
137 break;
141 // Store to undef and store to null are undefined and used to signal that
142 // they should be changed to unreachable by passes that can't modify the
143 // CFG.
144 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
145 // Don't touch volatile stores.
146 if (SI->isVolatile()) continue;
148 Value *Ptr = SI->getOperand(1);
150 if (isa<UndefValue>(Ptr) ||
151 (isa<ConstantPointerNull>(Ptr) &&
152 SI->getPointerAddressSpace() == 0)) {
153 ChangeToUnreachable(SI, true);
154 Changed = true;
155 break;
160 // Turn invokes that call 'nounwind' functions into ordinary calls.
161 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
162 if (II->doesNotThrow()) {
163 ChangeToCall(II);
164 Changed = true;
167 Changed |= ConstantFoldTerminator(BB, true);
168 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
169 Worklist.push_back(*SI);
170 } while (!Worklist.empty());
171 return Changed;
174 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even
175 /// if they are in a dead cycle. Return true if a change was made, false
176 /// otherwise.
177 static bool RemoveUnreachableBlocksFromFn(Function &F) {
178 SmallPtrSet<BasicBlock*, 128> Reachable;
179 bool Changed = MarkAliveBlocks(F.begin(), Reachable);
181 // If there are unreachable blocks in the CFG...
182 if (Reachable.size() == F.size())
183 return Changed;
185 assert(Reachable.size() < F.size());
186 NumSimpl += F.size()-Reachable.size();
188 // Loop over all of the basic blocks that are not reachable, dropping all of
189 // their internal references...
190 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
191 if (Reachable.count(BB))
192 continue;
194 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
195 if (Reachable.count(*SI))
196 (*SI)->removePredecessor(BB);
197 BB->dropAllReferences();
200 for (Function::iterator I = ++F.begin(); I != F.end();)
201 if (!Reachable.count(I))
202 I = F.getBasicBlockList().erase(I);
203 else
204 ++I;
206 return true;
209 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi
210 /// node) return blocks, merge them together to promote recursive block merging.
211 static bool MergeEmptyReturnBlocks(Function &F) {
212 bool Changed = false;
214 BasicBlock *RetBlock = 0;
216 // Scan all the blocks in the function, looking for empty return blocks.
217 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
218 BasicBlock &BB = *BBI++;
220 // Only look at return blocks.
221 ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
222 if (Ret == 0) continue;
224 // Only look at the block if it is empty or the only other thing in it is a
225 // single PHI node that is the operand to the return.
226 if (Ret != &BB.front()) {
227 // Check for something else in the block.
228 BasicBlock::iterator I = Ret;
229 --I;
230 // Skip over debug info.
231 while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
232 --I;
233 if (!isa<DbgInfoIntrinsic>(I) &&
234 (!isa<PHINode>(I) || I != BB.begin() ||
235 Ret->getNumOperands() == 0 ||
236 Ret->getOperand(0) != I))
237 continue;
240 // If this is the first returning block, remember it and keep going.
241 if (RetBlock == 0) {
242 RetBlock = &BB;
243 continue;
246 // Otherwise, we found a duplicate return block. Merge the two.
247 Changed = true;
249 // Case when there is no input to the return or when the returned values
250 // agree is trivial. Note that they can't agree if there are phis in the
251 // blocks.
252 if (Ret->getNumOperands() == 0 ||
253 Ret->getOperand(0) ==
254 cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
255 BB.replaceAllUsesWith(RetBlock);
256 BB.eraseFromParent();
257 continue;
260 // If the canonical return block has no PHI node, create one now.
261 PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
262 if (RetBlockPHI == 0) {
263 Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
264 pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
265 RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
266 std::distance(PB, PE), "merge",
267 &RetBlock->front());
269 for (pred_iterator PI = PB; PI != PE; ++PI)
270 RetBlockPHI->addIncoming(InVal, *PI);
271 RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
274 // Turn BB into a block that just unconditionally branches to the return
275 // block. This handles the case when the two return blocks have a common
276 // predecessor but that return different things.
277 RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
278 BB.getTerminator()->eraseFromParent();
279 BranchInst::Create(RetBlock, &BB);
282 return Changed;
285 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function,
286 /// iterating until no more changes are made.
287 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) {
288 bool Changed = false;
289 bool LocalChange = true;
290 while (LocalChange) {
291 LocalChange = false;
293 // Loop over all of the basic blocks and remove them if they are unneeded...
295 for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
296 if (SimplifyCFG(BBIt++, TD)) {
297 LocalChange = true;
298 ++NumSimpl;
301 Changed |= LocalChange;
303 return Changed;
306 // It is possible that we may require multiple passes over the code to fully
307 // simplify the CFG.
309 bool CFGSimplifyPass::runOnFunction(Function &F) {
310 const TargetData *TD = getAnalysisIfAvailable<TargetData>();
311 bool EverChanged = RemoveUnreachableBlocksFromFn(F);
312 EverChanged |= MergeEmptyReturnBlocks(F);
313 EverChanged |= IterativeSimplifyCFG(F, TD);
315 // If neither pass changed anything, we're done.
316 if (!EverChanged) return false;
318 // IterativeSimplifyCFG can (rarely) make some loops dead. If this happens,
319 // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should
320 // iterate between the two optimizations. We structure the code like this to
321 // avoid reruning IterativeSimplifyCFG if the second pass of
322 // RemoveUnreachableBlocksFromFn doesn't do anything.
323 if (!RemoveUnreachableBlocksFromFn(F))
324 return true;
326 do {
327 EverChanged = IterativeSimplifyCFG(F, TD);
328 EverChanged |= RemoveUnreachableBlocksFromFn(F);
329 } while (EverChanged);
331 return true;