1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
14 // for (...) for (...)
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/Analysis/Dominators.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/Support/PredIteratorCache.h"
45 STATISTIC(NumLCSSA
, "Number of live out of a loop variables");
48 struct LCSSA
: public LoopPass
{
49 static char ID
; // Pass identification, replacement for typeid
50 LCSSA() : LoopPass(ID
) {
51 initializeLCSSAPass(*PassRegistry::getPassRegistry());
54 // Cached analysis information for the current function.
56 std::vector
<BasicBlock
*> LoopBlocks
;
57 PredIteratorCache PredCache
;
60 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
62 /// This transformation requires natural loop information & requires that
63 /// loop preheaders be inserted into the CFG. It maintains both of these,
64 /// as well as the CFG. It also requires dominator information.
66 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
69 AU
.addRequired
<DominatorTree
>();
70 AU
.addRequired
<LoopInfo
>();
71 AU
.addPreservedID(LoopSimplifyID
);
72 AU
.addPreserved
<ScalarEvolution
>();
75 bool ProcessInstruction(Instruction
*Inst
,
76 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
);
78 /// verifyAnalysis() - Verify loop nest.
79 virtual void verifyAnalysis() const {
80 // Check the special guarantees that LCSSA makes.
81 assert(L
->isLCSSAForm(*DT
) && "LCSSA form not preserved!");
84 /// inLoop - returns true if the given block is within the current loop
85 bool inLoop(BasicBlock
*B
) const {
86 return std::binary_search(LoopBlocks
.begin(), LoopBlocks
.end(), B
);
92 INITIALIZE_PASS_BEGIN(LCSSA
, "lcssa", "Loop-Closed SSA Form Pass", false, false)
93 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
94 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
95 INITIALIZE_PASS_END(LCSSA
, "lcssa", "Loop-Closed SSA Form Pass", false, false)
97 Pass
*llvm::createLCSSAPass() { return new LCSSA(); }
98 char &llvm::LCSSAID
= LCSSA::ID
;
101 /// BlockDominatesAnExit - Return true if the specified block dominates at least
102 /// one of the blocks in the specified list.
103 static bool BlockDominatesAnExit(BasicBlock
*BB
,
104 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
,
106 DomTreeNode
*DomNode
= DT
->getNode(BB
);
107 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
108 if (DT
->dominates(DomNode
, DT
->getNode(ExitBlocks
[i
])))
115 /// runOnFunction - Process all loops in the function, inner-most out.
116 bool LCSSA::runOnLoop(Loop
*TheLoop
, LPPassManager
&LPM
) {
119 DT
= &getAnalysis
<DominatorTree
>();
121 // Get the set of exiting blocks.
122 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
123 L
->getExitBlocks(ExitBlocks
);
125 if (ExitBlocks
.empty())
128 // Speed up queries by creating a sorted vector of blocks.
130 LoopBlocks
.insert(LoopBlocks
.end(), L
->block_begin(), L
->block_end());
131 array_pod_sort(LoopBlocks
.begin(), LoopBlocks
.end());
133 // Look at all the instructions in the loop, checking to see if they have uses
134 // outside the loop. If so, rewrite those uses.
135 bool MadeChange
= false;
137 for (Loop::block_iterator BBI
= L
->block_begin(), E
= L
->block_end();
139 BasicBlock
*BB
= *BBI
;
141 // For large loops, avoid use-scanning by using dominance information: In
142 // particular, if a block does not dominate any of the loop exits, then none
143 // of the values defined in the block could be used outside the loop.
144 if (!BlockDominatesAnExit(BB
, ExitBlocks
, DT
))
147 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end();
149 // Reject two common cases fast: instructions with no uses (like stores)
150 // and instructions with one use that is in the same block as this.
151 if (I
->use_empty() ||
152 (I
->hasOneUse() && I
->use_back()->getParent() == BB
&&
153 !isa
<PHINode
>(I
->use_back())))
156 MadeChange
|= ProcessInstruction(I
, ExitBlocks
);
160 assert(L
->isLCSSAForm(*DT
));
166 /// isExitBlock - Return true if the specified block is in the list.
167 static bool isExitBlock(BasicBlock
*BB
,
168 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
169 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
170 if (ExitBlocks
[i
] == BB
)
175 /// ProcessInstruction - Given an instruction in the loop, check to see if it
176 /// has any uses that are outside the current loop. If so, insert LCSSA PHI
177 /// nodes and rewrite the uses.
178 bool LCSSA::ProcessInstruction(Instruction
*Inst
,
179 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
180 SmallVector
<Use
*, 16> UsesToRewrite
;
182 BasicBlock
*InstBB
= Inst
->getParent();
184 for (Value::use_iterator UI
= Inst
->use_begin(), E
= Inst
->use_end();
187 BasicBlock
*UserBB
= cast
<Instruction
>(U
)->getParent();
188 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
189 UserBB
= PN
->getIncomingBlock(UI
);
191 if (InstBB
!= UserBB
&& !inLoop(UserBB
))
192 UsesToRewrite
.push_back(&UI
.getUse());
195 // If there are no uses outside the loop, exit with no change.
196 if (UsesToRewrite
.empty()) return false;
198 ++NumLCSSA
; // We are applying the transformation
200 // Invoke instructions are special in that their result value is not available
201 // along their unwind edge. The code below tests to see whether DomBB dominates
202 // the value, so adjust DomBB to the normal destination block, which is
203 // effectively where the value is first usable.
204 BasicBlock
*DomBB
= Inst
->getParent();
205 if (InvokeInst
*Inv
= dyn_cast
<InvokeInst
>(Inst
))
206 DomBB
= Inv
->getNormalDest();
208 DomTreeNode
*DomNode
= DT
->getNode(DomBB
);
210 SmallVector
<PHINode
*, 16> AddedPHIs
;
212 SSAUpdater SSAUpdate
;
213 SSAUpdate
.Initialize(Inst
->getType(), Inst
->getName());
215 // Insert the LCSSA phi's into all of the exit blocks dominated by the
216 // value, and add them to the Phi's map.
217 for (SmallVectorImpl
<BasicBlock
*>::const_iterator BBI
= ExitBlocks
.begin(),
218 BBE
= ExitBlocks
.end(); BBI
!= BBE
; ++BBI
) {
219 BasicBlock
*ExitBB
= *BBI
;
220 if (!DT
->dominates(DomNode
, DT
->getNode(ExitBB
))) continue;
222 // If we already inserted something for this BB, don't reprocess it.
223 if (SSAUpdate
.HasValueForBlock(ExitBB
)) continue;
225 PHINode
*PN
= PHINode::Create(Inst
->getType(),
226 PredCache
.GetNumPreds(ExitBB
),
227 Inst
->getName()+".lcssa",
230 // Add inputs from inside the loop for this PHI.
231 for (BasicBlock
**PI
= PredCache
.GetPreds(ExitBB
); *PI
; ++PI
) {
232 PN
->addIncoming(Inst
, *PI
);
234 // If the exit block has a predecessor not within the loop, arrange for
235 // the incoming value use corresponding to that predecessor to be
236 // rewritten in terms of a different LCSSA PHI.
238 UsesToRewrite
.push_back(
240 PN
->getOperandNumForIncomingValue(PN
->getNumIncomingValues()-1)));
243 AddedPHIs
.push_back(PN
);
245 // Remember that this phi makes the value alive in this block.
246 SSAUpdate
.AddAvailableValue(ExitBB
, PN
);
249 // Rewrite all uses outside the loop in terms of the new PHIs we just
251 for (unsigned i
= 0, e
= UsesToRewrite
.size(); i
!= e
; ++i
) {
252 // If this use is in an exit block, rewrite to use the newly inserted PHI.
253 // This is required for correctness because SSAUpdate doesn't handle uses in
254 // the same block. It assumes the PHI we inserted is at the end of the
256 Instruction
*User
= cast
<Instruction
>(UsesToRewrite
[i
]->getUser());
257 BasicBlock
*UserBB
= User
->getParent();
258 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
))
259 UserBB
= PN
->getIncomingBlock(*UsesToRewrite
[i
]);
261 if (isa
<PHINode
>(UserBB
->begin()) &&
262 isExitBlock(UserBB
, ExitBlocks
)) {
263 UsesToRewrite
[i
]->set(UserBB
->begin());
267 // Otherwise, do full PHI insertion.
268 SSAUpdate
.RewriteUse(*UsesToRewrite
[i
]);
271 // Remove PHI nodes that did not have any uses rewritten.
272 for (unsigned i
= 0, e
= AddedPHIs
.size(); i
!= e
; ++i
) {
273 if (AddedPHIs
[i
]->use_empty())
274 AddedPHIs
[i
]->eraseFromParent();