1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
14 // It works best when loops have been canonicalized by the -indvars pass,
15 // allowing it to determine the trip counts of loops easily.
17 // The process of unrolling can produce extraneous basic blocks linked with
18 // unconditional branches. This will be corrected in the future.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "loop-unroll"
23 #include "llvm/Transforms/Utils/UnrollLoop.h"
24 #include "llvm/BasicBlock.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include "llvm/Transforms/Utils/Local.h"
36 // TODO: Should these be here or in LoopUnroll?
37 STATISTIC(NumCompletelyUnrolled
, "Number of loops completely unrolled");
38 STATISTIC(NumUnrolled
, "Number of loops unrolled (completely or otherwise)");
40 /// RemapInstruction - Convert the instruction operands from referencing the
41 /// current values into those specified by VMap.
42 static inline void RemapInstruction(Instruction
*I
,
43 ValueToValueMapTy
&VMap
) {
44 for (unsigned op
= 0, E
= I
->getNumOperands(); op
!= E
; ++op
) {
45 Value
*Op
= I
->getOperand(op
);
46 ValueToValueMapTy::iterator It
= VMap
.find(Op
);
48 I
->setOperand(op
, It
->second
);
51 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
52 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
53 ValueToValueMapTy::iterator It
= VMap
.find(PN
->getIncomingBlock(i
));
55 PN
->setIncomingBlock(i
, cast
<BasicBlock
>(It
->second
));
60 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
61 /// only has one predecessor, and that predecessor only has one successor.
62 /// The LoopInfo Analysis that is passed will be kept consistent.
63 /// Returns the new combined block.
64 static BasicBlock
*FoldBlockIntoPredecessor(BasicBlock
*BB
, LoopInfo
* LI
) {
65 // Merge basic blocks into their predecessor if there is only one distinct
66 // pred, and if there is only one distinct successor of the predecessor, and
67 // if there are no PHI nodes.
68 BasicBlock
*OnlyPred
= BB
->getSinglePredecessor();
69 if (!OnlyPred
) return 0;
71 if (OnlyPred
->getTerminator()->getNumSuccessors() != 1)
74 DEBUG(dbgs() << "Merging: " << *BB
<< "into: " << *OnlyPred
);
76 // Resolve any PHI nodes at the start of the block. They are all
77 // guaranteed to have exactly one entry if they exist, unless there are
78 // multiple duplicate (but guaranteed to be equal) entries for the
79 // incoming edges. This occurs when there are multiple edges from
80 // OnlyPred to OnlySucc.
81 FoldSingleEntryPHINodes(BB
);
83 // Delete the unconditional branch from the predecessor...
84 OnlyPred
->getInstList().pop_back();
86 // Make all PHI nodes that referred to BB now refer to Pred as their
88 BB
->replaceAllUsesWith(OnlyPred
);
90 // Move all definitions in the successor to the predecessor...
91 OnlyPred
->getInstList().splice(OnlyPred
->end(), BB
->getInstList());
93 std::string OldName
= BB
->getName();
95 // Erase basic block from the function...
97 BB
->eraseFromParent();
99 // Inherit predecessor's name if it exists...
100 if (!OldName
.empty() && !OnlyPred
->hasName())
101 OnlyPred
->setName(OldName
);
106 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
107 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
108 /// can only fail when the loop's latch block is not terminated by a conditional
109 /// branch instruction. However, if the trip count (and multiple) are not known,
110 /// loop unrolling will mostly produce more code that is no faster.
112 /// The LoopInfo Analysis that is passed will be kept consistent.
114 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
115 /// removed from the LoopPassManager as well. LPM can also be NULL.
116 bool llvm::UnrollLoop(Loop
*L
, unsigned Count
,
117 LoopInfo
*LI
, LPPassManager
*LPM
) {
118 BasicBlock
*Preheader
= L
->getLoopPreheader();
120 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
124 BasicBlock
*LatchBlock
= L
->getLoopLatch();
126 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
130 BasicBlock
*Header
= L
->getHeader();
131 BranchInst
*BI
= dyn_cast
<BranchInst
>(LatchBlock
->getTerminator());
133 if (!BI
|| BI
->isUnconditional()) {
134 // The loop-rotate pass can be helpful to avoid this in many cases.
136 " Can't unroll; loop not terminated by a conditional branch.\n");
140 if (Header
->hasAddressTaken()) {
141 // The loop-rotate pass can be helpful to avoid this in many cases.
143 " Won't unroll loop: address of header block is taken.\n");
147 // Notify ScalarEvolution that the loop will be substantially changed,
148 // if not outright eliminated.
149 if (ScalarEvolution
*SE
= LPM
->getAnalysisIfAvailable
<ScalarEvolution
>())
153 unsigned TripCount
= L
->getSmallConstantTripCount();
154 // Find trip multiple if count is not available
155 unsigned TripMultiple
= 1;
157 TripMultiple
= L
->getSmallConstantTripMultiple();
160 DEBUG(dbgs() << " Trip Count = " << TripCount
<< "\n");
161 if (TripMultiple
!= 1)
162 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple
<< "\n");
164 // Effectively "DCE" unrolled iterations that are beyond the tripcount
165 // and will never be executed.
166 if (TripCount
!= 0 && Count
> TripCount
)
170 assert(TripMultiple
> 0);
171 assert(TripCount
== 0 || TripCount
% TripMultiple
== 0);
173 // Are we eliminating the loop control altogether?
174 bool CompletelyUnroll
= Count
== TripCount
;
176 // If we know the trip count, we know the multiple...
177 unsigned BreakoutTrip
= 0;
178 if (TripCount
!= 0) {
179 BreakoutTrip
= TripCount
% Count
;
182 // Figure out what multiple to use.
183 BreakoutTrip
= TripMultiple
=
184 (unsigned)GreatestCommonDivisor64(Count
, TripMultiple
);
187 if (CompletelyUnroll
) {
188 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header
->getName()
189 << " with trip count " << TripCount
<< "!\n");
191 DEBUG(dbgs() << "UNROLLING loop %" << Header
->getName()
193 if (TripMultiple
== 0 || BreakoutTrip
!= TripMultiple
) {
194 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip
);
195 } else if (TripMultiple
!= 1) {
196 DEBUG(dbgs() << " with " << TripMultiple
<< " trips per branch");
198 DEBUG(dbgs() << "!\n");
201 std::vector
<BasicBlock
*> LoopBlocks
= L
->getBlocks();
203 bool ContinueOnTrue
= L
->contains(BI
->getSuccessor(0));
204 BasicBlock
*LoopExit
= BI
->getSuccessor(ContinueOnTrue
);
206 // For the first iteration of the loop, we should use the precloned values for
207 // PHI nodes. Insert associations now.
208 ValueToValueMapTy LastValueMap
;
209 std::vector
<PHINode
*> OrigPHINode
;
210 for (BasicBlock::iterator I
= Header
->begin(); isa
<PHINode
>(I
); ++I
) {
211 PHINode
*PN
= cast
<PHINode
>(I
);
212 OrigPHINode
.push_back(PN
);
214 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(LatchBlock
)))
219 std::vector
<BasicBlock
*> Headers
;
220 std::vector
<BasicBlock
*> Latches
;
221 Headers
.push_back(Header
);
222 Latches
.push_back(LatchBlock
);
224 for (unsigned It
= 1; It
!= Count
; ++It
) {
225 std::vector
<BasicBlock
*> NewBlocks
;
227 for (std::vector
<BasicBlock
*>::iterator BB
= LoopBlocks
.begin(),
228 E
= LoopBlocks
.end(); BB
!= E
; ++BB
) {
229 ValueToValueMapTy VMap
;
230 BasicBlock
*New
= CloneBasicBlock(*BB
, VMap
, "." + Twine(It
));
231 Header
->getParent()->getBasicBlockList().push_back(New
);
233 // Loop over all of the PHI nodes in the block, changing them to use the
234 // incoming values from the previous block.
236 for (unsigned i
= 0, e
= OrigPHINode
.size(); i
!= e
; ++i
) {
237 PHINode
*NewPHI
= cast
<PHINode
>(VMap
[OrigPHINode
[i
]]);
238 Value
*InVal
= NewPHI
->getIncomingValueForBlock(LatchBlock
);
239 if (Instruction
*InValI
= dyn_cast
<Instruction
>(InVal
))
240 if (It
> 1 && L
->contains(InValI
))
241 InVal
= LastValueMap
[InValI
];
242 VMap
[OrigPHINode
[i
]] = InVal
;
243 New
->getInstList().erase(NewPHI
);
246 // Update our running map of newest clones
247 LastValueMap
[*BB
] = New
;
248 for (ValueToValueMapTy::iterator VI
= VMap
.begin(), VE
= VMap
.end();
250 LastValueMap
[VI
->first
] = VI
->second
;
252 L
->addBasicBlockToLoop(New
, LI
->getBase());
254 // Add phi entries for newly created values to all exit blocks except
255 // the successor of the latch block. The successor of the exit block will
256 // be updated specially after unrolling all the way.
257 if (*BB
!= LatchBlock
)
258 for (succ_iterator SI
= succ_begin(*BB
), SE
= succ_end(*BB
); SI
!= SE
;
260 if (!L
->contains(*SI
))
261 for (BasicBlock::iterator BBI
= (*SI
)->begin();
262 PHINode
*phi
= dyn_cast
<PHINode
>(BBI
); ++BBI
) {
263 Value
*Incoming
= phi
->getIncomingValueForBlock(*BB
);
264 phi
->addIncoming(Incoming
, New
);
267 // Keep track of new headers and latches as we create them, so that
268 // we can insert the proper branches later.
270 Headers
.push_back(New
);
271 if (*BB
== LatchBlock
) {
272 Latches
.push_back(New
);
274 // Also, clear out the new latch's back edge so that it doesn't look
275 // like a new loop, so that it's amenable to being merged with adjacent
277 TerminatorInst
*Term
= New
->getTerminator();
278 assert(L
->contains(Term
->getSuccessor(!ContinueOnTrue
)));
279 assert(Term
->getSuccessor(ContinueOnTrue
) == LoopExit
);
280 Term
->setSuccessor(!ContinueOnTrue
, NULL
);
283 NewBlocks
.push_back(New
);
286 // Remap all instructions in the most recent iteration
287 for (unsigned i
= 0; i
< NewBlocks
.size(); ++i
)
288 for (BasicBlock::iterator I
= NewBlocks
[i
]->begin(),
289 E
= NewBlocks
[i
]->end(); I
!= E
; ++I
)
290 ::RemapInstruction(I
, LastValueMap
);
293 // The latch block exits the loop. If there are any PHI nodes in the
294 // successor blocks, update them to use the appropriate values computed as the
295 // last iteration of the loop.
297 BasicBlock
*LastIterationBB
= cast
<BasicBlock
>(LastValueMap
[LatchBlock
]);
298 for (succ_iterator SI
= succ_begin(LatchBlock
), SE
= succ_end(LatchBlock
);
300 for (BasicBlock::iterator BBI
= (*SI
)->begin();
301 PHINode
*PN
= dyn_cast
<PHINode
>(BBI
); ++BBI
) {
302 Value
*InVal
= PN
->removeIncomingValue(LatchBlock
, false);
303 // If this value was defined in the loop, take the value defined by the
304 // last iteration of the loop.
305 if (Instruction
*InValI
= dyn_cast
<Instruction
>(InVal
)) {
306 if (L
->contains(InValI
))
307 InVal
= LastValueMap
[InVal
];
309 PN
->addIncoming(InVal
, LastIterationBB
);
314 // Now, if we're doing complete unrolling, loop over the PHI nodes in the
315 // original block, setting them to their incoming values.
316 if (CompletelyUnroll
) {
317 BasicBlock
*Preheader
= L
->getLoopPreheader();
318 for (unsigned i
= 0, e
= OrigPHINode
.size(); i
!= e
; ++i
) {
319 PHINode
*PN
= OrigPHINode
[i
];
320 PN
->replaceAllUsesWith(PN
->getIncomingValueForBlock(Preheader
));
321 Header
->getInstList().erase(PN
);
325 // Now that all the basic blocks for the unrolled iterations are in place,
326 // set up the branches to connect them.
327 for (unsigned i
= 0, e
= Latches
.size(); i
!= e
; ++i
) {
328 // The original branch was replicated in each unrolled iteration.
329 BranchInst
*Term
= cast
<BranchInst
>(Latches
[i
]->getTerminator());
331 // The branch destination.
332 unsigned j
= (i
+ 1) % e
;
333 BasicBlock
*Dest
= Headers
[j
];
334 bool NeedConditional
= true;
336 // For a complete unroll, make the last iteration end with a branch
337 // to the exit block.
338 if (CompletelyUnroll
&& j
== 0) {
340 NeedConditional
= false;
343 // If we know the trip count or a multiple of it, we can safely use an
344 // unconditional branch for some iterations.
345 if (j
!= BreakoutTrip
&& (TripMultiple
== 0 || j
% TripMultiple
!= 0)) {
346 NeedConditional
= false;
349 if (NeedConditional
) {
350 // Update the conditional branch's successor for the following
352 Term
->setSuccessor(!ContinueOnTrue
, Dest
);
354 // Replace the conditional branch with an unconditional one.
355 BranchInst::Create(Dest
, Term
);
356 Term
->eraseFromParent();
360 // Merge adjacent basic blocks, if possible.
361 for (unsigned i
= 0, e
= Latches
.size(); i
!= e
; ++i
) {
362 BranchInst
*Term
= cast
<BranchInst
>(Latches
[i
]->getTerminator());
363 if (Term
->isUnconditional()) {
364 BasicBlock
*Dest
= Term
->getSuccessor(0);
365 if (BasicBlock
*Fold
= FoldBlockIntoPredecessor(Dest
, LI
))
366 std::replace(Latches
.begin(), Latches
.end(), Dest
, Fold
);
370 // At this point, the code is well formed. We now do a quick sweep over the
371 // inserted code, doing constant propagation and dead code elimination as we
373 const std::vector
<BasicBlock
*> &NewLoopBlocks
= L
->getBlocks();
374 for (std::vector
<BasicBlock
*>::const_iterator BB
= NewLoopBlocks
.begin(),
375 BBE
= NewLoopBlocks
.end(); BB
!= BBE
; ++BB
)
376 for (BasicBlock::iterator I
= (*BB
)->begin(), E
= (*BB
)->end(); I
!= E
; ) {
377 Instruction
*Inst
= I
++;
379 if (isInstructionTriviallyDead(Inst
))
380 (*BB
)->getInstList().erase(Inst
);
381 else if (Value
*V
= SimplifyInstruction(Inst
))
382 if (LI
->replacementPreservesLCSSAForm(Inst
, V
)) {
383 Inst
->replaceAllUsesWith(V
);
384 (*BB
)->getInstList().erase(Inst
);
388 NumCompletelyUnrolled
+= CompletelyUnroll
;
390 // Remove the loop from the LoopPassManager if it's completely removed.
391 if (CompletelyUnroll
&& LPM
!= NULL
)
392 LPM
->deleteLoopFromQueue(L
);