1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the SSAUpdater class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "ssaupdater"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Support/AlignOf.h"
21 #include "llvm/Support/Allocator.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/SSAUpdater.h"
28 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
32 typedef DenseMap
<BasicBlock
*, Value
*> AvailableValsTy
;
33 static AvailableValsTy
&getAvailableVals(void *AV
) {
34 return *static_cast<AvailableValsTy
*>(AV
);
37 SSAUpdater::SSAUpdater(SmallVectorImpl
<PHINode
*> *NewPHI
)
38 : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI
) {}
40 SSAUpdater::~SSAUpdater() {
41 delete &getAvailableVals(AV
);
44 /// Initialize - Reset this object to get ready for a new set of SSA
45 /// updates with type 'Ty'. PHI nodes get a name based on 'Name'.
46 void SSAUpdater::Initialize(const Type
*Ty
, StringRef Name
) {
48 AV
= new AvailableValsTy();
50 getAvailableVals(AV
).clear();
55 /// HasValueForBlock - Return true if the SSAUpdater already has a value for
56 /// the specified block.
57 bool SSAUpdater::HasValueForBlock(BasicBlock
*BB
) const {
58 return getAvailableVals(AV
).count(BB
);
61 /// AddAvailableValue - Indicate that a rewritten value is available in the
62 /// specified block with the specified value.
63 void SSAUpdater::AddAvailableValue(BasicBlock
*BB
, Value
*V
) {
64 assert(ProtoType
!= 0 && "Need to initialize SSAUpdater");
65 assert(ProtoType
== V
->getType() &&
66 "All rewritten values must have the same type");
67 getAvailableVals(AV
)[BB
] = V
;
70 /// IsEquivalentPHI - Check if PHI has the same incoming value as specified
71 /// in ValueMapping for each predecessor block.
72 static bool IsEquivalentPHI(PHINode
*PHI
,
73 DenseMap
<BasicBlock
*, Value
*> &ValueMapping
) {
74 unsigned PHINumValues
= PHI
->getNumIncomingValues();
75 if (PHINumValues
!= ValueMapping
.size())
78 // Scan the phi to see if it matches.
79 for (unsigned i
= 0, e
= PHINumValues
; i
!= e
; ++i
)
80 if (ValueMapping
[PHI
->getIncomingBlock(i
)] !=
81 PHI
->getIncomingValue(i
)) {
88 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
89 /// live at the end of the specified block.
90 Value
*SSAUpdater::GetValueAtEndOfBlock(BasicBlock
*BB
) {
91 Value
*Res
= GetValueAtEndOfBlockInternal(BB
);
95 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
96 /// is live in the middle of the specified block.
98 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
99 /// important case: if there is a definition of the rewritten value after the
100 /// 'use' in BB. Consider code like this:
106 /// br Cond, SomeBB, OutBB
108 /// In this case, there are two values (X1 and X2) added to the AvailableVals
109 /// set by the client of the rewriter, and those values are both live out of
110 /// their respective blocks. However, the use of X happens in the *middle* of
111 /// a block. Because of this, we need to insert a new PHI node in SomeBB to
112 /// merge the appropriate values, and this value isn't live out of the block.
114 Value
*SSAUpdater::GetValueInMiddleOfBlock(BasicBlock
*BB
) {
115 // If there is no definition of the renamed variable in this block, just use
116 // GetValueAtEndOfBlock to do our work.
117 if (!HasValueForBlock(BB
))
118 return GetValueAtEndOfBlock(BB
);
120 // Otherwise, we have the hard case. Get the live-in values for each
122 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> PredValues
;
123 Value
*SingularValue
= 0;
125 // We can get our predecessor info by walking the pred_iterator list, but it
126 // is relatively slow. If we already have PHI nodes in this block, walk one
127 // of them to get the predecessor list instead.
128 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin())) {
129 for (unsigned i
= 0, e
= SomePhi
->getNumIncomingValues(); i
!= e
; ++i
) {
130 BasicBlock
*PredBB
= SomePhi
->getIncomingBlock(i
);
131 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
132 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
134 // Compute SingularValue.
136 SingularValue
= PredVal
;
137 else if (PredVal
!= SingularValue
)
141 bool isFirstPred
= true;
142 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
143 BasicBlock
*PredBB
= *PI
;
144 Value
*PredVal
= GetValueAtEndOfBlock(PredBB
);
145 PredValues
.push_back(std::make_pair(PredBB
, PredVal
));
147 // Compute SingularValue.
149 SingularValue
= PredVal
;
151 } else if (PredVal
!= SingularValue
)
156 // If there are no predecessors, just return undef.
157 if (PredValues
.empty())
158 return UndefValue::get(ProtoType
);
160 // Otherwise, if all the merged values are the same, just use it.
161 if (SingularValue
!= 0)
162 return SingularValue
;
164 // Otherwise, we do need a PHI: check to see if we already have one available
165 // in this block that produces the right value.
166 if (isa
<PHINode
>(BB
->begin())) {
167 DenseMap
<BasicBlock
*, Value
*> ValueMapping(PredValues
.begin(),
170 for (BasicBlock::iterator It
= BB
->begin();
171 (SomePHI
= dyn_cast
<PHINode
>(It
)); ++It
) {
172 if (IsEquivalentPHI(SomePHI
, ValueMapping
))
177 // Ok, we have no way out, insert a new one now.
178 PHINode
*InsertedPHI
= PHINode::Create(ProtoType
, PredValues
.size(),
179 ProtoName
, &BB
->front());
181 // Fill in all the predecessors of the PHI.
182 for (unsigned i
= 0, e
= PredValues
.size(); i
!= e
; ++i
)
183 InsertedPHI
->addIncoming(PredValues
[i
].second
, PredValues
[i
].first
);
185 // See if the PHI node can be merged to a single value. This can happen in
186 // loop cases when we get a PHI of itself and one other value.
187 if (Value
*V
= SimplifyInstruction(InsertedPHI
)) {
188 InsertedPHI
->eraseFromParent();
193 InsertedPHI
->setDebugLoc(GetFirstDebugLocInBasicBlock(BB
));
195 // If the client wants to know about all new instructions, tell it.
196 if (InsertedPHIs
) InsertedPHIs
->push_back(InsertedPHI
);
198 DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI
<< "\n");
202 /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
203 /// which use their value in the corresponding predecessor.
204 void SSAUpdater::RewriteUse(Use
&U
) {
205 Instruction
*User
= cast
<Instruction
>(U
.getUser());
208 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
209 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
211 V
= GetValueInMiddleOfBlock(User
->getParent());
216 /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse. However,
217 /// this version of the method can rewrite uses in the same block as a
218 /// definition, because it assumes that all uses of a value are below any
220 void SSAUpdater::RewriteUseAfterInsertions(Use
&U
) {
221 Instruction
*User
= cast
<Instruction
>(U
.getUser());
224 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
))
225 V
= GetValueAtEndOfBlock(UserPN
->getIncomingBlock(U
));
227 V
= GetValueAtEndOfBlock(User
->getParent());
232 /// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator
233 /// in the SSAUpdaterImpl template.
241 explicit PHIiter(PHINode
*P
) // begin iterator
243 PHIiter(PHINode
*P
, bool) // end iterator
244 : PHI(P
), idx(PHI
->getNumIncomingValues()) {}
246 PHIiter
&operator++() { ++idx
; return *this; }
247 bool operator==(const PHIiter
& x
) const { return idx
== x
.idx
; }
248 bool operator!=(const PHIiter
& x
) const { return !operator==(x
); }
249 Value
*getIncomingValue() { return PHI
->getIncomingValue(idx
); }
250 BasicBlock
*getIncomingBlock() { return PHI
->getIncomingBlock(idx
); }
254 /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
255 /// specialized for SSAUpdater.
258 class SSAUpdaterTraits
<SSAUpdater
> {
260 typedef BasicBlock BlkT
;
262 typedef PHINode PhiT
;
264 typedef succ_iterator BlkSucc_iterator
;
265 static BlkSucc_iterator
BlkSucc_begin(BlkT
*BB
) { return succ_begin(BB
); }
266 static BlkSucc_iterator
BlkSucc_end(BlkT
*BB
) { return succ_end(BB
); }
268 typedef PHIiter PHI_iterator
;
269 static inline PHI_iterator
PHI_begin(PhiT
*PHI
) { return PHI_iterator(PHI
); }
270 static inline PHI_iterator
PHI_end(PhiT
*PHI
) {
271 return PHI_iterator(PHI
, true);
274 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
275 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
276 static void FindPredecessorBlocks(BasicBlock
*BB
,
277 SmallVectorImpl
<BasicBlock
*> *Preds
) {
278 // We can get our predecessor info by walking the pred_iterator list,
279 // but it is relatively slow. If we already have PHI nodes in this
280 // block, walk one of them to get the predecessor list instead.
281 if (PHINode
*SomePhi
= dyn_cast
<PHINode
>(BB
->begin())) {
282 for (unsigned PI
= 0, E
= SomePhi
->getNumIncomingValues(); PI
!= E
; ++PI
)
283 Preds
->push_back(SomePhi
->getIncomingBlock(PI
));
285 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
286 Preds
->push_back(*PI
);
290 /// GetUndefVal - Get an undefined value of the same type as the value
292 static Value
*GetUndefVal(BasicBlock
*BB
, SSAUpdater
*Updater
) {
293 return UndefValue::get(Updater
->ProtoType
);
296 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
297 /// Reserve space for the operands but do not fill them in yet.
298 static Value
*CreateEmptyPHI(BasicBlock
*BB
, unsigned NumPreds
,
299 SSAUpdater
*Updater
) {
300 PHINode
*PHI
= PHINode::Create(Updater
->ProtoType
, NumPreds
,
301 Updater
->ProtoName
, &BB
->front());
305 /// AddPHIOperand - Add the specified value as an operand of the PHI for
306 /// the specified predecessor block.
307 static void AddPHIOperand(PHINode
*PHI
, Value
*Val
, BasicBlock
*Pred
) {
308 PHI
->addIncoming(Val
, Pred
);
311 /// InstrIsPHI - Check if an instruction is a PHI.
313 static PHINode
*InstrIsPHI(Instruction
*I
) {
314 return dyn_cast
<PHINode
>(I
);
317 /// ValueIsPHI - Check if a value is a PHI.
319 static PHINode
*ValueIsPHI(Value
*Val
, SSAUpdater
*Updater
) {
320 return dyn_cast
<PHINode
>(Val
);
323 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
324 /// operands, i.e., it was just added.
325 static PHINode
*ValueIsNewPHI(Value
*Val
, SSAUpdater
*Updater
) {
326 PHINode
*PHI
= ValueIsPHI(Val
, Updater
);
327 if (PHI
&& PHI
->getNumIncomingValues() == 0)
332 /// GetPHIValue - For the specified PHI instruction, return the value
334 static Value
*GetPHIValue(PHINode
*PHI
) {
339 } // End llvm namespace
341 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
342 /// for the specified BB and if so, return it. If not, construct SSA form by
343 /// first calculating the required placement of PHIs and then inserting new
344 /// PHIs where needed.
345 Value
*SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock
*BB
) {
346 AvailableValsTy
&AvailableVals
= getAvailableVals(AV
);
347 if (Value
*V
= AvailableVals
[BB
])
350 SSAUpdaterImpl
<SSAUpdater
> Impl(this, &AvailableVals
, InsertedPHIs
);
351 return Impl
.GetValue(BB
);
354 //===----------------------------------------------------------------------===//
355 // LoadAndStorePromoter Implementation
356 //===----------------------------------------------------------------------===//
358 LoadAndStorePromoter::
359 LoadAndStorePromoter(const SmallVectorImpl
<Instruction
*> &Insts
,
360 SSAUpdater
&S
, StringRef BaseName
) : SSA(S
) {
361 if (Insts
.empty()) return;
364 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Insts
[0]))
367 SomeVal
= cast
<StoreInst
>(Insts
[0])->getOperand(0);
369 if (BaseName
.empty())
370 BaseName
= SomeVal
->getName();
371 SSA
.Initialize(SomeVal
->getType(), BaseName
);
375 void LoadAndStorePromoter::
376 run(const SmallVectorImpl
<Instruction
*> &Insts
) const {
378 // First step: bucket up uses of the alloca by the block they occur in.
379 // This is important because we have to handle multiple defs/uses in a block
380 // ourselves: SSAUpdater is purely for cross-block references.
381 // FIXME: Want a TinyVector<Instruction*> since there is often 0/1 element.
382 DenseMap
<BasicBlock
*, std::vector
<Instruction
*> > UsesByBlock
;
384 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
) {
385 Instruction
*User
= Insts
[i
];
386 UsesByBlock
[User
->getParent()].push_back(User
);
389 // Okay, now we can iterate over all the blocks in the function with uses,
390 // processing them. Keep track of which loads are loading a live-in value.
391 // Walk the uses in the use-list order to be determinstic.
392 SmallVector
<LoadInst
*, 32> LiveInLoads
;
393 DenseMap
<Value
*, Value
*> ReplacedLoads
;
395 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
) {
396 Instruction
*User
= Insts
[i
];
397 BasicBlock
*BB
= User
->getParent();
398 std::vector
<Instruction
*> &BlockUses
= UsesByBlock
[BB
];
400 // If this block has already been processed, ignore this repeat use.
401 if (BlockUses
.empty()) continue;
403 // Okay, this is the first use in the block. If this block just has a
404 // single user in it, we can rewrite it trivially.
405 if (BlockUses
.size() == 1) {
406 // If it is a store, it is a trivial def of the value in the block.
407 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
409 SSA
.AddAvailableValue(BB
, SI
->getOperand(0));
411 // Otherwise it is a load, queue it to rewrite as a live-in load.
412 LiveInLoads
.push_back(cast
<LoadInst
>(User
));
417 // Otherwise, check to see if this block is all loads.
418 bool HasStore
= false;
419 for (unsigned i
= 0, e
= BlockUses
.size(); i
!= e
; ++i
) {
420 if (isa
<StoreInst
>(BlockUses
[i
])) {
426 // If so, we can queue them all as live in loads. We don't have an
427 // efficient way to tell which on is first in the block and don't want to
428 // scan large blocks, so just add all loads as live ins.
430 for (unsigned i
= 0, e
= BlockUses
.size(); i
!= e
; ++i
)
431 LiveInLoads
.push_back(cast
<LoadInst
>(BlockUses
[i
]));
436 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
437 // Since SSAUpdater is purely for cross-block values, we need to determine
438 // the order of these instructions in the block. If the first use in the
439 // block is a load, then it uses the live in value. The last store defines
440 // the live out value. We handle this by doing a linear scan of the block.
441 Value
*StoredValue
= 0;
442 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
443 if (LoadInst
*L
= dyn_cast
<LoadInst
>(II
)) {
444 // If this is a load from an unrelated pointer, ignore it.
445 if (!isInstInList(L
, Insts
)) continue;
447 // If we haven't seen a store yet, this is a live in use, otherwise
448 // use the stored value.
450 replaceLoadWithValue(L
, StoredValue
);
451 L
->replaceAllUsesWith(StoredValue
);
452 ReplacedLoads
[L
] = StoredValue
;
454 LiveInLoads
.push_back(L
);
459 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(II
)) {
460 // If this is a store to an unrelated pointer, ignore it.
461 if (!isInstInList(SI
, Insts
)) continue;
464 // Remember that this is the active value in the block.
465 StoredValue
= SI
->getOperand(0);
469 // The last stored value that happened is the live-out for the block.
470 assert(StoredValue
&& "Already checked that there is a store in block");
471 SSA
.AddAvailableValue(BB
, StoredValue
);
475 // Okay, now we rewrite all loads that use live-in values in the loop,
476 // inserting PHI nodes as necessary.
477 for (unsigned i
= 0, e
= LiveInLoads
.size(); i
!= e
; ++i
) {
478 LoadInst
*ALoad
= LiveInLoads
[i
];
479 Value
*NewVal
= SSA
.GetValueInMiddleOfBlock(ALoad
->getParent());
480 replaceLoadWithValue(ALoad
, NewVal
);
482 // Avoid assertions in unreachable code.
483 if (NewVal
== ALoad
) NewVal
= UndefValue::get(NewVal
->getType());
484 ALoad
->replaceAllUsesWith(NewVal
);
485 ReplacedLoads
[ALoad
] = NewVal
;
488 // Allow the client to do stuff before we start nuking things.
489 doExtraRewritesBeforeFinalDeletion();
491 // Now that everything is rewritten, delete the old instructions from the
492 // function. They should all be dead now.
493 for (unsigned i
= 0, e
= Insts
.size(); i
!= e
; ++i
) {
494 Instruction
*User
= Insts
[i
];
496 // If this is a load that still has uses, then the load must have been added
497 // as a live value in the SSAUpdate data structure for a block (e.g. because
498 // the loaded value was stored later). In this case, we need to recursively
499 // propagate the updates until we get to the real value.
500 if (!User
->use_empty()) {
501 Value
*NewVal
= ReplacedLoads
[User
];
502 assert(NewVal
&& "not a replaced load?");
504 // Propagate down to the ultimate replacee. The intermediately loads
505 // could theoretically already have been deleted, so we don't want to
506 // dereference the Value*'s.
507 DenseMap
<Value
*, Value
*>::iterator RLI
= ReplacedLoads
.find(NewVal
);
508 while (RLI
!= ReplacedLoads
.end()) {
509 NewVal
= RLI
->second
;
510 RLI
= ReplacedLoads
.find(NewVal
);
513 replaceLoadWithValue(cast
<LoadInst
>(User
), NewVal
);
514 User
->replaceAllUsesWith(NewVal
);
517 instructionDeleted(User
);
518 User
->eraseFromParent();