1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ConstantRange.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/IRBuilder.h"
36 #include "llvm/Support/NoFolder.h"
37 #include "llvm/Support/raw_ostream.h"
43 static cl::opt
<unsigned>
44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden
, cl::init(1),
45 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
48 DupRet("simplifycfg-dup-ret", cl::Hidden
, cl::init(false),
49 cl::desc("Duplicate return instructions into unconditional branches"));
51 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
54 class SimplifyCFGOpt
{
55 const TargetData
*const TD
;
57 Value
*isValueEqualityComparison(TerminatorInst
*TI
);
58 BasicBlock
*GetValueEqualityComparisonCases(TerminatorInst
*TI
,
59 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
);
60 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
62 IRBuilder
<> &Builder
);
63 bool FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
,
64 IRBuilder
<> &Builder
);
66 bool SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
);
67 bool SimplifyUnwind(UnwindInst
*UI
, IRBuilder
<> &Builder
);
68 bool SimplifyUnreachable(UnreachableInst
*UI
);
69 bool SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
);
70 bool SimplifyIndirectBr(IndirectBrInst
*IBI
);
71 bool SimplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
);
72 bool SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<>&Builder
);
75 explicit SimplifyCFGOpt(const TargetData
*td
) : TD(td
) {}
76 bool run(BasicBlock
*BB
);
80 /// SafeToMergeTerminators - Return true if it is safe to merge these two
81 /// terminator instructions together.
83 static bool SafeToMergeTerminators(TerminatorInst
*SI1
, TerminatorInst
*SI2
) {
84 if (SI1
== SI2
) return false; // Can't merge with self!
86 // It is not safe to merge these two switch instructions if they have a common
87 // successor, and if that successor has a PHI node, and if *that* PHI node has
88 // conflicting incoming values from the two switch blocks.
89 BasicBlock
*SI1BB
= SI1
->getParent();
90 BasicBlock
*SI2BB
= SI2
->getParent();
91 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
93 for (succ_iterator I
= succ_begin(SI2BB
), E
= succ_end(SI2BB
); I
!= E
; ++I
)
94 if (SI1Succs
.count(*I
))
95 for (BasicBlock::iterator BBI
= (*I
)->begin();
96 isa
<PHINode
>(BBI
); ++BBI
) {
97 PHINode
*PN
= cast
<PHINode
>(BBI
);
98 if (PN
->getIncomingValueForBlock(SI1BB
) !=
99 PN
->getIncomingValueForBlock(SI2BB
))
106 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
107 /// now be entries in it from the 'NewPred' block. The values that will be
108 /// flowing into the PHI nodes will be the same as those coming in from
109 /// ExistPred, an existing predecessor of Succ.
110 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
111 BasicBlock
*ExistPred
) {
112 if (!isa
<PHINode
>(Succ
->begin())) return; // Quick exit if nothing to do
115 for (BasicBlock::iterator I
= Succ
->begin();
116 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
117 PN
->addIncoming(PN
->getIncomingValueForBlock(ExistPred
), NewPred
);
121 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
122 /// least one PHI node in it), check to see if the merge at this block is due
123 /// to an "if condition". If so, return the boolean condition that determines
124 /// which entry into BB will be taken. Also, return by references the block
125 /// that will be entered from if the condition is true, and the block that will
126 /// be entered if the condition is false.
128 /// This does no checking to see if the true/false blocks have large or unsavory
129 /// instructions in them.
130 static Value
*GetIfCondition(BasicBlock
*BB
, BasicBlock
*&IfTrue
,
131 BasicBlock
*&IfFalse
) {
132 PHINode
*SomePHI
= cast
<PHINode
>(BB
->begin());
133 assert(SomePHI
->getNumIncomingValues() == 2 &&
134 "Function can only handle blocks with 2 predecessors!");
135 BasicBlock
*Pred1
= SomePHI
->getIncomingBlock(0);
136 BasicBlock
*Pred2
= SomePHI
->getIncomingBlock(1);
138 // We can only handle branches. Other control flow will be lowered to
139 // branches if possible anyway.
140 BranchInst
*Pred1Br
= dyn_cast
<BranchInst
>(Pred1
->getTerminator());
141 BranchInst
*Pred2Br
= dyn_cast
<BranchInst
>(Pred2
->getTerminator());
142 if (Pred1Br
== 0 || Pred2Br
== 0)
145 // Eliminate code duplication by ensuring that Pred1Br is conditional if
147 if (Pred2Br
->isConditional()) {
148 // If both branches are conditional, we don't have an "if statement". In
149 // reality, we could transform this case, but since the condition will be
150 // required anyway, we stand no chance of eliminating it, so the xform is
151 // probably not profitable.
152 if (Pred1Br
->isConditional())
155 std::swap(Pred1
, Pred2
);
156 std::swap(Pred1Br
, Pred2Br
);
159 if (Pred1Br
->isConditional()) {
160 // The only thing we have to watch out for here is to make sure that Pred2
161 // doesn't have incoming edges from other blocks. If it does, the condition
162 // doesn't dominate BB.
163 if (Pred2
->getSinglePredecessor() == 0)
166 // If we found a conditional branch predecessor, make sure that it branches
167 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
168 if (Pred1Br
->getSuccessor(0) == BB
&&
169 Pred1Br
->getSuccessor(1) == Pred2
) {
172 } else if (Pred1Br
->getSuccessor(0) == Pred2
&&
173 Pred1Br
->getSuccessor(1) == BB
) {
177 // We know that one arm of the conditional goes to BB, so the other must
178 // go somewhere unrelated, and this must not be an "if statement".
182 return Pred1Br
->getCondition();
185 // Ok, if we got here, both predecessors end with an unconditional branch to
186 // BB. Don't panic! If both blocks only have a single (identical)
187 // predecessor, and THAT is a conditional branch, then we're all ok!
188 BasicBlock
*CommonPred
= Pred1
->getSinglePredecessor();
189 if (CommonPred
== 0 || CommonPred
!= Pred2
->getSinglePredecessor())
192 // Otherwise, if this is a conditional branch, then we can use it!
193 BranchInst
*BI
= dyn_cast
<BranchInst
>(CommonPred
->getTerminator());
194 if (BI
== 0) return 0;
196 assert(BI
->isConditional() && "Two successors but not conditional?");
197 if (BI
->getSuccessor(0) == Pred1
) {
204 return BI
->getCondition();
207 /// DominatesMergePoint - If we have a merge point of an "if condition" as
208 /// accepted above, return true if the specified value dominates the block. We
209 /// don't handle the true generality of domination here, just a special case
210 /// which works well enough for us.
212 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
213 /// see if V (which must be an instruction) and its recursive operands
214 /// that do not dominate BB have a combined cost lower than CostRemaining and
215 /// are non-trapping. If both are true, the instruction is inserted into the
216 /// set and true is returned.
218 /// The cost for most non-trapping instructions is defined as 1 except for
219 /// Select whose cost is 2.
221 /// After this function returns, CostRemaining is decreased by the cost of
222 /// V plus its non-dominating operands. If that cost is greater than
223 /// CostRemaining, false is returned and CostRemaining is undefined.
224 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
225 SmallPtrSet
<Instruction
*, 4> *AggressiveInsts
,
226 unsigned &CostRemaining
) {
227 Instruction
*I
= dyn_cast
<Instruction
>(V
);
229 // Non-instructions all dominate instructions, but not all constantexprs
230 // can be executed unconditionally.
231 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
236 BasicBlock
*PBB
= I
->getParent();
238 // We don't want to allow weird loops that might have the "if condition" in
239 // the bottom of this block.
240 if (PBB
== BB
) return false;
242 // If this instruction is defined in a block that contains an unconditional
243 // branch to BB, then it must be in the 'conditional' part of the "if
244 // statement". If not, it definitely dominates the region.
245 BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
246 if (BI
== 0 || BI
->isConditional() || BI
->getSuccessor(0) != BB
)
249 // If we aren't allowing aggressive promotion anymore, then don't consider
250 // instructions in the 'if region'.
251 if (AggressiveInsts
== 0) return false;
253 // If we have seen this instruction before, don't count it again.
254 if (AggressiveInsts
->count(I
)) return true;
256 // Okay, it looks like the instruction IS in the "condition". Check to
257 // see if it's a cheap instruction to unconditionally compute, and if it
258 // only uses stuff defined outside of the condition. If so, hoist it out.
259 if (!I
->isSafeToSpeculativelyExecute())
264 switch (I
->getOpcode()) {
265 default: return false; // Cannot hoist this out safely.
266 case Instruction::Load
:
267 // We have to check to make sure there are no instructions before the
268 // load in its basic block, as we are going to hoist the load out to its
270 if (PBB
->getFirstNonPHIOrDbg() != I
)
274 case Instruction::GetElementPtr
:
275 // GEPs are cheap if all indices are constant.
276 if (!cast
<GetElementPtrInst
>(I
)->hasAllConstantIndices())
280 case Instruction::Add
:
281 case Instruction::Sub
:
282 case Instruction::And
:
283 case Instruction::Or
:
284 case Instruction::Xor
:
285 case Instruction::Shl
:
286 case Instruction::LShr
:
287 case Instruction::AShr
:
288 case Instruction::ICmp
:
289 case Instruction::Trunc
:
290 case Instruction::ZExt
:
291 case Instruction::SExt
:
293 break; // These are all cheap and non-trapping instructions.
295 case Instruction::Select
:
300 if (Cost
> CostRemaining
)
303 CostRemaining
-= Cost
;
305 // Okay, we can only really hoist these out if their operands do
306 // not take us over the cost threshold.
307 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
308 if (!DominatesMergePoint(*i
, BB
, AggressiveInsts
, CostRemaining
))
310 // Okay, it's safe to do this! Remember this instruction.
311 AggressiveInsts
->insert(I
);
315 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
316 /// and PointerNullValue. Return NULL if value is not a constant int.
317 static ConstantInt
*GetConstantInt(Value
*V
, const TargetData
*TD
) {
318 // Normal constant int.
319 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
);
320 if (CI
|| !TD
|| !isa
<Constant
>(V
) || !V
->getType()->isPointerTy())
323 // This is some kind of pointer constant. Turn it into a pointer-sized
324 // ConstantInt if possible.
325 const IntegerType
*PtrTy
= TD
->getIntPtrType(V
->getContext());
327 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
328 if (isa
<ConstantPointerNull
>(V
))
329 return ConstantInt::get(PtrTy
, 0);
331 // IntToPtr const int.
332 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
333 if (CE
->getOpcode() == Instruction::IntToPtr
)
334 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(0))) {
335 // The constant is very likely to have the right type already.
336 if (CI
->getType() == PtrTy
)
339 return cast
<ConstantInt
>
340 (ConstantExpr::getIntegerCast(CI
, PtrTy
, /*isSigned=*/false));
345 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
346 /// collection of icmp eq/ne instructions that compare a value against a
347 /// constant, return the value being compared, and stick the constant into the
350 GatherConstantCompares(Value
*V
, std::vector
<ConstantInt
*> &Vals
, Value
*&Extra
,
351 const TargetData
*TD
, bool isEQ
, unsigned &UsedICmps
) {
352 Instruction
*I
= dyn_cast
<Instruction
>(V
);
353 if (I
== 0) return 0;
355 // If this is an icmp against a constant, handle this as one of the cases.
356 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
)) {
357 if (ConstantInt
*C
= GetConstantInt(I
->getOperand(1), TD
)) {
358 if (ICI
->getPredicate() == (isEQ
? ICmpInst::ICMP_EQ
:ICmpInst::ICMP_NE
)) {
361 return I
->getOperand(0);
364 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
367 ConstantRange::makeICmpRegion(ICI
->getPredicate(), C
->getValue());
369 // If this is an and/!= check then we want to optimize "x ugt 2" into
372 Span
= Span
.inverse();
374 // If there are a ton of values, we don't want to make a ginormous switch.
375 if (Span
.getSetSize().ugt(8) || Span
.isEmptySet() ||
376 // We don't handle wrapped sets yet.
380 for (APInt Tmp
= Span
.getLower(); Tmp
!= Span
.getUpper(); ++Tmp
)
381 Vals
.push_back(ConstantInt::get(V
->getContext(), Tmp
));
383 return I
->getOperand(0);
388 // Otherwise, we can only handle an | or &, depending on isEQ.
389 if (I
->getOpcode() != (isEQ
? Instruction::Or
: Instruction::And
))
392 unsigned NumValsBeforeLHS
= Vals
.size();
393 unsigned UsedICmpsBeforeLHS
= UsedICmps
;
394 if (Value
*LHS
= GatherConstantCompares(I
->getOperand(0), Vals
, Extra
, TD
,
396 unsigned NumVals
= Vals
.size();
397 unsigned UsedICmpsBeforeRHS
= UsedICmps
;
398 if (Value
*RHS
= GatherConstantCompares(I
->getOperand(1), Vals
, Extra
, TD
,
402 Vals
.resize(NumVals
);
403 UsedICmps
= UsedICmpsBeforeRHS
;
406 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
407 // set it and return success.
408 if (Extra
== 0 || Extra
== I
->getOperand(1)) {
409 Extra
= I
->getOperand(1);
413 Vals
.resize(NumValsBeforeLHS
);
414 UsedICmps
= UsedICmpsBeforeLHS
;
418 // If the LHS can't be folded in, but Extra is available and RHS can, try to
420 if (Extra
== 0 || Extra
== I
->getOperand(0)) {
421 Value
*OldExtra
= Extra
;
422 Extra
= I
->getOperand(0);
423 if (Value
*RHS
= GatherConstantCompares(I
->getOperand(1), Vals
, Extra
, TD
,
426 assert(Vals
.size() == NumValsBeforeLHS
);
433 static void EraseTerminatorInstAndDCECond(TerminatorInst
*TI
) {
434 Instruction
* Cond
= 0;
435 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
436 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
437 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
438 if (BI
->isConditional())
439 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
440 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(TI
)) {
441 Cond
= dyn_cast
<Instruction
>(IBI
->getAddress());
444 TI
->eraseFromParent();
445 if (Cond
) RecursivelyDeleteTriviallyDeadInstructions(Cond
);
448 /// isValueEqualityComparison - Return true if the specified terminator checks
449 /// to see if a value is equal to constant integer value.
450 Value
*SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst
*TI
) {
452 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
453 // Do not permit merging of large switch instructions into their
454 // predecessors unless there is only one predecessor.
455 if (SI
->getNumSuccessors()*std::distance(pred_begin(SI
->getParent()),
456 pred_end(SI
->getParent())) <= 128)
457 CV
= SI
->getCondition();
458 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
459 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
460 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition()))
461 if ((ICI
->getPredicate() == ICmpInst::ICMP_EQ
||
462 ICI
->getPredicate() == ICmpInst::ICMP_NE
) &&
463 GetConstantInt(ICI
->getOperand(1), TD
))
464 CV
= ICI
->getOperand(0);
466 // Unwrap any lossless ptrtoint cast.
467 if (TD
&& CV
&& CV
->getType() == TD
->getIntPtrType(CV
->getContext()))
468 if (PtrToIntInst
*PTII
= dyn_cast
<PtrToIntInst
>(CV
))
469 CV
= PTII
->getOperand(0);
473 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
474 /// decode all of the 'cases' that it represents and return the 'default' block.
475 BasicBlock
*SimplifyCFGOpt::
476 GetValueEqualityComparisonCases(TerminatorInst
*TI
,
477 std::vector
<std::pair
<ConstantInt
*,
478 BasicBlock
*> > &Cases
) {
479 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
480 Cases
.reserve(SI
->getNumCases());
481 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
482 Cases
.push_back(std::make_pair(SI
->getCaseValue(i
), SI
->getSuccessor(i
)));
483 return SI
->getDefaultDest();
486 BranchInst
*BI
= cast
<BranchInst
>(TI
);
487 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
488 Cases
.push_back(std::make_pair(GetConstantInt(ICI
->getOperand(1), TD
),
489 BI
->getSuccessor(ICI
->getPredicate() ==
490 ICmpInst::ICMP_NE
)));
491 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
495 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
496 /// in the list that match the specified block.
497 static void EliminateBlockCases(BasicBlock
*BB
,
498 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
) {
499 for (unsigned i
= 0, e
= Cases
.size(); i
!= e
; ++i
)
500 if (Cases
[i
].second
== BB
) {
501 Cases
.erase(Cases
.begin()+i
);
506 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
509 ValuesOverlap(std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C1
,
510 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C2
) {
511 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > *V1
= &C1
, *V2
= &C2
;
513 // Make V1 be smaller than V2.
514 if (V1
->size() > V2
->size())
517 if (V1
->size() == 0) return false;
518 if (V1
->size() == 1) {
520 ConstantInt
*TheVal
= (*V1
)[0].first
;
521 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
522 if (TheVal
== (*V2
)[i
].first
)
526 // Otherwise, just sort both lists and compare element by element.
527 array_pod_sort(V1
->begin(), V1
->end());
528 array_pod_sort(V2
->begin(), V2
->end());
529 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
530 while (i1
!= e1
&& i2
!= e2
) {
531 if ((*V1
)[i1
].first
== (*V2
)[i2
].first
)
533 if ((*V1
)[i1
].first
< (*V2
)[i2
].first
)
541 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
542 /// terminator instruction and its block is known to only have a single
543 /// predecessor block, check to see if that predecessor is also a value
544 /// comparison with the same value, and if that comparison determines the
545 /// outcome of this comparison. If so, simplify TI. This does a very limited
546 /// form of jump threading.
547 bool SimplifyCFGOpt::
548 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
550 IRBuilder
<> &Builder
) {
551 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
552 if (!PredVal
) return false; // Not a value comparison in predecessor.
554 Value
*ThisVal
= isValueEqualityComparison(TI
);
555 assert(ThisVal
&& "This isn't a value comparison!!");
556 if (ThisVal
!= PredVal
) return false; // Different predicates.
558 // Find out information about when control will move from Pred to TI's block.
559 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
560 BasicBlock
*PredDef
= GetValueEqualityComparisonCases(Pred
->getTerminator(),
562 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
564 // Find information about how control leaves this block.
565 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > ThisCases
;
566 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
567 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
569 // If TI's block is the default block from Pred's comparison, potentially
570 // simplify TI based on this knowledge.
571 if (PredDef
== TI
->getParent()) {
572 // If we are here, we know that the value is none of those cases listed in
573 // PredCases. If there are any cases in ThisCases that are in PredCases, we
575 if (!ValuesOverlap(PredCases
, ThisCases
))
578 if (isa
<BranchInst
>(TI
)) {
579 // Okay, one of the successors of this condbr is dead. Convert it to a
581 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
582 // Insert the new branch.
583 Instruction
*NI
= Builder
.CreateBr(ThisDef
);
586 // Remove PHI node entries for the dead edge.
587 ThisCases
[0].second
->removePredecessor(TI
->getParent());
589 DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
590 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n");
592 EraseTerminatorInstAndDCECond(TI
);
596 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
597 // Okay, TI has cases that are statically dead, prune them away.
598 SmallPtrSet
<Constant
*, 16> DeadCases
;
599 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
600 DeadCases
.insert(PredCases
[i
].first
);
602 DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
603 << "Through successor TI: " << *TI
);
605 for (unsigned i
= SI
->getNumCases()-1; i
!= 0; --i
)
606 if (DeadCases
.count(SI
->getCaseValue(i
))) {
607 SI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
611 DEBUG(dbgs() << "Leaving: " << *TI
<< "\n");
615 // Otherwise, TI's block must correspond to some matched value. Find out
616 // which value (or set of values) this is.
617 ConstantInt
*TIV
= 0;
618 BasicBlock
*TIBB
= TI
->getParent();
619 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
620 if (PredCases
[i
].second
== TIBB
) {
622 return false; // Cannot handle multiple values coming to this block.
623 TIV
= PredCases
[i
].first
;
625 assert(TIV
&& "No edge from pred to succ?");
627 // Okay, we found the one constant that our value can be if we get into TI's
628 // BB. Find out which successor will unconditionally be branched to.
629 BasicBlock
*TheRealDest
= 0;
630 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
631 if (ThisCases
[i
].first
== TIV
) {
632 TheRealDest
= ThisCases
[i
].second
;
636 // If not handled by any explicit cases, it is handled by the default case.
637 if (TheRealDest
== 0) TheRealDest
= ThisDef
;
639 // Remove PHI node entries for dead edges.
640 BasicBlock
*CheckEdge
= TheRealDest
;
641 for (succ_iterator SI
= succ_begin(TIBB
), e
= succ_end(TIBB
); SI
!= e
; ++SI
)
642 if (*SI
!= CheckEdge
)
643 (*SI
)->removePredecessor(TIBB
);
647 // Insert the new branch.
648 Instruction
*NI
= Builder
.CreateBr(TheRealDest
);
651 DEBUG(dbgs() << "Threading pred instr: " << *Pred
->getTerminator()
652 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n");
654 EraseTerminatorInstAndDCECond(TI
);
659 /// ConstantIntOrdering - This class implements a stable ordering of constant
660 /// integers that does not depend on their address. This is important for
661 /// applications that sort ConstantInt's to ensure uniqueness.
662 struct ConstantIntOrdering
{
663 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
664 return LHS
->getValue().ult(RHS
->getValue());
669 static int ConstantIntSortPredicate(const void *P1
, const void *P2
) {
670 const ConstantInt
*LHS
= *(const ConstantInt
**)P1
;
671 const ConstantInt
*RHS
= *(const ConstantInt
**)P2
;
672 if (LHS
->getValue().ult(RHS
->getValue()))
674 if (LHS
->getValue() == RHS
->getValue())
679 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
680 /// equality comparison instruction (either a switch or a branch on "X == c").
681 /// See if any of the predecessors of the terminator block are value comparisons
682 /// on the same value. If so, and if safe to do so, fold them together.
683 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
,
684 IRBuilder
<> &Builder
) {
685 BasicBlock
*BB
= TI
->getParent();
686 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
687 assert(CV
&& "Not a comparison?");
688 bool Changed
= false;
690 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
691 while (!Preds
.empty()) {
692 BasicBlock
*Pred
= Preds
.pop_back_val();
694 // See if the predecessor is a comparison with the same value.
695 TerminatorInst
*PTI
= Pred
->getTerminator();
696 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
698 if (PCV
== CV
&& SafeToMergeTerminators(TI
, PTI
)) {
699 // Figure out which 'cases' to copy from SI to PSI.
700 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > BBCases
;
701 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
703 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
704 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
706 // Based on whether the default edge from PTI goes to BB or not, fill in
707 // PredCases and PredDefault with the new switch cases we would like to
709 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
711 if (PredDefault
== BB
) {
712 // If this is the default destination from PTI, only the edges in TI
713 // that don't occur in PTI, or that branch to BB will be activated.
714 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
715 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
716 if (PredCases
[i
].second
!= BB
)
717 PTIHandled
.insert(PredCases
[i
].first
);
719 // The default destination is BB, we don't need explicit targets.
720 std::swap(PredCases
[i
], PredCases
.back());
721 PredCases
.pop_back();
725 // Reconstruct the new switch statement we will be building.
726 if (PredDefault
!= BBDefault
) {
727 PredDefault
->removePredecessor(Pred
);
728 PredDefault
= BBDefault
;
729 NewSuccessors
.push_back(BBDefault
);
731 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
732 if (!PTIHandled
.count(BBCases
[i
].first
) &&
733 BBCases
[i
].second
!= BBDefault
) {
734 PredCases
.push_back(BBCases
[i
]);
735 NewSuccessors
.push_back(BBCases
[i
].second
);
739 // If this is not the default destination from PSI, only the edges
740 // in SI that occur in PSI with a destination of BB will be
742 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
743 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
744 if (PredCases
[i
].second
== BB
) {
745 PTIHandled
.insert(PredCases
[i
].first
);
746 std::swap(PredCases
[i
], PredCases
.back());
747 PredCases
.pop_back();
751 // Okay, now we know which constants were sent to BB from the
752 // predecessor. Figure out where they will all go now.
753 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
754 if (PTIHandled
.count(BBCases
[i
].first
)) {
755 // If this is one we are capable of getting...
756 PredCases
.push_back(BBCases
[i
]);
757 NewSuccessors
.push_back(BBCases
[i
].second
);
758 PTIHandled
.erase(BBCases
[i
].first
);// This constant is taken care of
761 // If there are any constants vectored to BB that TI doesn't handle,
762 // they must go to the default destination of TI.
763 for (std::set
<ConstantInt
*, ConstantIntOrdering
>::iterator I
=
765 E
= PTIHandled
.end(); I
!= E
; ++I
) {
766 PredCases
.push_back(std::make_pair(*I
, BBDefault
));
767 NewSuccessors
.push_back(BBDefault
);
771 // Okay, at this point, we know which new successor Pred will get. Make
772 // sure we update the number of entries in the PHI nodes for these
774 for (unsigned i
= 0, e
= NewSuccessors
.size(); i
!= e
; ++i
)
775 AddPredecessorToBlock(NewSuccessors
[i
], Pred
, BB
);
777 Builder
.SetInsertPoint(PTI
);
778 // Convert pointer to int before we switch.
779 if (CV
->getType()->isPointerTy()) {
780 assert(TD
&& "Cannot switch on pointer without TargetData");
781 CV
= Builder
.CreatePtrToInt(CV
, TD
->getIntPtrType(CV
->getContext()),
785 // Now that the successors are updated, create the new Switch instruction.
786 SwitchInst
*NewSI
= Builder
.CreateSwitch(CV
, PredDefault
,
788 NewSI
->setDebugLoc(PTI
->getDebugLoc());
789 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
790 NewSI
->addCase(PredCases
[i
].first
, PredCases
[i
].second
);
792 EraseTerminatorInstAndDCECond(PTI
);
794 // Okay, last check. If BB is still a successor of PSI, then we must
795 // have an infinite loop case. If so, add an infinitely looping block
796 // to handle the case to preserve the behavior of the code.
797 BasicBlock
*InfLoopBlock
= 0;
798 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
799 if (NewSI
->getSuccessor(i
) == BB
) {
800 if (InfLoopBlock
== 0) {
801 // Insert it at the end of the function, because it's either code,
802 // or it won't matter if it's hot. :)
803 InfLoopBlock
= BasicBlock::Create(BB
->getContext(),
804 "infloop", BB
->getParent());
805 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
807 NewSI
->setSuccessor(i
, InfLoopBlock
);
816 // isSafeToHoistInvoke - If we would need to insert a select that uses the
817 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
818 // would need to do this), we can't hoist the invoke, as there is nowhere
819 // to put the select in this case.
820 static bool isSafeToHoistInvoke(BasicBlock
*BB1
, BasicBlock
*BB2
,
821 Instruction
*I1
, Instruction
*I2
) {
822 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
824 for (BasicBlock::iterator BBI
= SI
->begin();
825 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
826 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
827 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
828 if (BB1V
!= BB2V
&& (BB1V
==I1
|| BB2V
==I2
)) {
836 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
837 /// BB2, hoist any common code in the two blocks up into the branch block. The
838 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
839 static bool HoistThenElseCodeToIf(BranchInst
*BI
) {
840 // This does very trivial matching, with limited scanning, to find identical
841 // instructions in the two blocks. In particular, we don't want to get into
842 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
843 // such, we currently just scan for obviously identical instructions in an
845 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
846 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
848 BasicBlock::iterator BB1_Itr
= BB1
->begin();
849 BasicBlock::iterator BB2_Itr
= BB2
->begin();
851 Instruction
*I1
= BB1_Itr
++, *I2
= BB2_Itr
++;
852 // Skip debug info if it is not identical.
853 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
854 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
855 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
856 while (isa
<DbgInfoIntrinsic
>(I1
))
858 while (isa
<DbgInfoIntrinsic
>(I2
))
861 if (isa
<PHINode
>(I1
) || !I1
->isIdenticalToWhenDefined(I2
) ||
862 (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
)))
865 // If we get here, we can hoist at least one instruction.
866 BasicBlock
*BIParent
= BI
->getParent();
869 // If we are hoisting the terminator instruction, don't move one (making a
870 // broken BB), instead clone it, and remove BI.
871 if (isa
<TerminatorInst
>(I1
))
872 goto HoistTerminator
;
874 // For a normal instruction, we just move one to right before the branch,
875 // then replace all uses of the other with the first. Finally, we remove
876 // the now redundant second instruction.
877 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I1
);
878 if (!I2
->use_empty())
879 I2
->replaceAllUsesWith(I1
);
880 I1
->intersectOptionalDataWith(I2
);
881 I2
->eraseFromParent();
885 // Skip debug info if it is not identical.
886 DbgInfoIntrinsic
*DBI1
= dyn_cast
<DbgInfoIntrinsic
>(I1
);
887 DbgInfoIntrinsic
*DBI2
= dyn_cast
<DbgInfoIntrinsic
>(I2
);
888 if (!DBI1
|| !DBI2
|| !DBI1
->isIdenticalToWhenDefined(DBI2
)) {
889 while (isa
<DbgInfoIntrinsic
>(I1
))
891 while (isa
<DbgInfoIntrinsic
>(I2
))
894 } while (I1
->isIdenticalToWhenDefined(I2
));
899 // It may not be possible to hoist an invoke.
900 if (isa
<InvokeInst
>(I1
) && !isSafeToHoistInvoke(BB1
, BB2
, I1
, I2
))
903 // Okay, it is safe to hoist the terminator.
904 Instruction
*NT
= I1
->clone();
905 BIParent
->getInstList().insert(BI
, NT
);
906 if (!NT
->getType()->isVoidTy()) {
907 I1
->replaceAllUsesWith(NT
);
908 I2
->replaceAllUsesWith(NT
);
912 IRBuilder
<true, NoFolder
> Builder(NT
);
913 // Hoisting one of the terminators from our successor is a great thing.
914 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
915 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
916 // nodes, so we insert select instruction to compute the final result.
917 std::map
<std::pair
<Value
*,Value
*>, SelectInst
*> InsertedSelects
;
918 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
920 for (BasicBlock::iterator BBI
= SI
->begin();
921 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
922 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
923 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
924 if (BB1V
== BB2V
) continue;
926 // These values do not agree. Insert a select instruction before NT
927 // that determines the right value.
928 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
930 SI
= cast
<SelectInst
>
931 (Builder
.CreateSelect(BI
->getCondition(), BB1V
, BB2V
,
932 BB1V
->getName()+"."+BB2V
->getName()));
934 // Make the PHI node use the select for all incoming values for BB1/BB2
935 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
936 if (PN
->getIncomingBlock(i
) == BB1
|| PN
->getIncomingBlock(i
) == BB2
)
937 PN
->setIncomingValue(i
, SI
);
941 // Update any PHI nodes in our new successors.
942 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
)
943 AddPredecessorToBlock(*SI
, BIParent
, BB1
);
945 EraseTerminatorInstAndDCECond(BI
);
949 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
950 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
951 /// (for now, restricted to a single instruction that's side effect free) from
952 /// the BB1 into the branch block to speculatively execute it.
953 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*BB1
) {
954 // Only speculatively execution a single instruction (not counting the
955 // terminator) for now.
956 Instruction
*HInst
= NULL
;
957 Instruction
*Term
= BB1
->getTerminator();
958 for (BasicBlock::iterator BBI
= BB1
->begin(), BBE
= BB1
->end();
960 Instruction
*I
= BBI
;
962 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
963 if (I
== Term
) break;
972 // Be conservative for now. FP select instruction can often be expensive.
973 Value
*BrCond
= BI
->getCondition();
974 if (isa
<FCmpInst
>(BrCond
))
977 // If BB1 is actually on the false edge of the conditional branch, remember
978 // to swap the select operands later.
980 if (BB1
!= BI
->getSuccessor(0)) {
981 assert(BB1
== BI
->getSuccessor(1) && "No edge from 'if' block?");
988 // br i1 %t1, label %BB1, label %BB2
997 // %t3 = select i1 %t1, %t2, %t3
998 switch (HInst
->getOpcode()) {
999 default: return false; // Not safe / profitable to hoist.
1000 case Instruction::Add
:
1001 case Instruction::Sub
:
1002 // Not worth doing for vector ops.
1003 if (HInst
->getType()->isVectorTy())
1006 case Instruction::And
:
1007 case Instruction::Or
:
1008 case Instruction::Xor
:
1009 case Instruction::Shl
:
1010 case Instruction::LShr
:
1011 case Instruction::AShr
:
1012 // Don't mess with vector operations.
1013 if (HInst
->getType()->isVectorTy())
1015 break; // These are all cheap and non-trapping instructions.
1018 // If the instruction is obviously dead, don't try to predicate it.
1019 if (HInst
->use_empty()) {
1020 HInst
->eraseFromParent();
1024 // Can we speculatively execute the instruction? And what is the value
1025 // if the condition is false? Consider the phi uses, if the incoming value
1026 // from the "if" block are all the same V, then V is the value of the
1027 // select if the condition is false.
1028 BasicBlock
*BIParent
= BI
->getParent();
1029 SmallVector
<PHINode
*, 4> PHIUses
;
1030 Value
*FalseV
= NULL
;
1032 BasicBlock
*BB2
= BB1
->getTerminator()->getSuccessor(0);
1033 for (Value::use_iterator UI
= HInst
->use_begin(), E
= HInst
->use_end();
1035 // Ignore any user that is not a PHI node in BB2. These can only occur in
1036 // unreachable blocks, because they would not be dominated by the instr.
1037 PHINode
*PN
= dyn_cast
<PHINode
>(*UI
);
1038 if (!PN
|| PN
->getParent() != BB2
)
1040 PHIUses
.push_back(PN
);
1042 Value
*PHIV
= PN
->getIncomingValueForBlock(BIParent
);
1045 else if (FalseV
!= PHIV
)
1046 return false; // Inconsistent value when condition is false.
1049 assert(FalseV
&& "Must have at least one user, and it must be a PHI");
1051 // Do not hoist the instruction if any of its operands are defined but not
1052 // used in this BB. The transformation will prevent the operand from
1053 // being sunk into the use block.
1054 for (User::op_iterator i
= HInst
->op_begin(), e
= HInst
->op_end();
1056 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
1057 if (OpI
&& OpI
->getParent() == BIParent
&&
1058 !OpI
->isUsedInBasicBlock(BIParent
))
1062 // If we get here, we can hoist the instruction. Try to place it
1063 // before the icmp instruction preceding the conditional branch.
1064 BasicBlock::iterator InsertPos
= BI
;
1065 if (InsertPos
!= BIParent
->begin())
1067 // Skip debug info between condition and branch.
1068 while (InsertPos
!= BIParent
->begin() && isa
<DbgInfoIntrinsic
>(InsertPos
))
1070 if (InsertPos
== BrCond
&& !isa
<PHINode
>(BrCond
)) {
1071 SmallPtrSet
<Instruction
*, 4> BB1Insns
;
1072 for(BasicBlock::iterator BB1I
= BB1
->begin(), BB1E
= BB1
->end();
1073 BB1I
!= BB1E
; ++BB1I
)
1074 BB1Insns
.insert(BB1I
);
1075 for(Value::use_iterator UI
= BrCond
->use_begin(), UE
= BrCond
->use_end();
1077 Instruction
*Use
= cast
<Instruction
>(*UI
);
1078 if (!BB1Insns
.count(Use
)) continue;
1080 // If BrCond uses the instruction that place it just before
1081 // branch instruction.
1087 BIParent
->getInstList().splice(InsertPos
, BB1
->getInstList(), HInst
);
1089 // Create a select whose true value is the speculatively executed value and
1090 // false value is the previously determined FalseV.
1091 IRBuilder
<true, NoFolder
> Builder(BI
);
1094 SI
= cast
<SelectInst
>
1095 (Builder
.CreateSelect(BrCond
, FalseV
, HInst
,
1096 FalseV
->getName() + "." + HInst
->getName()));
1098 SI
= cast
<SelectInst
>
1099 (Builder
.CreateSelect(BrCond
, HInst
, FalseV
,
1100 HInst
->getName() + "." + FalseV
->getName()));
1102 // Make the PHI node use the select for all incoming values for "then" and
1104 for (unsigned i
= 0, e
= PHIUses
.size(); i
!= e
; ++i
) {
1105 PHINode
*PN
= PHIUses
[i
];
1106 for (unsigned j
= 0, ee
= PN
->getNumIncomingValues(); j
!= ee
; ++j
)
1107 if (PN
->getIncomingBlock(j
) == BB1
|| PN
->getIncomingBlock(j
) == BIParent
)
1108 PN
->setIncomingValue(j
, SI
);
1115 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1116 /// across this block.
1117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
1118 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1121 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1122 if (isa
<DbgInfoIntrinsic
>(BBI
))
1124 if (Size
> 10) return false; // Don't clone large BB's.
1127 // We can only support instructions that do not define values that are
1128 // live outside of the current basic block.
1129 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
1131 Instruction
*U
= cast
<Instruction
>(*UI
);
1132 if (U
->getParent() != BB
|| isa
<PHINode
>(U
)) return false;
1135 // Looks ok, continue checking.
1141 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1142 /// that is defined in the same block as the branch and if any PHI entries are
1143 /// constants, thread edges corresponding to that entry to be branches to their
1144 /// ultimate destination.
1145 static bool FoldCondBranchOnPHI(BranchInst
*BI
, const TargetData
*TD
) {
1146 BasicBlock
*BB
= BI
->getParent();
1147 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
1148 // NOTE: we currently cannot transform this case if the PHI node is used
1149 // outside of the block.
1150 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
1153 // Degenerate case of a single entry PHI.
1154 if (PN
->getNumIncomingValues() == 1) {
1155 FoldSingleEntryPHINodes(PN
->getParent());
1159 // Now we know that this block has multiple preds and two succs.
1160 if (!BlockIsSimpleEnoughToThreadThrough(BB
)) return false;
1162 // Okay, this is a simple enough basic block. See if any phi values are
1164 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1165 ConstantInt
*CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
));
1166 if (CB
== 0 || !CB
->getType()->isIntegerTy(1)) continue;
1168 // Okay, we now know that all edges from PredBB should be revectored to
1169 // branch to RealDest.
1170 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1171 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
1173 if (RealDest
== BB
) continue; // Skip self loops.
1174 // Skip if the predecessor's terminator is an indirect branch.
1175 if (isa
<IndirectBrInst
>(PredBB
->getTerminator())) continue;
1177 // The dest block might have PHI nodes, other predecessors and other
1178 // difficult cases. Instead of being smart about this, just insert a new
1179 // block that jumps to the destination block, effectively splitting
1180 // the edge we are about to create.
1181 BasicBlock
*EdgeBB
= BasicBlock::Create(BB
->getContext(),
1182 RealDest
->getName()+".critedge",
1183 RealDest
->getParent(), RealDest
);
1184 BranchInst::Create(RealDest
, EdgeBB
);
1186 // Update PHI nodes.
1187 AddPredecessorToBlock(RealDest
, EdgeBB
, BB
);
1189 // BB may have instructions that are being threaded over. Clone these
1190 // instructions into EdgeBB. We know that there will be no uses of the
1191 // cloned instructions outside of EdgeBB.
1192 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
1193 DenseMap
<Value
*, Value
*> TranslateMap
; // Track translated values.
1194 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1195 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
1196 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1199 // Clone the instruction.
1200 Instruction
*N
= BBI
->clone();
1201 if (BBI
->hasName()) N
->setName(BBI
->getName()+".c");
1203 // Update operands due to translation.
1204 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end();
1206 DenseMap
<Value
*, Value
*>::iterator PI
= TranslateMap
.find(*i
);
1207 if (PI
!= TranslateMap
.end())
1211 // Check for trivial simplification.
1212 if (Value
*V
= SimplifyInstruction(N
, TD
)) {
1213 TranslateMap
[BBI
] = V
;
1214 delete N
; // Instruction folded away, don't need actual inst
1216 // Insert the new instruction into its new home.
1217 EdgeBB
->getInstList().insert(InsertPt
, N
);
1218 if (!BBI
->use_empty())
1219 TranslateMap
[BBI
] = N
;
1223 // Loop over all of the edges from PredBB to BB, changing them to branch
1224 // to EdgeBB instead.
1225 TerminatorInst
*PredBBTI
= PredBB
->getTerminator();
1226 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
1227 if (PredBBTI
->getSuccessor(i
) == BB
) {
1228 BB
->removePredecessor(PredBB
);
1229 PredBBTI
->setSuccessor(i
, EdgeBB
);
1232 // Recurse, simplifying any other constants.
1233 return FoldCondBranchOnPHI(BI
, TD
) | true;
1239 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1240 /// PHI node, see if we can eliminate it.
1241 static bool FoldTwoEntryPHINode(PHINode
*PN
, const TargetData
*TD
) {
1242 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1243 // statement", which has a very simple dominance structure. Basically, we
1244 // are trying to find the condition that is being branched on, which
1245 // subsequently causes this merge to happen. We really want control
1246 // dependence information for this check, but simplifycfg can't keep it up
1247 // to date, and this catches most of the cases we care about anyway.
1248 BasicBlock
*BB
= PN
->getParent();
1249 BasicBlock
*IfTrue
, *IfFalse
;
1250 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
1252 // Don't bother if the branch will be constant folded trivially.
1253 isa
<ConstantInt
>(IfCond
))
1256 // Okay, we found that we can merge this two-entry phi node into a select.
1257 // Doing so would require us to fold *all* two entry phi nodes in this block.
1258 // At some point this becomes non-profitable (particularly if the target
1259 // doesn't support cmov's). Only do this transformation if there are two or
1260 // fewer PHI nodes in this block.
1261 unsigned NumPhis
= 0;
1262 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
1266 // Loop over the PHI's seeing if we can promote them all to select
1267 // instructions. While we are at it, keep track of the instructions
1268 // that need to be moved to the dominating block.
1269 SmallPtrSet
<Instruction
*, 4> AggressiveInsts
;
1270 unsigned MaxCostVal0
= PHINodeFoldingThreshold
,
1271 MaxCostVal1
= PHINodeFoldingThreshold
;
1273 for (BasicBlock::iterator II
= BB
->begin(); isa
<PHINode
>(II
);) {
1274 PHINode
*PN
= cast
<PHINode
>(II
++);
1275 if (Value
*V
= SimplifyInstruction(PN
, TD
)) {
1276 PN
->replaceAllUsesWith(V
);
1277 PN
->eraseFromParent();
1281 if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
, &AggressiveInsts
,
1283 !DominatesMergePoint(PN
->getIncomingValue(1), BB
, &AggressiveInsts
,
1288 // If we folded the the first phi, PN dangles at this point. Refresh it. If
1289 // we ran out of PHIs then we simplified them all.
1290 PN
= dyn_cast
<PHINode
>(BB
->begin());
1291 if (PN
== 0) return true;
1293 // Don't fold i1 branches on PHIs which contain binary operators. These can
1294 // often be turned into switches and other things.
1295 if (PN
->getType()->isIntegerTy(1) &&
1296 (isa
<BinaryOperator
>(PN
->getIncomingValue(0)) ||
1297 isa
<BinaryOperator
>(PN
->getIncomingValue(1)) ||
1298 isa
<BinaryOperator
>(IfCond
)))
1301 // If we all PHI nodes are promotable, check to make sure that all
1302 // instructions in the predecessor blocks can be promoted as well. If
1303 // not, we won't be able to get rid of the control flow, so it's not
1304 // worth promoting to select instructions.
1305 BasicBlock
*DomBlock
= 0;
1306 BasicBlock
*IfBlock1
= PN
->getIncomingBlock(0);
1307 BasicBlock
*IfBlock2
= PN
->getIncomingBlock(1);
1308 if (cast
<BranchInst
>(IfBlock1
->getTerminator())->isConditional()) {
1311 DomBlock
= *pred_begin(IfBlock1
);
1312 for (BasicBlock::iterator I
= IfBlock1
->begin();!isa
<TerminatorInst
>(I
);++I
)
1313 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1314 // This is not an aggressive instruction that we can promote.
1315 // Because of this, we won't be able to get rid of the control
1316 // flow, so the xform is not worth it.
1321 if (cast
<BranchInst
>(IfBlock2
->getTerminator())->isConditional()) {
1324 DomBlock
= *pred_begin(IfBlock2
);
1325 for (BasicBlock::iterator I
= IfBlock2
->begin();!isa
<TerminatorInst
>(I
);++I
)
1326 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1327 // This is not an aggressive instruction that we can promote.
1328 // Because of this, we won't be able to get rid of the control
1329 // flow, so the xform is not worth it.
1334 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
<< " T: "
1335 << IfTrue
->getName() << " F: " << IfFalse
->getName() << "\n");
1337 // If we can still promote the PHI nodes after this gauntlet of tests,
1338 // do all of the PHI's now.
1339 Instruction
*InsertPt
= DomBlock
->getTerminator();
1340 IRBuilder
<true, NoFolder
> Builder(InsertPt
);
1342 // Move all 'aggressive' instructions, which are defined in the
1343 // conditional parts of the if's up to the dominating block.
1345 DomBlock
->getInstList().splice(InsertPt
,
1346 IfBlock1
->getInstList(), IfBlock1
->begin(),
1347 IfBlock1
->getTerminator());
1349 DomBlock
->getInstList().splice(InsertPt
,
1350 IfBlock2
->getInstList(), IfBlock2
->begin(),
1351 IfBlock2
->getTerminator());
1353 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
1354 // Change the PHI node into a select instruction.
1355 Value
*TrueVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
1356 Value
*FalseVal
= PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
1359 cast
<SelectInst
>(Builder
.CreateSelect(IfCond
, TrueVal
, FalseVal
, ""));
1360 PN
->replaceAllUsesWith(NV
);
1362 PN
->eraseFromParent();
1365 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1366 // has been flattened. Change DomBlock to jump directly to our new block to
1367 // avoid other simplifycfg's kicking in on the diamond.
1368 TerminatorInst
*OldTI
= DomBlock
->getTerminator();
1369 Builder
.SetInsertPoint(OldTI
);
1370 Builder
.CreateBr(BB
);
1371 OldTI
->eraseFromParent();
1375 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1376 /// to two returning blocks, try to merge them together into one return,
1377 /// introducing a select if the return values disagree.
1378 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
,
1379 IRBuilder
<> &Builder
) {
1380 assert(BI
->isConditional() && "Must be a conditional branch");
1381 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1382 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1383 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
1384 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
1386 // Check to ensure both blocks are empty (just a return) or optionally empty
1387 // with PHI nodes. If there are other instructions, merging would cause extra
1388 // computation on one path or the other.
1389 if (!TrueSucc
->getFirstNonPHIOrDbg()->isTerminator())
1391 if (!FalseSucc
->getFirstNonPHIOrDbg()->isTerminator())
1394 Builder
.SetInsertPoint(BI
);
1395 // Okay, we found a branch that is going to two return nodes. If
1396 // there is no return value for this function, just change the
1397 // branch into a return.
1398 if (FalseRet
->getNumOperands() == 0) {
1399 TrueSucc
->removePredecessor(BI
->getParent());
1400 FalseSucc
->removePredecessor(BI
->getParent());
1401 Builder
.CreateRetVoid();
1402 EraseTerminatorInstAndDCECond(BI
);
1406 // Otherwise, figure out what the true and false return values are
1407 // so we can insert a new select instruction.
1408 Value
*TrueValue
= TrueRet
->getReturnValue();
1409 Value
*FalseValue
= FalseRet
->getReturnValue();
1411 // Unwrap any PHI nodes in the return blocks.
1412 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
1413 if (TVPN
->getParent() == TrueSucc
)
1414 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
1415 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
1416 if (FVPN
->getParent() == FalseSucc
)
1417 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
1419 // In order for this transformation to be safe, we must be able to
1420 // unconditionally execute both operands to the return. This is
1421 // normally the case, but we could have a potentially-trapping
1422 // constant expression that prevents this transformation from being
1424 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
1427 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
1431 // Okay, we collected all the mapped values and checked them for sanity, and
1432 // defined to really do this transformation. First, update the CFG.
1433 TrueSucc
->removePredecessor(BI
->getParent());
1434 FalseSucc
->removePredecessor(BI
->getParent());
1436 // Insert select instructions where needed.
1437 Value
*BrCond
= BI
->getCondition();
1439 // Insert a select if the results differ.
1440 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
1441 } else if (isa
<UndefValue
>(TrueValue
)) {
1442 TrueValue
= FalseValue
;
1444 TrueValue
= Builder
.CreateSelect(BrCond
, TrueValue
,
1445 FalseValue
, "retval");
1449 Value
*RI
= !TrueValue
?
1450 Builder
.CreateRetVoid() : Builder
.CreateRet(TrueValue
);
1454 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1455 << "\n " << *BI
<< "NewRet = " << *RI
1456 << "TRUEBLOCK: " << *TrueSucc
<< "FALSEBLOCK: "<< *FalseSucc
);
1458 EraseTerminatorInstAndDCECond(BI
);
1463 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1464 /// predecessor branches to us and one of our successors, fold the block into
1465 /// the predecessor and use logical operations to pick the right destination.
1466 bool llvm::FoldBranchToCommonDest(BranchInst
*BI
) {
1467 BasicBlock
*BB
= BI
->getParent();
1469 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
1470 if (Cond
== 0 || (!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
1471 Cond
->getParent() != BB
|| !Cond
->hasOneUse())
1474 // Only allow this if the condition is a simple instruction that can be
1475 // executed unconditionally. It must be in the same block as the branch, and
1476 // must be at the front of the block.
1477 BasicBlock::iterator FrontIt
= BB
->front();
1479 // Ignore dbg intrinsics.
1480 while (isa
<DbgInfoIntrinsic
>(FrontIt
)) ++FrontIt
;
1482 // Allow a single instruction to be hoisted in addition to the compare
1483 // that feeds the branch. We later ensure that any values that _it_ uses
1484 // were also live in the predecessor, so that we don't unnecessarily create
1485 // register pressure or inhibit out-of-order execution.
1486 Instruction
*BonusInst
= 0;
1487 if (&*FrontIt
!= Cond
&&
1488 FrontIt
->hasOneUse() && *FrontIt
->use_begin() == Cond
&&
1489 FrontIt
->isSafeToSpeculativelyExecute()) {
1490 BonusInst
= &*FrontIt
;
1493 // Ignore dbg intrinsics.
1494 while (isa
<DbgInfoIntrinsic
>(FrontIt
)) ++FrontIt
;
1497 // Only a single bonus inst is allowed.
1498 if (&*FrontIt
!= Cond
)
1501 // Make sure the instruction after the condition is the cond branch.
1502 BasicBlock::iterator CondIt
= Cond
; ++CondIt
;
1504 // Ingore dbg intrinsics.
1505 while (isa
<DbgInfoIntrinsic
>(CondIt
)) ++CondIt
;
1510 // Cond is known to be a compare or binary operator. Check to make sure that
1511 // neither operand is a potentially-trapping constant expression.
1512 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
1515 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
1519 // Finally, don't infinitely unroll conditional loops.
1520 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
1521 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
1522 if (TrueDest
== BB
|| FalseDest
== BB
)
1525 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1526 BasicBlock
*PredBlock
= *PI
;
1527 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
1529 // Check that we have two conditional branches. If there is a PHI node in
1530 // the common successor, verify that the same value flows in from both
1532 if (PBI
== 0 || PBI
->isUnconditional() || !SafeToMergeTerminators(BI
, PBI
))
1535 // Determine if the two branches share a common destination.
1536 Instruction::BinaryOps Opc
;
1537 bool InvertPredCond
= false;
1539 if (PBI
->getSuccessor(0) == TrueDest
)
1540 Opc
= Instruction::Or
;
1541 else if (PBI
->getSuccessor(1) == FalseDest
)
1542 Opc
= Instruction::And
;
1543 else if (PBI
->getSuccessor(0) == FalseDest
)
1544 Opc
= Instruction::And
, InvertPredCond
= true;
1545 else if (PBI
->getSuccessor(1) == TrueDest
)
1546 Opc
= Instruction::Or
, InvertPredCond
= true;
1550 // Ensure that any values used in the bonus instruction are also used
1551 // by the terminator of the predecessor. This means that those values
1552 // must already have been resolved, so we won't be inhibiting the
1553 // out-of-order core by speculating them earlier.
1555 // Collect the values used by the bonus inst
1556 SmallPtrSet
<Value
*, 4> UsedValues
;
1557 for (Instruction::op_iterator OI
= BonusInst
->op_begin(),
1558 OE
= BonusInst
->op_end(); OI
!= OE
; ++OI
) {
1560 if (!isa
<Constant
>(V
))
1561 UsedValues
.insert(V
);
1564 SmallVector
<std::pair
<Value
*, unsigned>, 4> Worklist
;
1565 Worklist
.push_back(std::make_pair(PBI
->getOperand(0), 0));
1567 // Walk up to four levels back up the use-def chain of the predecessor's
1568 // terminator to see if all those values were used. The choice of four
1569 // levels is arbitrary, to provide a compile-time-cost bound.
1570 while (!Worklist
.empty()) {
1571 std::pair
<Value
*, unsigned> Pair
= Worklist
.back();
1572 Worklist
.pop_back();
1574 if (Pair
.second
>= 4) continue;
1575 UsedValues
.erase(Pair
.first
);
1576 if (UsedValues
.empty()) break;
1578 if (Instruction
*I
= dyn_cast
<Instruction
>(Pair
.first
)) {
1579 for (Instruction::op_iterator OI
= I
->op_begin(), OE
= I
->op_end();
1581 Worklist
.push_back(std::make_pair(OI
->get(), Pair
.second
+1));
1585 if (!UsedValues
.empty()) return false;
1588 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
);
1589 IRBuilder
<> Builder(PBI
);
1591 // If we need to invert the condition in the pred block to match, do so now.
1592 if (InvertPredCond
) {
1593 Value
*NewCond
= PBI
->getCondition();
1595 if (NewCond
->hasOneUse() && isa
<CmpInst
>(NewCond
)) {
1596 CmpInst
*CI
= cast
<CmpInst
>(NewCond
);
1597 CI
->setPredicate(CI
->getInversePredicate());
1599 NewCond
= Builder
.CreateNot(NewCond
,
1600 PBI
->getCondition()->getName()+".not");
1603 PBI
->setCondition(NewCond
);
1604 BasicBlock
*OldTrue
= PBI
->getSuccessor(0);
1605 BasicBlock
*OldFalse
= PBI
->getSuccessor(1);
1606 PBI
->setSuccessor(0, OldFalse
);
1607 PBI
->setSuccessor(1, OldTrue
);
1610 // If we have a bonus inst, clone it into the predecessor block.
1611 Instruction
*NewBonus
= 0;
1613 NewBonus
= BonusInst
->clone();
1614 PredBlock
->getInstList().insert(PBI
, NewBonus
);
1615 NewBonus
->takeName(BonusInst
);
1616 BonusInst
->setName(BonusInst
->getName()+".old");
1619 // Clone Cond into the predecessor basic block, and or/and the
1620 // two conditions together.
1621 Instruction
*New
= Cond
->clone();
1622 if (BonusInst
) New
->replaceUsesOfWith(BonusInst
, NewBonus
);
1623 PredBlock
->getInstList().insert(PBI
, New
);
1624 New
->takeName(Cond
);
1625 Cond
->setName(New
->getName()+".old");
1627 Instruction
*NewCond
=
1628 cast
<Instruction
>(Builder
.CreateBinOp(Opc
, PBI
->getCondition(),
1630 PBI
->setCondition(NewCond
);
1631 if (PBI
->getSuccessor(0) == BB
) {
1632 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
1633 PBI
->setSuccessor(0, TrueDest
);
1635 if (PBI
->getSuccessor(1) == BB
) {
1636 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
1637 PBI
->setSuccessor(1, FalseDest
);
1640 // Copy any debug value intrinsics into the end of PredBlock.
1641 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
1642 if (isa
<DbgInfoIntrinsic
>(*I
))
1643 I
->clone()->insertBefore(PBI
);
1650 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1651 /// predecessor of another block, this function tries to simplify it. We know
1652 /// that PBI and BI are both conditional branches, and BI is in one of the
1653 /// successor blocks of PBI - PBI branches to BI.
1654 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
1655 assert(PBI
->isConditional() && BI
->isConditional());
1656 BasicBlock
*BB
= BI
->getParent();
1658 // If this block ends with a branch instruction, and if there is a
1659 // predecessor that ends on a branch of the same condition, make
1660 // this conditional branch redundant.
1661 if (PBI
->getCondition() == BI
->getCondition() &&
1662 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1663 // Okay, the outcome of this conditional branch is statically
1664 // knowable. If this block had a single pred, handle specially.
1665 if (BB
->getSinglePredecessor()) {
1666 // Turn this into a branch on constant.
1667 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1668 BI
->setCondition(ConstantInt::get(Type::getInt1Ty(BB
->getContext()),
1670 return true; // Nuke the branch on constant.
1673 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1674 // in the constant and simplify the block result. Subsequent passes of
1675 // simplifycfg will thread the block.
1676 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
1677 pred_iterator PB
= pred_begin(BB
), PE
= pred_end(BB
);
1678 PHINode
*NewPN
= PHINode::Create(Type::getInt1Ty(BB
->getContext()),
1679 std::distance(PB
, PE
),
1680 BI
->getCondition()->getName() + ".pr",
1682 // Okay, we're going to insert the PHI node. Since PBI is not the only
1683 // predecessor, compute the PHI'd conditional value for all of the preds.
1684 // Any predecessor where the condition is not computable we keep symbolic.
1685 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
1686 BasicBlock
*P
= *PI
;
1687 if ((PBI
= dyn_cast
<BranchInst
>(P
->getTerminator())) &&
1688 PBI
!= BI
&& PBI
->isConditional() &&
1689 PBI
->getCondition() == BI
->getCondition() &&
1690 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1691 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1692 NewPN
->addIncoming(ConstantInt::get(Type::getInt1Ty(BB
->getContext()),
1695 NewPN
->addIncoming(BI
->getCondition(), P
);
1699 BI
->setCondition(NewPN
);
1704 // If this is a conditional branch in an empty block, and if any
1705 // predecessors is a conditional branch to one of our destinations,
1706 // fold the conditions into logical ops and one cond br.
1707 BasicBlock::iterator BBI
= BB
->begin();
1708 // Ignore dbg intrinsics.
1709 while (isa
<DbgInfoIntrinsic
>(BBI
))
1715 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
1720 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0))
1722 else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1))
1723 PBIOp
= 0, BIOp
= 1;
1724 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0))
1725 PBIOp
= 1, BIOp
= 0;
1726 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1))
1731 // Check to make sure that the other destination of this branch
1732 // isn't BB itself. If so, this is an infinite loop that will
1733 // keep getting unwound.
1734 if (PBI
->getSuccessor(PBIOp
) == BB
)
1737 // Do not perform this transformation if it would require
1738 // insertion of a large number of select instructions. For targets
1739 // without predication/cmovs, this is a big pessimization.
1740 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
1742 unsigned NumPhis
= 0;
1743 for (BasicBlock::iterator II
= CommonDest
->begin();
1744 isa
<PHINode
>(II
); ++II
, ++NumPhis
)
1745 if (NumPhis
> 2) // Disable this xform.
1748 // Finally, if everything is ok, fold the branches to logical ops.
1749 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
1751 DEBUG(dbgs() << "FOLDING BRs:" << *PBI
->getParent()
1752 << "AND: " << *BI
->getParent());
1755 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1756 // branch in it, where one edge (OtherDest) goes back to itself but the other
1757 // exits. We don't *know* that the program avoids the infinite loop
1758 // (even though that seems likely). If we do this xform naively, we'll end up
1759 // recursively unpeeling the loop. Since we know that (after the xform is
1760 // done) that the block *is* infinite if reached, we just make it an obviously
1761 // infinite loop with no cond branch.
1762 if (OtherDest
== BB
) {
1763 // Insert it at the end of the function, because it's either code,
1764 // or it won't matter if it's hot. :)
1765 BasicBlock
*InfLoopBlock
= BasicBlock::Create(BB
->getContext(),
1766 "infloop", BB
->getParent());
1767 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1768 OtherDest
= InfLoopBlock
;
1771 DEBUG(dbgs() << *PBI
->getParent()->getParent());
1773 // BI may have other predecessors. Because of this, we leave
1774 // it alone, but modify PBI.
1776 // Make sure we get to CommonDest on True&True directions.
1777 Value
*PBICond
= PBI
->getCondition();
1778 IRBuilder
<true, NoFolder
> Builder(PBI
);
1780 PBICond
= Builder
.CreateNot(PBICond
, PBICond
->getName()+".not");
1782 Value
*BICond
= BI
->getCondition();
1784 BICond
= Builder
.CreateNot(BICond
, BICond
->getName()+".not");
1786 // Merge the conditions.
1787 Value
*Cond
= Builder
.CreateOr(PBICond
, BICond
, "brmerge");
1789 // Modify PBI to branch on the new condition to the new dests.
1790 PBI
->setCondition(Cond
);
1791 PBI
->setSuccessor(0, CommonDest
);
1792 PBI
->setSuccessor(1, OtherDest
);
1794 // OtherDest may have phi nodes. If so, add an entry from PBI's
1795 // block that are identical to the entries for BI's block.
1796 AddPredecessorToBlock(OtherDest
, PBI
->getParent(), BB
);
1798 // We know that the CommonDest already had an edge from PBI to
1799 // it. If it has PHIs though, the PHIs may have different
1800 // entries for BB and PBI's BB. If so, insert a select to make
1803 for (BasicBlock::iterator II
= CommonDest
->begin();
1804 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1805 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
1806 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
1807 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
1809 // Insert a select in PBI to pick the right value.
1810 Value
*NV
= cast
<SelectInst
>
1811 (Builder
.CreateSelect(PBICond
, PBIV
, BIV
, PBIV
->getName()+".mux"));
1812 PN
->setIncomingValue(PBBIdx
, NV
);
1816 DEBUG(dbgs() << "INTO: " << *PBI
->getParent());
1817 DEBUG(dbgs() << *PBI
->getParent()->getParent());
1819 // This basic block is probably dead. We know it has at least
1820 // one fewer predecessor.
1824 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1825 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1826 // Takes care of updating the successors and removing the old terminator.
1827 // Also makes sure not to introduce new successors by assuming that edges to
1828 // non-successor TrueBBs and FalseBBs aren't reachable.
1829 static bool SimplifyTerminatorOnSelect(TerminatorInst
*OldTerm
, Value
*Cond
,
1830 BasicBlock
*TrueBB
, BasicBlock
*FalseBB
){
1831 // Remove any superfluous successor edges from the CFG.
1832 // First, figure out which successors to preserve.
1833 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1835 BasicBlock
*KeepEdge1
= TrueBB
;
1836 BasicBlock
*KeepEdge2
= TrueBB
!= FalseBB
? FalseBB
: 0;
1838 // Then remove the rest.
1839 for (unsigned I
= 0, E
= OldTerm
->getNumSuccessors(); I
!= E
; ++I
) {
1840 BasicBlock
*Succ
= OldTerm
->getSuccessor(I
);
1841 // Make sure only to keep exactly one copy of each edge.
1842 if (Succ
== KeepEdge1
)
1844 else if (Succ
== KeepEdge2
)
1847 Succ
->removePredecessor(OldTerm
->getParent());
1850 IRBuilder
<> Builder(OldTerm
);
1851 Builder
.SetCurrentDebugLocation(OldTerm
->getDebugLoc());
1853 // Insert an appropriate new terminator.
1854 if ((KeepEdge1
== 0) && (KeepEdge2
== 0)) {
1855 if (TrueBB
== FalseBB
)
1856 // We were only looking for one successor, and it was present.
1857 // Create an unconditional branch to it.
1858 Builder
.CreateBr(TrueBB
);
1860 // We found both of the successors we were looking for.
1861 // Create a conditional branch sharing the condition of the select.
1862 Builder
.CreateCondBr(Cond
, TrueBB
, FalseBB
);
1863 } else if (KeepEdge1
&& (KeepEdge2
|| TrueBB
== FalseBB
)) {
1864 // Neither of the selected blocks were successors, so this
1865 // terminator must be unreachable.
1866 new UnreachableInst(OldTerm
->getContext(), OldTerm
);
1868 // One of the selected values was a successor, but the other wasn't.
1869 // Insert an unconditional branch to the one that was found;
1870 // the edge to the one that wasn't must be unreachable.
1872 // Only TrueBB was found.
1873 Builder
.CreateBr(TrueBB
);
1875 // Only FalseBB was found.
1876 Builder
.CreateBr(FalseBB
);
1879 EraseTerminatorInstAndDCECond(OldTerm
);
1883 // SimplifySwitchOnSelect - Replaces
1884 // (switch (select cond, X, Y)) on constant X, Y
1885 // with a branch - conditional if X and Y lead to distinct BBs,
1886 // unconditional otherwise.
1887 static bool SimplifySwitchOnSelect(SwitchInst
*SI
, SelectInst
*Select
) {
1888 // Check for constant integer values in the select.
1889 ConstantInt
*TrueVal
= dyn_cast
<ConstantInt
>(Select
->getTrueValue());
1890 ConstantInt
*FalseVal
= dyn_cast
<ConstantInt
>(Select
->getFalseValue());
1891 if (!TrueVal
|| !FalseVal
)
1894 // Find the relevant condition and destinations.
1895 Value
*Condition
= Select
->getCondition();
1896 BasicBlock
*TrueBB
= SI
->getSuccessor(SI
->findCaseValue(TrueVal
));
1897 BasicBlock
*FalseBB
= SI
->getSuccessor(SI
->findCaseValue(FalseVal
));
1899 // Perform the actual simplification.
1900 return SimplifyTerminatorOnSelect(SI
, Condition
, TrueBB
, FalseBB
);
1903 // SimplifyIndirectBrOnSelect - Replaces
1904 // (indirectbr (select cond, blockaddress(@fn, BlockA),
1905 // blockaddress(@fn, BlockB)))
1907 // (br cond, BlockA, BlockB).
1908 static bool SimplifyIndirectBrOnSelect(IndirectBrInst
*IBI
, SelectInst
*SI
) {
1909 // Check that both operands of the select are block addresses.
1910 BlockAddress
*TBA
= dyn_cast
<BlockAddress
>(SI
->getTrueValue());
1911 BlockAddress
*FBA
= dyn_cast
<BlockAddress
>(SI
->getFalseValue());
1915 // Extract the actual blocks.
1916 BasicBlock
*TrueBB
= TBA
->getBasicBlock();
1917 BasicBlock
*FalseBB
= FBA
->getBasicBlock();
1919 // Perform the actual simplification.
1920 return SimplifyTerminatorOnSelect(IBI
, SI
->getCondition(), TrueBB
, FalseBB
);
1923 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1924 /// instruction (a seteq/setne with a constant) as the only instruction in a
1925 /// block that ends with an uncond branch. We are looking for a very specific
1926 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
1927 /// this case, we merge the first two "or's of icmp" into a switch, but then the
1928 /// default value goes to an uncond block with a seteq in it, we get something
1931 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
1933 /// %tmp = icmp eq i8 %A, 92
1936 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1938 /// We prefer to split the edge to 'end' so that there is a true/false entry to
1939 /// the PHI, merging the third icmp into the switch.
1940 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst
*ICI
,
1941 const TargetData
*TD
,
1942 IRBuilder
<> &Builder
) {
1943 BasicBlock
*BB
= ICI
->getParent();
1945 // If the block has any PHIs in it or the icmp has multiple uses, it is too
1947 if (isa
<PHINode
>(BB
->begin()) || !ICI
->hasOneUse()) return false;
1949 Value
*V
= ICI
->getOperand(0);
1950 ConstantInt
*Cst
= cast
<ConstantInt
>(ICI
->getOperand(1));
1952 // The pattern we're looking for is where our only predecessor is a switch on
1953 // 'V' and this block is the default case for the switch. In this case we can
1954 // fold the compared value into the switch to simplify things.
1955 BasicBlock
*Pred
= BB
->getSinglePredecessor();
1956 if (Pred
== 0 || !isa
<SwitchInst
>(Pred
->getTerminator())) return false;
1958 SwitchInst
*SI
= cast
<SwitchInst
>(Pred
->getTerminator());
1959 if (SI
->getCondition() != V
)
1962 // If BB is reachable on a non-default case, then we simply know the value of
1963 // V in this block. Substitute it and constant fold the icmp instruction
1965 if (SI
->getDefaultDest() != BB
) {
1966 ConstantInt
*VVal
= SI
->findCaseDest(BB
);
1967 assert(VVal
&& "Should have a unique destination value");
1968 ICI
->setOperand(0, VVal
);
1970 if (Value
*V
= SimplifyInstruction(ICI
, TD
)) {
1971 ICI
->replaceAllUsesWith(V
);
1972 ICI
->eraseFromParent();
1974 // BB is now empty, so it is likely to simplify away.
1975 return SimplifyCFG(BB
) | true;
1978 // Ok, the block is reachable from the default dest. If the constant we're
1979 // comparing exists in one of the other edges, then we can constant fold ICI
1981 if (SI
->findCaseValue(Cst
) != 0) {
1983 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
1984 V
= ConstantInt::getFalse(BB
->getContext());
1986 V
= ConstantInt::getTrue(BB
->getContext());
1988 ICI
->replaceAllUsesWith(V
);
1989 ICI
->eraseFromParent();
1990 // BB is now empty, so it is likely to simplify away.
1991 return SimplifyCFG(BB
) | true;
1994 // The use of the icmp has to be in the 'end' block, by the only PHI node in
1996 BasicBlock
*SuccBlock
= BB
->getTerminator()->getSuccessor(0);
1997 PHINode
*PHIUse
= dyn_cast
<PHINode
>(ICI
->use_back());
1998 if (PHIUse
== 0 || PHIUse
!= &SuccBlock
->front() ||
1999 isa
<PHINode
>(++BasicBlock::iterator(PHIUse
)))
2002 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2004 Constant
*DefaultCst
= ConstantInt::getTrue(BB
->getContext());
2005 Constant
*NewCst
= ConstantInt::getFalse(BB
->getContext());
2007 if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
)
2008 std::swap(DefaultCst
, NewCst
);
2010 // Replace ICI (which is used by the PHI for the default value) with true or
2011 // false depending on if it is EQ or NE.
2012 ICI
->replaceAllUsesWith(DefaultCst
);
2013 ICI
->eraseFromParent();
2015 // Okay, the switch goes to this block on a default value. Add an edge from
2016 // the switch to the merge point on the compared value.
2017 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), "switch.edge",
2018 BB
->getParent(), BB
);
2019 SI
->addCase(Cst
, NewBB
);
2021 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2022 Builder
.SetInsertPoint(NewBB
);
2023 Builder
.SetCurrentDebugLocation(SI
->getDebugLoc());
2024 Builder
.CreateBr(SuccBlock
);
2025 PHIUse
->addIncoming(NewCst
, NewBB
);
2029 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2030 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2031 /// fold it into a switch instruction if so.
2032 static bool SimplifyBranchOnICmpChain(BranchInst
*BI
, const TargetData
*TD
,
2033 IRBuilder
<> &Builder
) {
2034 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
2035 if (Cond
== 0) return false;
2038 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2039 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2040 // 'setne's and'ed together, collect them.
2042 std::vector
<ConstantInt
*> Values
;
2043 bool TrueWhenEqual
= true;
2044 Value
*ExtraCase
= 0;
2045 unsigned UsedICmps
= 0;
2047 if (Cond
->getOpcode() == Instruction::Or
) {
2048 CompVal
= GatherConstantCompares(Cond
, Values
, ExtraCase
, TD
, true,
2050 } else if (Cond
->getOpcode() == Instruction::And
) {
2051 CompVal
= GatherConstantCompares(Cond
, Values
, ExtraCase
, TD
, false,
2053 TrueWhenEqual
= false;
2056 // If we didn't have a multiply compared value, fail.
2057 if (CompVal
== 0) return false;
2059 // Avoid turning single icmps into a switch.
2063 // There might be duplicate constants in the list, which the switch
2064 // instruction can't handle, remove them now.
2065 array_pod_sort(Values
.begin(), Values
.end(), ConstantIntSortPredicate
);
2066 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
2068 // If Extra was used, we require at least two switch values to do the
2069 // transformation. A switch with one value is just an cond branch.
2070 if (ExtraCase
&& Values
.size() < 2) return false;
2072 // Figure out which block is which destination.
2073 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
2074 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
2075 if (!TrueWhenEqual
) std::swap(DefaultBB
, EdgeBB
);
2077 BasicBlock
*BB
= BI
->getParent();
2079 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values
.size()
2080 << " cases into SWITCH. BB is:\n" << *BB
);
2082 // If there are any extra values that couldn't be folded into the switch
2083 // then we evaluate them with an explicit branch first. Split the block
2084 // right before the condbr to handle it.
2086 BasicBlock
*NewBB
= BB
->splitBasicBlock(BI
, "switch.early.test");
2087 // Remove the uncond branch added to the old block.
2088 TerminatorInst
*OldTI
= BB
->getTerminator();
2089 Builder
.SetInsertPoint(OldTI
);
2092 Builder
.CreateCondBr(ExtraCase
, EdgeBB
, NewBB
);
2094 Builder
.CreateCondBr(ExtraCase
, NewBB
, EdgeBB
);
2096 OldTI
->eraseFromParent();
2098 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2099 // for the edge we just added.
2100 AddPredecessorToBlock(EdgeBB
, BB
, NewBB
);
2102 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2103 << "\nEXTRABB = " << *BB
);
2107 Builder
.SetInsertPoint(BI
);
2108 // Convert pointer to int before we switch.
2109 if (CompVal
->getType()->isPointerTy()) {
2110 assert(TD
&& "Cannot switch on pointer without TargetData");
2111 CompVal
= Builder
.CreatePtrToInt(CompVal
,
2112 TD
->getIntPtrType(CompVal
->getContext()),
2116 // Create the new switch instruction now.
2117 SwitchInst
*New
= Builder
.CreateSwitch(CompVal
, DefaultBB
, Values
.size());
2119 // Add all of the 'cases' to the switch instruction.
2120 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
2121 New
->addCase(Values
[i
], EdgeBB
);
2123 // We added edges from PI to the EdgeBB. As such, if there were any
2124 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2125 // the number of edges added.
2126 for (BasicBlock::iterator BBI
= EdgeBB
->begin();
2127 isa
<PHINode
>(BBI
); ++BBI
) {
2128 PHINode
*PN
= cast
<PHINode
>(BBI
);
2129 Value
*InVal
= PN
->getIncomingValueForBlock(BB
);
2130 for (unsigned i
= 0, e
= Values
.size()-1; i
!= e
; ++i
)
2131 PN
->addIncoming(InVal
, BB
);
2134 // Erase the old branch instruction.
2135 EraseTerminatorInstAndDCECond(BI
);
2137 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB
<< '\n');
2141 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst
*RI
, IRBuilder
<> &Builder
) {
2142 BasicBlock
*BB
= RI
->getParent();
2143 if (!BB
->getFirstNonPHIOrDbg()->isTerminator()) return false;
2145 // Find predecessors that end with branches.
2146 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
2147 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
2148 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
2149 BasicBlock
*P
= *PI
;
2150 TerminatorInst
*PTI
= P
->getTerminator();
2151 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
2152 if (BI
->isUnconditional())
2153 UncondBranchPreds
.push_back(P
);
2155 CondBranchPreds
.push_back(BI
);
2159 // If we found some, do the transformation!
2160 if (!UncondBranchPreds
.empty() && DupRet
) {
2161 while (!UncondBranchPreds
.empty()) {
2162 BasicBlock
*Pred
= UncondBranchPreds
.pop_back_val();
2163 DEBUG(dbgs() << "FOLDING: " << *BB
2164 << "INTO UNCOND BRANCH PRED: " << *Pred
);
2165 (void)FoldReturnIntoUncondBranch(RI
, BB
, Pred
);
2168 // If we eliminated all predecessors of the block, delete the block now.
2169 if (pred_begin(BB
) == pred_end(BB
))
2170 // We know there are no successors, so just nuke the block.
2171 BB
->eraseFromParent();
2176 // Check out all of the conditional branches going to this return
2177 // instruction. If any of them just select between returns, change the
2178 // branch itself into a select/return pair.
2179 while (!CondBranchPreds
.empty()) {
2180 BranchInst
*BI
= CondBranchPreds
.pop_back_val();
2182 // Check to see if the non-BB successor is also a return block.
2183 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
2184 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
2185 SimplifyCondBranchToTwoReturns(BI
, Builder
))
2191 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst
*UI
, IRBuilder
<> &Builder
) {
2192 // Check to see if the first instruction in this block is just an unwind.
2193 // If so, replace any invoke instructions which use this as an exception
2194 // destination with call instructions.
2195 BasicBlock
*BB
= UI
->getParent();
2196 if (!BB
->getFirstNonPHIOrDbg()->isTerminator()) return false;
2198 bool Changed
= false;
2199 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2200 while (!Preds
.empty()) {
2201 BasicBlock
*Pred
= Preds
.back();
2202 InvokeInst
*II
= dyn_cast
<InvokeInst
>(Pred
->getTerminator());
2203 if (II
&& II
->getUnwindDest() == BB
) {
2204 // Insert a new branch instruction before the invoke, because this
2205 // is now a fall through.
2206 Builder
.SetInsertPoint(II
);
2207 BranchInst
*BI
= Builder
.CreateBr(II
->getNormalDest());
2208 Pred
->getInstList().remove(II
); // Take out of symbol table
2210 // Insert the call now.
2211 SmallVector
<Value
*,8> Args(II
->op_begin(), II
->op_end()-3);
2212 Builder
.SetInsertPoint(BI
);
2213 CallInst
*CI
= Builder
.CreateCall(II
->getCalledValue(),
2214 Args
.begin(), Args
.end(),
2216 CI
->setCallingConv(II
->getCallingConv());
2217 CI
->setAttributes(II
->getAttributes());
2218 // If the invoke produced a value, the Call now does instead.
2219 II
->replaceAllUsesWith(CI
);
2227 // If this block is now dead (and isn't the entry block), remove it.
2228 if (pred_begin(BB
) == pred_end(BB
) &&
2229 BB
!= &BB
->getParent()->getEntryBlock()) {
2230 // We know there are no successors, so just nuke the block.
2231 BB
->eraseFromParent();
2238 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst
*UI
) {
2239 BasicBlock
*BB
= UI
->getParent();
2241 bool Changed
= false;
2243 // If there are any instructions immediately before the unreachable that can
2244 // be removed, do so.
2245 while (UI
!= BB
->begin()) {
2246 BasicBlock::iterator BBI
= UI
;
2248 // Do not delete instructions that can have side effects, like calls
2249 // (which may never return) and volatile loads and stores.
2250 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
)) break;
2252 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
2253 if (SI
->isVolatile())
2256 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
))
2257 if (LI
->isVolatile())
2260 // Delete this instruction (any uses are guaranteed to be dead)
2261 if (!BBI
->use_empty())
2262 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
2263 BBI
->eraseFromParent();
2267 // If the unreachable instruction is the first in the block, take a gander
2268 // at all of the predecessors of this instruction, and simplify them.
2269 if (&BB
->front() != UI
) return Changed
;
2271 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2272 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
2273 TerminatorInst
*TI
= Preds
[i
]->getTerminator();
2274 IRBuilder
<> Builder(TI
);
2275 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
2276 if (BI
->isUnconditional()) {
2277 if (BI
->getSuccessor(0) == BB
) {
2278 new UnreachableInst(TI
->getContext(), TI
);
2279 TI
->eraseFromParent();
2283 if (BI
->getSuccessor(0) == BB
) {
2284 Builder
.CreateBr(BI
->getSuccessor(1));
2285 EraseTerminatorInstAndDCECond(BI
);
2286 } else if (BI
->getSuccessor(1) == BB
) {
2287 Builder
.CreateBr(BI
->getSuccessor(0));
2288 EraseTerminatorInstAndDCECond(BI
);
2292 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
2293 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2294 if (SI
->getSuccessor(i
) == BB
) {
2295 BB
->removePredecessor(SI
->getParent());
2300 // If the default value is unreachable, figure out the most popular
2301 // destination and make it the default.
2302 if (SI
->getSuccessor(0) == BB
) {
2303 std::map
<BasicBlock
*, std::pair
<unsigned, unsigned> > Popularity
;
2304 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
) {
2305 std::pair
<unsigned, unsigned>& entry
=
2306 Popularity
[SI
->getSuccessor(i
)];
2307 if (entry
.first
== 0) {
2315 // Find the most popular block.
2316 unsigned MaxPop
= 0;
2317 unsigned MaxIndex
= 0;
2318 BasicBlock
*MaxBlock
= 0;
2319 for (std::map
<BasicBlock
*, std::pair
<unsigned, unsigned> >::iterator
2320 I
= Popularity
.begin(), E
= Popularity
.end(); I
!= E
; ++I
) {
2321 if (I
->second
.first
> MaxPop
||
2322 (I
->second
.first
== MaxPop
&& MaxIndex
> I
->second
.second
)) {
2323 MaxPop
= I
->second
.first
;
2324 MaxIndex
= I
->second
.second
;
2325 MaxBlock
= I
->first
;
2329 // Make this the new default, allowing us to delete any explicit
2331 SI
->setSuccessor(0, MaxBlock
);
2334 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2336 if (isa
<PHINode
>(MaxBlock
->begin()))
2337 for (unsigned i
= 0; i
!= MaxPop
-1; ++i
)
2338 MaxBlock
->removePredecessor(SI
->getParent());
2340 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2341 if (SI
->getSuccessor(i
) == MaxBlock
) {
2347 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
2348 if (II
->getUnwindDest() == BB
) {
2349 // Convert the invoke to a call instruction. This would be a good
2350 // place to note that the call does not throw though.
2351 BranchInst
*BI
= Builder
.CreateBr(II
->getNormalDest());
2352 II
->removeFromParent(); // Take out of symbol table
2354 // Insert the call now...
2355 SmallVector
<Value
*, 8> Args(II
->op_begin(), II
->op_end()-3);
2356 Builder
.SetInsertPoint(BI
);
2357 CallInst
*CI
= Builder
.CreateCall(II
->getCalledValue(),
2358 Args
.begin(), Args
.end(),
2360 CI
->setCallingConv(II
->getCallingConv());
2361 CI
->setAttributes(II
->getAttributes());
2362 // If the invoke produced a value, the call does now instead.
2363 II
->replaceAllUsesWith(CI
);
2370 // If this block is now dead, remove it.
2371 if (pred_begin(BB
) == pred_end(BB
) &&
2372 BB
!= &BB
->getParent()->getEntryBlock()) {
2373 // We know there are no successors, so just nuke the block.
2374 BB
->eraseFromParent();
2381 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2382 /// integer range comparison into a sub, an icmp and a branch.
2383 static bool TurnSwitchRangeIntoICmp(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
2384 assert(SI
->getNumCases() > 2 && "Degenerate switch?");
2386 // Make sure all cases point to the same destination and gather the values.
2387 SmallVector
<ConstantInt
*, 16> Cases
;
2388 Cases
.push_back(SI
->getCaseValue(1));
2389 for (unsigned I
= 2, E
= SI
->getNumCases(); I
!= E
; ++I
) {
2390 if (SI
->getSuccessor(I
-1) != SI
->getSuccessor(I
))
2392 Cases
.push_back(SI
->getCaseValue(I
));
2394 assert(Cases
.size() == SI
->getNumCases()-1 && "Not all cases gathered");
2396 // Sort the case values, then check if they form a range we can transform.
2397 array_pod_sort(Cases
.begin(), Cases
.end(), ConstantIntSortPredicate
);
2398 for (unsigned I
= 1, E
= Cases
.size(); I
!= E
; ++I
) {
2399 if (Cases
[I
-1]->getValue() != Cases
[I
]->getValue()+1)
2403 Constant
*Offset
= ConstantExpr::getNeg(Cases
.back());
2404 Constant
*NumCases
= ConstantInt::get(Offset
->getType(), SI
->getNumCases()-1);
2406 Value
*Sub
= SI
->getCondition();
2407 if (!Offset
->isNullValue())
2408 Sub
= Builder
.CreateAdd(Sub
, Offset
, Sub
->getName()+".off");
2409 Value
*Cmp
= Builder
.CreateICmpULT(Sub
, NumCases
, "switch");
2410 Builder
.CreateCondBr(Cmp
, SI
->getSuccessor(1), SI
->getDefaultDest());
2412 // Prune obsolete incoming values off the successor's PHI nodes.
2413 for (BasicBlock::iterator BBI
= SI
->getSuccessor(1)->begin();
2414 isa
<PHINode
>(BBI
); ++BBI
) {
2415 for (unsigned I
= 0, E
= SI
->getNumCases()-2; I
!= E
; ++I
)
2416 cast
<PHINode
>(BBI
)->removeIncomingValue(SI
->getParent());
2418 SI
->eraseFromParent();
2423 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2424 /// and use it to remove dead cases.
2425 static bool EliminateDeadSwitchCases(SwitchInst
*SI
) {
2426 Value
*Cond
= SI
->getCondition();
2427 unsigned Bits
= cast
<IntegerType
>(Cond
->getType())->getBitWidth();
2428 APInt
KnownZero(Bits
, 0), KnownOne(Bits
, 0);
2429 ComputeMaskedBits(Cond
, APInt::getAllOnesValue(Bits
), KnownZero
, KnownOne
);
2431 // Gather dead cases.
2432 SmallVector
<ConstantInt
*, 8> DeadCases
;
2433 for (unsigned I
= 1, E
= SI
->getNumCases(); I
!= E
; ++I
) {
2434 if ((SI
->getCaseValue(I
)->getValue() & KnownZero
) != 0 ||
2435 (SI
->getCaseValue(I
)->getValue() & KnownOne
) != KnownOne
) {
2436 DeadCases
.push_back(SI
->getCaseValue(I
));
2437 DEBUG(dbgs() << "SimplifyCFG: switch case '"
2438 << SI
->getCaseValue(I
)->getValue() << "' is dead.\n");
2442 // Remove dead cases from the switch.
2443 for (unsigned I
= 0, E
= DeadCases
.size(); I
!= E
; ++I
) {
2444 unsigned Case
= SI
->findCaseValue(DeadCases
[I
]);
2445 // Prune unused values from PHI nodes.
2446 SI
->getSuccessor(Case
)->removePredecessor(SI
->getParent());
2447 SI
->removeCase(Case
);
2450 return !DeadCases
.empty();
2453 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
2454 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2455 /// by an unconditional branch), look at the phi node for BB in the successor
2456 /// block and see if the incoming value is equal to CaseValue. If so, return
2457 /// the phi node, and set PhiIndex to BB's index in the phi node.
2458 static PHINode
*FindPHIForConditionForwarding(ConstantInt
*CaseValue
,
2461 if (BB
->getFirstNonPHIOrDbg() != BB
->getTerminator())
2462 return NULL
; // BB must be empty to be a candidate for simplification.
2463 if (!BB
->getSinglePredecessor())
2464 return NULL
; // BB must be dominated by the switch.
2466 BranchInst
*Branch
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2467 if (!Branch
|| !Branch
->isUnconditional())
2468 return NULL
; // Terminator must be unconditional branch.
2470 BasicBlock
*Succ
= Branch
->getSuccessor(0);
2472 BasicBlock::iterator I
= Succ
->begin();
2473 while (PHINode
*PHI
= dyn_cast
<PHINode
>(I
++)) {
2474 int Idx
= PHI
->getBasicBlockIndex(BB
);
2475 assert(Idx
>= 0 && "PHI has no entry for predecessor?");
2477 Value
*InValue
= PHI
->getIncomingValue(Idx
);
2478 if (InValue
!= CaseValue
) continue;
2487 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2488 /// instruction to a phi node dominated by the switch, if that would mean that
2489 /// some of the destination blocks of the switch can be folded away.
2490 /// Returns true if a change is made.
2491 static bool ForwardSwitchConditionToPHI(SwitchInst
*SI
) {
2492 typedef DenseMap
<PHINode
*, SmallVector
<int,4> > ForwardingNodesMap
;
2493 ForwardingNodesMap ForwardingNodes
;
2495 for (unsigned I
= 1; I
< SI
->getNumCases(); ++I
) { // 0 is the default case.
2496 ConstantInt
*CaseValue
= SI
->getCaseValue(I
);
2497 BasicBlock
*CaseDest
= SI
->getSuccessor(I
);
2500 PHINode
*PHI
= FindPHIForConditionForwarding(CaseValue
, CaseDest
,
2504 ForwardingNodes
[PHI
].push_back(PhiIndex
);
2507 bool Changed
= false;
2509 for (ForwardingNodesMap::iterator I
= ForwardingNodes
.begin(),
2510 E
= ForwardingNodes
.end(); I
!= E
; ++I
) {
2511 PHINode
*Phi
= I
->first
;
2512 SmallVector
<int,4> &Indexes
= I
->second
;
2514 if (Indexes
.size() < 2) continue;
2516 for (size_t I
= 0, E
= Indexes
.size(); I
!= E
; ++I
)
2517 Phi
->setIncomingValue(Indexes
[I
], SI
->getCondition());
2524 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst
*SI
, IRBuilder
<> &Builder
) {
2525 // If this switch is too complex to want to look at, ignore it.
2526 if (!isValueEqualityComparison(SI
))
2529 BasicBlock
*BB
= SI
->getParent();
2531 // If we only have one predecessor, and if it is a branch on this value,
2532 // see if that predecessor totally determines the outcome of this switch.
2533 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
2534 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
, Builder
))
2535 return SimplifyCFG(BB
) | true;
2537 Value
*Cond
= SI
->getCondition();
2538 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(Cond
))
2539 if (SimplifySwitchOnSelect(SI
, Select
))
2540 return SimplifyCFG(BB
) | true;
2542 // If the block only contains the switch, see if we can fold the block
2543 // away into any preds.
2544 BasicBlock::iterator BBI
= BB
->begin();
2545 // Ignore dbg intrinsics.
2546 while (isa
<DbgInfoIntrinsic
>(BBI
))
2549 if (FoldValueComparisonIntoPredecessors(SI
, Builder
))
2550 return SimplifyCFG(BB
) | true;
2552 // Try to transform the switch into an icmp and a branch.
2553 if (TurnSwitchRangeIntoICmp(SI
, Builder
))
2554 return SimplifyCFG(BB
) | true;
2556 // Remove unreachable cases.
2557 if (EliminateDeadSwitchCases(SI
))
2558 return SimplifyCFG(BB
) | true;
2560 if (ForwardSwitchConditionToPHI(SI
))
2561 return SimplifyCFG(BB
) | true;
2566 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst
*IBI
) {
2567 BasicBlock
*BB
= IBI
->getParent();
2568 bool Changed
= false;
2570 // Eliminate redundant destinations.
2571 SmallPtrSet
<Value
*, 8> Succs
;
2572 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
2573 BasicBlock
*Dest
= IBI
->getDestination(i
);
2574 if (!Dest
->hasAddressTaken() || !Succs
.insert(Dest
)) {
2575 Dest
->removePredecessor(BB
);
2576 IBI
->removeDestination(i
);
2582 if (IBI
->getNumDestinations() == 0) {
2583 // If the indirectbr has no successors, change it to unreachable.
2584 new UnreachableInst(IBI
->getContext(), IBI
);
2585 EraseTerminatorInstAndDCECond(IBI
);
2589 if (IBI
->getNumDestinations() == 1) {
2590 // If the indirectbr has one successor, change it to a direct branch.
2591 BranchInst::Create(IBI
->getDestination(0), IBI
);
2592 EraseTerminatorInstAndDCECond(IBI
);
2596 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(IBI
->getAddress())) {
2597 if (SimplifyIndirectBrOnSelect(IBI
, SI
))
2598 return SimplifyCFG(BB
) | true;
2603 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
){
2604 BasicBlock
*BB
= BI
->getParent();
2606 // If the Terminator is the only non-phi instruction, simplify the block.
2607 BasicBlock::iterator I
= BB
->getFirstNonPHIOrDbgOrLifetime();
2608 if (I
->isTerminator() && BB
!= &BB
->getParent()->getEntryBlock() &&
2609 TryToSimplifyUncondBranchFromEmptyBlock(BB
))
2612 // If the only instruction in the block is a seteq/setne comparison
2613 // against a constant, try to simplify the block.
2614 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(I
))
2615 if (ICI
->isEquality() && isa
<ConstantInt
>(ICI
->getOperand(1))) {
2616 for (++I
; isa
<DbgInfoIntrinsic
>(I
); ++I
)
2618 if (I
->isTerminator()
2619 && TryToSimplifyUncondBranchWithICmpInIt(ICI
, TD
, Builder
))
2627 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst
*BI
, IRBuilder
<> &Builder
) {
2628 BasicBlock
*BB
= BI
->getParent();
2630 // Conditional branch
2631 if (isValueEqualityComparison(BI
)) {
2632 // If we only have one predecessor, and if it is a branch on this value,
2633 // see if that predecessor totally determines the outcome of this
2635 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
2636 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
, Builder
))
2637 return SimplifyCFG(BB
) | true;
2639 // This block must be empty, except for the setcond inst, if it exists.
2640 // Ignore dbg intrinsics.
2641 BasicBlock::iterator I
= BB
->begin();
2642 // Ignore dbg intrinsics.
2643 while (isa
<DbgInfoIntrinsic
>(I
))
2646 if (FoldValueComparisonIntoPredecessors(BI
, Builder
))
2647 return SimplifyCFG(BB
) | true;
2648 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())){
2650 // Ignore dbg intrinsics.
2651 while (isa
<DbgInfoIntrinsic
>(I
))
2653 if (&*I
== BI
&& FoldValueComparisonIntoPredecessors(BI
, Builder
))
2654 return SimplifyCFG(BB
) | true;
2658 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2659 if (SimplifyBranchOnICmpChain(BI
, TD
, Builder
))
2662 // We have a conditional branch to two blocks that are only reachable
2663 // from BI. We know that the condbr dominates the two blocks, so see if
2664 // there is any identical code in the "then" and "else" blocks. If so, we
2665 // can hoist it up to the branching block.
2666 if (BI
->getSuccessor(0)->getSinglePredecessor() != 0) {
2667 if (BI
->getSuccessor(1)->getSinglePredecessor() != 0) {
2668 if (HoistThenElseCodeToIf(BI
))
2669 return SimplifyCFG(BB
) | true;
2671 // If Successor #1 has multiple preds, we may be able to conditionally
2672 // execute Successor #0 if it branches to successor #1.
2673 TerminatorInst
*Succ0TI
= BI
->getSuccessor(0)->getTerminator();
2674 if (Succ0TI
->getNumSuccessors() == 1 &&
2675 Succ0TI
->getSuccessor(0) == BI
->getSuccessor(1))
2676 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(0)))
2677 return SimplifyCFG(BB
) | true;
2679 } else if (BI
->getSuccessor(1)->getSinglePredecessor() != 0) {
2680 // If Successor #0 has multiple preds, we may be able to conditionally
2681 // execute Successor #1 if it branches to successor #0.
2682 TerminatorInst
*Succ1TI
= BI
->getSuccessor(1)->getTerminator();
2683 if (Succ1TI
->getNumSuccessors() == 1 &&
2684 Succ1TI
->getSuccessor(0) == BI
->getSuccessor(0))
2685 if (SpeculativelyExecuteBB(BI
, BI
->getSuccessor(1)))
2686 return SimplifyCFG(BB
) | true;
2689 // If this is a branch on a phi node in the current block, thread control
2690 // through this block if any PHI node entries are constants.
2691 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
2692 if (PN
->getParent() == BI
->getParent())
2693 if (FoldCondBranchOnPHI(BI
, TD
))
2694 return SimplifyCFG(BB
) | true;
2696 // If this basic block is ONLY a setcc and a branch, and if a predecessor
2697 // branches to us and one of our successors, fold the setcc into the
2698 // predecessor and use logical operations to pick the right destination.
2699 if (FoldBranchToCommonDest(BI
))
2700 return SimplifyCFG(BB
) | true;
2702 // Scan predecessor blocks for conditional branches.
2703 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2704 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2705 if (PBI
!= BI
&& PBI
->isConditional())
2706 if (SimplifyCondBranchToCondBranch(PBI
, BI
))
2707 return SimplifyCFG(BB
) | true;
2712 bool SimplifyCFGOpt::run(BasicBlock
*BB
) {
2713 bool Changed
= false;
2715 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
2716 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
2718 // Remove basic blocks that have no predecessors (except the entry block)...
2719 // or that just have themself as a predecessor. These are unreachable.
2720 if ((pred_begin(BB
) == pred_end(BB
) &&
2721 BB
!= &BB
->getParent()->getEntryBlock()) ||
2722 BB
->getSinglePredecessor() == BB
) {
2723 DEBUG(dbgs() << "Removing BB: \n" << *BB
);
2724 DeleteDeadBlock(BB
);
2728 // Check to see if we can constant propagate this terminator instruction
2730 Changed
|= ConstantFoldTerminator(BB
, true);
2732 // Check for and eliminate duplicate PHI nodes in this block.
2733 Changed
|= EliminateDuplicatePHINodes(BB
);
2735 // Merge basic blocks into their predecessor if there is only one distinct
2736 // pred, and if there is only one distinct successor of the predecessor, and
2737 // if there are no PHI nodes.
2739 if (MergeBlockIntoPredecessor(BB
))
2742 IRBuilder
<> Builder(BB
);
2744 // If there is a trivial two-entry PHI node in this basic block, and we can
2745 // eliminate it, do so now.
2746 if (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin()))
2747 if (PN
->getNumIncomingValues() == 2)
2748 Changed
|= FoldTwoEntryPHINode(PN
, TD
);
2750 Builder
.SetInsertPoint(BB
->getTerminator());
2751 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
2752 if (BI
->isUnconditional()) {
2753 if (SimplifyUncondBranch(BI
, Builder
)) return true;
2755 if (SimplifyCondBranch(BI
, Builder
)) return true;
2757 } else if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
2758 if (SimplifyReturn(RI
, Builder
)) return true;
2759 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
2760 if (SimplifySwitch(SI
, Builder
)) return true;
2761 } else if (UnreachableInst
*UI
=
2762 dyn_cast
<UnreachableInst
>(BB
->getTerminator())) {
2763 if (SimplifyUnreachable(UI
)) return true;
2764 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
2765 if (SimplifyUnwind(UI
, Builder
)) return true;
2766 } else if (IndirectBrInst
*IBI
=
2767 dyn_cast
<IndirectBrInst
>(BB
->getTerminator())) {
2768 if (SimplifyIndirectBr(IBI
)) return true;
2774 /// SimplifyCFG - This function is used to do simplification of a CFG. For
2775 /// example, it adjusts branches to branches to eliminate the extra hop, it
2776 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2777 /// of the CFG. It returns true if a modification was made.
2779 bool llvm::SimplifyCFG(BasicBlock
*BB
, const TargetData
*TD
) {
2780 return SimplifyCFGOpt(TD
).run(BB
);