Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blob49726d5533dd9d11b6b00db62a488bdcb8380fd6
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ConstantRange.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/IRBuilder.h"
36 #include "llvm/Support/NoFolder.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <set>
40 #include <map>
41 using namespace llvm;
43 static cl::opt<unsigned>
44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
45 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
47 static cl::opt<bool>
48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
49 cl::desc("Duplicate return instructions into unconditional branches"));
51 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
53 namespace {
54 class SimplifyCFGOpt {
55 const TargetData *const TD;
57 Value *isValueEqualityComparison(TerminatorInst *TI);
58 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
59 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
60 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
61 BasicBlock *Pred,
62 IRBuilder<> &Builder);
63 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
64 IRBuilder<> &Builder);
66 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
67 bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
68 bool SimplifyUnreachable(UnreachableInst *UI);
69 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
70 bool SimplifyIndirectBr(IndirectBrInst *IBI);
71 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
72 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
74 public:
75 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
76 bool run(BasicBlock *BB);
80 /// SafeToMergeTerminators - Return true if it is safe to merge these two
81 /// terminator instructions together.
82 ///
83 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
84 if (SI1 == SI2) return false; // Can't merge with self!
86 // It is not safe to merge these two switch instructions if they have a common
87 // successor, and if that successor has a PHI node, and if *that* PHI node has
88 // conflicting incoming values from the two switch blocks.
89 BasicBlock *SI1BB = SI1->getParent();
90 BasicBlock *SI2BB = SI2->getParent();
91 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
93 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
94 if (SI1Succs.count(*I))
95 for (BasicBlock::iterator BBI = (*I)->begin();
96 isa<PHINode>(BBI); ++BBI) {
97 PHINode *PN = cast<PHINode>(BBI);
98 if (PN->getIncomingValueForBlock(SI1BB) !=
99 PN->getIncomingValueForBlock(SI2BB))
100 return false;
103 return true;
106 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
107 /// now be entries in it from the 'NewPred' block. The values that will be
108 /// flowing into the PHI nodes will be the same as those coming in from
109 /// ExistPred, an existing predecessor of Succ.
110 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
111 BasicBlock *ExistPred) {
112 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
114 PHINode *PN;
115 for (BasicBlock::iterator I = Succ->begin();
116 (PN = dyn_cast<PHINode>(I)); ++I)
117 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
121 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
122 /// least one PHI node in it), check to see if the merge at this block is due
123 /// to an "if condition". If so, return the boolean condition that determines
124 /// which entry into BB will be taken. Also, return by references the block
125 /// that will be entered from if the condition is true, and the block that will
126 /// be entered if the condition is false.
128 /// This does no checking to see if the true/false blocks have large or unsavory
129 /// instructions in them.
130 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
131 BasicBlock *&IfFalse) {
132 PHINode *SomePHI = cast<PHINode>(BB->begin());
133 assert(SomePHI->getNumIncomingValues() == 2 &&
134 "Function can only handle blocks with 2 predecessors!");
135 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
136 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
138 // We can only handle branches. Other control flow will be lowered to
139 // branches if possible anyway.
140 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
141 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
142 if (Pred1Br == 0 || Pred2Br == 0)
143 return 0;
145 // Eliminate code duplication by ensuring that Pred1Br is conditional if
146 // either are.
147 if (Pred2Br->isConditional()) {
148 // If both branches are conditional, we don't have an "if statement". In
149 // reality, we could transform this case, but since the condition will be
150 // required anyway, we stand no chance of eliminating it, so the xform is
151 // probably not profitable.
152 if (Pred1Br->isConditional())
153 return 0;
155 std::swap(Pred1, Pred2);
156 std::swap(Pred1Br, Pred2Br);
159 if (Pred1Br->isConditional()) {
160 // The only thing we have to watch out for here is to make sure that Pred2
161 // doesn't have incoming edges from other blocks. If it does, the condition
162 // doesn't dominate BB.
163 if (Pred2->getSinglePredecessor() == 0)
164 return 0;
166 // If we found a conditional branch predecessor, make sure that it branches
167 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
168 if (Pred1Br->getSuccessor(0) == BB &&
169 Pred1Br->getSuccessor(1) == Pred2) {
170 IfTrue = Pred1;
171 IfFalse = Pred2;
172 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
173 Pred1Br->getSuccessor(1) == BB) {
174 IfTrue = Pred2;
175 IfFalse = Pred1;
176 } else {
177 // We know that one arm of the conditional goes to BB, so the other must
178 // go somewhere unrelated, and this must not be an "if statement".
179 return 0;
182 return Pred1Br->getCondition();
185 // Ok, if we got here, both predecessors end with an unconditional branch to
186 // BB. Don't panic! If both blocks only have a single (identical)
187 // predecessor, and THAT is a conditional branch, then we're all ok!
188 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
189 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
190 return 0;
192 // Otherwise, if this is a conditional branch, then we can use it!
193 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
194 if (BI == 0) return 0;
196 assert(BI->isConditional() && "Two successors but not conditional?");
197 if (BI->getSuccessor(0) == Pred1) {
198 IfTrue = Pred1;
199 IfFalse = Pred2;
200 } else {
201 IfTrue = Pred2;
202 IfFalse = Pred1;
204 return BI->getCondition();
207 /// DominatesMergePoint - If we have a merge point of an "if condition" as
208 /// accepted above, return true if the specified value dominates the block. We
209 /// don't handle the true generality of domination here, just a special case
210 /// which works well enough for us.
212 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
213 /// see if V (which must be an instruction) and its recursive operands
214 /// that do not dominate BB have a combined cost lower than CostRemaining and
215 /// are non-trapping. If both are true, the instruction is inserted into the
216 /// set and true is returned.
218 /// The cost for most non-trapping instructions is defined as 1 except for
219 /// Select whose cost is 2.
221 /// After this function returns, CostRemaining is decreased by the cost of
222 /// V plus its non-dominating operands. If that cost is greater than
223 /// CostRemaining, false is returned and CostRemaining is undefined.
224 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
225 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
226 unsigned &CostRemaining) {
227 Instruction *I = dyn_cast<Instruction>(V);
228 if (!I) {
229 // Non-instructions all dominate instructions, but not all constantexprs
230 // can be executed unconditionally.
231 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
232 if (C->canTrap())
233 return false;
234 return true;
236 BasicBlock *PBB = I->getParent();
238 // We don't want to allow weird loops that might have the "if condition" in
239 // the bottom of this block.
240 if (PBB == BB) return false;
242 // If this instruction is defined in a block that contains an unconditional
243 // branch to BB, then it must be in the 'conditional' part of the "if
244 // statement". If not, it definitely dominates the region.
245 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
246 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
247 return true;
249 // If we aren't allowing aggressive promotion anymore, then don't consider
250 // instructions in the 'if region'.
251 if (AggressiveInsts == 0) return false;
253 // If we have seen this instruction before, don't count it again.
254 if (AggressiveInsts->count(I)) return true;
256 // Okay, it looks like the instruction IS in the "condition". Check to
257 // see if it's a cheap instruction to unconditionally compute, and if it
258 // only uses stuff defined outside of the condition. If so, hoist it out.
259 if (!I->isSafeToSpeculativelyExecute())
260 return false;
262 unsigned Cost = 0;
264 switch (I->getOpcode()) {
265 default: return false; // Cannot hoist this out safely.
266 case Instruction::Load:
267 // We have to check to make sure there are no instructions before the
268 // load in its basic block, as we are going to hoist the load out to its
269 // predecessor.
270 if (PBB->getFirstNonPHIOrDbg() != I)
271 return false;
272 Cost = 1;
273 break;
274 case Instruction::GetElementPtr:
275 // GEPs are cheap if all indices are constant.
276 if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
277 return false;
278 Cost = 1;
279 break;
280 case Instruction::Add:
281 case Instruction::Sub:
282 case Instruction::And:
283 case Instruction::Or:
284 case Instruction::Xor:
285 case Instruction::Shl:
286 case Instruction::LShr:
287 case Instruction::AShr:
288 case Instruction::ICmp:
289 case Instruction::Trunc:
290 case Instruction::ZExt:
291 case Instruction::SExt:
292 Cost = 1;
293 break; // These are all cheap and non-trapping instructions.
295 case Instruction::Select:
296 Cost = 2;
297 break;
300 if (Cost > CostRemaining)
301 return false;
303 CostRemaining -= Cost;
305 // Okay, we can only really hoist these out if their operands do
306 // not take us over the cost threshold.
307 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
308 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
309 return false;
310 // Okay, it's safe to do this! Remember this instruction.
311 AggressiveInsts->insert(I);
312 return true;
315 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
316 /// and PointerNullValue. Return NULL if value is not a constant int.
317 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
318 // Normal constant int.
319 ConstantInt *CI = dyn_cast<ConstantInt>(V);
320 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
321 return CI;
323 // This is some kind of pointer constant. Turn it into a pointer-sized
324 // ConstantInt if possible.
325 const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
327 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
328 if (isa<ConstantPointerNull>(V))
329 return ConstantInt::get(PtrTy, 0);
331 // IntToPtr const int.
332 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
333 if (CE->getOpcode() == Instruction::IntToPtr)
334 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
335 // The constant is very likely to have the right type already.
336 if (CI->getType() == PtrTy)
337 return CI;
338 else
339 return cast<ConstantInt>
340 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
342 return 0;
345 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
346 /// collection of icmp eq/ne instructions that compare a value against a
347 /// constant, return the value being compared, and stick the constant into the
348 /// Values vector.
349 static Value *
350 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
351 const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
352 Instruction *I = dyn_cast<Instruction>(V);
353 if (I == 0) return 0;
355 // If this is an icmp against a constant, handle this as one of the cases.
356 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
357 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
358 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
359 UsedICmps++;
360 Vals.push_back(C);
361 return I->getOperand(0);
364 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
365 // the set.
366 ConstantRange Span =
367 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
369 // If this is an and/!= check then we want to optimize "x ugt 2" into
370 // x != 0 && x != 1.
371 if (!isEQ)
372 Span = Span.inverse();
374 // If there are a ton of values, we don't want to make a ginormous switch.
375 if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
376 // We don't handle wrapped sets yet.
377 Span.isWrappedSet())
378 return 0;
380 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
381 Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
382 UsedICmps++;
383 return I->getOperand(0);
385 return 0;
388 // Otherwise, we can only handle an | or &, depending on isEQ.
389 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
390 return 0;
392 unsigned NumValsBeforeLHS = Vals.size();
393 unsigned UsedICmpsBeforeLHS = UsedICmps;
394 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
395 isEQ, UsedICmps)) {
396 unsigned NumVals = Vals.size();
397 unsigned UsedICmpsBeforeRHS = UsedICmps;
398 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
399 isEQ, UsedICmps)) {
400 if (LHS == RHS)
401 return LHS;
402 Vals.resize(NumVals);
403 UsedICmps = UsedICmpsBeforeRHS;
406 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
407 // set it and return success.
408 if (Extra == 0 || Extra == I->getOperand(1)) {
409 Extra = I->getOperand(1);
410 return LHS;
413 Vals.resize(NumValsBeforeLHS);
414 UsedICmps = UsedICmpsBeforeLHS;
415 return 0;
418 // If the LHS can't be folded in, but Extra is available and RHS can, try to
419 // use LHS as Extra.
420 if (Extra == 0 || Extra == I->getOperand(0)) {
421 Value *OldExtra = Extra;
422 Extra = I->getOperand(0);
423 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
424 isEQ, UsedICmps))
425 return RHS;
426 assert(Vals.size() == NumValsBeforeLHS);
427 Extra = OldExtra;
430 return 0;
433 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
434 Instruction* Cond = 0;
435 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
436 Cond = dyn_cast<Instruction>(SI->getCondition());
437 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
438 if (BI->isConditional())
439 Cond = dyn_cast<Instruction>(BI->getCondition());
440 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
441 Cond = dyn_cast<Instruction>(IBI->getAddress());
444 TI->eraseFromParent();
445 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
448 /// isValueEqualityComparison - Return true if the specified terminator checks
449 /// to see if a value is equal to constant integer value.
450 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
451 Value *CV = 0;
452 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
453 // Do not permit merging of large switch instructions into their
454 // predecessors unless there is only one predecessor.
455 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
456 pred_end(SI->getParent())) <= 128)
457 CV = SI->getCondition();
458 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
459 if (BI->isConditional() && BI->getCondition()->hasOneUse())
460 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
461 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
462 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
463 GetConstantInt(ICI->getOperand(1), TD))
464 CV = ICI->getOperand(0);
466 // Unwrap any lossless ptrtoint cast.
467 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
468 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
469 CV = PTII->getOperand(0);
470 return CV;
473 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
474 /// decode all of the 'cases' that it represents and return the 'default' block.
475 BasicBlock *SimplifyCFGOpt::
476 GetValueEqualityComparisonCases(TerminatorInst *TI,
477 std::vector<std::pair<ConstantInt*,
478 BasicBlock*> > &Cases) {
479 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
480 Cases.reserve(SI->getNumCases());
481 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
482 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
483 return SI->getDefaultDest();
486 BranchInst *BI = cast<BranchInst>(TI);
487 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
488 Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
489 BI->getSuccessor(ICI->getPredicate() ==
490 ICmpInst::ICMP_NE)));
491 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
495 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
496 /// in the list that match the specified block.
497 static void EliminateBlockCases(BasicBlock *BB,
498 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
499 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
500 if (Cases[i].second == BB) {
501 Cases.erase(Cases.begin()+i);
502 --i; --e;
506 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
507 /// well.
508 static bool
509 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
510 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
511 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
513 // Make V1 be smaller than V2.
514 if (V1->size() > V2->size())
515 std::swap(V1, V2);
517 if (V1->size() == 0) return false;
518 if (V1->size() == 1) {
519 // Just scan V2.
520 ConstantInt *TheVal = (*V1)[0].first;
521 for (unsigned i = 0, e = V2->size(); i != e; ++i)
522 if (TheVal == (*V2)[i].first)
523 return true;
526 // Otherwise, just sort both lists and compare element by element.
527 array_pod_sort(V1->begin(), V1->end());
528 array_pod_sort(V2->begin(), V2->end());
529 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
530 while (i1 != e1 && i2 != e2) {
531 if ((*V1)[i1].first == (*V2)[i2].first)
532 return true;
533 if ((*V1)[i1].first < (*V2)[i2].first)
534 ++i1;
535 else
536 ++i2;
538 return false;
541 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
542 /// terminator instruction and its block is known to only have a single
543 /// predecessor block, check to see if that predecessor is also a value
544 /// comparison with the same value, and if that comparison determines the
545 /// outcome of this comparison. If so, simplify TI. This does a very limited
546 /// form of jump threading.
547 bool SimplifyCFGOpt::
548 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
549 BasicBlock *Pred,
550 IRBuilder<> &Builder) {
551 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
552 if (!PredVal) return false; // Not a value comparison in predecessor.
554 Value *ThisVal = isValueEqualityComparison(TI);
555 assert(ThisVal && "This isn't a value comparison!!");
556 if (ThisVal != PredVal) return false; // Different predicates.
558 // Find out information about when control will move from Pred to TI's block.
559 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
560 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
561 PredCases);
562 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
564 // Find information about how control leaves this block.
565 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
566 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
567 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
569 // If TI's block is the default block from Pred's comparison, potentially
570 // simplify TI based on this knowledge.
571 if (PredDef == TI->getParent()) {
572 // If we are here, we know that the value is none of those cases listed in
573 // PredCases. If there are any cases in ThisCases that are in PredCases, we
574 // can simplify TI.
575 if (!ValuesOverlap(PredCases, ThisCases))
576 return false;
578 if (isa<BranchInst>(TI)) {
579 // Okay, one of the successors of this condbr is dead. Convert it to a
580 // uncond br.
581 assert(ThisCases.size() == 1 && "Branch can only have one case!");
582 // Insert the new branch.
583 Instruction *NI = Builder.CreateBr(ThisDef);
584 (void) NI;
586 // Remove PHI node entries for the dead edge.
587 ThisCases[0].second->removePredecessor(TI->getParent());
589 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
590 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
592 EraseTerminatorInstAndDCECond(TI);
593 return true;
596 SwitchInst *SI = cast<SwitchInst>(TI);
597 // Okay, TI has cases that are statically dead, prune them away.
598 SmallPtrSet<Constant*, 16> DeadCases;
599 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
600 DeadCases.insert(PredCases[i].first);
602 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
603 << "Through successor TI: " << *TI);
605 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
606 if (DeadCases.count(SI->getCaseValue(i))) {
607 SI->getSuccessor(i)->removePredecessor(TI->getParent());
608 SI->removeCase(i);
611 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
612 return true;
615 // Otherwise, TI's block must correspond to some matched value. Find out
616 // which value (or set of values) this is.
617 ConstantInt *TIV = 0;
618 BasicBlock *TIBB = TI->getParent();
619 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
620 if (PredCases[i].second == TIBB) {
621 if (TIV != 0)
622 return false; // Cannot handle multiple values coming to this block.
623 TIV = PredCases[i].first;
625 assert(TIV && "No edge from pred to succ?");
627 // Okay, we found the one constant that our value can be if we get into TI's
628 // BB. Find out which successor will unconditionally be branched to.
629 BasicBlock *TheRealDest = 0;
630 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
631 if (ThisCases[i].first == TIV) {
632 TheRealDest = ThisCases[i].second;
633 break;
636 // If not handled by any explicit cases, it is handled by the default case.
637 if (TheRealDest == 0) TheRealDest = ThisDef;
639 // Remove PHI node entries for dead edges.
640 BasicBlock *CheckEdge = TheRealDest;
641 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
642 if (*SI != CheckEdge)
643 (*SI)->removePredecessor(TIBB);
644 else
645 CheckEdge = 0;
647 // Insert the new branch.
648 Instruction *NI = Builder.CreateBr(TheRealDest);
649 (void) NI;
651 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
652 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
654 EraseTerminatorInstAndDCECond(TI);
655 return true;
658 namespace {
659 /// ConstantIntOrdering - This class implements a stable ordering of constant
660 /// integers that does not depend on their address. This is important for
661 /// applications that sort ConstantInt's to ensure uniqueness.
662 struct ConstantIntOrdering {
663 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
664 return LHS->getValue().ult(RHS->getValue());
669 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
670 const ConstantInt *LHS = *(const ConstantInt**)P1;
671 const ConstantInt *RHS = *(const ConstantInt**)P2;
672 if (LHS->getValue().ult(RHS->getValue()))
673 return 1;
674 if (LHS->getValue() == RHS->getValue())
675 return 0;
676 return -1;
679 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
680 /// equality comparison instruction (either a switch or a branch on "X == c").
681 /// See if any of the predecessors of the terminator block are value comparisons
682 /// on the same value. If so, and if safe to do so, fold them together.
683 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
684 IRBuilder<> &Builder) {
685 BasicBlock *BB = TI->getParent();
686 Value *CV = isValueEqualityComparison(TI); // CondVal
687 assert(CV && "Not a comparison?");
688 bool Changed = false;
690 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
691 while (!Preds.empty()) {
692 BasicBlock *Pred = Preds.pop_back_val();
694 // See if the predecessor is a comparison with the same value.
695 TerminatorInst *PTI = Pred->getTerminator();
696 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
698 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
699 // Figure out which 'cases' to copy from SI to PSI.
700 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
701 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
703 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
704 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
706 // Based on whether the default edge from PTI goes to BB or not, fill in
707 // PredCases and PredDefault with the new switch cases we would like to
708 // build.
709 SmallVector<BasicBlock*, 8> NewSuccessors;
711 if (PredDefault == BB) {
712 // If this is the default destination from PTI, only the edges in TI
713 // that don't occur in PTI, or that branch to BB will be activated.
714 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
715 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
716 if (PredCases[i].second != BB)
717 PTIHandled.insert(PredCases[i].first);
718 else {
719 // The default destination is BB, we don't need explicit targets.
720 std::swap(PredCases[i], PredCases.back());
721 PredCases.pop_back();
722 --i; --e;
725 // Reconstruct the new switch statement we will be building.
726 if (PredDefault != BBDefault) {
727 PredDefault->removePredecessor(Pred);
728 PredDefault = BBDefault;
729 NewSuccessors.push_back(BBDefault);
731 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
732 if (!PTIHandled.count(BBCases[i].first) &&
733 BBCases[i].second != BBDefault) {
734 PredCases.push_back(BBCases[i]);
735 NewSuccessors.push_back(BBCases[i].second);
738 } else {
739 // If this is not the default destination from PSI, only the edges
740 // in SI that occur in PSI with a destination of BB will be
741 // activated.
742 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
743 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
744 if (PredCases[i].second == BB) {
745 PTIHandled.insert(PredCases[i].first);
746 std::swap(PredCases[i], PredCases.back());
747 PredCases.pop_back();
748 --i; --e;
751 // Okay, now we know which constants were sent to BB from the
752 // predecessor. Figure out where they will all go now.
753 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
754 if (PTIHandled.count(BBCases[i].first)) {
755 // If this is one we are capable of getting...
756 PredCases.push_back(BBCases[i]);
757 NewSuccessors.push_back(BBCases[i].second);
758 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
761 // If there are any constants vectored to BB that TI doesn't handle,
762 // they must go to the default destination of TI.
763 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
764 PTIHandled.begin(),
765 E = PTIHandled.end(); I != E; ++I) {
766 PredCases.push_back(std::make_pair(*I, BBDefault));
767 NewSuccessors.push_back(BBDefault);
771 // Okay, at this point, we know which new successor Pred will get. Make
772 // sure we update the number of entries in the PHI nodes for these
773 // successors.
774 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
775 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
777 Builder.SetInsertPoint(PTI);
778 // Convert pointer to int before we switch.
779 if (CV->getType()->isPointerTy()) {
780 assert(TD && "Cannot switch on pointer without TargetData");
781 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
782 "magicptr");
785 // Now that the successors are updated, create the new Switch instruction.
786 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
787 PredCases.size());
788 NewSI->setDebugLoc(PTI->getDebugLoc());
789 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
790 NewSI->addCase(PredCases[i].first, PredCases[i].second);
792 EraseTerminatorInstAndDCECond(PTI);
794 // Okay, last check. If BB is still a successor of PSI, then we must
795 // have an infinite loop case. If so, add an infinitely looping block
796 // to handle the case to preserve the behavior of the code.
797 BasicBlock *InfLoopBlock = 0;
798 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
799 if (NewSI->getSuccessor(i) == BB) {
800 if (InfLoopBlock == 0) {
801 // Insert it at the end of the function, because it's either code,
802 // or it won't matter if it's hot. :)
803 InfLoopBlock = BasicBlock::Create(BB->getContext(),
804 "infloop", BB->getParent());
805 BranchInst::Create(InfLoopBlock, InfLoopBlock);
807 NewSI->setSuccessor(i, InfLoopBlock);
810 Changed = true;
813 return Changed;
816 // isSafeToHoistInvoke - If we would need to insert a select that uses the
817 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
818 // would need to do this), we can't hoist the invoke, as there is nowhere
819 // to put the select in this case.
820 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
821 Instruction *I1, Instruction *I2) {
822 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
823 PHINode *PN;
824 for (BasicBlock::iterator BBI = SI->begin();
825 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
826 Value *BB1V = PN->getIncomingValueForBlock(BB1);
827 Value *BB2V = PN->getIncomingValueForBlock(BB2);
828 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
829 return false;
833 return true;
836 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
837 /// BB2, hoist any common code in the two blocks up into the branch block. The
838 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
839 static bool HoistThenElseCodeToIf(BranchInst *BI) {
840 // This does very trivial matching, with limited scanning, to find identical
841 // instructions in the two blocks. In particular, we don't want to get into
842 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
843 // such, we currently just scan for obviously identical instructions in an
844 // identical order.
845 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
846 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
848 BasicBlock::iterator BB1_Itr = BB1->begin();
849 BasicBlock::iterator BB2_Itr = BB2->begin();
851 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
852 // Skip debug info if it is not identical.
853 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
854 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
855 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
856 while (isa<DbgInfoIntrinsic>(I1))
857 I1 = BB1_Itr++;
858 while (isa<DbgInfoIntrinsic>(I2))
859 I2 = BB2_Itr++;
861 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
862 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
863 return false;
865 // If we get here, we can hoist at least one instruction.
866 BasicBlock *BIParent = BI->getParent();
868 do {
869 // If we are hoisting the terminator instruction, don't move one (making a
870 // broken BB), instead clone it, and remove BI.
871 if (isa<TerminatorInst>(I1))
872 goto HoistTerminator;
874 // For a normal instruction, we just move one to right before the branch,
875 // then replace all uses of the other with the first. Finally, we remove
876 // the now redundant second instruction.
877 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
878 if (!I2->use_empty())
879 I2->replaceAllUsesWith(I1);
880 I1->intersectOptionalDataWith(I2);
881 I2->eraseFromParent();
883 I1 = BB1_Itr++;
884 I2 = BB2_Itr++;
885 // Skip debug info if it is not identical.
886 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
887 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
888 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
889 while (isa<DbgInfoIntrinsic>(I1))
890 I1 = BB1_Itr++;
891 while (isa<DbgInfoIntrinsic>(I2))
892 I2 = BB2_Itr++;
894 } while (I1->isIdenticalToWhenDefined(I2));
896 return true;
898 HoistTerminator:
899 // It may not be possible to hoist an invoke.
900 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
901 return true;
903 // Okay, it is safe to hoist the terminator.
904 Instruction *NT = I1->clone();
905 BIParent->getInstList().insert(BI, NT);
906 if (!NT->getType()->isVoidTy()) {
907 I1->replaceAllUsesWith(NT);
908 I2->replaceAllUsesWith(NT);
909 NT->takeName(I1);
912 IRBuilder<true, NoFolder> Builder(NT);
913 // Hoisting one of the terminators from our successor is a great thing.
914 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
915 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
916 // nodes, so we insert select instruction to compute the final result.
917 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
918 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
919 PHINode *PN;
920 for (BasicBlock::iterator BBI = SI->begin();
921 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
922 Value *BB1V = PN->getIncomingValueForBlock(BB1);
923 Value *BB2V = PN->getIncomingValueForBlock(BB2);
924 if (BB1V == BB2V) continue;
926 // These values do not agree. Insert a select instruction before NT
927 // that determines the right value.
928 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
929 if (SI == 0)
930 SI = cast<SelectInst>
931 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
932 BB1V->getName()+"."+BB2V->getName()));
934 // Make the PHI node use the select for all incoming values for BB1/BB2
935 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
936 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
937 PN->setIncomingValue(i, SI);
941 // Update any PHI nodes in our new successors.
942 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
943 AddPredecessorToBlock(*SI, BIParent, BB1);
945 EraseTerminatorInstAndDCECond(BI);
946 return true;
949 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
950 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
951 /// (for now, restricted to a single instruction that's side effect free) from
952 /// the BB1 into the branch block to speculatively execute it.
953 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
954 // Only speculatively execution a single instruction (not counting the
955 // terminator) for now.
956 Instruction *HInst = NULL;
957 Instruction *Term = BB1->getTerminator();
958 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
959 BBI != BBE; ++BBI) {
960 Instruction *I = BBI;
961 // Skip debug info.
962 if (isa<DbgInfoIntrinsic>(I)) continue;
963 if (I == Term) break;
965 if (HInst)
966 return false;
967 HInst = I;
969 if (!HInst)
970 return false;
972 // Be conservative for now. FP select instruction can often be expensive.
973 Value *BrCond = BI->getCondition();
974 if (isa<FCmpInst>(BrCond))
975 return false;
977 // If BB1 is actually on the false edge of the conditional branch, remember
978 // to swap the select operands later.
979 bool Invert = false;
980 if (BB1 != BI->getSuccessor(0)) {
981 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
982 Invert = true;
985 // Turn
986 // BB:
987 // %t1 = icmp
988 // br i1 %t1, label %BB1, label %BB2
989 // BB1:
990 // %t3 = add %t2, c
991 // br label BB2
992 // BB2:
993 // =>
994 // BB:
995 // %t1 = icmp
996 // %t4 = add %t2, c
997 // %t3 = select i1 %t1, %t2, %t3
998 switch (HInst->getOpcode()) {
999 default: return false; // Not safe / profitable to hoist.
1000 case Instruction::Add:
1001 case Instruction::Sub:
1002 // Not worth doing for vector ops.
1003 if (HInst->getType()->isVectorTy())
1004 return false;
1005 break;
1006 case Instruction::And:
1007 case Instruction::Or:
1008 case Instruction::Xor:
1009 case Instruction::Shl:
1010 case Instruction::LShr:
1011 case Instruction::AShr:
1012 // Don't mess with vector operations.
1013 if (HInst->getType()->isVectorTy())
1014 return false;
1015 break; // These are all cheap and non-trapping instructions.
1018 // If the instruction is obviously dead, don't try to predicate it.
1019 if (HInst->use_empty()) {
1020 HInst->eraseFromParent();
1021 return true;
1024 // Can we speculatively execute the instruction? And what is the value
1025 // if the condition is false? Consider the phi uses, if the incoming value
1026 // from the "if" block are all the same V, then V is the value of the
1027 // select if the condition is false.
1028 BasicBlock *BIParent = BI->getParent();
1029 SmallVector<PHINode*, 4> PHIUses;
1030 Value *FalseV = NULL;
1032 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1033 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1034 UI != E; ++UI) {
1035 // Ignore any user that is not a PHI node in BB2. These can only occur in
1036 // unreachable blocks, because they would not be dominated by the instr.
1037 PHINode *PN = dyn_cast<PHINode>(*UI);
1038 if (!PN || PN->getParent() != BB2)
1039 return false;
1040 PHIUses.push_back(PN);
1042 Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1043 if (!FalseV)
1044 FalseV = PHIV;
1045 else if (FalseV != PHIV)
1046 return false; // Inconsistent value when condition is false.
1049 assert(FalseV && "Must have at least one user, and it must be a PHI");
1051 // Do not hoist the instruction if any of its operands are defined but not
1052 // used in this BB. The transformation will prevent the operand from
1053 // being sunk into the use block.
1054 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1055 i != e; ++i) {
1056 Instruction *OpI = dyn_cast<Instruction>(*i);
1057 if (OpI && OpI->getParent() == BIParent &&
1058 !OpI->isUsedInBasicBlock(BIParent))
1059 return false;
1062 // If we get here, we can hoist the instruction. Try to place it
1063 // before the icmp instruction preceding the conditional branch.
1064 BasicBlock::iterator InsertPos = BI;
1065 if (InsertPos != BIParent->begin())
1066 --InsertPos;
1067 // Skip debug info between condition and branch.
1068 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1069 --InsertPos;
1070 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1071 SmallPtrSet<Instruction *, 4> BB1Insns;
1072 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1073 BB1I != BB1E; ++BB1I)
1074 BB1Insns.insert(BB1I);
1075 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1076 UI != UE; ++UI) {
1077 Instruction *Use = cast<Instruction>(*UI);
1078 if (!BB1Insns.count(Use)) continue;
1080 // If BrCond uses the instruction that place it just before
1081 // branch instruction.
1082 InsertPos = BI;
1083 break;
1085 } else
1086 InsertPos = BI;
1087 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1089 // Create a select whose true value is the speculatively executed value and
1090 // false value is the previously determined FalseV.
1091 IRBuilder<true, NoFolder> Builder(BI);
1092 SelectInst *SI;
1093 if (Invert)
1094 SI = cast<SelectInst>
1095 (Builder.CreateSelect(BrCond, FalseV, HInst,
1096 FalseV->getName() + "." + HInst->getName()));
1097 else
1098 SI = cast<SelectInst>
1099 (Builder.CreateSelect(BrCond, HInst, FalseV,
1100 HInst->getName() + "." + FalseV->getName()));
1102 // Make the PHI node use the select for all incoming values for "then" and
1103 // "if" blocks.
1104 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1105 PHINode *PN = PHIUses[i];
1106 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1107 if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1108 PN->setIncomingValue(j, SI);
1111 ++NumSpeculations;
1112 return true;
1115 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1116 /// across this block.
1117 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1118 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1119 unsigned Size = 0;
1121 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1122 if (isa<DbgInfoIntrinsic>(BBI))
1123 continue;
1124 if (Size > 10) return false; // Don't clone large BB's.
1125 ++Size;
1127 // We can only support instructions that do not define values that are
1128 // live outside of the current basic block.
1129 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1130 UI != E; ++UI) {
1131 Instruction *U = cast<Instruction>(*UI);
1132 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1135 // Looks ok, continue checking.
1138 return true;
1141 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1142 /// that is defined in the same block as the branch and if any PHI entries are
1143 /// constants, thread edges corresponding to that entry to be branches to their
1144 /// ultimate destination.
1145 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1146 BasicBlock *BB = BI->getParent();
1147 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1148 // NOTE: we currently cannot transform this case if the PHI node is used
1149 // outside of the block.
1150 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1151 return false;
1153 // Degenerate case of a single entry PHI.
1154 if (PN->getNumIncomingValues() == 1) {
1155 FoldSingleEntryPHINodes(PN->getParent());
1156 return true;
1159 // Now we know that this block has multiple preds and two succs.
1160 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1162 // Okay, this is a simple enough basic block. See if any phi values are
1163 // constants.
1164 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1165 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1166 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1168 // Okay, we now know that all edges from PredBB should be revectored to
1169 // branch to RealDest.
1170 BasicBlock *PredBB = PN->getIncomingBlock(i);
1171 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1173 if (RealDest == BB) continue; // Skip self loops.
1174 // Skip if the predecessor's terminator is an indirect branch.
1175 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1177 // The dest block might have PHI nodes, other predecessors and other
1178 // difficult cases. Instead of being smart about this, just insert a new
1179 // block that jumps to the destination block, effectively splitting
1180 // the edge we are about to create.
1181 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1182 RealDest->getName()+".critedge",
1183 RealDest->getParent(), RealDest);
1184 BranchInst::Create(RealDest, EdgeBB);
1186 // Update PHI nodes.
1187 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1189 // BB may have instructions that are being threaded over. Clone these
1190 // instructions into EdgeBB. We know that there will be no uses of the
1191 // cloned instructions outside of EdgeBB.
1192 BasicBlock::iterator InsertPt = EdgeBB->begin();
1193 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1194 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1195 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1196 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1197 continue;
1199 // Clone the instruction.
1200 Instruction *N = BBI->clone();
1201 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1203 // Update operands due to translation.
1204 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1205 i != e; ++i) {
1206 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1207 if (PI != TranslateMap.end())
1208 *i = PI->second;
1211 // Check for trivial simplification.
1212 if (Value *V = SimplifyInstruction(N, TD)) {
1213 TranslateMap[BBI] = V;
1214 delete N; // Instruction folded away, don't need actual inst
1215 } else {
1216 // Insert the new instruction into its new home.
1217 EdgeBB->getInstList().insert(InsertPt, N);
1218 if (!BBI->use_empty())
1219 TranslateMap[BBI] = N;
1223 // Loop over all of the edges from PredBB to BB, changing them to branch
1224 // to EdgeBB instead.
1225 TerminatorInst *PredBBTI = PredBB->getTerminator();
1226 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1227 if (PredBBTI->getSuccessor(i) == BB) {
1228 BB->removePredecessor(PredBB);
1229 PredBBTI->setSuccessor(i, EdgeBB);
1232 // Recurse, simplifying any other constants.
1233 return FoldCondBranchOnPHI(BI, TD) | true;
1236 return false;
1239 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1240 /// PHI node, see if we can eliminate it.
1241 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1242 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1243 // statement", which has a very simple dominance structure. Basically, we
1244 // are trying to find the condition that is being branched on, which
1245 // subsequently causes this merge to happen. We really want control
1246 // dependence information for this check, but simplifycfg can't keep it up
1247 // to date, and this catches most of the cases we care about anyway.
1248 BasicBlock *BB = PN->getParent();
1249 BasicBlock *IfTrue, *IfFalse;
1250 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1251 if (!IfCond ||
1252 // Don't bother if the branch will be constant folded trivially.
1253 isa<ConstantInt>(IfCond))
1254 return false;
1256 // Okay, we found that we can merge this two-entry phi node into a select.
1257 // Doing so would require us to fold *all* two entry phi nodes in this block.
1258 // At some point this becomes non-profitable (particularly if the target
1259 // doesn't support cmov's). Only do this transformation if there are two or
1260 // fewer PHI nodes in this block.
1261 unsigned NumPhis = 0;
1262 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1263 if (NumPhis > 2)
1264 return false;
1266 // Loop over the PHI's seeing if we can promote them all to select
1267 // instructions. While we are at it, keep track of the instructions
1268 // that need to be moved to the dominating block.
1269 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1270 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1271 MaxCostVal1 = PHINodeFoldingThreshold;
1273 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1274 PHINode *PN = cast<PHINode>(II++);
1275 if (Value *V = SimplifyInstruction(PN, TD)) {
1276 PN->replaceAllUsesWith(V);
1277 PN->eraseFromParent();
1278 continue;
1281 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1282 MaxCostVal0) ||
1283 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1284 MaxCostVal1))
1285 return false;
1288 // If we folded the the first phi, PN dangles at this point. Refresh it. If
1289 // we ran out of PHIs then we simplified them all.
1290 PN = dyn_cast<PHINode>(BB->begin());
1291 if (PN == 0) return true;
1293 // Don't fold i1 branches on PHIs which contain binary operators. These can
1294 // often be turned into switches and other things.
1295 if (PN->getType()->isIntegerTy(1) &&
1296 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1297 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1298 isa<BinaryOperator>(IfCond)))
1299 return false;
1301 // If we all PHI nodes are promotable, check to make sure that all
1302 // instructions in the predecessor blocks can be promoted as well. If
1303 // not, we won't be able to get rid of the control flow, so it's not
1304 // worth promoting to select instructions.
1305 BasicBlock *DomBlock = 0;
1306 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1307 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1308 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1309 IfBlock1 = 0;
1310 } else {
1311 DomBlock = *pred_begin(IfBlock1);
1312 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1313 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1314 // This is not an aggressive instruction that we can promote.
1315 // Because of this, we won't be able to get rid of the control
1316 // flow, so the xform is not worth it.
1317 return false;
1321 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1322 IfBlock2 = 0;
1323 } else {
1324 DomBlock = *pred_begin(IfBlock2);
1325 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1326 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1327 // This is not an aggressive instruction that we can promote.
1328 // Because of this, we won't be able to get rid of the control
1329 // flow, so the xform is not worth it.
1330 return false;
1334 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1335 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1337 // If we can still promote the PHI nodes after this gauntlet of tests,
1338 // do all of the PHI's now.
1339 Instruction *InsertPt = DomBlock->getTerminator();
1340 IRBuilder<true, NoFolder> Builder(InsertPt);
1342 // Move all 'aggressive' instructions, which are defined in the
1343 // conditional parts of the if's up to the dominating block.
1344 if (IfBlock1)
1345 DomBlock->getInstList().splice(InsertPt,
1346 IfBlock1->getInstList(), IfBlock1->begin(),
1347 IfBlock1->getTerminator());
1348 if (IfBlock2)
1349 DomBlock->getInstList().splice(InsertPt,
1350 IfBlock2->getInstList(), IfBlock2->begin(),
1351 IfBlock2->getTerminator());
1353 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1354 // Change the PHI node into a select instruction.
1355 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1356 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1358 SelectInst *NV =
1359 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1360 PN->replaceAllUsesWith(NV);
1361 NV->takeName(PN);
1362 PN->eraseFromParent();
1365 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1366 // has been flattened. Change DomBlock to jump directly to our new block to
1367 // avoid other simplifycfg's kicking in on the diamond.
1368 TerminatorInst *OldTI = DomBlock->getTerminator();
1369 Builder.SetInsertPoint(OldTI);
1370 Builder.CreateBr(BB);
1371 OldTI->eraseFromParent();
1372 return true;
1375 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1376 /// to two returning blocks, try to merge them together into one return,
1377 /// introducing a select if the return values disagree.
1378 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1379 IRBuilder<> &Builder) {
1380 assert(BI->isConditional() && "Must be a conditional branch");
1381 BasicBlock *TrueSucc = BI->getSuccessor(0);
1382 BasicBlock *FalseSucc = BI->getSuccessor(1);
1383 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1384 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1386 // Check to ensure both blocks are empty (just a return) or optionally empty
1387 // with PHI nodes. If there are other instructions, merging would cause extra
1388 // computation on one path or the other.
1389 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1390 return false;
1391 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1392 return false;
1394 Builder.SetInsertPoint(BI);
1395 // Okay, we found a branch that is going to two return nodes. If
1396 // there is no return value for this function, just change the
1397 // branch into a return.
1398 if (FalseRet->getNumOperands() == 0) {
1399 TrueSucc->removePredecessor(BI->getParent());
1400 FalseSucc->removePredecessor(BI->getParent());
1401 Builder.CreateRetVoid();
1402 EraseTerminatorInstAndDCECond(BI);
1403 return true;
1406 // Otherwise, figure out what the true and false return values are
1407 // so we can insert a new select instruction.
1408 Value *TrueValue = TrueRet->getReturnValue();
1409 Value *FalseValue = FalseRet->getReturnValue();
1411 // Unwrap any PHI nodes in the return blocks.
1412 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1413 if (TVPN->getParent() == TrueSucc)
1414 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1415 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1416 if (FVPN->getParent() == FalseSucc)
1417 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1419 // In order for this transformation to be safe, we must be able to
1420 // unconditionally execute both operands to the return. This is
1421 // normally the case, but we could have a potentially-trapping
1422 // constant expression that prevents this transformation from being
1423 // safe.
1424 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1425 if (TCV->canTrap())
1426 return false;
1427 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1428 if (FCV->canTrap())
1429 return false;
1431 // Okay, we collected all the mapped values and checked them for sanity, and
1432 // defined to really do this transformation. First, update the CFG.
1433 TrueSucc->removePredecessor(BI->getParent());
1434 FalseSucc->removePredecessor(BI->getParent());
1436 // Insert select instructions where needed.
1437 Value *BrCond = BI->getCondition();
1438 if (TrueValue) {
1439 // Insert a select if the results differ.
1440 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1441 } else if (isa<UndefValue>(TrueValue)) {
1442 TrueValue = FalseValue;
1443 } else {
1444 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1445 FalseValue, "retval");
1449 Value *RI = !TrueValue ?
1450 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1452 (void) RI;
1454 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1455 << "\n " << *BI << "NewRet = " << *RI
1456 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1458 EraseTerminatorInstAndDCECond(BI);
1460 return true;
1463 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1464 /// predecessor branches to us and one of our successors, fold the block into
1465 /// the predecessor and use logical operations to pick the right destination.
1466 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1467 BasicBlock *BB = BI->getParent();
1469 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1470 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1471 Cond->getParent() != BB || !Cond->hasOneUse())
1472 return false;
1474 // Only allow this if the condition is a simple instruction that can be
1475 // executed unconditionally. It must be in the same block as the branch, and
1476 // must be at the front of the block.
1477 BasicBlock::iterator FrontIt = BB->front();
1479 // Ignore dbg intrinsics.
1480 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1482 // Allow a single instruction to be hoisted in addition to the compare
1483 // that feeds the branch. We later ensure that any values that _it_ uses
1484 // were also live in the predecessor, so that we don't unnecessarily create
1485 // register pressure or inhibit out-of-order execution.
1486 Instruction *BonusInst = 0;
1487 if (&*FrontIt != Cond &&
1488 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1489 FrontIt->isSafeToSpeculativelyExecute()) {
1490 BonusInst = &*FrontIt;
1491 ++FrontIt;
1493 // Ignore dbg intrinsics.
1494 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1497 // Only a single bonus inst is allowed.
1498 if (&*FrontIt != Cond)
1499 return false;
1501 // Make sure the instruction after the condition is the cond branch.
1502 BasicBlock::iterator CondIt = Cond; ++CondIt;
1504 // Ingore dbg intrinsics.
1505 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1507 if (&*CondIt != BI)
1508 return false;
1510 // Cond is known to be a compare or binary operator. Check to make sure that
1511 // neither operand is a potentially-trapping constant expression.
1512 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1513 if (CE->canTrap())
1514 return false;
1515 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1516 if (CE->canTrap())
1517 return false;
1519 // Finally, don't infinitely unroll conditional loops.
1520 BasicBlock *TrueDest = BI->getSuccessor(0);
1521 BasicBlock *FalseDest = BI->getSuccessor(1);
1522 if (TrueDest == BB || FalseDest == BB)
1523 return false;
1525 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1526 BasicBlock *PredBlock = *PI;
1527 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1529 // Check that we have two conditional branches. If there is a PHI node in
1530 // the common successor, verify that the same value flows in from both
1531 // blocks.
1532 if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1533 continue;
1535 // Determine if the two branches share a common destination.
1536 Instruction::BinaryOps Opc;
1537 bool InvertPredCond = false;
1539 if (PBI->getSuccessor(0) == TrueDest)
1540 Opc = Instruction::Or;
1541 else if (PBI->getSuccessor(1) == FalseDest)
1542 Opc = Instruction::And;
1543 else if (PBI->getSuccessor(0) == FalseDest)
1544 Opc = Instruction::And, InvertPredCond = true;
1545 else if (PBI->getSuccessor(1) == TrueDest)
1546 Opc = Instruction::Or, InvertPredCond = true;
1547 else
1548 continue;
1550 // Ensure that any values used in the bonus instruction are also used
1551 // by the terminator of the predecessor. This means that those values
1552 // must already have been resolved, so we won't be inhibiting the
1553 // out-of-order core by speculating them earlier.
1554 if (BonusInst) {
1555 // Collect the values used by the bonus inst
1556 SmallPtrSet<Value*, 4> UsedValues;
1557 for (Instruction::op_iterator OI = BonusInst->op_begin(),
1558 OE = BonusInst->op_end(); OI != OE; ++OI) {
1559 Value* V = *OI;
1560 if (!isa<Constant>(V))
1561 UsedValues.insert(V);
1564 SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1565 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1567 // Walk up to four levels back up the use-def chain of the predecessor's
1568 // terminator to see if all those values were used. The choice of four
1569 // levels is arbitrary, to provide a compile-time-cost bound.
1570 while (!Worklist.empty()) {
1571 std::pair<Value*, unsigned> Pair = Worklist.back();
1572 Worklist.pop_back();
1574 if (Pair.second >= 4) continue;
1575 UsedValues.erase(Pair.first);
1576 if (UsedValues.empty()) break;
1578 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1579 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1580 OI != OE; ++OI)
1581 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1585 if (!UsedValues.empty()) return false;
1588 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1589 IRBuilder<> Builder(PBI);
1591 // If we need to invert the condition in the pred block to match, do so now.
1592 if (InvertPredCond) {
1593 Value *NewCond = PBI->getCondition();
1595 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1596 CmpInst *CI = cast<CmpInst>(NewCond);
1597 CI->setPredicate(CI->getInversePredicate());
1598 } else {
1599 NewCond = Builder.CreateNot(NewCond,
1600 PBI->getCondition()->getName()+".not");
1603 PBI->setCondition(NewCond);
1604 BasicBlock *OldTrue = PBI->getSuccessor(0);
1605 BasicBlock *OldFalse = PBI->getSuccessor(1);
1606 PBI->setSuccessor(0, OldFalse);
1607 PBI->setSuccessor(1, OldTrue);
1610 // If we have a bonus inst, clone it into the predecessor block.
1611 Instruction *NewBonus = 0;
1612 if (BonusInst) {
1613 NewBonus = BonusInst->clone();
1614 PredBlock->getInstList().insert(PBI, NewBonus);
1615 NewBonus->takeName(BonusInst);
1616 BonusInst->setName(BonusInst->getName()+".old");
1619 // Clone Cond into the predecessor basic block, and or/and the
1620 // two conditions together.
1621 Instruction *New = Cond->clone();
1622 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1623 PredBlock->getInstList().insert(PBI, New);
1624 New->takeName(Cond);
1625 Cond->setName(New->getName()+".old");
1627 Instruction *NewCond =
1628 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1629 New, "or.cond"));
1630 PBI->setCondition(NewCond);
1631 if (PBI->getSuccessor(0) == BB) {
1632 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1633 PBI->setSuccessor(0, TrueDest);
1635 if (PBI->getSuccessor(1) == BB) {
1636 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1637 PBI->setSuccessor(1, FalseDest);
1640 // Copy any debug value intrinsics into the end of PredBlock.
1641 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1642 if (isa<DbgInfoIntrinsic>(*I))
1643 I->clone()->insertBefore(PBI);
1645 return true;
1647 return false;
1650 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1651 /// predecessor of another block, this function tries to simplify it. We know
1652 /// that PBI and BI are both conditional branches, and BI is in one of the
1653 /// successor blocks of PBI - PBI branches to BI.
1654 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1655 assert(PBI->isConditional() && BI->isConditional());
1656 BasicBlock *BB = BI->getParent();
1658 // If this block ends with a branch instruction, and if there is a
1659 // predecessor that ends on a branch of the same condition, make
1660 // this conditional branch redundant.
1661 if (PBI->getCondition() == BI->getCondition() &&
1662 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1663 // Okay, the outcome of this conditional branch is statically
1664 // knowable. If this block had a single pred, handle specially.
1665 if (BB->getSinglePredecessor()) {
1666 // Turn this into a branch on constant.
1667 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1668 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1669 CondIsTrue));
1670 return true; // Nuke the branch on constant.
1673 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1674 // in the constant and simplify the block result. Subsequent passes of
1675 // simplifycfg will thread the block.
1676 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1677 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1678 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1679 std::distance(PB, PE),
1680 BI->getCondition()->getName() + ".pr",
1681 BB->begin());
1682 // Okay, we're going to insert the PHI node. Since PBI is not the only
1683 // predecessor, compute the PHI'd conditional value for all of the preds.
1684 // Any predecessor where the condition is not computable we keep symbolic.
1685 for (pred_iterator PI = PB; PI != PE; ++PI) {
1686 BasicBlock *P = *PI;
1687 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1688 PBI != BI && PBI->isConditional() &&
1689 PBI->getCondition() == BI->getCondition() &&
1690 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1691 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1692 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1693 CondIsTrue), P);
1694 } else {
1695 NewPN->addIncoming(BI->getCondition(), P);
1699 BI->setCondition(NewPN);
1700 return true;
1704 // If this is a conditional branch in an empty block, and if any
1705 // predecessors is a conditional branch to one of our destinations,
1706 // fold the conditions into logical ops and one cond br.
1707 BasicBlock::iterator BBI = BB->begin();
1708 // Ignore dbg intrinsics.
1709 while (isa<DbgInfoIntrinsic>(BBI))
1710 ++BBI;
1711 if (&*BBI != BI)
1712 return false;
1715 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1716 if (CE->canTrap())
1717 return false;
1719 int PBIOp, BIOp;
1720 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1721 PBIOp = BIOp = 0;
1722 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1723 PBIOp = 0, BIOp = 1;
1724 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1725 PBIOp = 1, BIOp = 0;
1726 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1727 PBIOp = BIOp = 1;
1728 else
1729 return false;
1731 // Check to make sure that the other destination of this branch
1732 // isn't BB itself. If so, this is an infinite loop that will
1733 // keep getting unwound.
1734 if (PBI->getSuccessor(PBIOp) == BB)
1735 return false;
1737 // Do not perform this transformation if it would require
1738 // insertion of a large number of select instructions. For targets
1739 // without predication/cmovs, this is a big pessimization.
1740 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1742 unsigned NumPhis = 0;
1743 for (BasicBlock::iterator II = CommonDest->begin();
1744 isa<PHINode>(II); ++II, ++NumPhis)
1745 if (NumPhis > 2) // Disable this xform.
1746 return false;
1748 // Finally, if everything is ok, fold the branches to logical ops.
1749 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1751 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1752 << "AND: " << *BI->getParent());
1755 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1756 // branch in it, where one edge (OtherDest) goes back to itself but the other
1757 // exits. We don't *know* that the program avoids the infinite loop
1758 // (even though that seems likely). If we do this xform naively, we'll end up
1759 // recursively unpeeling the loop. Since we know that (after the xform is
1760 // done) that the block *is* infinite if reached, we just make it an obviously
1761 // infinite loop with no cond branch.
1762 if (OtherDest == BB) {
1763 // Insert it at the end of the function, because it's either code,
1764 // or it won't matter if it's hot. :)
1765 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1766 "infloop", BB->getParent());
1767 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1768 OtherDest = InfLoopBlock;
1771 DEBUG(dbgs() << *PBI->getParent()->getParent());
1773 // BI may have other predecessors. Because of this, we leave
1774 // it alone, but modify PBI.
1776 // Make sure we get to CommonDest on True&True directions.
1777 Value *PBICond = PBI->getCondition();
1778 IRBuilder<true, NoFolder> Builder(PBI);
1779 if (PBIOp)
1780 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
1782 Value *BICond = BI->getCondition();
1783 if (BIOp)
1784 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
1786 // Merge the conditions.
1787 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
1789 // Modify PBI to branch on the new condition to the new dests.
1790 PBI->setCondition(Cond);
1791 PBI->setSuccessor(0, CommonDest);
1792 PBI->setSuccessor(1, OtherDest);
1794 // OtherDest may have phi nodes. If so, add an entry from PBI's
1795 // block that are identical to the entries for BI's block.
1796 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1798 // We know that the CommonDest already had an edge from PBI to
1799 // it. If it has PHIs though, the PHIs may have different
1800 // entries for BB and PBI's BB. If so, insert a select to make
1801 // them agree.
1802 PHINode *PN;
1803 for (BasicBlock::iterator II = CommonDest->begin();
1804 (PN = dyn_cast<PHINode>(II)); ++II) {
1805 Value *BIV = PN->getIncomingValueForBlock(BB);
1806 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1807 Value *PBIV = PN->getIncomingValue(PBBIdx);
1808 if (BIV != PBIV) {
1809 // Insert a select in PBI to pick the right value.
1810 Value *NV = cast<SelectInst>
1811 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
1812 PN->setIncomingValue(PBBIdx, NV);
1816 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1817 DEBUG(dbgs() << *PBI->getParent()->getParent());
1819 // This basic block is probably dead. We know it has at least
1820 // one fewer predecessor.
1821 return true;
1824 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1825 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1826 // Takes care of updating the successors and removing the old terminator.
1827 // Also makes sure not to introduce new successors by assuming that edges to
1828 // non-successor TrueBBs and FalseBBs aren't reachable.
1829 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1830 BasicBlock *TrueBB, BasicBlock *FalseBB){
1831 // Remove any superfluous successor edges from the CFG.
1832 // First, figure out which successors to preserve.
1833 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1834 // successor.
1835 BasicBlock *KeepEdge1 = TrueBB;
1836 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1838 // Then remove the rest.
1839 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1840 BasicBlock *Succ = OldTerm->getSuccessor(I);
1841 // Make sure only to keep exactly one copy of each edge.
1842 if (Succ == KeepEdge1)
1843 KeepEdge1 = 0;
1844 else if (Succ == KeepEdge2)
1845 KeepEdge2 = 0;
1846 else
1847 Succ->removePredecessor(OldTerm->getParent());
1850 IRBuilder<> Builder(OldTerm);
1851 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
1853 // Insert an appropriate new terminator.
1854 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1855 if (TrueBB == FalseBB)
1856 // We were only looking for one successor, and it was present.
1857 // Create an unconditional branch to it.
1858 Builder.CreateBr(TrueBB);
1859 else
1860 // We found both of the successors we were looking for.
1861 // Create a conditional branch sharing the condition of the select.
1862 Builder.CreateCondBr(Cond, TrueBB, FalseBB);
1863 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1864 // Neither of the selected blocks were successors, so this
1865 // terminator must be unreachable.
1866 new UnreachableInst(OldTerm->getContext(), OldTerm);
1867 } else {
1868 // One of the selected values was a successor, but the other wasn't.
1869 // Insert an unconditional branch to the one that was found;
1870 // the edge to the one that wasn't must be unreachable.
1871 if (KeepEdge1 == 0)
1872 // Only TrueBB was found.
1873 Builder.CreateBr(TrueBB);
1874 else
1875 // Only FalseBB was found.
1876 Builder.CreateBr(FalseBB);
1879 EraseTerminatorInstAndDCECond(OldTerm);
1880 return true;
1883 // SimplifySwitchOnSelect - Replaces
1884 // (switch (select cond, X, Y)) on constant X, Y
1885 // with a branch - conditional if X and Y lead to distinct BBs,
1886 // unconditional otherwise.
1887 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1888 // Check for constant integer values in the select.
1889 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1890 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1891 if (!TrueVal || !FalseVal)
1892 return false;
1894 // Find the relevant condition and destinations.
1895 Value *Condition = Select->getCondition();
1896 BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1897 BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1899 // Perform the actual simplification.
1900 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1903 // SimplifyIndirectBrOnSelect - Replaces
1904 // (indirectbr (select cond, blockaddress(@fn, BlockA),
1905 // blockaddress(@fn, BlockB)))
1906 // with
1907 // (br cond, BlockA, BlockB).
1908 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1909 // Check that both operands of the select are block addresses.
1910 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1911 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1912 if (!TBA || !FBA)
1913 return false;
1915 // Extract the actual blocks.
1916 BasicBlock *TrueBB = TBA->getBasicBlock();
1917 BasicBlock *FalseBB = FBA->getBasicBlock();
1919 // Perform the actual simplification.
1920 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1923 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1924 /// instruction (a seteq/setne with a constant) as the only instruction in a
1925 /// block that ends with an uncond branch. We are looking for a very specific
1926 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
1927 /// this case, we merge the first two "or's of icmp" into a switch, but then the
1928 /// default value goes to an uncond block with a seteq in it, we get something
1929 /// like:
1931 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
1932 /// DEFAULT:
1933 /// %tmp = icmp eq i8 %A, 92
1934 /// br label %end
1935 /// end:
1936 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1937 ///
1938 /// We prefer to split the edge to 'end' so that there is a true/false entry to
1939 /// the PHI, merging the third icmp into the switch.
1940 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1941 const TargetData *TD,
1942 IRBuilder<> &Builder) {
1943 BasicBlock *BB = ICI->getParent();
1945 // If the block has any PHIs in it or the icmp has multiple uses, it is too
1946 // complex.
1947 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1949 Value *V = ICI->getOperand(0);
1950 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1952 // The pattern we're looking for is where our only predecessor is a switch on
1953 // 'V' and this block is the default case for the switch. In this case we can
1954 // fold the compared value into the switch to simplify things.
1955 BasicBlock *Pred = BB->getSinglePredecessor();
1956 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1958 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1959 if (SI->getCondition() != V)
1960 return false;
1962 // If BB is reachable on a non-default case, then we simply know the value of
1963 // V in this block. Substitute it and constant fold the icmp instruction
1964 // away.
1965 if (SI->getDefaultDest() != BB) {
1966 ConstantInt *VVal = SI->findCaseDest(BB);
1967 assert(VVal && "Should have a unique destination value");
1968 ICI->setOperand(0, VVal);
1970 if (Value *V = SimplifyInstruction(ICI, TD)) {
1971 ICI->replaceAllUsesWith(V);
1972 ICI->eraseFromParent();
1974 // BB is now empty, so it is likely to simplify away.
1975 return SimplifyCFG(BB) | true;
1978 // Ok, the block is reachable from the default dest. If the constant we're
1979 // comparing exists in one of the other edges, then we can constant fold ICI
1980 // and zap it.
1981 if (SI->findCaseValue(Cst) != 0) {
1982 Value *V;
1983 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1984 V = ConstantInt::getFalse(BB->getContext());
1985 else
1986 V = ConstantInt::getTrue(BB->getContext());
1988 ICI->replaceAllUsesWith(V);
1989 ICI->eraseFromParent();
1990 // BB is now empty, so it is likely to simplify away.
1991 return SimplifyCFG(BB) | true;
1994 // The use of the icmp has to be in the 'end' block, by the only PHI node in
1995 // the block.
1996 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1997 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1998 if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
1999 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2000 return false;
2002 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2003 // true in the PHI.
2004 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2005 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2007 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2008 std::swap(DefaultCst, NewCst);
2010 // Replace ICI (which is used by the PHI for the default value) with true or
2011 // false depending on if it is EQ or NE.
2012 ICI->replaceAllUsesWith(DefaultCst);
2013 ICI->eraseFromParent();
2015 // Okay, the switch goes to this block on a default value. Add an edge from
2016 // the switch to the merge point on the compared value.
2017 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2018 BB->getParent(), BB);
2019 SI->addCase(Cst, NewBB);
2021 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2022 Builder.SetInsertPoint(NewBB);
2023 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2024 Builder.CreateBr(SuccBlock);
2025 PHIUse->addIncoming(NewCst, NewBB);
2026 return true;
2029 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2030 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2031 /// fold it into a switch instruction if so.
2032 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2033 IRBuilder<> &Builder) {
2034 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2035 if (Cond == 0) return false;
2038 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2039 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2040 // 'setne's and'ed together, collect them.
2041 Value *CompVal = 0;
2042 std::vector<ConstantInt*> Values;
2043 bool TrueWhenEqual = true;
2044 Value *ExtraCase = 0;
2045 unsigned UsedICmps = 0;
2047 if (Cond->getOpcode() == Instruction::Or) {
2048 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2049 UsedICmps);
2050 } else if (Cond->getOpcode() == Instruction::And) {
2051 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2052 UsedICmps);
2053 TrueWhenEqual = false;
2056 // If we didn't have a multiply compared value, fail.
2057 if (CompVal == 0) return false;
2059 // Avoid turning single icmps into a switch.
2060 if (UsedICmps <= 1)
2061 return false;
2063 // There might be duplicate constants in the list, which the switch
2064 // instruction can't handle, remove them now.
2065 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2066 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2068 // If Extra was used, we require at least two switch values to do the
2069 // transformation. A switch with one value is just an cond branch.
2070 if (ExtraCase && Values.size() < 2) return false;
2072 // Figure out which block is which destination.
2073 BasicBlock *DefaultBB = BI->getSuccessor(1);
2074 BasicBlock *EdgeBB = BI->getSuccessor(0);
2075 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2077 BasicBlock *BB = BI->getParent();
2079 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2080 << " cases into SWITCH. BB is:\n" << *BB);
2082 // If there are any extra values that couldn't be folded into the switch
2083 // then we evaluate them with an explicit branch first. Split the block
2084 // right before the condbr to handle it.
2085 if (ExtraCase) {
2086 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2087 // Remove the uncond branch added to the old block.
2088 TerminatorInst *OldTI = BB->getTerminator();
2089 Builder.SetInsertPoint(OldTI);
2091 if (TrueWhenEqual)
2092 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2093 else
2094 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2096 OldTI->eraseFromParent();
2098 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2099 // for the edge we just added.
2100 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2102 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2103 << "\nEXTRABB = " << *BB);
2104 BB = NewBB;
2107 Builder.SetInsertPoint(BI);
2108 // Convert pointer to int before we switch.
2109 if (CompVal->getType()->isPointerTy()) {
2110 assert(TD && "Cannot switch on pointer without TargetData");
2111 CompVal = Builder.CreatePtrToInt(CompVal,
2112 TD->getIntPtrType(CompVal->getContext()),
2113 "magicptr");
2116 // Create the new switch instruction now.
2117 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2119 // Add all of the 'cases' to the switch instruction.
2120 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2121 New->addCase(Values[i], EdgeBB);
2123 // We added edges from PI to the EdgeBB. As such, if there were any
2124 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2125 // the number of edges added.
2126 for (BasicBlock::iterator BBI = EdgeBB->begin();
2127 isa<PHINode>(BBI); ++BBI) {
2128 PHINode *PN = cast<PHINode>(BBI);
2129 Value *InVal = PN->getIncomingValueForBlock(BB);
2130 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2131 PN->addIncoming(InVal, BB);
2134 // Erase the old branch instruction.
2135 EraseTerminatorInstAndDCECond(BI);
2137 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2138 return true;
2141 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2142 BasicBlock *BB = RI->getParent();
2143 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2145 // Find predecessors that end with branches.
2146 SmallVector<BasicBlock*, 8> UncondBranchPreds;
2147 SmallVector<BranchInst*, 8> CondBranchPreds;
2148 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2149 BasicBlock *P = *PI;
2150 TerminatorInst *PTI = P->getTerminator();
2151 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2152 if (BI->isUnconditional())
2153 UncondBranchPreds.push_back(P);
2154 else
2155 CondBranchPreds.push_back(BI);
2159 // If we found some, do the transformation!
2160 if (!UncondBranchPreds.empty() && DupRet) {
2161 while (!UncondBranchPreds.empty()) {
2162 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2163 DEBUG(dbgs() << "FOLDING: " << *BB
2164 << "INTO UNCOND BRANCH PRED: " << *Pred);
2165 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2168 // If we eliminated all predecessors of the block, delete the block now.
2169 if (pred_begin(BB) == pred_end(BB))
2170 // We know there are no successors, so just nuke the block.
2171 BB->eraseFromParent();
2173 return true;
2176 // Check out all of the conditional branches going to this return
2177 // instruction. If any of them just select between returns, change the
2178 // branch itself into a select/return pair.
2179 while (!CondBranchPreds.empty()) {
2180 BranchInst *BI = CondBranchPreds.pop_back_val();
2182 // Check to see if the non-BB successor is also a return block.
2183 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2184 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2185 SimplifyCondBranchToTwoReturns(BI, Builder))
2186 return true;
2188 return false;
2191 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
2192 // Check to see if the first instruction in this block is just an unwind.
2193 // If so, replace any invoke instructions which use this as an exception
2194 // destination with call instructions.
2195 BasicBlock *BB = UI->getParent();
2196 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2198 bool Changed = false;
2199 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2200 while (!Preds.empty()) {
2201 BasicBlock *Pred = Preds.back();
2202 InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2203 if (II && II->getUnwindDest() == BB) {
2204 // Insert a new branch instruction before the invoke, because this
2205 // is now a fall through.
2206 Builder.SetInsertPoint(II);
2207 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2208 Pred->getInstList().remove(II); // Take out of symbol table
2210 // Insert the call now.
2211 SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2212 Builder.SetInsertPoint(BI);
2213 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2214 Args.begin(), Args.end(),
2215 II->getName());
2216 CI->setCallingConv(II->getCallingConv());
2217 CI->setAttributes(II->getAttributes());
2218 // If the invoke produced a value, the Call now does instead.
2219 II->replaceAllUsesWith(CI);
2220 delete II;
2221 Changed = true;
2224 Preds.pop_back();
2227 // If this block is now dead (and isn't the entry block), remove it.
2228 if (pred_begin(BB) == pred_end(BB) &&
2229 BB != &BB->getParent()->getEntryBlock()) {
2230 // We know there are no successors, so just nuke the block.
2231 BB->eraseFromParent();
2232 return true;
2235 return Changed;
2238 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2239 BasicBlock *BB = UI->getParent();
2241 bool Changed = false;
2243 // If there are any instructions immediately before the unreachable that can
2244 // be removed, do so.
2245 while (UI != BB->begin()) {
2246 BasicBlock::iterator BBI = UI;
2247 --BBI;
2248 // Do not delete instructions that can have side effects, like calls
2249 // (which may never return) and volatile loads and stores.
2250 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2252 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2253 if (SI->isVolatile())
2254 break;
2256 if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2257 if (LI->isVolatile())
2258 break;
2260 // Delete this instruction (any uses are guaranteed to be dead)
2261 if (!BBI->use_empty())
2262 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2263 BBI->eraseFromParent();
2264 Changed = true;
2267 // If the unreachable instruction is the first in the block, take a gander
2268 // at all of the predecessors of this instruction, and simplify them.
2269 if (&BB->front() != UI) return Changed;
2271 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2272 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2273 TerminatorInst *TI = Preds[i]->getTerminator();
2274 IRBuilder<> Builder(TI);
2275 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2276 if (BI->isUnconditional()) {
2277 if (BI->getSuccessor(0) == BB) {
2278 new UnreachableInst(TI->getContext(), TI);
2279 TI->eraseFromParent();
2280 Changed = true;
2282 } else {
2283 if (BI->getSuccessor(0) == BB) {
2284 Builder.CreateBr(BI->getSuccessor(1));
2285 EraseTerminatorInstAndDCECond(BI);
2286 } else if (BI->getSuccessor(1) == BB) {
2287 Builder.CreateBr(BI->getSuccessor(0));
2288 EraseTerminatorInstAndDCECond(BI);
2289 Changed = true;
2292 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2293 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2294 if (SI->getSuccessor(i) == BB) {
2295 BB->removePredecessor(SI->getParent());
2296 SI->removeCase(i);
2297 --i; --e;
2298 Changed = true;
2300 // If the default value is unreachable, figure out the most popular
2301 // destination and make it the default.
2302 if (SI->getSuccessor(0) == BB) {
2303 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2304 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2305 std::pair<unsigned, unsigned>& entry =
2306 Popularity[SI->getSuccessor(i)];
2307 if (entry.first == 0) {
2308 entry.first = 1;
2309 entry.second = i;
2310 } else {
2311 entry.first++;
2315 // Find the most popular block.
2316 unsigned MaxPop = 0;
2317 unsigned MaxIndex = 0;
2318 BasicBlock *MaxBlock = 0;
2319 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2320 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2321 if (I->second.first > MaxPop ||
2322 (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2323 MaxPop = I->second.first;
2324 MaxIndex = I->second.second;
2325 MaxBlock = I->first;
2328 if (MaxBlock) {
2329 // Make this the new default, allowing us to delete any explicit
2330 // edges to it.
2331 SI->setSuccessor(0, MaxBlock);
2332 Changed = true;
2334 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2335 // it.
2336 if (isa<PHINode>(MaxBlock->begin()))
2337 for (unsigned i = 0; i != MaxPop-1; ++i)
2338 MaxBlock->removePredecessor(SI->getParent());
2340 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2341 if (SI->getSuccessor(i) == MaxBlock) {
2342 SI->removeCase(i);
2343 --i; --e;
2347 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2348 if (II->getUnwindDest() == BB) {
2349 // Convert the invoke to a call instruction. This would be a good
2350 // place to note that the call does not throw though.
2351 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2352 II->removeFromParent(); // Take out of symbol table
2354 // Insert the call now...
2355 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2356 Builder.SetInsertPoint(BI);
2357 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2358 Args.begin(), Args.end(),
2359 II->getName());
2360 CI->setCallingConv(II->getCallingConv());
2361 CI->setAttributes(II->getAttributes());
2362 // If the invoke produced a value, the call does now instead.
2363 II->replaceAllUsesWith(CI);
2364 delete II;
2365 Changed = true;
2370 // If this block is now dead, remove it.
2371 if (pred_begin(BB) == pred_end(BB) &&
2372 BB != &BB->getParent()->getEntryBlock()) {
2373 // We know there are no successors, so just nuke the block.
2374 BB->eraseFromParent();
2375 return true;
2378 return Changed;
2381 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2382 /// integer range comparison into a sub, an icmp and a branch.
2383 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2384 assert(SI->getNumCases() > 2 && "Degenerate switch?");
2386 // Make sure all cases point to the same destination and gather the values.
2387 SmallVector<ConstantInt *, 16> Cases;
2388 Cases.push_back(SI->getCaseValue(1));
2389 for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2390 if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2391 return false;
2392 Cases.push_back(SI->getCaseValue(I));
2394 assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2396 // Sort the case values, then check if they form a range we can transform.
2397 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2398 for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2399 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2400 return false;
2403 Constant *Offset = ConstantExpr::getNeg(Cases.back());
2404 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2406 Value *Sub = SI->getCondition();
2407 if (!Offset->isNullValue())
2408 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2409 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2410 Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
2412 // Prune obsolete incoming values off the successor's PHI nodes.
2413 for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2414 isa<PHINode>(BBI); ++BBI) {
2415 for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2416 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2418 SI->eraseFromParent();
2420 return true;
2423 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2424 /// and use it to remove dead cases.
2425 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2426 Value *Cond = SI->getCondition();
2427 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2428 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2429 ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
2431 // Gather dead cases.
2432 SmallVector<ConstantInt*, 8> DeadCases;
2433 for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
2434 if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
2435 (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
2436 DeadCases.push_back(SI->getCaseValue(I));
2437 DEBUG(dbgs() << "SimplifyCFG: switch case '"
2438 << SI->getCaseValue(I)->getValue() << "' is dead.\n");
2442 // Remove dead cases from the switch.
2443 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2444 unsigned Case = SI->findCaseValue(DeadCases[I]);
2445 // Prune unused values from PHI nodes.
2446 SI->getSuccessor(Case)->removePredecessor(SI->getParent());
2447 SI->removeCase(Case);
2450 return !DeadCases.empty();
2453 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
2454 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2455 /// by an unconditional branch), look at the phi node for BB in the successor
2456 /// block and see if the incoming value is equal to CaseValue. If so, return
2457 /// the phi node, and set PhiIndex to BB's index in the phi node.
2458 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2459 BasicBlock *BB,
2460 int *PhiIndex) {
2461 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2462 return NULL; // BB must be empty to be a candidate for simplification.
2463 if (!BB->getSinglePredecessor())
2464 return NULL; // BB must be dominated by the switch.
2466 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2467 if (!Branch || !Branch->isUnconditional())
2468 return NULL; // Terminator must be unconditional branch.
2470 BasicBlock *Succ = Branch->getSuccessor(0);
2472 BasicBlock::iterator I = Succ->begin();
2473 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2474 int Idx = PHI->getBasicBlockIndex(BB);
2475 assert(Idx >= 0 && "PHI has no entry for predecessor?");
2477 Value *InValue = PHI->getIncomingValue(Idx);
2478 if (InValue != CaseValue) continue;
2480 *PhiIndex = Idx;
2481 return PHI;
2484 return NULL;
2487 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2488 /// instruction to a phi node dominated by the switch, if that would mean that
2489 /// some of the destination blocks of the switch can be folded away.
2490 /// Returns true if a change is made.
2491 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2492 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2493 ForwardingNodesMap ForwardingNodes;
2495 for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case.
2496 ConstantInt *CaseValue = SI->getCaseValue(I);
2497 BasicBlock *CaseDest = SI->getSuccessor(I);
2499 int PhiIndex;
2500 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2501 &PhiIndex);
2502 if (!PHI) continue;
2504 ForwardingNodes[PHI].push_back(PhiIndex);
2507 bool Changed = false;
2509 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2510 E = ForwardingNodes.end(); I != E; ++I) {
2511 PHINode *Phi = I->first;
2512 SmallVector<int,4> &Indexes = I->second;
2514 if (Indexes.size() < 2) continue;
2516 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2517 Phi->setIncomingValue(Indexes[I], SI->getCondition());
2518 Changed = true;
2521 return Changed;
2524 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2525 // If this switch is too complex to want to look at, ignore it.
2526 if (!isValueEqualityComparison(SI))
2527 return false;
2529 BasicBlock *BB = SI->getParent();
2531 // If we only have one predecessor, and if it is a branch on this value,
2532 // see if that predecessor totally determines the outcome of this switch.
2533 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2534 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2535 return SimplifyCFG(BB) | true;
2537 Value *Cond = SI->getCondition();
2538 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2539 if (SimplifySwitchOnSelect(SI, Select))
2540 return SimplifyCFG(BB) | true;
2542 // If the block only contains the switch, see if we can fold the block
2543 // away into any preds.
2544 BasicBlock::iterator BBI = BB->begin();
2545 // Ignore dbg intrinsics.
2546 while (isa<DbgInfoIntrinsic>(BBI))
2547 ++BBI;
2548 if (SI == &*BBI)
2549 if (FoldValueComparisonIntoPredecessors(SI, Builder))
2550 return SimplifyCFG(BB) | true;
2552 // Try to transform the switch into an icmp and a branch.
2553 if (TurnSwitchRangeIntoICmp(SI, Builder))
2554 return SimplifyCFG(BB) | true;
2556 // Remove unreachable cases.
2557 if (EliminateDeadSwitchCases(SI))
2558 return SimplifyCFG(BB) | true;
2560 if (ForwardSwitchConditionToPHI(SI))
2561 return SimplifyCFG(BB) | true;
2563 return false;
2566 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2567 BasicBlock *BB = IBI->getParent();
2568 bool Changed = false;
2570 // Eliminate redundant destinations.
2571 SmallPtrSet<Value *, 8> Succs;
2572 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2573 BasicBlock *Dest = IBI->getDestination(i);
2574 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2575 Dest->removePredecessor(BB);
2576 IBI->removeDestination(i);
2577 --i; --e;
2578 Changed = true;
2582 if (IBI->getNumDestinations() == 0) {
2583 // If the indirectbr has no successors, change it to unreachable.
2584 new UnreachableInst(IBI->getContext(), IBI);
2585 EraseTerminatorInstAndDCECond(IBI);
2586 return true;
2589 if (IBI->getNumDestinations() == 1) {
2590 // If the indirectbr has one successor, change it to a direct branch.
2591 BranchInst::Create(IBI->getDestination(0), IBI);
2592 EraseTerminatorInstAndDCECond(IBI);
2593 return true;
2596 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2597 if (SimplifyIndirectBrOnSelect(IBI, SI))
2598 return SimplifyCFG(BB) | true;
2600 return Changed;
2603 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2604 BasicBlock *BB = BI->getParent();
2606 // If the Terminator is the only non-phi instruction, simplify the block.
2607 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
2608 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2609 TryToSimplifyUncondBranchFromEmptyBlock(BB))
2610 return true;
2612 // If the only instruction in the block is a seteq/setne comparison
2613 // against a constant, try to simplify the block.
2614 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2615 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2616 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2618 if (I->isTerminator()
2619 && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2620 return true;
2623 return false;
2627 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2628 BasicBlock *BB = BI->getParent();
2630 // Conditional branch
2631 if (isValueEqualityComparison(BI)) {
2632 // If we only have one predecessor, and if it is a branch on this value,
2633 // see if that predecessor totally determines the outcome of this
2634 // switch.
2635 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2636 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2637 return SimplifyCFG(BB) | true;
2639 // This block must be empty, except for the setcond inst, if it exists.
2640 // Ignore dbg intrinsics.
2641 BasicBlock::iterator I = BB->begin();
2642 // Ignore dbg intrinsics.
2643 while (isa<DbgInfoIntrinsic>(I))
2644 ++I;
2645 if (&*I == BI) {
2646 if (FoldValueComparisonIntoPredecessors(BI, Builder))
2647 return SimplifyCFG(BB) | true;
2648 } else if (&*I == cast<Instruction>(BI->getCondition())){
2649 ++I;
2650 // Ignore dbg intrinsics.
2651 while (isa<DbgInfoIntrinsic>(I))
2652 ++I;
2653 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2654 return SimplifyCFG(BB) | true;
2658 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2659 if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2660 return true;
2662 // We have a conditional branch to two blocks that are only reachable
2663 // from BI. We know that the condbr dominates the two blocks, so see if
2664 // there is any identical code in the "then" and "else" blocks. If so, we
2665 // can hoist it up to the branching block.
2666 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2667 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2668 if (HoistThenElseCodeToIf(BI))
2669 return SimplifyCFG(BB) | true;
2670 } else {
2671 // If Successor #1 has multiple preds, we may be able to conditionally
2672 // execute Successor #0 if it branches to successor #1.
2673 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2674 if (Succ0TI->getNumSuccessors() == 1 &&
2675 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2676 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2677 return SimplifyCFG(BB) | true;
2679 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2680 // If Successor #0 has multiple preds, we may be able to conditionally
2681 // execute Successor #1 if it branches to successor #0.
2682 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2683 if (Succ1TI->getNumSuccessors() == 1 &&
2684 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2685 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2686 return SimplifyCFG(BB) | true;
2689 // If this is a branch on a phi node in the current block, thread control
2690 // through this block if any PHI node entries are constants.
2691 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2692 if (PN->getParent() == BI->getParent())
2693 if (FoldCondBranchOnPHI(BI, TD))
2694 return SimplifyCFG(BB) | true;
2696 // If this basic block is ONLY a setcc and a branch, and if a predecessor
2697 // branches to us and one of our successors, fold the setcc into the
2698 // predecessor and use logical operations to pick the right destination.
2699 if (FoldBranchToCommonDest(BI))
2700 return SimplifyCFG(BB) | true;
2702 // Scan predecessor blocks for conditional branches.
2703 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2704 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2705 if (PBI != BI && PBI->isConditional())
2706 if (SimplifyCondBranchToCondBranch(PBI, BI))
2707 return SimplifyCFG(BB) | true;
2709 return false;
2712 bool SimplifyCFGOpt::run(BasicBlock *BB) {
2713 bool Changed = false;
2715 assert(BB && BB->getParent() && "Block not embedded in function!");
2716 assert(BB->getTerminator() && "Degenerate basic block encountered!");
2718 // Remove basic blocks that have no predecessors (except the entry block)...
2719 // or that just have themself as a predecessor. These are unreachable.
2720 if ((pred_begin(BB) == pred_end(BB) &&
2721 BB != &BB->getParent()->getEntryBlock()) ||
2722 BB->getSinglePredecessor() == BB) {
2723 DEBUG(dbgs() << "Removing BB: \n" << *BB);
2724 DeleteDeadBlock(BB);
2725 return true;
2728 // Check to see if we can constant propagate this terminator instruction
2729 // away...
2730 Changed |= ConstantFoldTerminator(BB, true);
2732 // Check for and eliminate duplicate PHI nodes in this block.
2733 Changed |= EliminateDuplicatePHINodes(BB);
2735 // Merge basic blocks into their predecessor if there is only one distinct
2736 // pred, and if there is only one distinct successor of the predecessor, and
2737 // if there are no PHI nodes.
2739 if (MergeBlockIntoPredecessor(BB))
2740 return true;
2742 IRBuilder<> Builder(BB);
2744 // If there is a trivial two-entry PHI node in this basic block, and we can
2745 // eliminate it, do so now.
2746 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2747 if (PN->getNumIncomingValues() == 2)
2748 Changed |= FoldTwoEntryPHINode(PN, TD);
2750 Builder.SetInsertPoint(BB->getTerminator());
2751 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2752 if (BI->isUnconditional()) {
2753 if (SimplifyUncondBranch(BI, Builder)) return true;
2754 } else {
2755 if (SimplifyCondBranch(BI, Builder)) return true;
2757 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2758 if (SimplifyReturn(RI, Builder)) return true;
2759 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2760 if (SimplifySwitch(SI, Builder)) return true;
2761 } else if (UnreachableInst *UI =
2762 dyn_cast<UnreachableInst>(BB->getTerminator())) {
2763 if (SimplifyUnreachable(UI)) return true;
2764 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2765 if (SimplifyUnwind(UI, Builder)) return true;
2766 } else if (IndirectBrInst *IBI =
2767 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2768 if (SimplifyIndirectBr(IBI)) return true;
2771 return Changed;
2774 /// SimplifyCFG - This function is used to do simplification of a CFG. For
2775 /// example, it adjusts branches to branches to eliminate the extra hop, it
2776 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2777 /// of the CFG. It returns true if a modification was made.
2779 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2780 return SimplifyCFGOpt(TD).run(BB);