Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / VMCore / Instructions.cpp
blobecb3229693886dc175e53cc4642986268be631e1
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ConstantRange.h"
25 #include "llvm/Support/MathExtras.h"
26 using namespace llvm;
28 //===----------------------------------------------------------------------===//
29 // CallSite Class
30 //===----------------------------------------------------------------------===//
32 User::op_iterator CallSite::getCallee() const {
33 Instruction *II(getInstruction());
34 return isCall()
35 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
39 //===----------------------------------------------------------------------===//
40 // TerminatorInst Class
41 //===----------------------------------------------------------------------===//
43 // Out of line virtual method, so the vtable, etc has a home.
44 TerminatorInst::~TerminatorInst() {
47 //===----------------------------------------------------------------------===//
48 // UnaryInstruction Class
49 //===----------------------------------------------------------------------===//
51 // Out of line virtual method, so the vtable, etc has a home.
52 UnaryInstruction::~UnaryInstruction() {
55 //===----------------------------------------------------------------------===//
56 // SelectInst Class
57 //===----------------------------------------------------------------------===//
59 /// areInvalidOperands - Return a string if the specified operands are invalid
60 /// for a select operation, otherwise return null.
61 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62 if (Op1->getType() != Op2->getType())
63 return "both values to select must have same type";
65 if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66 // Vector select.
67 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68 return "vector select condition element type must be i1";
69 const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70 if (ET == 0)
71 return "selected values for vector select must be vectors";
72 if (ET->getNumElements() != VT->getNumElements())
73 return "vector select requires selected vectors to have "
74 "the same vector length as select condition";
75 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76 return "select condition must be i1 or <n x i1>";
78 return 0;
82 //===----------------------------------------------------------------------===//
83 // PHINode Class
84 //===----------------------------------------------------------------------===//
86 PHINode::PHINode(const PHINode &PN)
87 : Instruction(PN.getType(), Instruction::PHI,
88 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89 ReservedSpace(PN.getNumOperands()) {
90 std::copy(PN.op_begin(), PN.op_end(), op_begin());
91 std::copy(PN.block_begin(), PN.block_end(), block_begin());
92 SubclassOptionalData = PN.SubclassOptionalData;
95 PHINode::~PHINode() {
96 dropHungoffUses();
99 Use *PHINode::allocHungoffUses(unsigned N) const {
100 // Allocate the array of Uses of the incoming values, followed by a pointer
101 // (with bottom bit set) to the User, followed by the array of pointers to
102 // the incoming basic blocks.
103 size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
104 + N * sizeof(BasicBlock*);
105 Use *Begin = static_cast<Use*>(::operator new(size));
106 Use *End = Begin + N;
107 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
108 return Use::initTags(Begin, End);
111 // removeIncomingValue - Remove an incoming value. This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114 Value *Removed = getIncomingValue(Idx);
116 // Move everything after this operand down.
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124 // Nuke the last value.
125 Op<-1>().set(0);
126 --NumOperands;
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
132 eraseFromParent();
134 return Removed;
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation. This grows the number of ops by 1.5
139 /// times.
141 void PHINode::growOperands() {
142 unsigned e = getNumOperands();
143 unsigned NumOps = e + e / 2;
144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
146 Use *OldOps = op_begin();
147 BasicBlock **OldBlocks = block_begin();
149 ReservedSpace = NumOps;
150 OperandList = allocHungoffUses(ReservedSpace);
152 std::copy(OldOps, OldOps + e, op_begin());
153 std::copy(OldBlocks, OldBlocks + e, block_begin());
155 Use::zap(OldOps, OldOps + e, true);
158 /// hasConstantValue - If the specified PHI node always merges together the same
159 /// value, return the value, otherwise return null.
160 Value *PHINode::hasConstantValue() const {
161 // Exploit the fact that phi nodes always have at least one entry.
162 Value *ConstantValue = getIncomingValue(0);
163 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
164 if (getIncomingValue(i) != ConstantValue)
165 return 0; // Incoming values not all the same.
166 return ConstantValue;
170 //===----------------------------------------------------------------------===//
171 // CallInst Implementation
172 //===----------------------------------------------------------------------===//
174 CallInst::~CallInst() {
177 void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
178 assert(NumOperands == NumParams+1 && "NumOperands not set up?");
179 Op<-1>() = Func;
181 const FunctionType *FTy =
182 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
183 (void)FTy; // silence warning.
185 assert((NumParams == FTy->getNumParams() ||
186 (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
187 "Calling a function with bad signature!");
188 for (unsigned i = 0; i != NumParams; ++i) {
189 assert((i >= FTy->getNumParams() ||
190 FTy->getParamType(i) == Params[i]->getType()) &&
191 "Calling a function with a bad signature!");
192 OperandList[i] = Params[i];
196 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
197 assert(NumOperands == 3 && "NumOperands not set up?");
198 Op<-1>() = Func;
199 Op<0>() = Actual1;
200 Op<1>() = Actual2;
202 const FunctionType *FTy =
203 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
204 (void)FTy; // silence warning.
206 assert((FTy->getNumParams() == 2 ||
207 (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
208 "Calling a function with bad signature");
209 assert((0 >= FTy->getNumParams() ||
210 FTy->getParamType(0) == Actual1->getType()) &&
211 "Calling a function with a bad signature!");
212 assert((1 >= FTy->getNumParams() ||
213 FTy->getParamType(1) == Actual2->getType()) &&
214 "Calling a function with a bad signature!");
217 void CallInst::init(Value *Func, Value *Actual) {
218 assert(NumOperands == 2 && "NumOperands not set up?");
219 Op<-1>() = Func;
220 Op<0>() = Actual;
222 const FunctionType *FTy =
223 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
224 (void)FTy; // silence warning.
226 assert((FTy->getNumParams() == 1 ||
227 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
228 "Calling a function with bad signature");
229 assert((0 == FTy->getNumParams() ||
230 FTy->getParamType(0) == Actual->getType()) &&
231 "Calling a function with a bad signature!");
234 void CallInst::init(Value *Func) {
235 assert(NumOperands == 1 && "NumOperands not set up?");
236 Op<-1>() = Func;
238 const FunctionType *FTy =
239 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
240 (void)FTy; // silence warning.
242 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
245 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
246 Instruction *InsertBefore)
247 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
248 ->getElementType())->getReturnType(),
249 Instruction::Call,
250 OperandTraits<CallInst>::op_end(this) - 2,
251 2, InsertBefore) {
252 init(Func, Actual);
253 setName(Name);
256 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
257 BasicBlock *InsertAtEnd)
258 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
259 ->getElementType())->getReturnType(),
260 Instruction::Call,
261 OperandTraits<CallInst>::op_end(this) - 2,
262 2, InsertAtEnd) {
263 init(Func, Actual);
264 setName(Name);
266 CallInst::CallInst(Value *Func, const Twine &Name,
267 Instruction *InsertBefore)
268 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
269 ->getElementType())->getReturnType(),
270 Instruction::Call,
271 OperandTraits<CallInst>::op_end(this) - 1,
272 1, InsertBefore) {
273 init(Func);
274 setName(Name);
277 CallInst::CallInst(Value *Func, const Twine &Name,
278 BasicBlock *InsertAtEnd)
279 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
280 ->getElementType())->getReturnType(),
281 Instruction::Call,
282 OperandTraits<CallInst>::op_end(this) - 1,
283 1, InsertAtEnd) {
284 init(Func);
285 setName(Name);
288 CallInst::CallInst(const CallInst &CI)
289 : Instruction(CI.getType(), Instruction::Call,
290 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
291 CI.getNumOperands()) {
292 setAttributes(CI.getAttributes());
293 setTailCall(CI.isTailCall());
294 setCallingConv(CI.getCallingConv());
296 Use *OL = OperandList;
297 Use *InOL = CI.OperandList;
298 for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
299 OL[i] = InOL[i];
300 SubclassOptionalData = CI.SubclassOptionalData;
303 void CallInst::addAttribute(unsigned i, Attributes attr) {
304 AttrListPtr PAL = getAttributes();
305 PAL = PAL.addAttr(i, attr);
306 setAttributes(PAL);
309 void CallInst::removeAttribute(unsigned i, Attributes attr) {
310 AttrListPtr PAL = getAttributes();
311 PAL = PAL.removeAttr(i, attr);
312 setAttributes(PAL);
315 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
316 if (AttributeList.paramHasAttr(i, attr))
317 return true;
318 if (const Function *F = getCalledFunction())
319 return F->paramHasAttr(i, attr);
320 return false;
323 /// IsConstantOne - Return true only if val is constant int 1
324 static bool IsConstantOne(Value *val) {
325 assert(val && "IsConstantOne does not work with NULL val");
326 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
329 static Instruction *createMalloc(Instruction *InsertBefore,
330 BasicBlock *InsertAtEnd, const Type *IntPtrTy,
331 const Type *AllocTy, Value *AllocSize,
332 Value *ArraySize, Function *MallocF,
333 const Twine &Name) {
334 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
335 "createMalloc needs either InsertBefore or InsertAtEnd");
337 // malloc(type) becomes:
338 // bitcast (i8* malloc(typeSize)) to type*
339 // malloc(type, arraySize) becomes:
340 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
341 if (!ArraySize)
342 ArraySize = ConstantInt::get(IntPtrTy, 1);
343 else if (ArraySize->getType() != IntPtrTy) {
344 if (InsertBefore)
345 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
346 "", InsertBefore);
347 else
348 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
349 "", InsertAtEnd);
352 if (!IsConstantOne(ArraySize)) {
353 if (IsConstantOne(AllocSize)) {
354 AllocSize = ArraySize; // Operand * 1 = Operand
355 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
356 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
357 false /*ZExt*/);
358 // Malloc arg is constant product of type size and array size
359 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
360 } else {
361 // Multiply type size by the array size...
362 if (InsertBefore)
363 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
364 "mallocsize", InsertBefore);
365 else
366 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
367 "mallocsize", InsertAtEnd);
371 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
372 // Create the call to Malloc.
373 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
374 Module* M = BB->getParent()->getParent();
375 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
376 Value *MallocFunc = MallocF;
377 if (!MallocFunc)
378 // prototype malloc as "void *malloc(size_t)"
379 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
380 const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
381 CallInst *MCall = NULL;
382 Instruction *Result = NULL;
383 if (InsertBefore) {
384 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
385 Result = MCall;
386 if (Result->getType() != AllocPtrType)
387 // Create a cast instruction to convert to the right type...
388 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
389 } else {
390 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
391 Result = MCall;
392 if (Result->getType() != AllocPtrType) {
393 InsertAtEnd->getInstList().push_back(MCall);
394 // Create a cast instruction to convert to the right type...
395 Result = new BitCastInst(MCall, AllocPtrType, Name);
398 MCall->setTailCall();
399 if (Function *F = dyn_cast<Function>(MallocFunc)) {
400 MCall->setCallingConv(F->getCallingConv());
401 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
403 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
405 return Result;
408 /// CreateMalloc - Generate the IR for a call to malloc:
409 /// 1. Compute the malloc call's argument as the specified type's size,
410 /// possibly multiplied by the array size if the array size is not
411 /// constant 1.
412 /// 2. Call malloc with that argument.
413 /// 3. Bitcast the result of the malloc call to the specified type.
414 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
415 const Type *IntPtrTy, const Type *AllocTy,
416 Value *AllocSize, Value *ArraySize,
417 Function * MallocF,
418 const Twine &Name) {
419 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
420 ArraySize, MallocF, Name);
423 /// CreateMalloc - Generate the IR for a call to malloc:
424 /// 1. Compute the malloc call's argument as the specified type's size,
425 /// possibly multiplied by the array size if the array size is not
426 /// constant 1.
427 /// 2. Call malloc with that argument.
428 /// 3. Bitcast the result of the malloc call to the specified type.
429 /// Note: This function does not add the bitcast to the basic block, that is the
430 /// responsibility of the caller.
431 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
432 const Type *IntPtrTy, const Type *AllocTy,
433 Value *AllocSize, Value *ArraySize,
434 Function *MallocF, const Twine &Name) {
435 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
436 ArraySize, MallocF, Name);
439 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
440 BasicBlock *InsertAtEnd) {
441 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
442 "createFree needs either InsertBefore or InsertAtEnd");
443 assert(Source->getType()->isPointerTy() &&
444 "Can not free something of nonpointer type!");
446 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
447 Module* M = BB->getParent()->getParent();
449 const Type *VoidTy = Type::getVoidTy(M->getContext());
450 const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
451 // prototype free as "void free(void*)"
452 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
453 CallInst* Result = NULL;
454 Value *PtrCast = Source;
455 if (InsertBefore) {
456 if (Source->getType() != IntPtrTy)
457 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
458 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
459 } else {
460 if (Source->getType() != IntPtrTy)
461 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
462 Result = CallInst::Create(FreeFunc, PtrCast, "");
464 Result->setTailCall();
465 if (Function *F = dyn_cast<Function>(FreeFunc))
466 Result->setCallingConv(F->getCallingConv());
468 return Result;
471 /// CreateFree - Generate the IR for a call to the builtin free function.
472 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
473 return createFree(Source, InsertBefore, NULL);
476 /// CreateFree - Generate the IR for a call to the builtin free function.
477 /// Note: This function does not add the call to the basic block, that is the
478 /// responsibility of the caller.
479 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
480 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
481 assert(FreeCall && "CreateFree did not create a CallInst");
482 return FreeCall;
485 //===----------------------------------------------------------------------===//
486 // InvokeInst Implementation
487 //===----------------------------------------------------------------------===//
489 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
490 Value* const *Args, unsigned NumArgs) {
491 assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
492 Op<-3>() = Fn;
493 Op<-2>() = IfNormal;
494 Op<-1>() = IfException;
495 const FunctionType *FTy =
496 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
497 (void)FTy; // silence warning.
499 assert(((NumArgs == FTy->getNumParams()) ||
500 (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
501 "Invoking a function with bad signature");
503 Use *OL = OperandList;
504 for (unsigned i = 0, e = NumArgs; i != e; i++) {
505 assert((i >= FTy->getNumParams() ||
506 FTy->getParamType(i) == Args[i]->getType()) &&
507 "Invoking a function with a bad signature!");
509 OL[i] = Args[i];
513 InvokeInst::InvokeInst(const InvokeInst &II)
514 : TerminatorInst(II.getType(), Instruction::Invoke,
515 OperandTraits<InvokeInst>::op_end(this)
516 - II.getNumOperands(),
517 II.getNumOperands()) {
518 setAttributes(II.getAttributes());
519 setCallingConv(II.getCallingConv());
520 Use *OL = OperandList, *InOL = II.OperandList;
521 for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
522 OL[i] = InOL[i];
523 SubclassOptionalData = II.SubclassOptionalData;
526 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
527 return getSuccessor(idx);
529 unsigned InvokeInst::getNumSuccessorsV() const {
530 return getNumSuccessors();
532 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
533 return setSuccessor(idx, B);
536 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
537 if (AttributeList.paramHasAttr(i, attr))
538 return true;
539 if (const Function *F = getCalledFunction())
540 return F->paramHasAttr(i, attr);
541 return false;
544 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
545 AttrListPtr PAL = getAttributes();
546 PAL = PAL.addAttr(i, attr);
547 setAttributes(PAL);
550 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
551 AttrListPtr PAL = getAttributes();
552 PAL = PAL.removeAttr(i, attr);
553 setAttributes(PAL);
557 //===----------------------------------------------------------------------===//
558 // ReturnInst Implementation
559 //===----------------------------------------------------------------------===//
561 ReturnInst::ReturnInst(const ReturnInst &RI)
562 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
563 OperandTraits<ReturnInst>::op_end(this) -
564 RI.getNumOperands(),
565 RI.getNumOperands()) {
566 if (RI.getNumOperands())
567 Op<0>() = RI.Op<0>();
568 SubclassOptionalData = RI.SubclassOptionalData;
571 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
572 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
573 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
574 InsertBefore) {
575 if (retVal)
576 Op<0>() = retVal;
578 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
579 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
580 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
581 InsertAtEnd) {
582 if (retVal)
583 Op<0>() = retVal;
585 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
586 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
587 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
590 unsigned ReturnInst::getNumSuccessorsV() const {
591 return getNumSuccessors();
594 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
595 /// emit the vtable for the class in this translation unit.
596 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
597 llvm_unreachable("ReturnInst has no successors!");
600 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
601 llvm_unreachable("ReturnInst has no successors!");
602 return 0;
605 ReturnInst::~ReturnInst() {
608 //===----------------------------------------------------------------------===//
609 // UnwindInst Implementation
610 //===----------------------------------------------------------------------===//
612 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
613 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
614 0, 0, InsertBefore) {
616 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
617 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
618 0, 0, InsertAtEnd) {
622 unsigned UnwindInst::getNumSuccessorsV() const {
623 return getNumSuccessors();
626 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
627 llvm_unreachable("UnwindInst has no successors!");
630 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
631 llvm_unreachable("UnwindInst has no successors!");
632 return 0;
635 //===----------------------------------------------------------------------===//
636 // UnreachableInst Implementation
637 //===----------------------------------------------------------------------===//
639 UnreachableInst::UnreachableInst(LLVMContext &Context,
640 Instruction *InsertBefore)
641 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
642 0, 0, InsertBefore) {
644 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
645 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
646 0, 0, InsertAtEnd) {
649 unsigned UnreachableInst::getNumSuccessorsV() const {
650 return getNumSuccessors();
653 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
654 llvm_unreachable("UnwindInst has no successors!");
657 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
658 llvm_unreachable("UnwindInst has no successors!");
659 return 0;
662 //===----------------------------------------------------------------------===//
663 // BranchInst Implementation
664 //===----------------------------------------------------------------------===//
666 void BranchInst::AssertOK() {
667 if (isConditional())
668 assert(getCondition()->getType()->isIntegerTy(1) &&
669 "May only branch on boolean predicates!");
672 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
673 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
674 OperandTraits<BranchInst>::op_end(this) - 1,
675 1, InsertBefore) {
676 assert(IfTrue != 0 && "Branch destination may not be null!");
677 Op<-1>() = IfTrue;
679 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
680 Instruction *InsertBefore)
681 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
682 OperandTraits<BranchInst>::op_end(this) - 3,
683 3, InsertBefore) {
684 Op<-1>() = IfTrue;
685 Op<-2>() = IfFalse;
686 Op<-3>() = Cond;
687 #ifndef NDEBUG
688 AssertOK();
689 #endif
692 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
693 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
694 OperandTraits<BranchInst>::op_end(this) - 1,
695 1, InsertAtEnd) {
696 assert(IfTrue != 0 && "Branch destination may not be null!");
697 Op<-1>() = IfTrue;
700 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
701 BasicBlock *InsertAtEnd)
702 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
703 OperandTraits<BranchInst>::op_end(this) - 3,
704 3, InsertAtEnd) {
705 Op<-1>() = IfTrue;
706 Op<-2>() = IfFalse;
707 Op<-3>() = Cond;
708 #ifndef NDEBUG
709 AssertOK();
710 #endif
714 BranchInst::BranchInst(const BranchInst &BI) :
715 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
716 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
717 BI.getNumOperands()) {
718 Op<-1>() = BI.Op<-1>();
719 if (BI.getNumOperands() != 1) {
720 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
721 Op<-3>() = BI.Op<-3>();
722 Op<-2>() = BI.Op<-2>();
724 SubclassOptionalData = BI.SubclassOptionalData;
727 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
728 return getSuccessor(idx);
730 unsigned BranchInst::getNumSuccessorsV() const {
731 return getNumSuccessors();
733 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
734 setSuccessor(idx, B);
738 //===----------------------------------------------------------------------===//
739 // AllocaInst Implementation
740 //===----------------------------------------------------------------------===//
742 static Value *getAISize(LLVMContext &Context, Value *Amt) {
743 if (!Amt)
744 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
745 else {
746 assert(!isa<BasicBlock>(Amt) &&
747 "Passed basic block into allocation size parameter! Use other ctor");
748 assert(Amt->getType()->isIntegerTy() &&
749 "Allocation array size is not an integer!");
751 return Amt;
754 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
755 const Twine &Name, Instruction *InsertBefore)
756 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
757 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
758 setAlignment(0);
759 assert(!Ty->isVoidTy() && "Cannot allocate void!");
760 setName(Name);
763 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
764 const Twine &Name, BasicBlock *InsertAtEnd)
765 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
766 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
767 setAlignment(0);
768 assert(!Ty->isVoidTy() && "Cannot allocate void!");
769 setName(Name);
772 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
773 Instruction *InsertBefore)
774 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
775 getAISize(Ty->getContext(), 0), InsertBefore) {
776 setAlignment(0);
777 assert(!Ty->isVoidTy() && "Cannot allocate void!");
778 setName(Name);
781 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
782 BasicBlock *InsertAtEnd)
783 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
784 getAISize(Ty->getContext(), 0), InsertAtEnd) {
785 setAlignment(0);
786 assert(!Ty->isVoidTy() && "Cannot allocate void!");
787 setName(Name);
790 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
791 const Twine &Name, Instruction *InsertBefore)
792 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
793 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
794 setAlignment(Align);
795 assert(!Ty->isVoidTy() && "Cannot allocate void!");
796 setName(Name);
799 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
800 const Twine &Name, BasicBlock *InsertAtEnd)
801 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
802 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
803 setAlignment(Align);
804 assert(!Ty->isVoidTy() && "Cannot allocate void!");
805 setName(Name);
808 // Out of line virtual method, so the vtable, etc has a home.
809 AllocaInst::~AllocaInst() {
812 void AllocaInst::setAlignment(unsigned Align) {
813 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
814 assert(Align <= MaximumAlignment &&
815 "Alignment is greater than MaximumAlignment!");
816 setInstructionSubclassData(Log2_32(Align) + 1);
817 assert(getAlignment() == Align && "Alignment representation error!");
820 bool AllocaInst::isArrayAllocation() const {
821 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
822 return !CI->isOne();
823 return true;
826 Type *AllocaInst::getAllocatedType() const {
827 return getType()->getElementType();
830 /// isStaticAlloca - Return true if this alloca is in the entry block of the
831 /// function and is a constant size. If so, the code generator will fold it
832 /// into the prolog/epilog code, so it is basically free.
833 bool AllocaInst::isStaticAlloca() const {
834 // Must be constant size.
835 if (!isa<ConstantInt>(getArraySize())) return false;
837 // Must be in the entry block.
838 const BasicBlock *Parent = getParent();
839 return Parent == &Parent->getParent()->front();
842 //===----------------------------------------------------------------------===//
843 // LoadInst Implementation
844 //===----------------------------------------------------------------------===//
846 void LoadInst::AssertOK() {
847 assert(getOperand(0)->getType()->isPointerTy() &&
848 "Ptr must have pointer type.");
851 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
852 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
853 Load, Ptr, InsertBef) {
854 setVolatile(false);
855 setAlignment(0);
856 AssertOK();
857 setName(Name);
860 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
861 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
862 Load, Ptr, InsertAE) {
863 setVolatile(false);
864 setAlignment(0);
865 AssertOK();
866 setName(Name);
869 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
870 Instruction *InsertBef)
871 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
872 Load, Ptr, InsertBef) {
873 setVolatile(isVolatile);
874 setAlignment(0);
875 AssertOK();
876 setName(Name);
879 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
880 unsigned Align, Instruction *InsertBef)
881 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
882 Load, Ptr, InsertBef) {
883 setVolatile(isVolatile);
884 setAlignment(Align);
885 AssertOK();
886 setName(Name);
889 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
890 unsigned Align, BasicBlock *InsertAE)
891 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
892 Load, Ptr, InsertAE) {
893 setVolatile(isVolatile);
894 setAlignment(Align);
895 AssertOK();
896 setName(Name);
899 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
900 BasicBlock *InsertAE)
901 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
902 Load, Ptr, InsertAE) {
903 setVolatile(isVolatile);
904 setAlignment(0);
905 AssertOK();
906 setName(Name);
911 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
912 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
913 Load, Ptr, InsertBef) {
914 setVolatile(false);
915 setAlignment(0);
916 AssertOK();
917 if (Name && Name[0]) setName(Name);
920 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
921 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
922 Load, Ptr, InsertAE) {
923 setVolatile(false);
924 setAlignment(0);
925 AssertOK();
926 if (Name && Name[0]) setName(Name);
929 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
930 Instruction *InsertBef)
931 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
932 Load, Ptr, InsertBef) {
933 setVolatile(isVolatile);
934 setAlignment(0);
935 AssertOK();
936 if (Name && Name[0]) setName(Name);
939 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
940 BasicBlock *InsertAE)
941 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
942 Load, Ptr, InsertAE) {
943 setVolatile(isVolatile);
944 setAlignment(0);
945 AssertOK();
946 if (Name && Name[0]) setName(Name);
949 void LoadInst::setAlignment(unsigned Align) {
950 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
951 assert(Align <= MaximumAlignment &&
952 "Alignment is greater than MaximumAlignment!");
953 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
954 ((Log2_32(Align)+1)<<1));
955 assert(getAlignment() == Align && "Alignment representation error!");
958 //===----------------------------------------------------------------------===//
959 // StoreInst Implementation
960 //===----------------------------------------------------------------------===//
962 void StoreInst::AssertOK() {
963 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
964 assert(getOperand(1)->getType()->isPointerTy() &&
965 "Ptr must have pointer type!");
966 assert(getOperand(0)->getType() ==
967 cast<PointerType>(getOperand(1)->getType())->getElementType()
968 && "Ptr must be a pointer to Val type!");
972 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
973 : Instruction(Type::getVoidTy(val->getContext()), Store,
974 OperandTraits<StoreInst>::op_begin(this),
975 OperandTraits<StoreInst>::operands(this),
976 InsertBefore) {
977 Op<0>() = val;
978 Op<1>() = addr;
979 setVolatile(false);
980 setAlignment(0);
981 AssertOK();
984 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
985 : Instruction(Type::getVoidTy(val->getContext()), Store,
986 OperandTraits<StoreInst>::op_begin(this),
987 OperandTraits<StoreInst>::operands(this),
988 InsertAtEnd) {
989 Op<0>() = val;
990 Op<1>() = addr;
991 setVolatile(false);
992 setAlignment(0);
993 AssertOK();
996 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
997 Instruction *InsertBefore)
998 : Instruction(Type::getVoidTy(val->getContext()), Store,
999 OperandTraits<StoreInst>::op_begin(this),
1000 OperandTraits<StoreInst>::operands(this),
1001 InsertBefore) {
1002 Op<0>() = val;
1003 Op<1>() = addr;
1004 setVolatile(isVolatile);
1005 setAlignment(0);
1006 AssertOK();
1009 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1010 unsigned Align, Instruction *InsertBefore)
1011 : Instruction(Type::getVoidTy(val->getContext()), Store,
1012 OperandTraits<StoreInst>::op_begin(this),
1013 OperandTraits<StoreInst>::operands(this),
1014 InsertBefore) {
1015 Op<0>() = val;
1016 Op<1>() = addr;
1017 setVolatile(isVolatile);
1018 setAlignment(Align);
1019 AssertOK();
1022 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1023 unsigned Align, BasicBlock *InsertAtEnd)
1024 : Instruction(Type::getVoidTy(val->getContext()), Store,
1025 OperandTraits<StoreInst>::op_begin(this),
1026 OperandTraits<StoreInst>::operands(this),
1027 InsertAtEnd) {
1028 Op<0>() = val;
1029 Op<1>() = addr;
1030 setVolatile(isVolatile);
1031 setAlignment(Align);
1032 AssertOK();
1035 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1036 BasicBlock *InsertAtEnd)
1037 : Instruction(Type::getVoidTy(val->getContext()), Store,
1038 OperandTraits<StoreInst>::op_begin(this),
1039 OperandTraits<StoreInst>::operands(this),
1040 InsertAtEnd) {
1041 Op<0>() = val;
1042 Op<1>() = addr;
1043 setVolatile(isVolatile);
1044 setAlignment(0);
1045 AssertOK();
1048 void StoreInst::setAlignment(unsigned Align) {
1049 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1050 assert(Align <= MaximumAlignment &&
1051 "Alignment is greater than MaximumAlignment!");
1052 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
1053 ((Log2_32(Align)+1) << 1));
1054 assert(getAlignment() == Align && "Alignment representation error!");
1057 //===----------------------------------------------------------------------===//
1058 // GetElementPtrInst Implementation
1059 //===----------------------------------------------------------------------===//
1061 static unsigned retrieveAddrSpace(const Value *Val) {
1062 return cast<PointerType>(Val->getType())->getAddressSpace();
1065 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1066 const Twine &Name) {
1067 assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1068 Use *OL = OperandList;
1069 OL[0] = Ptr;
1071 for (unsigned i = 0; i != NumIdx; ++i)
1072 OL[i+1] = Idx[i];
1074 setName(Name);
1077 void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1078 assert(NumOperands == 2 && "NumOperands not initialized?");
1079 Use *OL = OperandList;
1080 OL[0] = Ptr;
1081 OL[1] = Idx;
1083 setName(Name);
1086 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1087 : Instruction(GEPI.getType(), GetElementPtr,
1088 OperandTraits<GetElementPtrInst>::op_end(this)
1089 - GEPI.getNumOperands(),
1090 GEPI.getNumOperands()) {
1091 Use *OL = OperandList;
1092 Use *GEPIOL = GEPI.OperandList;
1093 for (unsigned i = 0, E = NumOperands; i != E; ++i)
1094 OL[i] = GEPIOL[i];
1095 SubclassOptionalData = GEPI.SubclassOptionalData;
1098 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1099 const Twine &Name, Instruction *InBe)
1100 : Instruction(PointerType::get(
1101 checkGEPType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1102 GetElementPtr,
1103 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1104 2, InBe) {
1105 init(Ptr, Idx, Name);
1108 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1109 const Twine &Name, BasicBlock *IAE)
1110 : Instruction(PointerType::get(
1111 checkGEPType(getIndexedType(Ptr->getType(),Idx)),
1112 retrieveAddrSpace(Ptr)),
1113 GetElementPtr,
1114 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1115 2, IAE) {
1116 init(Ptr, Idx, Name);
1119 /// getIndexedType - Returns the type of the element that would be accessed with
1120 /// a gep instruction with the specified parameters.
1122 /// The Idxs pointer should point to a continuous piece of memory containing the
1123 /// indices, either as Value* or uint64_t.
1125 /// A null type is returned if the indices are invalid for the specified
1126 /// pointer type.
1128 template <typename IndexTy>
1129 static Type *getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1130 unsigned NumIdx) {
1131 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1132 if (!PTy) return 0; // Type isn't a pointer type!
1133 Type *Agg = PTy->getElementType();
1135 // Handle the special case of the empty set index set, which is always valid.
1136 if (NumIdx == 0)
1137 return Agg;
1139 // If there is at least one index, the top level type must be sized, otherwise
1140 // it cannot be 'stepped over'.
1141 if (!Agg->isSized())
1142 return 0;
1144 unsigned CurIdx = 1;
1145 for (; CurIdx != NumIdx; ++CurIdx) {
1146 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1147 if (!CT || CT->isPointerTy()) return 0;
1148 IndexTy Index = Idxs[CurIdx];
1149 if (!CT->indexValid(Index)) return 0;
1150 Agg = CT->getTypeAtIndex(Index);
1152 return CurIdx == NumIdx ? Agg : 0;
1155 Type *GetElementPtrInst::getIndexedType(const Type *Ptr, Value* const *Idxs,
1156 unsigned NumIdx) {
1157 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1160 Type *GetElementPtrInst::getIndexedType(const Type *Ptr,
1161 Constant* const *Idxs,
1162 unsigned NumIdx) {
1163 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1166 Type *GetElementPtrInst::getIndexedType(const Type *Ptr,
1167 uint64_t const *Idxs,
1168 unsigned NumIdx) {
1169 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1172 Type *GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1173 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1174 if (!PTy) return 0; // Type isn't a pointer type!
1176 // Check the pointer index.
1177 if (!PTy->indexValid(Idx)) return 0;
1179 return PTy->getElementType();
1183 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1184 /// zeros. If so, the result pointer and the first operand have the same
1185 /// value, just potentially different types.
1186 bool GetElementPtrInst::hasAllZeroIndices() const {
1187 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1188 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1189 if (!CI->isZero()) return false;
1190 } else {
1191 return false;
1194 return true;
1197 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1198 /// constant integers. If so, the result pointer and the first operand have
1199 /// a constant offset between them.
1200 bool GetElementPtrInst::hasAllConstantIndices() const {
1201 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1202 if (!isa<ConstantInt>(getOperand(i)))
1203 return false;
1205 return true;
1208 void GetElementPtrInst::setIsInBounds(bool B) {
1209 cast<GEPOperator>(this)->setIsInBounds(B);
1212 bool GetElementPtrInst::isInBounds() const {
1213 return cast<GEPOperator>(this)->isInBounds();
1216 //===----------------------------------------------------------------------===//
1217 // ExtractElementInst Implementation
1218 //===----------------------------------------------------------------------===//
1220 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1221 const Twine &Name,
1222 Instruction *InsertBef)
1223 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1224 ExtractElement,
1225 OperandTraits<ExtractElementInst>::op_begin(this),
1226 2, InsertBef) {
1227 assert(isValidOperands(Val, Index) &&
1228 "Invalid extractelement instruction operands!");
1229 Op<0>() = Val;
1230 Op<1>() = Index;
1231 setName(Name);
1234 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1235 const Twine &Name,
1236 BasicBlock *InsertAE)
1237 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1238 ExtractElement,
1239 OperandTraits<ExtractElementInst>::op_begin(this),
1240 2, InsertAE) {
1241 assert(isValidOperands(Val, Index) &&
1242 "Invalid extractelement instruction operands!");
1244 Op<0>() = Val;
1245 Op<1>() = Index;
1246 setName(Name);
1250 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1251 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1252 return false;
1253 return true;
1257 //===----------------------------------------------------------------------===//
1258 // InsertElementInst Implementation
1259 //===----------------------------------------------------------------------===//
1261 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1262 const Twine &Name,
1263 Instruction *InsertBef)
1264 : Instruction(Vec->getType(), InsertElement,
1265 OperandTraits<InsertElementInst>::op_begin(this),
1266 3, InsertBef) {
1267 assert(isValidOperands(Vec, Elt, Index) &&
1268 "Invalid insertelement instruction operands!");
1269 Op<0>() = Vec;
1270 Op<1>() = Elt;
1271 Op<2>() = Index;
1272 setName(Name);
1275 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1276 const Twine &Name,
1277 BasicBlock *InsertAE)
1278 : Instruction(Vec->getType(), InsertElement,
1279 OperandTraits<InsertElementInst>::op_begin(this),
1280 3, InsertAE) {
1281 assert(isValidOperands(Vec, Elt, Index) &&
1282 "Invalid insertelement instruction operands!");
1284 Op<0>() = Vec;
1285 Op<1>() = Elt;
1286 Op<2>() = Index;
1287 setName(Name);
1290 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1291 const Value *Index) {
1292 if (!Vec->getType()->isVectorTy())
1293 return false; // First operand of insertelement must be vector type.
1295 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1296 return false;// Second operand of insertelement must be vector element type.
1298 if (!Index->getType()->isIntegerTy(32))
1299 return false; // Third operand of insertelement must be i32.
1300 return true;
1304 //===----------------------------------------------------------------------===//
1305 // ShuffleVectorInst Implementation
1306 //===----------------------------------------------------------------------===//
1308 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1309 const Twine &Name,
1310 Instruction *InsertBefore)
1311 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1312 cast<VectorType>(Mask->getType())->getNumElements()),
1313 ShuffleVector,
1314 OperandTraits<ShuffleVectorInst>::op_begin(this),
1315 OperandTraits<ShuffleVectorInst>::operands(this),
1316 InsertBefore) {
1317 assert(isValidOperands(V1, V2, Mask) &&
1318 "Invalid shuffle vector instruction operands!");
1319 Op<0>() = V1;
1320 Op<1>() = V2;
1321 Op<2>() = Mask;
1322 setName(Name);
1325 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1326 const Twine &Name,
1327 BasicBlock *InsertAtEnd)
1328 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1329 cast<VectorType>(Mask->getType())->getNumElements()),
1330 ShuffleVector,
1331 OperandTraits<ShuffleVectorInst>::op_begin(this),
1332 OperandTraits<ShuffleVectorInst>::operands(this),
1333 InsertAtEnd) {
1334 assert(isValidOperands(V1, V2, Mask) &&
1335 "Invalid shuffle vector instruction operands!");
1337 Op<0>() = V1;
1338 Op<1>() = V2;
1339 Op<2>() = Mask;
1340 setName(Name);
1343 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1344 const Value *Mask) {
1345 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1346 return false;
1348 const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1349 if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1350 return false;
1352 // Check to see if Mask is valid.
1353 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1354 const VectorType *VTy = cast<VectorType>(V1->getType());
1355 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1356 if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1357 if (CI->uge(VTy->getNumElements()*2))
1358 return false;
1359 } else if (!isa<UndefValue>(MV->getOperand(i))) {
1360 return false;
1364 else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
1365 return false;
1367 return true;
1370 /// getMaskValue - Return the index from the shuffle mask for the specified
1371 /// output result. This is either -1 if the element is undef or a number less
1372 /// than 2*numelements.
1373 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1374 const Constant *Mask = cast<Constant>(getOperand(2));
1375 if (isa<UndefValue>(Mask)) return -1;
1376 if (isa<ConstantAggregateZero>(Mask)) return 0;
1377 const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1378 assert(i < MaskCV->getNumOperands() && "Index out of range");
1380 if (isa<UndefValue>(MaskCV->getOperand(i)))
1381 return -1;
1382 return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1385 //===----------------------------------------------------------------------===//
1386 // InsertValueInst Class
1387 //===----------------------------------------------------------------------===//
1389 void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1390 unsigned NumIdx, const Twine &Name) {
1391 assert(NumOperands == 2 && "NumOperands not initialized?");
1392 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idx, Idx + NumIdx) ==
1393 Val->getType() && "Inserted value must match indexed type!");
1394 Op<0>() = Agg;
1395 Op<1>() = Val;
1397 Indices.append(Idx, Idx + NumIdx);
1398 setName(Name);
1401 void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1402 const Twine &Name) {
1403 assert(NumOperands == 2 && "NumOperands not initialized?");
1404 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idx) == Val->getType()
1405 && "Inserted value must match indexed type!");
1406 Op<0>() = Agg;
1407 Op<1>() = Val;
1409 Indices.push_back(Idx);
1410 setName(Name);
1413 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1414 : Instruction(IVI.getType(), InsertValue,
1415 OperandTraits<InsertValueInst>::op_begin(this), 2),
1416 Indices(IVI.Indices) {
1417 Op<0>() = IVI.getOperand(0);
1418 Op<1>() = IVI.getOperand(1);
1419 SubclassOptionalData = IVI.SubclassOptionalData;
1422 InsertValueInst::InsertValueInst(Value *Agg,
1423 Value *Val,
1424 unsigned Idx,
1425 const Twine &Name,
1426 Instruction *InsertBefore)
1427 : Instruction(Agg->getType(), InsertValue,
1428 OperandTraits<InsertValueInst>::op_begin(this),
1429 2, InsertBefore) {
1430 init(Agg, Val, Idx, Name);
1433 InsertValueInst::InsertValueInst(Value *Agg,
1434 Value *Val,
1435 unsigned Idx,
1436 const Twine &Name,
1437 BasicBlock *InsertAtEnd)
1438 : Instruction(Agg->getType(), InsertValue,
1439 OperandTraits<InsertValueInst>::op_begin(this),
1440 2, InsertAtEnd) {
1441 init(Agg, Val, Idx, Name);
1444 //===----------------------------------------------------------------------===//
1445 // ExtractValueInst Class
1446 //===----------------------------------------------------------------------===//
1448 void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1449 const Twine &Name) {
1450 assert(NumOperands == 1 && "NumOperands not initialized?");
1452 Indices.append(Idx, Idx + NumIdx);
1453 setName(Name);
1456 void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
1457 assert(NumOperands == 1 && "NumOperands not initialized?");
1459 Indices.push_back(Idx);
1460 setName(Name);
1463 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1464 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1465 Indices(EVI.Indices) {
1466 SubclassOptionalData = EVI.SubclassOptionalData;
1469 // getIndexedType - Returns the type of the element that would be extracted
1470 // with an extractvalue instruction with the specified parameters.
1472 // A null type is returned if the indices are invalid for the specified
1473 // pointer type.
1475 Type *ExtractValueInst::getIndexedType(const Type *Agg,
1476 const unsigned *Idxs,
1477 unsigned NumIdx) {
1478 for (unsigned CurIdx = 0; CurIdx != NumIdx; ++CurIdx) {
1479 unsigned Index = Idxs[CurIdx];
1480 // We can't use CompositeType::indexValid(Index) here.
1481 // indexValid() always returns true for arrays because getelementptr allows
1482 // out-of-bounds indices. Since we don't allow those for extractvalue and
1483 // insertvalue we need to check array indexing manually.
1484 // Since the only other types we can index into are struct types it's just
1485 // as easy to check those manually as well.
1486 if (const ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1487 if (Index >= AT->getNumElements())
1488 return 0;
1489 } else if (const StructType *ST = dyn_cast<StructType>(Agg)) {
1490 if (Index >= ST->getNumElements())
1491 return 0;
1492 } else {
1493 // Not a valid type to index into.
1494 return 0;
1497 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1499 return const_cast<Type*>(Agg);
1502 Type *ExtractValueInst::getIndexedType(const Type *Agg, unsigned Idx) {
1503 return getIndexedType(Agg, &Idx, 1);
1506 //===----------------------------------------------------------------------===//
1507 // BinaryOperator Class
1508 //===----------------------------------------------------------------------===//
1510 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1511 const Type *Ty, const Twine &Name,
1512 Instruction *InsertBefore)
1513 : Instruction(Ty, iType,
1514 OperandTraits<BinaryOperator>::op_begin(this),
1515 OperandTraits<BinaryOperator>::operands(this),
1516 InsertBefore) {
1517 Op<0>() = S1;
1518 Op<1>() = S2;
1519 init(iType);
1520 setName(Name);
1523 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1524 const Type *Ty, const Twine &Name,
1525 BasicBlock *InsertAtEnd)
1526 : Instruction(Ty, iType,
1527 OperandTraits<BinaryOperator>::op_begin(this),
1528 OperandTraits<BinaryOperator>::operands(this),
1529 InsertAtEnd) {
1530 Op<0>() = S1;
1531 Op<1>() = S2;
1532 init(iType);
1533 setName(Name);
1537 void BinaryOperator::init(BinaryOps iType) {
1538 Value *LHS = getOperand(0), *RHS = getOperand(1);
1539 (void)LHS; (void)RHS; // Silence warnings.
1540 assert(LHS->getType() == RHS->getType() &&
1541 "Binary operator operand types must match!");
1542 #ifndef NDEBUG
1543 switch (iType) {
1544 case Add: case Sub:
1545 case Mul:
1546 assert(getType() == LHS->getType() &&
1547 "Arithmetic operation should return same type as operands!");
1548 assert(getType()->isIntOrIntVectorTy() &&
1549 "Tried to create an integer operation on a non-integer type!");
1550 break;
1551 case FAdd: case FSub:
1552 case FMul:
1553 assert(getType() == LHS->getType() &&
1554 "Arithmetic operation should return same type as operands!");
1555 assert(getType()->isFPOrFPVectorTy() &&
1556 "Tried to create a floating-point operation on a "
1557 "non-floating-point type!");
1558 break;
1559 case UDiv:
1560 case SDiv:
1561 assert(getType() == LHS->getType() &&
1562 "Arithmetic operation should return same type as operands!");
1563 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1564 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1565 "Incorrect operand type (not integer) for S/UDIV");
1566 break;
1567 case FDiv:
1568 assert(getType() == LHS->getType() &&
1569 "Arithmetic operation should return same type as operands!");
1570 assert(getType()->isFPOrFPVectorTy() &&
1571 "Incorrect operand type (not floating point) for FDIV");
1572 break;
1573 case URem:
1574 case SRem:
1575 assert(getType() == LHS->getType() &&
1576 "Arithmetic operation should return same type as operands!");
1577 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1578 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1579 "Incorrect operand type (not integer) for S/UREM");
1580 break;
1581 case FRem:
1582 assert(getType() == LHS->getType() &&
1583 "Arithmetic operation should return same type as operands!");
1584 assert(getType()->isFPOrFPVectorTy() &&
1585 "Incorrect operand type (not floating point) for FREM");
1586 break;
1587 case Shl:
1588 case LShr:
1589 case AShr:
1590 assert(getType() == LHS->getType() &&
1591 "Shift operation should return same type as operands!");
1592 assert((getType()->isIntegerTy() ||
1593 (getType()->isVectorTy() &&
1594 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1595 "Tried to create a shift operation on a non-integral type!");
1596 break;
1597 case And: case Or:
1598 case Xor:
1599 assert(getType() == LHS->getType() &&
1600 "Logical operation should return same type as operands!");
1601 assert((getType()->isIntegerTy() ||
1602 (getType()->isVectorTy() &&
1603 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1604 "Tried to create a logical operation on a non-integral type!");
1605 break;
1606 default:
1607 break;
1609 #endif
1612 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1613 const Twine &Name,
1614 Instruction *InsertBefore) {
1615 assert(S1->getType() == S2->getType() &&
1616 "Cannot create binary operator with two operands of differing type!");
1617 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1620 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1621 const Twine &Name,
1622 BasicBlock *InsertAtEnd) {
1623 BinaryOperator *Res = Create(Op, S1, S2, Name);
1624 InsertAtEnd->getInstList().push_back(Res);
1625 return Res;
1628 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1629 Instruction *InsertBefore) {
1630 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1631 return new BinaryOperator(Instruction::Sub,
1632 zero, Op,
1633 Op->getType(), Name, InsertBefore);
1636 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1637 BasicBlock *InsertAtEnd) {
1638 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1639 return new BinaryOperator(Instruction::Sub,
1640 zero, Op,
1641 Op->getType(), Name, InsertAtEnd);
1644 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1645 Instruction *InsertBefore) {
1646 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1647 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1650 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1651 BasicBlock *InsertAtEnd) {
1652 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1653 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1656 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1657 Instruction *InsertBefore) {
1658 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1659 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1662 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1663 BasicBlock *InsertAtEnd) {
1664 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1665 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1668 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1669 Instruction *InsertBefore) {
1670 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1671 return new BinaryOperator(Instruction::FSub,
1672 zero, Op,
1673 Op->getType(), Name, InsertBefore);
1676 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1677 BasicBlock *InsertAtEnd) {
1678 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1679 return new BinaryOperator(Instruction::FSub,
1680 zero, Op,
1681 Op->getType(), Name, InsertAtEnd);
1684 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1685 Instruction *InsertBefore) {
1686 Constant *C;
1687 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1688 C = Constant::getAllOnesValue(PTy->getElementType());
1689 C = ConstantVector::get(
1690 std::vector<Constant*>(PTy->getNumElements(), C));
1691 } else {
1692 C = Constant::getAllOnesValue(Op->getType());
1695 return new BinaryOperator(Instruction::Xor, Op, C,
1696 Op->getType(), Name, InsertBefore);
1699 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1700 BasicBlock *InsertAtEnd) {
1701 Constant *AllOnes;
1702 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1703 // Create a vector of all ones values.
1704 Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1705 AllOnes = ConstantVector::get(
1706 std::vector<Constant*>(PTy->getNumElements(), Elt));
1707 } else {
1708 AllOnes = Constant::getAllOnesValue(Op->getType());
1711 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1712 Op->getType(), Name, InsertAtEnd);
1716 // isConstantAllOnes - Helper function for several functions below
1717 static inline bool isConstantAllOnes(const Value *V) {
1718 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1719 return CI->isAllOnesValue();
1720 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1721 return CV->isAllOnesValue();
1722 return false;
1725 bool BinaryOperator::isNeg(const Value *V) {
1726 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1727 if (Bop->getOpcode() == Instruction::Sub)
1728 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1729 return C->isNegativeZeroValue();
1730 return false;
1733 bool BinaryOperator::isFNeg(const Value *V) {
1734 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1735 if (Bop->getOpcode() == Instruction::FSub)
1736 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1737 return C->isNegativeZeroValue();
1738 return false;
1741 bool BinaryOperator::isNot(const Value *V) {
1742 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1743 return (Bop->getOpcode() == Instruction::Xor &&
1744 (isConstantAllOnes(Bop->getOperand(1)) ||
1745 isConstantAllOnes(Bop->getOperand(0))));
1746 return false;
1749 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1750 return cast<BinaryOperator>(BinOp)->getOperand(1);
1753 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1754 return getNegArgument(const_cast<Value*>(BinOp));
1757 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1758 return cast<BinaryOperator>(BinOp)->getOperand(1);
1761 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1762 return getFNegArgument(const_cast<Value*>(BinOp));
1765 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1766 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1767 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1768 Value *Op0 = BO->getOperand(0);
1769 Value *Op1 = BO->getOperand(1);
1770 if (isConstantAllOnes(Op0)) return Op1;
1772 assert(isConstantAllOnes(Op1));
1773 return Op0;
1776 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1777 return getNotArgument(const_cast<Value*>(BinOp));
1781 // swapOperands - Exchange the two operands to this instruction. This
1782 // instruction is safe to use on any binary instruction and does not
1783 // modify the semantics of the instruction. If the instruction is
1784 // order dependent (SetLT f.e.) the opcode is changed.
1786 bool BinaryOperator::swapOperands() {
1787 if (!isCommutative())
1788 return true; // Can't commute operands
1789 Op<0>().swap(Op<1>());
1790 return false;
1793 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1794 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1797 void BinaryOperator::setHasNoSignedWrap(bool b) {
1798 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1801 void BinaryOperator::setIsExact(bool b) {
1802 cast<PossiblyExactOperator>(this)->setIsExact(b);
1805 bool BinaryOperator::hasNoUnsignedWrap() const {
1806 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1809 bool BinaryOperator::hasNoSignedWrap() const {
1810 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1813 bool BinaryOperator::isExact() const {
1814 return cast<PossiblyExactOperator>(this)->isExact();
1817 //===----------------------------------------------------------------------===//
1818 // CastInst Class
1819 //===----------------------------------------------------------------------===//
1821 // Just determine if this cast only deals with integral->integral conversion.
1822 bool CastInst::isIntegerCast() const {
1823 switch (getOpcode()) {
1824 default: return false;
1825 case Instruction::ZExt:
1826 case Instruction::SExt:
1827 case Instruction::Trunc:
1828 return true;
1829 case Instruction::BitCast:
1830 return getOperand(0)->getType()->isIntegerTy() &&
1831 getType()->isIntegerTy();
1835 bool CastInst::isLosslessCast() const {
1836 // Only BitCast can be lossless, exit fast if we're not BitCast
1837 if (getOpcode() != Instruction::BitCast)
1838 return false;
1840 // Identity cast is always lossless
1841 const Type* SrcTy = getOperand(0)->getType();
1842 const Type* DstTy = getType();
1843 if (SrcTy == DstTy)
1844 return true;
1846 // Pointer to pointer is always lossless.
1847 if (SrcTy->isPointerTy())
1848 return DstTy->isPointerTy();
1849 return false; // Other types have no identity values
1852 /// This function determines if the CastInst does not require any bits to be
1853 /// changed in order to effect the cast. Essentially, it identifies cases where
1854 /// no code gen is necessary for the cast, hence the name no-op cast. For
1855 /// example, the following are all no-op casts:
1856 /// # bitcast i32* %x to i8*
1857 /// # bitcast <2 x i32> %x to <4 x i16>
1858 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1859 /// @brief Determine if the described cast is a no-op.
1860 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
1861 const Type *SrcTy,
1862 const Type *DestTy,
1863 const Type *IntPtrTy) {
1864 switch (Opcode) {
1865 default:
1866 assert(!"Invalid CastOp");
1867 case Instruction::Trunc:
1868 case Instruction::ZExt:
1869 case Instruction::SExt:
1870 case Instruction::FPTrunc:
1871 case Instruction::FPExt:
1872 case Instruction::UIToFP:
1873 case Instruction::SIToFP:
1874 case Instruction::FPToUI:
1875 case Instruction::FPToSI:
1876 return false; // These always modify bits
1877 case Instruction::BitCast:
1878 return true; // BitCast never modifies bits.
1879 case Instruction::PtrToInt:
1880 return IntPtrTy->getScalarSizeInBits() ==
1881 DestTy->getScalarSizeInBits();
1882 case Instruction::IntToPtr:
1883 return IntPtrTy->getScalarSizeInBits() ==
1884 SrcTy->getScalarSizeInBits();
1888 /// @brief Determine if a cast is a no-op.
1889 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1890 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
1893 /// This function determines if a pair of casts can be eliminated and what
1894 /// opcode should be used in the elimination. This assumes that there are two
1895 /// instructions like this:
1896 /// * %F = firstOpcode SrcTy %x to MidTy
1897 /// * %S = secondOpcode MidTy %F to DstTy
1898 /// The function returns a resultOpcode so these two casts can be replaced with:
1899 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1900 /// If no such cast is permited, the function returns 0.
1901 unsigned CastInst::isEliminableCastPair(
1902 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1903 const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1905 // Define the 144 possibilities for these two cast instructions. The values
1906 // in this matrix determine what to do in a given situation and select the
1907 // case in the switch below. The rows correspond to firstOp, the columns
1908 // correspond to secondOp. In looking at the table below, keep in mind
1909 // the following cast properties:
1911 // Size Compare Source Destination
1912 // Operator Src ? Size Type Sign Type Sign
1913 // -------- ------------ ------------------- ---------------------
1914 // TRUNC > Integer Any Integral Any
1915 // ZEXT < Integral Unsigned Integer Any
1916 // SEXT < Integral Signed Integer Any
1917 // FPTOUI n/a FloatPt n/a Integral Unsigned
1918 // FPTOSI n/a FloatPt n/a Integral Signed
1919 // UITOFP n/a Integral Unsigned FloatPt n/a
1920 // SITOFP n/a Integral Signed FloatPt n/a
1921 // FPTRUNC > FloatPt n/a FloatPt n/a
1922 // FPEXT < FloatPt n/a FloatPt n/a
1923 // PTRTOINT n/a Pointer n/a Integral Unsigned
1924 // INTTOPTR n/a Integral Unsigned Pointer n/a
1925 // BITCAST = FirstClass n/a FirstClass n/a
1927 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1928 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1929 // into "fptoui double to i64", but this loses information about the range
1930 // of the produced value (we no longer know the top-part is all zeros).
1931 // Further this conversion is often much more expensive for typical hardware,
1932 // and causes issues when building libgcc. We disallow fptosi+sext for the
1933 // same reason.
1934 const unsigned numCastOps =
1935 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1936 static const uint8_t CastResults[numCastOps][numCastOps] = {
1937 // T F F U S F F P I B -+
1938 // R Z S P P I I T P 2 N T |
1939 // U E E 2 2 2 2 R E I T C +- secondOp
1940 // N X X U S F F N X N 2 V |
1941 // C T T I I P P C T T P T -+
1942 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1943 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1944 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1945 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1946 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1947 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1948 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1949 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1950 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1951 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1952 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1953 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1956 // If either of the casts are a bitcast from scalar to vector, disallow the
1957 // merging.
1958 if ((firstOp == Instruction::BitCast &&
1959 isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
1960 (secondOp == Instruction::BitCast &&
1961 isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
1962 return 0; // Disallowed
1964 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1965 [secondOp-Instruction::CastOpsBegin];
1966 switch (ElimCase) {
1967 case 0:
1968 // categorically disallowed
1969 return 0;
1970 case 1:
1971 // allowed, use first cast's opcode
1972 return firstOp;
1973 case 2:
1974 // allowed, use second cast's opcode
1975 return secondOp;
1976 case 3:
1977 // no-op cast in second op implies firstOp as long as the DestTy
1978 // is integer and we are not converting between a vector and a
1979 // non vector type.
1980 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
1981 return firstOp;
1982 return 0;
1983 case 4:
1984 // no-op cast in second op implies firstOp as long as the DestTy
1985 // is floating point.
1986 if (DstTy->isFloatingPointTy())
1987 return firstOp;
1988 return 0;
1989 case 5:
1990 // no-op cast in first op implies secondOp as long as the SrcTy
1991 // is an integer.
1992 if (SrcTy->isIntegerTy())
1993 return secondOp;
1994 return 0;
1995 case 6:
1996 // no-op cast in first op implies secondOp as long as the SrcTy
1997 // is a floating point.
1998 if (SrcTy->isFloatingPointTy())
1999 return secondOp;
2000 return 0;
2001 case 7: {
2002 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2003 if (!IntPtrTy)
2004 return 0;
2005 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2006 unsigned MidSize = MidTy->getScalarSizeInBits();
2007 if (MidSize >= PtrSize)
2008 return Instruction::BitCast;
2009 return 0;
2011 case 8: {
2012 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2013 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2014 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2015 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2016 unsigned DstSize = DstTy->getScalarSizeInBits();
2017 if (SrcSize == DstSize)
2018 return Instruction::BitCast;
2019 else if (SrcSize < DstSize)
2020 return firstOp;
2021 return secondOp;
2023 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2024 return Instruction::ZExt;
2025 case 10:
2026 // fpext followed by ftrunc is allowed if the bit size returned to is
2027 // the same as the original, in which case its just a bitcast
2028 if (SrcTy == DstTy)
2029 return Instruction::BitCast;
2030 return 0; // If the types are not the same we can't eliminate it.
2031 case 11:
2032 // bitcast followed by ptrtoint is allowed as long as the bitcast
2033 // is a pointer to pointer cast.
2034 if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2035 return secondOp;
2036 return 0;
2037 case 12:
2038 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
2039 if (MidTy->isPointerTy() && DstTy->isPointerTy())
2040 return firstOp;
2041 return 0;
2042 case 13: {
2043 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2044 if (!IntPtrTy)
2045 return 0;
2046 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2047 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2048 unsigned DstSize = DstTy->getScalarSizeInBits();
2049 if (SrcSize <= PtrSize && SrcSize == DstSize)
2050 return Instruction::BitCast;
2051 return 0;
2053 case 99:
2054 // cast combination can't happen (error in input). This is for all cases
2055 // where the MidTy is not the same for the two cast instructions.
2056 assert(!"Invalid Cast Combination");
2057 return 0;
2058 default:
2059 assert(!"Error in CastResults table!!!");
2060 return 0;
2062 return 0;
2065 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2066 const Twine &Name, Instruction *InsertBefore) {
2067 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2068 // Construct and return the appropriate CastInst subclass
2069 switch (op) {
2070 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2071 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2072 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2073 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2074 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2075 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2076 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2077 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2078 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2079 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2080 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2081 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2082 default:
2083 assert(!"Invalid opcode provided");
2085 return 0;
2088 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2089 const Twine &Name, BasicBlock *InsertAtEnd) {
2090 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2091 // Construct and return the appropriate CastInst subclass
2092 switch (op) {
2093 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2094 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2095 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2096 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2097 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2098 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2099 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2100 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2101 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2102 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2103 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2104 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2105 default:
2106 assert(!"Invalid opcode provided");
2108 return 0;
2111 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2112 const Twine &Name,
2113 Instruction *InsertBefore) {
2114 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2115 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2116 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2119 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2120 const Twine &Name,
2121 BasicBlock *InsertAtEnd) {
2122 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2123 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2124 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2127 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2128 const Twine &Name,
2129 Instruction *InsertBefore) {
2130 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2131 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2132 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2135 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2136 const Twine &Name,
2137 BasicBlock *InsertAtEnd) {
2138 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2139 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2140 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2143 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2144 const Twine &Name,
2145 Instruction *InsertBefore) {
2146 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2147 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2148 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2151 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2152 const Twine &Name,
2153 BasicBlock *InsertAtEnd) {
2154 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2155 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2156 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2159 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2160 const Twine &Name,
2161 BasicBlock *InsertAtEnd) {
2162 assert(S->getType()->isPointerTy() && "Invalid cast");
2163 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2164 "Invalid cast");
2166 if (Ty->isIntegerTy())
2167 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2168 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2171 /// @brief Create a BitCast or a PtrToInt cast instruction
2172 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2173 const Twine &Name,
2174 Instruction *InsertBefore) {
2175 assert(S->getType()->isPointerTy() && "Invalid cast");
2176 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2177 "Invalid cast");
2179 if (Ty->isIntegerTy())
2180 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2181 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2184 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2185 bool isSigned, const Twine &Name,
2186 Instruction *InsertBefore) {
2187 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2188 "Invalid integer cast");
2189 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2190 unsigned DstBits = Ty->getScalarSizeInBits();
2191 Instruction::CastOps opcode =
2192 (SrcBits == DstBits ? Instruction::BitCast :
2193 (SrcBits > DstBits ? Instruction::Trunc :
2194 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2195 return Create(opcode, C, Ty, Name, InsertBefore);
2198 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2199 bool isSigned, const Twine &Name,
2200 BasicBlock *InsertAtEnd) {
2201 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2202 "Invalid cast");
2203 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2204 unsigned DstBits = Ty->getScalarSizeInBits();
2205 Instruction::CastOps opcode =
2206 (SrcBits == DstBits ? Instruction::BitCast :
2207 (SrcBits > DstBits ? Instruction::Trunc :
2208 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2209 return Create(opcode, C, Ty, Name, InsertAtEnd);
2212 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2213 const Twine &Name,
2214 Instruction *InsertBefore) {
2215 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2216 "Invalid cast");
2217 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2218 unsigned DstBits = Ty->getScalarSizeInBits();
2219 Instruction::CastOps opcode =
2220 (SrcBits == DstBits ? Instruction::BitCast :
2221 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2222 return Create(opcode, C, Ty, Name, InsertBefore);
2225 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2226 const Twine &Name,
2227 BasicBlock *InsertAtEnd) {
2228 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2229 "Invalid cast");
2230 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2231 unsigned DstBits = Ty->getScalarSizeInBits();
2232 Instruction::CastOps opcode =
2233 (SrcBits == DstBits ? Instruction::BitCast :
2234 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2235 return Create(opcode, C, Ty, Name, InsertAtEnd);
2238 // Check whether it is valid to call getCastOpcode for these types.
2239 // This routine must be kept in sync with getCastOpcode.
2240 bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2241 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2242 return false;
2244 if (SrcTy == DestTy)
2245 return true;
2247 if (const VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2248 if (const VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2249 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2250 // An element by element cast. Valid if casting the elements is valid.
2251 SrcTy = SrcVecTy->getElementType();
2252 DestTy = DestVecTy->getElementType();
2255 // Get the bit sizes, we'll need these
2256 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2257 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2259 // Run through the possibilities ...
2260 if (DestTy->isIntegerTy()) { // Casting to integral
2261 if (SrcTy->isIntegerTy()) { // Casting from integral
2262 return true;
2263 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2264 return true;
2265 } else if (SrcTy->isVectorTy()) { // Casting from vector
2266 return DestBits == SrcBits;
2267 } else { // Casting from something else
2268 return SrcTy->isPointerTy();
2270 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2271 if (SrcTy->isIntegerTy()) { // Casting from integral
2272 return true;
2273 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2274 return true;
2275 } else if (SrcTy->isVectorTy()) { // Casting from vector
2276 return DestBits == SrcBits;
2277 } else { // Casting from something else
2278 return false;
2280 } else if (DestTy->isVectorTy()) { // Casting to vector
2281 return DestBits == SrcBits;
2282 } else if (DestTy->isPointerTy()) { // Casting to pointer
2283 if (SrcTy->isPointerTy()) { // Casting from pointer
2284 return true;
2285 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2286 return true;
2287 } else { // Casting from something else
2288 return false;
2290 } else if (DestTy->isX86_MMXTy()) {
2291 if (SrcTy->isVectorTy()) {
2292 return DestBits == SrcBits; // 64-bit vector to MMX
2293 } else {
2294 return false;
2296 } else { // Casting to something else
2297 return false;
2301 // Provide a way to get a "cast" where the cast opcode is inferred from the
2302 // types and size of the operand. This, basically, is a parallel of the
2303 // logic in the castIsValid function below. This axiom should hold:
2304 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2305 // should not assert in castIsValid. In other words, this produces a "correct"
2306 // casting opcode for the arguments passed to it.
2307 // This routine must be kept in sync with isCastable.
2308 Instruction::CastOps
2309 CastInst::getCastOpcode(
2310 const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2311 const Type *SrcTy = Src->getType();
2313 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2314 "Only first class types are castable!");
2316 if (SrcTy == DestTy)
2317 return BitCast;
2319 if (const VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2320 if (const VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2321 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2322 // An element by element cast. Find the appropriate opcode based on the
2323 // element types.
2324 SrcTy = SrcVecTy->getElementType();
2325 DestTy = DestVecTy->getElementType();
2328 // Get the bit sizes, we'll need these
2329 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2330 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2332 // Run through the possibilities ...
2333 if (DestTy->isIntegerTy()) { // Casting to integral
2334 if (SrcTy->isIntegerTy()) { // Casting from integral
2335 if (DestBits < SrcBits)
2336 return Trunc; // int -> smaller int
2337 else if (DestBits > SrcBits) { // its an extension
2338 if (SrcIsSigned)
2339 return SExt; // signed -> SEXT
2340 else
2341 return ZExt; // unsigned -> ZEXT
2342 } else {
2343 return BitCast; // Same size, No-op cast
2345 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2346 if (DestIsSigned)
2347 return FPToSI; // FP -> sint
2348 else
2349 return FPToUI; // FP -> uint
2350 } else if (SrcTy->isVectorTy()) {
2351 assert(DestBits == SrcBits &&
2352 "Casting vector to integer of different width");
2353 return BitCast; // Same size, no-op cast
2354 } else {
2355 assert(SrcTy->isPointerTy() &&
2356 "Casting from a value that is not first-class type");
2357 return PtrToInt; // ptr -> int
2359 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2360 if (SrcTy->isIntegerTy()) { // Casting from integral
2361 if (SrcIsSigned)
2362 return SIToFP; // sint -> FP
2363 else
2364 return UIToFP; // uint -> FP
2365 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2366 if (DestBits < SrcBits) {
2367 return FPTrunc; // FP -> smaller FP
2368 } else if (DestBits > SrcBits) {
2369 return FPExt; // FP -> larger FP
2370 } else {
2371 return BitCast; // same size, no-op cast
2373 } else if (SrcTy->isVectorTy()) {
2374 assert(DestBits == SrcBits &&
2375 "Casting vector to floating point of different width");
2376 return BitCast; // same size, no-op cast
2377 } else {
2378 llvm_unreachable("Casting pointer or non-first class to float");
2380 } else if (DestTy->isVectorTy()) {
2381 assert(DestBits == SrcBits &&
2382 "Illegal cast to vector (wrong type or size)");
2383 return BitCast;
2384 } else if (DestTy->isPointerTy()) {
2385 if (SrcTy->isPointerTy()) {
2386 return BitCast; // ptr -> ptr
2387 } else if (SrcTy->isIntegerTy()) {
2388 return IntToPtr; // int -> ptr
2389 } else {
2390 assert(!"Casting pointer to other than pointer or int");
2392 } else if (DestTy->isX86_MMXTy()) {
2393 if (SrcTy->isVectorTy()) {
2394 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2395 return BitCast; // 64-bit vector to MMX
2396 } else {
2397 assert(!"Illegal cast to X86_MMX");
2399 } else {
2400 assert(!"Casting to type that is not first-class");
2403 // If we fall through to here we probably hit an assertion cast above
2404 // and assertions are not turned on. Anything we return is an error, so
2405 // BitCast is as good a choice as any.
2406 return BitCast;
2409 //===----------------------------------------------------------------------===//
2410 // CastInst SubClass Constructors
2411 //===----------------------------------------------------------------------===//
2413 /// Check that the construction parameters for a CastInst are correct. This
2414 /// could be broken out into the separate constructors but it is useful to have
2415 /// it in one place and to eliminate the redundant code for getting the sizes
2416 /// of the types involved.
2417 bool
2418 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2420 // Check for type sanity on the arguments
2421 const Type *SrcTy = S->getType();
2422 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2423 SrcTy->isAggregateType() || DstTy->isAggregateType())
2424 return false;
2426 // Get the size of the types in bits, we'll need this later
2427 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2428 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2430 // If these are vector types, get the lengths of the vectors (using zero for
2431 // scalar types means that checking that vector lengths match also checks that
2432 // scalars are not being converted to vectors or vectors to scalars).
2433 unsigned SrcLength = SrcTy->isVectorTy() ?
2434 cast<VectorType>(SrcTy)->getNumElements() : 0;
2435 unsigned DstLength = DstTy->isVectorTy() ?
2436 cast<VectorType>(DstTy)->getNumElements() : 0;
2438 // Switch on the opcode provided
2439 switch (op) {
2440 default: return false; // This is an input error
2441 case Instruction::Trunc:
2442 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2443 SrcLength == DstLength && SrcBitSize > DstBitSize;
2444 case Instruction::ZExt:
2445 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2446 SrcLength == DstLength && SrcBitSize < DstBitSize;
2447 case Instruction::SExt:
2448 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2449 SrcLength == DstLength && SrcBitSize < DstBitSize;
2450 case Instruction::FPTrunc:
2451 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2452 SrcLength == DstLength && SrcBitSize > DstBitSize;
2453 case Instruction::FPExt:
2454 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2455 SrcLength == DstLength && SrcBitSize < DstBitSize;
2456 case Instruction::UIToFP:
2457 case Instruction::SIToFP:
2458 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2459 SrcLength == DstLength;
2460 case Instruction::FPToUI:
2461 case Instruction::FPToSI:
2462 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2463 SrcLength == DstLength;
2464 case Instruction::PtrToInt:
2465 return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2466 case Instruction::IntToPtr:
2467 return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2468 case Instruction::BitCast:
2469 // BitCast implies a no-op cast of type only. No bits change.
2470 // However, you can't cast pointers to anything but pointers.
2471 if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2472 return false;
2474 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2475 // these cases, the cast is okay if the source and destination bit widths
2476 // are identical.
2477 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2481 TruncInst::TruncInst(
2482 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2483 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2484 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2487 TruncInst::TruncInst(
2488 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2489 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2490 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2493 ZExtInst::ZExtInst(
2494 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2495 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2496 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2499 ZExtInst::ZExtInst(
2500 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2501 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2502 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2504 SExtInst::SExtInst(
2505 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2506 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2507 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2510 SExtInst::SExtInst(
2511 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2512 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2513 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2516 FPTruncInst::FPTruncInst(
2517 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2518 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2519 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2522 FPTruncInst::FPTruncInst(
2523 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2524 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2525 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2528 FPExtInst::FPExtInst(
2529 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2530 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2531 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2534 FPExtInst::FPExtInst(
2535 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2536 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2537 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2540 UIToFPInst::UIToFPInst(
2541 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2542 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2543 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2546 UIToFPInst::UIToFPInst(
2547 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2548 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2549 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2552 SIToFPInst::SIToFPInst(
2553 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2554 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2555 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2558 SIToFPInst::SIToFPInst(
2559 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2560 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2561 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2564 FPToUIInst::FPToUIInst(
2565 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2566 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2567 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2570 FPToUIInst::FPToUIInst(
2571 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2572 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2573 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2576 FPToSIInst::FPToSIInst(
2577 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2578 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2579 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2582 FPToSIInst::FPToSIInst(
2583 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2584 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2585 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2588 PtrToIntInst::PtrToIntInst(
2589 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2590 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2591 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2594 PtrToIntInst::PtrToIntInst(
2595 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2596 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2597 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2600 IntToPtrInst::IntToPtrInst(
2601 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2602 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2603 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2606 IntToPtrInst::IntToPtrInst(
2607 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2608 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2609 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2612 BitCastInst::BitCastInst(
2613 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2614 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2615 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2618 BitCastInst::BitCastInst(
2619 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2620 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2621 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2624 //===----------------------------------------------------------------------===//
2625 // CmpInst Classes
2626 //===----------------------------------------------------------------------===//
2628 void CmpInst::Anchor() const {}
2630 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2631 Value *LHS, Value *RHS, const Twine &Name,
2632 Instruction *InsertBefore)
2633 : Instruction(ty, op,
2634 OperandTraits<CmpInst>::op_begin(this),
2635 OperandTraits<CmpInst>::operands(this),
2636 InsertBefore) {
2637 Op<0>() = LHS;
2638 Op<1>() = RHS;
2639 setPredicate((Predicate)predicate);
2640 setName(Name);
2643 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2644 Value *LHS, Value *RHS, const Twine &Name,
2645 BasicBlock *InsertAtEnd)
2646 : Instruction(ty, op,
2647 OperandTraits<CmpInst>::op_begin(this),
2648 OperandTraits<CmpInst>::operands(this),
2649 InsertAtEnd) {
2650 Op<0>() = LHS;
2651 Op<1>() = RHS;
2652 setPredicate((Predicate)predicate);
2653 setName(Name);
2656 CmpInst *
2657 CmpInst::Create(OtherOps Op, unsigned short predicate,
2658 Value *S1, Value *S2,
2659 const Twine &Name, Instruction *InsertBefore) {
2660 if (Op == Instruction::ICmp) {
2661 if (InsertBefore)
2662 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2663 S1, S2, Name);
2664 else
2665 return new ICmpInst(CmpInst::Predicate(predicate),
2666 S1, S2, Name);
2669 if (InsertBefore)
2670 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2671 S1, S2, Name);
2672 else
2673 return new FCmpInst(CmpInst::Predicate(predicate),
2674 S1, S2, Name);
2677 CmpInst *
2678 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2679 const Twine &Name, BasicBlock *InsertAtEnd) {
2680 if (Op == Instruction::ICmp) {
2681 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2682 S1, S2, Name);
2684 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2685 S1, S2, Name);
2688 void CmpInst::swapOperands() {
2689 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2690 IC->swapOperands();
2691 else
2692 cast<FCmpInst>(this)->swapOperands();
2695 bool CmpInst::isCommutative() const {
2696 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2697 return IC->isCommutative();
2698 return cast<FCmpInst>(this)->isCommutative();
2701 bool CmpInst::isEquality() const {
2702 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2703 return IC->isEquality();
2704 return cast<FCmpInst>(this)->isEquality();
2708 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2709 switch (pred) {
2710 default: assert(!"Unknown cmp predicate!");
2711 case ICMP_EQ: return ICMP_NE;
2712 case ICMP_NE: return ICMP_EQ;
2713 case ICMP_UGT: return ICMP_ULE;
2714 case ICMP_ULT: return ICMP_UGE;
2715 case ICMP_UGE: return ICMP_ULT;
2716 case ICMP_ULE: return ICMP_UGT;
2717 case ICMP_SGT: return ICMP_SLE;
2718 case ICMP_SLT: return ICMP_SGE;
2719 case ICMP_SGE: return ICMP_SLT;
2720 case ICMP_SLE: return ICMP_SGT;
2722 case FCMP_OEQ: return FCMP_UNE;
2723 case FCMP_ONE: return FCMP_UEQ;
2724 case FCMP_OGT: return FCMP_ULE;
2725 case FCMP_OLT: return FCMP_UGE;
2726 case FCMP_OGE: return FCMP_ULT;
2727 case FCMP_OLE: return FCMP_UGT;
2728 case FCMP_UEQ: return FCMP_ONE;
2729 case FCMP_UNE: return FCMP_OEQ;
2730 case FCMP_UGT: return FCMP_OLE;
2731 case FCMP_ULT: return FCMP_OGE;
2732 case FCMP_UGE: return FCMP_OLT;
2733 case FCMP_ULE: return FCMP_OGT;
2734 case FCMP_ORD: return FCMP_UNO;
2735 case FCMP_UNO: return FCMP_ORD;
2736 case FCMP_TRUE: return FCMP_FALSE;
2737 case FCMP_FALSE: return FCMP_TRUE;
2741 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2742 switch (pred) {
2743 default: assert(! "Unknown icmp predicate!");
2744 case ICMP_EQ: case ICMP_NE:
2745 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2746 return pred;
2747 case ICMP_UGT: return ICMP_SGT;
2748 case ICMP_ULT: return ICMP_SLT;
2749 case ICMP_UGE: return ICMP_SGE;
2750 case ICMP_ULE: return ICMP_SLE;
2754 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2755 switch (pred) {
2756 default: assert(! "Unknown icmp predicate!");
2757 case ICMP_EQ: case ICMP_NE:
2758 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2759 return pred;
2760 case ICMP_SGT: return ICMP_UGT;
2761 case ICMP_SLT: return ICMP_ULT;
2762 case ICMP_SGE: return ICMP_UGE;
2763 case ICMP_SLE: return ICMP_ULE;
2767 /// Initialize a set of values that all satisfy the condition with C.
2769 ConstantRange
2770 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2771 APInt Lower(C);
2772 APInt Upper(C);
2773 uint32_t BitWidth = C.getBitWidth();
2774 switch (pred) {
2775 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2776 case ICmpInst::ICMP_EQ: Upper++; break;
2777 case ICmpInst::ICMP_NE: Lower++; break;
2778 case ICmpInst::ICMP_ULT:
2779 Lower = APInt::getMinValue(BitWidth);
2780 // Check for an empty-set condition.
2781 if (Lower == Upper)
2782 return ConstantRange(BitWidth, /*isFullSet=*/false);
2783 break;
2784 case ICmpInst::ICMP_SLT:
2785 Lower = APInt::getSignedMinValue(BitWidth);
2786 // Check for an empty-set condition.
2787 if (Lower == Upper)
2788 return ConstantRange(BitWidth, /*isFullSet=*/false);
2789 break;
2790 case ICmpInst::ICMP_UGT:
2791 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2792 // Check for an empty-set condition.
2793 if (Lower == Upper)
2794 return ConstantRange(BitWidth, /*isFullSet=*/false);
2795 break;
2796 case ICmpInst::ICMP_SGT:
2797 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2798 // Check for an empty-set condition.
2799 if (Lower == Upper)
2800 return ConstantRange(BitWidth, /*isFullSet=*/false);
2801 break;
2802 case ICmpInst::ICMP_ULE:
2803 Lower = APInt::getMinValue(BitWidth); Upper++;
2804 // Check for a full-set condition.
2805 if (Lower == Upper)
2806 return ConstantRange(BitWidth, /*isFullSet=*/true);
2807 break;
2808 case ICmpInst::ICMP_SLE:
2809 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2810 // Check for a full-set condition.
2811 if (Lower == Upper)
2812 return ConstantRange(BitWidth, /*isFullSet=*/true);
2813 break;
2814 case ICmpInst::ICMP_UGE:
2815 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2816 // Check for a full-set condition.
2817 if (Lower == Upper)
2818 return ConstantRange(BitWidth, /*isFullSet=*/true);
2819 break;
2820 case ICmpInst::ICMP_SGE:
2821 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2822 // Check for a full-set condition.
2823 if (Lower == Upper)
2824 return ConstantRange(BitWidth, /*isFullSet=*/true);
2825 break;
2827 return ConstantRange(Lower, Upper);
2830 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2831 switch (pred) {
2832 default: assert(!"Unknown cmp predicate!");
2833 case ICMP_EQ: case ICMP_NE:
2834 return pred;
2835 case ICMP_SGT: return ICMP_SLT;
2836 case ICMP_SLT: return ICMP_SGT;
2837 case ICMP_SGE: return ICMP_SLE;
2838 case ICMP_SLE: return ICMP_SGE;
2839 case ICMP_UGT: return ICMP_ULT;
2840 case ICMP_ULT: return ICMP_UGT;
2841 case ICMP_UGE: return ICMP_ULE;
2842 case ICMP_ULE: return ICMP_UGE;
2844 case FCMP_FALSE: case FCMP_TRUE:
2845 case FCMP_OEQ: case FCMP_ONE:
2846 case FCMP_UEQ: case FCMP_UNE:
2847 case FCMP_ORD: case FCMP_UNO:
2848 return pred;
2849 case FCMP_OGT: return FCMP_OLT;
2850 case FCMP_OLT: return FCMP_OGT;
2851 case FCMP_OGE: return FCMP_OLE;
2852 case FCMP_OLE: return FCMP_OGE;
2853 case FCMP_UGT: return FCMP_ULT;
2854 case FCMP_ULT: return FCMP_UGT;
2855 case FCMP_UGE: return FCMP_ULE;
2856 case FCMP_ULE: return FCMP_UGE;
2860 bool CmpInst::isUnsigned(unsigned short predicate) {
2861 switch (predicate) {
2862 default: return false;
2863 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2864 case ICmpInst::ICMP_UGE: return true;
2868 bool CmpInst::isSigned(unsigned short predicate) {
2869 switch (predicate) {
2870 default: return false;
2871 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2872 case ICmpInst::ICMP_SGE: return true;
2876 bool CmpInst::isOrdered(unsigned short predicate) {
2877 switch (predicate) {
2878 default: return false;
2879 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2880 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2881 case FCmpInst::FCMP_ORD: return true;
2885 bool CmpInst::isUnordered(unsigned short predicate) {
2886 switch (predicate) {
2887 default: return false;
2888 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2889 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2890 case FCmpInst::FCMP_UNO: return true;
2894 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
2895 switch(predicate) {
2896 default: return false;
2897 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
2898 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
2902 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
2903 switch(predicate) {
2904 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
2905 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
2906 default: return false;
2911 //===----------------------------------------------------------------------===//
2912 // SwitchInst Implementation
2913 //===----------------------------------------------------------------------===//
2915 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
2916 assert(Value && Default && NumReserved);
2917 ReservedSpace = NumReserved;
2918 NumOperands = 2;
2919 OperandList = allocHungoffUses(ReservedSpace);
2921 OperandList[0] = Value;
2922 OperandList[1] = Default;
2925 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2926 /// switch on and a default destination. The number of additional cases can
2927 /// be specified here to make memory allocation more efficient. This
2928 /// constructor can also autoinsert before another instruction.
2929 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2930 Instruction *InsertBefore)
2931 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2932 0, 0, InsertBefore) {
2933 init(Value, Default, 2+NumCases*2);
2936 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2937 /// switch on and a default destination. The number of additional cases can
2938 /// be specified here to make memory allocation more efficient. This
2939 /// constructor also autoinserts at the end of the specified BasicBlock.
2940 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2941 BasicBlock *InsertAtEnd)
2942 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2943 0, 0, InsertAtEnd) {
2944 init(Value, Default, 2+NumCases*2);
2947 SwitchInst::SwitchInst(const SwitchInst &SI)
2948 : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
2949 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
2950 NumOperands = SI.getNumOperands();
2951 Use *OL = OperandList, *InOL = SI.OperandList;
2952 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
2953 OL[i] = InOL[i];
2954 OL[i+1] = InOL[i+1];
2956 SubclassOptionalData = SI.SubclassOptionalData;
2959 SwitchInst::~SwitchInst() {
2960 dropHungoffUses();
2964 /// addCase - Add an entry to the switch instruction...
2966 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2967 unsigned OpNo = NumOperands;
2968 if (OpNo+2 > ReservedSpace)
2969 growOperands(); // Get more space!
2970 // Initialize some new operands.
2971 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2972 NumOperands = OpNo+2;
2973 OperandList[OpNo] = OnVal;
2974 OperandList[OpNo+1] = Dest;
2977 /// removeCase - This method removes the specified successor from the switch
2978 /// instruction. Note that this cannot be used to remove the default
2979 /// destination (successor #0).
2981 void SwitchInst::removeCase(unsigned idx) {
2982 assert(idx != 0 && "Cannot remove the default case!");
2983 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2985 unsigned NumOps = getNumOperands();
2986 Use *OL = OperandList;
2988 // Overwrite this case with the end of the list.
2989 if ((idx + 1) * 2 != NumOps) {
2990 OL[idx * 2] = OL[NumOps - 2];
2991 OL[idx * 2 + 1] = OL[NumOps - 1];
2994 // Nuke the last value.
2995 OL[NumOps-2].set(0);
2996 OL[NumOps-2+1].set(0);
2997 NumOperands = NumOps-2;
3000 /// growOperands - grow operands - This grows the operand list in response
3001 /// to a push_back style of operation. This grows the number of ops by 3 times.
3003 void SwitchInst::growOperands() {
3004 unsigned e = getNumOperands();
3005 unsigned NumOps = e*3;
3007 ReservedSpace = NumOps;
3008 Use *NewOps = allocHungoffUses(NumOps);
3009 Use *OldOps = OperandList;
3010 for (unsigned i = 0; i != e; ++i) {
3011 NewOps[i] = OldOps[i];
3013 OperandList = NewOps;
3014 Use::zap(OldOps, OldOps + e, true);
3018 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3019 return getSuccessor(idx);
3021 unsigned SwitchInst::getNumSuccessorsV() const {
3022 return getNumSuccessors();
3024 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3025 setSuccessor(idx, B);
3028 //===----------------------------------------------------------------------===//
3029 // IndirectBrInst Implementation
3030 //===----------------------------------------------------------------------===//
3032 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3033 assert(Address && Address->getType()->isPointerTy() &&
3034 "Address of indirectbr must be a pointer");
3035 ReservedSpace = 1+NumDests;
3036 NumOperands = 1;
3037 OperandList = allocHungoffUses(ReservedSpace);
3039 OperandList[0] = Address;
3043 /// growOperands - grow operands - This grows the operand list in response
3044 /// to a push_back style of operation. This grows the number of ops by 2 times.
3046 void IndirectBrInst::growOperands() {
3047 unsigned e = getNumOperands();
3048 unsigned NumOps = e*2;
3050 ReservedSpace = NumOps;
3051 Use *NewOps = allocHungoffUses(NumOps);
3052 Use *OldOps = OperandList;
3053 for (unsigned i = 0; i != e; ++i)
3054 NewOps[i] = OldOps[i];
3055 OperandList = NewOps;
3056 Use::zap(OldOps, OldOps + e, true);
3059 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3060 Instruction *InsertBefore)
3061 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3062 0, 0, InsertBefore) {
3063 init(Address, NumCases);
3066 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3067 BasicBlock *InsertAtEnd)
3068 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3069 0, 0, InsertAtEnd) {
3070 init(Address, NumCases);
3073 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3074 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3075 allocHungoffUses(IBI.getNumOperands()),
3076 IBI.getNumOperands()) {
3077 Use *OL = OperandList, *InOL = IBI.OperandList;
3078 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3079 OL[i] = InOL[i];
3080 SubclassOptionalData = IBI.SubclassOptionalData;
3083 IndirectBrInst::~IndirectBrInst() {
3084 dropHungoffUses();
3087 /// addDestination - Add a destination.
3089 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3090 unsigned OpNo = NumOperands;
3091 if (OpNo+1 > ReservedSpace)
3092 growOperands(); // Get more space!
3093 // Initialize some new operands.
3094 assert(OpNo < ReservedSpace && "Growing didn't work!");
3095 NumOperands = OpNo+1;
3096 OperandList[OpNo] = DestBB;
3099 /// removeDestination - This method removes the specified successor from the
3100 /// indirectbr instruction.
3101 void IndirectBrInst::removeDestination(unsigned idx) {
3102 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3104 unsigned NumOps = getNumOperands();
3105 Use *OL = OperandList;
3107 // Replace this value with the last one.
3108 OL[idx+1] = OL[NumOps-1];
3110 // Nuke the last value.
3111 OL[NumOps-1].set(0);
3112 NumOperands = NumOps-1;
3115 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3116 return getSuccessor(idx);
3118 unsigned IndirectBrInst::getNumSuccessorsV() const {
3119 return getNumSuccessors();
3121 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3122 setSuccessor(idx, B);
3125 //===----------------------------------------------------------------------===//
3126 // clone_impl() implementations
3127 //===----------------------------------------------------------------------===//
3129 // Define these methods here so vtables don't get emitted into every translation
3130 // unit that uses these classes.
3132 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3133 return new (getNumOperands()) GetElementPtrInst(*this);
3136 BinaryOperator *BinaryOperator::clone_impl() const {
3137 return Create(getOpcode(), Op<0>(), Op<1>());
3140 FCmpInst* FCmpInst::clone_impl() const {
3141 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3144 ICmpInst* ICmpInst::clone_impl() const {
3145 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3148 ExtractValueInst *ExtractValueInst::clone_impl() const {
3149 return new ExtractValueInst(*this);
3152 InsertValueInst *InsertValueInst::clone_impl() const {
3153 return new InsertValueInst(*this);
3156 AllocaInst *AllocaInst::clone_impl() const {
3157 return new AllocaInst(getAllocatedType(),
3158 (Value*)getOperand(0),
3159 getAlignment());
3162 LoadInst *LoadInst::clone_impl() const {
3163 return new LoadInst(getOperand(0),
3164 Twine(), isVolatile(),
3165 getAlignment());
3168 StoreInst *StoreInst::clone_impl() const {
3169 return new StoreInst(getOperand(0), getOperand(1),
3170 isVolatile(), getAlignment());
3173 TruncInst *TruncInst::clone_impl() const {
3174 return new TruncInst(getOperand(0), getType());
3177 ZExtInst *ZExtInst::clone_impl() const {
3178 return new ZExtInst(getOperand(0), getType());
3181 SExtInst *SExtInst::clone_impl() const {
3182 return new SExtInst(getOperand(0), getType());
3185 FPTruncInst *FPTruncInst::clone_impl() const {
3186 return new FPTruncInst(getOperand(0), getType());
3189 FPExtInst *FPExtInst::clone_impl() const {
3190 return new FPExtInst(getOperand(0), getType());
3193 UIToFPInst *UIToFPInst::clone_impl() const {
3194 return new UIToFPInst(getOperand(0), getType());
3197 SIToFPInst *SIToFPInst::clone_impl() const {
3198 return new SIToFPInst(getOperand(0), getType());
3201 FPToUIInst *FPToUIInst::clone_impl() const {
3202 return new FPToUIInst(getOperand(0), getType());
3205 FPToSIInst *FPToSIInst::clone_impl() const {
3206 return new FPToSIInst(getOperand(0), getType());
3209 PtrToIntInst *PtrToIntInst::clone_impl() const {
3210 return new PtrToIntInst(getOperand(0), getType());
3213 IntToPtrInst *IntToPtrInst::clone_impl() const {
3214 return new IntToPtrInst(getOperand(0), getType());
3217 BitCastInst *BitCastInst::clone_impl() const {
3218 return new BitCastInst(getOperand(0), getType());
3221 CallInst *CallInst::clone_impl() const {
3222 return new(getNumOperands()) CallInst(*this);
3225 SelectInst *SelectInst::clone_impl() const {
3226 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3229 VAArgInst *VAArgInst::clone_impl() const {
3230 return new VAArgInst(getOperand(0), getType());
3233 ExtractElementInst *ExtractElementInst::clone_impl() const {
3234 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3237 InsertElementInst *InsertElementInst::clone_impl() const {
3238 return InsertElementInst::Create(getOperand(0),
3239 getOperand(1),
3240 getOperand(2));
3243 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3244 return new ShuffleVectorInst(getOperand(0),
3245 getOperand(1),
3246 getOperand(2));
3249 PHINode *PHINode::clone_impl() const {
3250 return new PHINode(*this);
3253 ReturnInst *ReturnInst::clone_impl() const {
3254 return new(getNumOperands()) ReturnInst(*this);
3257 BranchInst *BranchInst::clone_impl() const {
3258 return new(getNumOperands()) BranchInst(*this);
3261 SwitchInst *SwitchInst::clone_impl() const {
3262 return new SwitchInst(*this);
3265 IndirectBrInst *IndirectBrInst::clone_impl() const {
3266 return new IndirectBrInst(*this);
3270 InvokeInst *InvokeInst::clone_impl() const {
3271 return new(getNumOperands()) InvokeInst(*this);
3274 UnwindInst *UnwindInst::clone_impl() const {
3275 LLVMContext &Context = getContext();
3276 return new UnwindInst(Context);
3279 UnreachableInst *UnreachableInst::clone_impl() const {
3280 LLVMContext &Context = getContext();
3281 return new UnreachableInst(Context);