1 //===-- Value.cpp - Implement the Value class -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/ADT/DenseMap.h"
34 //===----------------------------------------------------------------------===//
36 //===----------------------------------------------------------------------===//
38 static inline Type
*checkType(const Type
*Ty
) {
39 assert(Ty
&& "Value defined with a null type: Error!");
40 return const_cast<Type
*>(Ty
);
43 Value::Value(const Type
*ty
, unsigned scid
)
44 : SubclassID(scid
), HasValueHandle(0),
45 SubclassOptionalData(0), SubclassData(0), VTy((Type
*)checkType(ty
)),
47 // FIXME: Why isn't this in the subclass gunk??
48 if (isa
<CallInst
>(this) || isa
<InvokeInst
>(this))
49 assert((VTy
->isFirstClassType() || VTy
->isVoidTy() || VTy
->isStructTy()) &&
50 "invalid CallInst type!");
51 else if (!isa
<Constant
>(this) && !isa
<BasicBlock
>(this))
52 assert((VTy
->isFirstClassType() || VTy
->isVoidTy()) &&
53 "Cannot create non-first-class values except for constants!");
57 // Notify all ValueHandles (if present) that this value is going away.
59 ValueHandleBase::ValueIsDeleted(this);
61 #ifndef NDEBUG // Only in -g mode...
62 // Check to make sure that there are no uses of this value that are still
63 // around when the value is destroyed. If there are, then we have a dangling
64 // reference and something is wrong. This code is here to print out what is
65 // still being referenced. The value in question should be printed as
69 dbgs() << "While deleting: " << *VTy
<< " %" << getNameStr() << "\n";
70 for (use_iterator I
= use_begin(), E
= use_end(); I
!= E
; ++I
)
71 dbgs() << "Use still stuck around after Def is destroyed:"
75 assert(use_empty() && "Uses remain when a value is destroyed!");
77 // If this value is named, destroy the name. This should not be in a symtab
82 // There should be no uses of this object anymore, remove it.
83 LeakDetector::removeGarbageObject(this);
86 /// hasNUses - Return true if this Value has exactly N users.
88 bool Value::hasNUses(unsigned N
) const {
89 const_use_iterator UI
= use_begin(), E
= use_end();
92 if (UI
== E
) return false; // Too few.
96 /// hasNUsesOrMore - Return true if this value has N users or more. This is
97 /// logically equivalent to getNumUses() >= N.
99 bool Value::hasNUsesOrMore(unsigned N
) const {
100 const_use_iterator UI
= use_begin(), E
= use_end();
103 if (UI
== E
) return false; // Too few.
108 /// isUsedInBasicBlock - Return true if this value is used in the specified
110 bool Value::isUsedInBasicBlock(const BasicBlock
*BB
) const {
111 for (const_use_iterator I
= use_begin(), E
= use_end(); I
!= E
; ++I
) {
112 const Instruction
*User
= dyn_cast
<Instruction
>(*I
);
113 if (User
&& User
->getParent() == BB
)
120 /// getNumUses - This method computes the number of uses of this Value. This
121 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
123 unsigned Value::getNumUses() const {
124 return (unsigned)std::distance(use_begin(), use_end());
127 static bool getSymTab(Value
*V
, ValueSymbolTable
*&ST
) {
129 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
130 if (BasicBlock
*P
= I
->getParent())
131 if (Function
*PP
= P
->getParent())
132 ST
= &PP
->getValueSymbolTable();
133 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
)) {
134 if (Function
*P
= BB
->getParent())
135 ST
= &P
->getValueSymbolTable();
136 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
137 if (Module
*P
= GV
->getParent())
138 ST
= &P
->getValueSymbolTable();
139 } else if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
140 if (Function
*P
= A
->getParent())
141 ST
= &P
->getValueSymbolTable();
142 } else if (isa
<MDString
>(V
))
145 assert(isa
<Constant
>(V
) && "Unknown value type!");
146 return true; // no name is setable for this.
151 StringRef
Value::getName() const {
152 // Make sure the empty string is still a C string. For historical reasons,
153 // some clients want to call .data() on the result and expect it to be null
155 if (!Name
) return StringRef("", 0);
156 return Name
->getKey();
159 std::string
Value::getNameStr() const {
160 return getName().str();
163 void Value::setName(const Twine
&NewName
) {
164 // Fast path for common IRBuilder case of setName("") when there is no name.
165 if (NewName
.isTriviallyEmpty() && !hasName())
168 SmallString
<256> NameData
;
169 StringRef NameRef
= NewName
.toStringRef(NameData
);
171 // Name isn't changing?
172 if (getName() == NameRef
)
175 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
177 // Get the symbol table to update for this object.
178 ValueSymbolTable
*ST
;
179 if (getSymTab(this, ST
))
180 return; // Cannot set a name on this value (e.g. constant).
182 if (!ST
) { // No symbol table to update? Just do the change.
183 if (NameRef
.empty()) {
184 // Free the name for this value.
193 // NOTE: Could optimize for the case the name is shrinking to not deallocate
196 // Create the new name.
197 Name
= ValueName::Create(NameRef
.begin(), NameRef
.end());
198 Name
->setValue(this);
202 // NOTE: Could optimize for the case the name is shrinking to not deallocate
206 ST
->removeValueName(Name
);
214 // Name is changing to something new.
215 Name
= ST
->createValueName(NameRef
, this);
219 /// takeName - transfer the name from V to this value, setting V's name to
220 /// empty. It is an error to call V->takeName(V).
221 void Value::takeName(Value
*V
) {
222 ValueSymbolTable
*ST
= 0;
223 // If this value has a name, drop it.
225 // Get the symtab this is in.
226 if (getSymTab(this, ST
)) {
227 // We can't set a name on this value, but we need to clear V's name if
229 if (V
->hasName()) V
->setName("");
230 return; // Cannot set a name on this value (e.g. constant).
235 ST
->removeValueName(Name
);
240 // Now we know that this has no name.
242 // If V has no name either, we're done.
243 if (!V
->hasName()) return;
245 // Get this's symtab if we didn't before.
247 if (getSymTab(this, ST
)) {
250 return; // Cannot set a name on this value (e.g. constant).
254 // Get V's ST, this should always succed, because V has a name.
255 ValueSymbolTable
*VST
;
256 bool Failure
= getSymTab(V
, VST
);
257 assert(!Failure
&& "V has a name, so it should have a ST!"); (void)Failure
;
259 // If these values are both in the same symtab, we can do this very fast.
260 // This works even if both values have no symtab yet.
265 Name
->setValue(this);
269 // Otherwise, things are slightly more complex. Remove V's name from VST and
270 // then reinsert it into ST.
273 VST
->removeValueName(V
->Name
);
276 Name
->setValue(this);
279 ST
->reinsertValue(this);
283 // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
284 // except that it doesn't have all of the asserts. The asserts fail because we
285 // are half-way done resolving types, which causes some types to exist as two
286 // different Type*'s at the same time. This is a sledgehammer to work around
289 void Value::uncheckedReplaceAllUsesWith(Value
*New
) {
290 // Notify all ValueHandles (if present) that this value is going away.
292 ValueHandleBase::ValueIsRAUWd(this, New
);
294 while (!use_empty()) {
296 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
297 // constant because they are uniqued.
298 if (Constant
*C
= dyn_cast
<Constant
>(U
.getUser())) {
299 if (!isa
<GlobalValue
>(C
)) {
300 C
->replaceUsesOfWithOnConstant(this, New
, &U
);
308 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this))
309 BB
->replaceSuccessorsPhiUsesWith(cast
<BasicBlock
>(New
));
312 void Value::replaceAllUsesWith(Value
*New
) {
313 assert(New
&& "Value::replaceAllUsesWith(<null>) is invalid!");
314 assert(New
!= this && "this->replaceAllUsesWith(this) is NOT valid!");
315 assert(New
->getType() == getType() &&
316 "replaceAllUses of value with new value of different type!");
318 uncheckedReplaceAllUsesWith(New
);
321 Value
*Value::stripPointerCasts() {
322 if (!getType()->isPointerTy())
325 // Even though we don't look through PHI nodes, we could be called on an
326 // instruction in an unreachable block, which may be on a cycle.
327 SmallPtrSet
<Value
*, 4> Visited
;
332 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
333 if (!GEP
->hasAllZeroIndices())
335 V
= GEP
->getPointerOperand();
336 } else if (Operator::getOpcode(V
) == Instruction::BitCast
) {
337 V
= cast
<Operator
>(V
)->getOperand(0);
338 } else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
339 if (GA
->mayBeOverridden())
341 V
= GA
->getAliasee();
345 assert(V
->getType()->isPointerTy() && "Unexpected operand type!");
346 } while (Visited
.insert(V
));
351 /// isDereferenceablePointer - Test if this value is always a pointer to
352 /// allocated and suitably aligned memory for a simple load or store.
353 bool Value::isDereferenceablePointer() const {
354 // Note that it is not safe to speculate into a malloc'd region because
355 // malloc may return null.
356 // It's also not always safe to follow a bitcast, for example:
357 // bitcast i8* (alloca i8) to i32*
358 // would result in a 4-byte load from a 1-byte alloca. Some cases could
359 // be handled using TargetData to check sizes and alignments though.
361 // These are obviously ok.
362 if (isa
<AllocaInst
>(this)) return true;
364 // Global variables which can't collapse to null are ok.
365 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(this))
366 return !GV
->hasExternalWeakLinkage();
368 // byval arguments are ok.
369 if (const Argument
*A
= dyn_cast
<Argument
>(this))
370 return A
->hasByValAttr();
372 // For GEPs, determine if the indexing lands within the allocated object.
373 if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(this)) {
374 // Conservatively require that the base pointer be fully dereferenceable.
375 if (!GEP
->getOperand(0)->isDereferenceablePointer())
377 // Check the indices.
378 gep_type_iterator GTI
= gep_type_begin(GEP
);
379 for (User::const_op_iterator I
= GEP
->op_begin()+1,
380 E
= GEP
->op_end(); I
!= E
; ++I
) {
382 const Type
*Ty
= *GTI
++;
383 // Struct indices can't be out of bounds.
384 if (isa
<StructType
>(Ty
))
386 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Index
);
389 // Zero is always ok.
392 // Check to see that it's within the bounds of an array.
393 const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
);
396 if (CI
->getValue().getActiveBits() > 64)
398 if (CI
->getZExtValue() >= ATy
->getNumElements())
401 // Indices check out; this is dereferenceable.
405 // If we don't know, assume the worst.
409 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
410 /// return the value in the PHI node corresponding to PredBB. If not, return
411 /// ourself. This is useful if you want to know the value something has in a
412 /// predecessor block.
413 Value
*Value::DoPHITranslation(const BasicBlock
*CurBB
,
414 const BasicBlock
*PredBB
) {
415 PHINode
*PN
= dyn_cast
<PHINode
>(this);
416 if (PN
&& PN
->getParent() == CurBB
)
417 return PN
->getIncomingValueForBlock(PredBB
);
421 LLVMContext
&Value::getContext() const { return VTy
->getContext(); }
423 //===----------------------------------------------------------------------===//
424 // ValueHandleBase Class
425 //===----------------------------------------------------------------------===//
427 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
428 /// List is known to point into the existing use list.
429 void ValueHandleBase::AddToExistingUseList(ValueHandleBase
**List
) {
430 assert(List
&& "Handle list is null?");
432 // Splice ourselves into the list.
437 Next
->setPrevPtr(&Next
);
438 assert(VP
== Next
->VP
&& "Added to wrong list?");
442 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase
*List
) {
443 assert(List
&& "Must insert after existing node");
446 setPrevPtr(&List
->Next
);
449 Next
->setPrevPtr(&Next
);
452 /// AddToUseList - Add this ValueHandle to the use list for VP.
453 void ValueHandleBase::AddToUseList() {
454 assert(VP
&& "Null pointer doesn't have a use list!");
456 LLVMContextImpl
*pImpl
= VP
->getContext().pImpl
;
458 if (VP
->HasValueHandle
) {
459 // If this value already has a ValueHandle, then it must be in the
460 // ValueHandles map already.
461 ValueHandleBase
*&Entry
= pImpl
->ValueHandles
[VP
];
462 assert(Entry
!= 0 && "Value doesn't have any handles?");
463 AddToExistingUseList(&Entry
);
467 // Ok, it doesn't have any handles yet, so we must insert it into the
468 // DenseMap. However, doing this insertion could cause the DenseMap to
469 // reallocate itself, which would invalidate all of the PrevP pointers that
470 // point into the old table. Handle this by checking for reallocation and
471 // updating the stale pointers only if needed.
472 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
473 const void *OldBucketPtr
= Handles
.getPointerIntoBucketsArray();
475 ValueHandleBase
*&Entry
= Handles
[VP
];
476 assert(Entry
== 0 && "Value really did already have handles?");
477 AddToExistingUseList(&Entry
);
478 VP
->HasValueHandle
= true;
480 // If reallocation didn't happen or if this was the first insertion, don't
482 if (Handles
.isPointerIntoBucketsArray(OldBucketPtr
) ||
483 Handles
.size() == 1) {
487 // Okay, reallocation did happen. Fix the Prev Pointers.
488 for (DenseMap
<Value
*, ValueHandleBase
*>::iterator I
= Handles
.begin(),
489 E
= Handles
.end(); I
!= E
; ++I
) {
490 assert(I
->second
&& I
->first
== I
->second
->VP
&& "List invariant broken!");
491 I
->second
->setPrevPtr(&I
->second
);
495 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
496 void ValueHandleBase::RemoveFromUseList() {
497 assert(VP
&& VP
->HasValueHandle
&& "Pointer doesn't have a use list!");
499 // Unlink this from its use list.
500 ValueHandleBase
**PrevPtr
= getPrevPtr();
501 assert(*PrevPtr
== this && "List invariant broken");
505 assert(Next
->getPrevPtr() == &Next
&& "List invariant broken");
506 Next
->setPrevPtr(PrevPtr
);
510 // If the Next pointer was null, then it is possible that this was the last
511 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
513 LLVMContextImpl
*pImpl
= VP
->getContext().pImpl
;
514 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
515 if (Handles
.isPointerIntoBucketsArray(PrevPtr
)) {
517 VP
->HasValueHandle
= false;
522 void ValueHandleBase::ValueIsDeleted(Value
*V
) {
523 assert(V
->HasValueHandle
&& "Should only be called if ValueHandles present");
525 // Get the linked list base, which is guaranteed to exist since the
526 // HasValueHandle flag is set.
527 LLVMContextImpl
*pImpl
= V
->getContext().pImpl
;
528 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[V
];
529 assert(Entry
&& "Value bit set but no entries exist");
531 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
532 // and remove themselves from the list without breaking our iteration. This
533 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
534 // Note that we deliberately do not the support the case when dropping a value
535 // handle results in a new value handle being permanently added to the list
536 // (as might occur in theory for CallbackVH's): the new value handle will not
537 // be processed and the checking code will mete out righteous punishment if
538 // the handle is still present once we have finished processing all the other
539 // value handles (it is fine to momentarily add then remove a value handle).
540 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
541 Iterator
.RemoveFromUseList();
542 Iterator
.AddToExistingUseListAfter(Entry
);
543 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
545 switch (Entry
->getKind()) {
549 // Mark that this value has been deleted by setting it to an invalid Value
551 Entry
->operator=(DenseMapInfo
<Value
*>::getTombstoneKey());
554 // Weak just goes to null, which will unlink it from the list.
558 // Forward to the subclass's implementation.
559 static_cast<CallbackVH
*>(Entry
)->deleted();
564 // All callbacks, weak references, and assertingVHs should be dropped by now.
565 if (V
->HasValueHandle
) {
566 #ifndef NDEBUG // Only in +Asserts mode...
567 dbgs() << "While deleting: " << *V
->getType() << " %" << V
->getNameStr()
569 if (pImpl
->ValueHandles
[V
]->getKind() == Assert
)
570 llvm_unreachable("An asserting value handle still pointed to this"
574 llvm_unreachable("All references to V were not removed?");
579 void ValueHandleBase::ValueIsRAUWd(Value
*Old
, Value
*New
) {
580 assert(Old
->HasValueHandle
&&"Should only be called if ValueHandles present");
581 assert(Old
!= New
&& "Changing value into itself!");
583 // Get the linked list base, which is guaranteed to exist since the
584 // HasValueHandle flag is set.
585 LLVMContextImpl
*pImpl
= Old
->getContext().pImpl
;
586 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[Old
];
588 assert(Entry
&& "Value bit set but no entries exist");
590 // We use a local ValueHandleBase as an iterator so that
591 // ValueHandles can add and remove themselves from the list without
592 // breaking our iteration. This is not really an AssertingVH; we
593 // just have to give ValueHandleBase some kind.
594 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
595 Iterator
.RemoveFromUseList();
596 Iterator
.AddToExistingUseListAfter(Entry
);
597 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
599 switch (Entry
->getKind()) {
601 // Asserting handle does not follow RAUW implicitly.
604 // Tracking goes to new value like a WeakVH. Note that this may make it
605 // something incompatible with its templated type. We don't want to have a
606 // virtual (or inline) interface to handle this though, so instead we make
607 // the TrackingVH accessors guarantee that a client never sees this value.
611 // Weak goes to the new value, which will unlink it from Old's list.
612 Entry
->operator=(New
);
615 // Forward to the subclass's implementation.
616 static_cast<CallbackVH
*>(Entry
)->allUsesReplacedWith(New
);
622 // If any new tracking or weak value handles were added while processing the
623 // list, then complain about it now.
624 if (Old
->HasValueHandle
)
625 for (Entry
= pImpl
->ValueHandles
[Old
]; Entry
; Entry
= Entry
->Next
)
626 switch (Entry
->getKind()) {
629 dbgs() << "After RAUW from " << *Old
->getType() << " %"
630 << Old
->getNameStr() << " to " << *New
->getType() << " %"
631 << New
->getNameStr() << "\n";
632 llvm_unreachable("A tracking or weak value handle still pointed to the"
640 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
642 CallbackVH::~CallbackVH() {}