Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / VMCore / Value.cpp
blobc7a421261423a7502015f53697aee4abee268d46
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include <algorithm>
32 using namespace llvm;
34 //===----------------------------------------------------------------------===//
35 // Value Class
36 //===----------------------------------------------------------------------===//
38 static inline Type *checkType(const Type *Ty) {
39 assert(Ty && "Value defined with a null type: Error!");
40 return const_cast<Type*>(Ty);
43 Value::Value(const Type *ty, unsigned scid)
44 : SubclassID(scid), HasValueHandle(0),
45 SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
46 UseList(0), Name(0) {
47 // FIXME: Why isn't this in the subclass gunk??
48 if (isa<CallInst>(this) || isa<InvokeInst>(this))
49 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
50 "invalid CallInst type!");
51 else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
52 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
53 "Cannot create non-first-class values except for constants!");
56 Value::~Value() {
57 // Notify all ValueHandles (if present) that this value is going away.
58 if (HasValueHandle)
59 ValueHandleBase::ValueIsDeleted(this);
61 #ifndef NDEBUG // Only in -g mode...
62 // Check to make sure that there are no uses of this value that are still
63 // around when the value is destroyed. If there are, then we have a dangling
64 // reference and something is wrong. This code is here to print out what is
65 // still being referenced. The value in question should be printed as
66 // a <badref>
68 if (!use_empty()) {
69 dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
70 for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
71 dbgs() << "Use still stuck around after Def is destroyed:"
72 << **I << "\n";
74 #endif
75 assert(use_empty() && "Uses remain when a value is destroyed!");
77 // If this value is named, destroy the name. This should not be in a symtab
78 // at this point.
79 if (Name)
80 Name->Destroy();
82 // There should be no uses of this object anymore, remove it.
83 LeakDetector::removeGarbageObject(this);
86 /// hasNUses - Return true if this Value has exactly N users.
87 ///
88 bool Value::hasNUses(unsigned N) const {
89 const_use_iterator UI = use_begin(), E = use_end();
91 for (; N; --N, ++UI)
92 if (UI == E) return false; // Too few.
93 return UI == E;
96 /// hasNUsesOrMore - Return true if this value has N users or more. This is
97 /// logically equivalent to getNumUses() >= N.
98 ///
99 bool Value::hasNUsesOrMore(unsigned N) const {
100 const_use_iterator UI = use_begin(), E = use_end();
102 for (; N; --N, ++UI)
103 if (UI == E) return false; // Too few.
105 return true;
108 /// isUsedInBasicBlock - Return true if this value is used in the specified
109 /// basic block.
110 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
111 for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
112 const Instruction *User = dyn_cast<Instruction>(*I);
113 if (User && User->getParent() == BB)
114 return true;
116 return false;
120 /// getNumUses - This method computes the number of uses of this Value. This
121 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
122 /// values.
123 unsigned Value::getNumUses() const {
124 return (unsigned)std::distance(use_begin(), use_end());
127 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
128 ST = 0;
129 if (Instruction *I = dyn_cast<Instruction>(V)) {
130 if (BasicBlock *P = I->getParent())
131 if (Function *PP = P->getParent())
132 ST = &PP->getValueSymbolTable();
133 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
134 if (Function *P = BB->getParent())
135 ST = &P->getValueSymbolTable();
136 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
137 if (Module *P = GV->getParent())
138 ST = &P->getValueSymbolTable();
139 } else if (Argument *A = dyn_cast<Argument>(V)) {
140 if (Function *P = A->getParent())
141 ST = &P->getValueSymbolTable();
142 } else if (isa<MDString>(V))
143 return true;
144 else {
145 assert(isa<Constant>(V) && "Unknown value type!");
146 return true; // no name is setable for this.
148 return false;
151 StringRef Value::getName() const {
152 // Make sure the empty string is still a C string. For historical reasons,
153 // some clients want to call .data() on the result and expect it to be null
154 // terminated.
155 if (!Name) return StringRef("", 0);
156 return Name->getKey();
159 std::string Value::getNameStr() const {
160 return getName().str();
163 void Value::setName(const Twine &NewName) {
164 // Fast path for common IRBuilder case of setName("") when there is no name.
165 if (NewName.isTriviallyEmpty() && !hasName())
166 return;
168 SmallString<256> NameData;
169 StringRef NameRef = NewName.toStringRef(NameData);
171 // Name isn't changing?
172 if (getName() == NameRef)
173 return;
175 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
177 // Get the symbol table to update for this object.
178 ValueSymbolTable *ST;
179 if (getSymTab(this, ST))
180 return; // Cannot set a name on this value (e.g. constant).
182 if (!ST) { // No symbol table to update? Just do the change.
183 if (NameRef.empty()) {
184 // Free the name for this value.
185 Name->Destroy();
186 Name = 0;
187 return;
190 if (Name)
191 Name->Destroy();
193 // NOTE: Could optimize for the case the name is shrinking to not deallocate
194 // then reallocated.
196 // Create the new name.
197 Name = ValueName::Create(NameRef.begin(), NameRef.end());
198 Name->setValue(this);
199 return;
202 // NOTE: Could optimize for the case the name is shrinking to not deallocate
203 // then reallocated.
204 if (hasName()) {
205 // Remove old name.
206 ST->removeValueName(Name);
207 Name->Destroy();
208 Name = 0;
210 if (NameRef.empty())
211 return;
214 // Name is changing to something new.
215 Name = ST->createValueName(NameRef, this);
219 /// takeName - transfer the name from V to this value, setting V's name to
220 /// empty. It is an error to call V->takeName(V).
221 void Value::takeName(Value *V) {
222 ValueSymbolTable *ST = 0;
223 // If this value has a name, drop it.
224 if (hasName()) {
225 // Get the symtab this is in.
226 if (getSymTab(this, ST)) {
227 // We can't set a name on this value, but we need to clear V's name if
228 // it has one.
229 if (V->hasName()) V->setName("");
230 return; // Cannot set a name on this value (e.g. constant).
233 // Remove old name.
234 if (ST)
235 ST->removeValueName(Name);
236 Name->Destroy();
237 Name = 0;
240 // Now we know that this has no name.
242 // If V has no name either, we're done.
243 if (!V->hasName()) return;
245 // Get this's symtab if we didn't before.
246 if (!ST) {
247 if (getSymTab(this, ST)) {
248 // Clear V's name.
249 V->setName("");
250 return; // Cannot set a name on this value (e.g. constant).
254 // Get V's ST, this should always succed, because V has a name.
255 ValueSymbolTable *VST;
256 bool Failure = getSymTab(V, VST);
257 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
259 // If these values are both in the same symtab, we can do this very fast.
260 // This works even if both values have no symtab yet.
261 if (ST == VST) {
262 // Take the name!
263 Name = V->Name;
264 V->Name = 0;
265 Name->setValue(this);
266 return;
269 // Otherwise, things are slightly more complex. Remove V's name from VST and
270 // then reinsert it into ST.
272 if (VST)
273 VST->removeValueName(V->Name);
274 Name = V->Name;
275 V->Name = 0;
276 Name->setValue(this);
278 if (ST)
279 ST->reinsertValue(this);
283 // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
284 // except that it doesn't have all of the asserts. The asserts fail because we
285 // are half-way done resolving types, which causes some types to exist as two
286 // different Type*'s at the same time. This is a sledgehammer to work around
287 // this problem.
289 void Value::uncheckedReplaceAllUsesWith(Value *New) {
290 // Notify all ValueHandles (if present) that this value is going away.
291 if (HasValueHandle)
292 ValueHandleBase::ValueIsRAUWd(this, New);
294 while (!use_empty()) {
295 Use &U = *UseList;
296 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
297 // constant because they are uniqued.
298 if (Constant *C = dyn_cast<Constant>(U.getUser())) {
299 if (!isa<GlobalValue>(C)) {
300 C->replaceUsesOfWithOnConstant(this, New, &U);
301 continue;
305 U.set(New);
308 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
309 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
312 void Value::replaceAllUsesWith(Value *New) {
313 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
314 assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
315 assert(New->getType() == getType() &&
316 "replaceAllUses of value with new value of different type!");
318 uncheckedReplaceAllUsesWith(New);
321 Value *Value::stripPointerCasts() {
322 if (!getType()->isPointerTy())
323 return this;
325 // Even though we don't look through PHI nodes, we could be called on an
326 // instruction in an unreachable block, which may be on a cycle.
327 SmallPtrSet<Value *, 4> Visited;
329 Value *V = this;
330 Visited.insert(V);
331 do {
332 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
333 if (!GEP->hasAllZeroIndices())
334 return V;
335 V = GEP->getPointerOperand();
336 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
337 V = cast<Operator>(V)->getOperand(0);
338 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
339 if (GA->mayBeOverridden())
340 return V;
341 V = GA->getAliasee();
342 } else {
343 return V;
345 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
346 } while (Visited.insert(V));
348 return V;
351 /// isDereferenceablePointer - Test if this value is always a pointer to
352 /// allocated and suitably aligned memory for a simple load or store.
353 bool Value::isDereferenceablePointer() const {
354 // Note that it is not safe to speculate into a malloc'd region because
355 // malloc may return null.
356 // It's also not always safe to follow a bitcast, for example:
357 // bitcast i8* (alloca i8) to i32*
358 // would result in a 4-byte load from a 1-byte alloca. Some cases could
359 // be handled using TargetData to check sizes and alignments though.
361 // These are obviously ok.
362 if (isa<AllocaInst>(this)) return true;
364 // Global variables which can't collapse to null are ok.
365 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(this))
366 return !GV->hasExternalWeakLinkage();
368 // byval arguments are ok.
369 if (const Argument *A = dyn_cast<Argument>(this))
370 return A->hasByValAttr();
372 // For GEPs, determine if the indexing lands within the allocated object.
373 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(this)) {
374 // Conservatively require that the base pointer be fully dereferenceable.
375 if (!GEP->getOperand(0)->isDereferenceablePointer())
376 return false;
377 // Check the indices.
378 gep_type_iterator GTI = gep_type_begin(GEP);
379 for (User::const_op_iterator I = GEP->op_begin()+1,
380 E = GEP->op_end(); I != E; ++I) {
381 Value *Index = *I;
382 const Type *Ty = *GTI++;
383 // Struct indices can't be out of bounds.
384 if (isa<StructType>(Ty))
385 continue;
386 ConstantInt *CI = dyn_cast<ConstantInt>(Index);
387 if (!CI)
388 return false;
389 // Zero is always ok.
390 if (CI->isZero())
391 continue;
392 // Check to see that it's within the bounds of an array.
393 const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
394 if (!ATy)
395 return false;
396 if (CI->getValue().getActiveBits() > 64)
397 return false;
398 if (CI->getZExtValue() >= ATy->getNumElements())
399 return false;
401 // Indices check out; this is dereferenceable.
402 return true;
405 // If we don't know, assume the worst.
406 return false;
409 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
410 /// return the value in the PHI node corresponding to PredBB. If not, return
411 /// ourself. This is useful if you want to know the value something has in a
412 /// predecessor block.
413 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
414 const BasicBlock *PredBB) {
415 PHINode *PN = dyn_cast<PHINode>(this);
416 if (PN && PN->getParent() == CurBB)
417 return PN->getIncomingValueForBlock(PredBB);
418 return this;
421 LLVMContext &Value::getContext() const { return VTy->getContext(); }
423 //===----------------------------------------------------------------------===//
424 // ValueHandleBase Class
425 //===----------------------------------------------------------------------===//
427 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
428 /// List is known to point into the existing use list.
429 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
430 assert(List && "Handle list is null?");
432 // Splice ourselves into the list.
433 Next = *List;
434 *List = this;
435 setPrevPtr(List);
436 if (Next) {
437 Next->setPrevPtr(&Next);
438 assert(VP == Next->VP && "Added to wrong list?");
442 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
443 assert(List && "Must insert after existing node");
445 Next = List->Next;
446 setPrevPtr(&List->Next);
447 List->Next = this;
448 if (Next)
449 Next->setPrevPtr(&Next);
452 /// AddToUseList - Add this ValueHandle to the use list for VP.
453 void ValueHandleBase::AddToUseList() {
454 assert(VP && "Null pointer doesn't have a use list!");
456 LLVMContextImpl *pImpl = VP->getContext().pImpl;
458 if (VP->HasValueHandle) {
459 // If this value already has a ValueHandle, then it must be in the
460 // ValueHandles map already.
461 ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
462 assert(Entry != 0 && "Value doesn't have any handles?");
463 AddToExistingUseList(&Entry);
464 return;
467 // Ok, it doesn't have any handles yet, so we must insert it into the
468 // DenseMap. However, doing this insertion could cause the DenseMap to
469 // reallocate itself, which would invalidate all of the PrevP pointers that
470 // point into the old table. Handle this by checking for reallocation and
471 // updating the stale pointers only if needed.
472 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
473 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
475 ValueHandleBase *&Entry = Handles[VP];
476 assert(Entry == 0 && "Value really did already have handles?");
477 AddToExistingUseList(&Entry);
478 VP->HasValueHandle = true;
480 // If reallocation didn't happen or if this was the first insertion, don't
481 // walk the table.
482 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
483 Handles.size() == 1) {
484 return;
487 // Okay, reallocation did happen. Fix the Prev Pointers.
488 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
489 E = Handles.end(); I != E; ++I) {
490 assert(I->second && I->first == I->second->VP && "List invariant broken!");
491 I->second->setPrevPtr(&I->second);
495 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
496 void ValueHandleBase::RemoveFromUseList() {
497 assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!");
499 // Unlink this from its use list.
500 ValueHandleBase **PrevPtr = getPrevPtr();
501 assert(*PrevPtr == this && "List invariant broken");
503 *PrevPtr = Next;
504 if (Next) {
505 assert(Next->getPrevPtr() == &Next && "List invariant broken");
506 Next->setPrevPtr(PrevPtr);
507 return;
510 // If the Next pointer was null, then it is possible that this was the last
511 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
512 // map.
513 LLVMContextImpl *pImpl = VP->getContext().pImpl;
514 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
515 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
516 Handles.erase(VP);
517 VP->HasValueHandle = false;
522 void ValueHandleBase::ValueIsDeleted(Value *V) {
523 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
525 // Get the linked list base, which is guaranteed to exist since the
526 // HasValueHandle flag is set.
527 LLVMContextImpl *pImpl = V->getContext().pImpl;
528 ValueHandleBase *Entry = pImpl->ValueHandles[V];
529 assert(Entry && "Value bit set but no entries exist");
531 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
532 // and remove themselves from the list without breaking our iteration. This
533 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
534 // Note that we deliberately do not the support the case when dropping a value
535 // handle results in a new value handle being permanently added to the list
536 // (as might occur in theory for CallbackVH's): the new value handle will not
537 // be processed and the checking code will mete out righteous punishment if
538 // the handle is still present once we have finished processing all the other
539 // value handles (it is fine to momentarily add then remove a value handle).
540 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
541 Iterator.RemoveFromUseList();
542 Iterator.AddToExistingUseListAfter(Entry);
543 assert(Entry->Next == &Iterator && "Loop invariant broken.");
545 switch (Entry->getKind()) {
546 case Assert:
547 break;
548 case Tracking:
549 // Mark that this value has been deleted by setting it to an invalid Value
550 // pointer.
551 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
552 break;
553 case Weak:
554 // Weak just goes to null, which will unlink it from the list.
555 Entry->operator=(0);
556 break;
557 case Callback:
558 // Forward to the subclass's implementation.
559 static_cast<CallbackVH*>(Entry)->deleted();
560 break;
564 // All callbacks, weak references, and assertingVHs should be dropped by now.
565 if (V->HasValueHandle) {
566 #ifndef NDEBUG // Only in +Asserts mode...
567 dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
568 << "\n";
569 if (pImpl->ValueHandles[V]->getKind() == Assert)
570 llvm_unreachable("An asserting value handle still pointed to this"
571 " value!");
573 #endif
574 llvm_unreachable("All references to V were not removed?");
579 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
580 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
581 assert(Old != New && "Changing value into itself!");
583 // Get the linked list base, which is guaranteed to exist since the
584 // HasValueHandle flag is set.
585 LLVMContextImpl *pImpl = Old->getContext().pImpl;
586 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
588 assert(Entry && "Value bit set but no entries exist");
590 // We use a local ValueHandleBase as an iterator so that
591 // ValueHandles can add and remove themselves from the list without
592 // breaking our iteration. This is not really an AssertingVH; we
593 // just have to give ValueHandleBase some kind.
594 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
595 Iterator.RemoveFromUseList();
596 Iterator.AddToExistingUseListAfter(Entry);
597 assert(Entry->Next == &Iterator && "Loop invariant broken.");
599 switch (Entry->getKind()) {
600 case Assert:
601 // Asserting handle does not follow RAUW implicitly.
602 break;
603 case Tracking:
604 // Tracking goes to new value like a WeakVH. Note that this may make it
605 // something incompatible with its templated type. We don't want to have a
606 // virtual (or inline) interface to handle this though, so instead we make
607 // the TrackingVH accessors guarantee that a client never sees this value.
609 // FALLTHROUGH
610 case Weak:
611 // Weak goes to the new value, which will unlink it from Old's list.
612 Entry->operator=(New);
613 break;
614 case Callback:
615 // Forward to the subclass's implementation.
616 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
617 break;
621 #ifndef NDEBUG
622 // If any new tracking or weak value handles were added while processing the
623 // list, then complain about it now.
624 if (Old->HasValueHandle)
625 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
626 switch (Entry->getKind()) {
627 case Tracking:
628 case Weak:
629 dbgs() << "After RAUW from " << *Old->getType() << " %"
630 << Old->getNameStr() << " to " << *New->getType() << " %"
631 << New->getNameStr() << "\n";
632 llvm_unreachable("A tracking or weak value handle still pointed to the"
633 " old value!\n");
634 default:
635 break;
637 #endif
640 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
641 /// more than once.
642 CallbackVH::~CallbackVH() {}