Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / VMCore / Verifier.cpp
blobc35d5ad2b6bb57a639ac23df55e43d984175c084
1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/Analysis/Dominators.h"
53 #include "llvm/Assembly/Writer.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/Support/CallSite.h"
56 #include "llvm/Support/CFG.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/InstVisitor.h"
59 #include "llvm/ADT/SetVector.h"
60 #include "llvm/ADT/SmallPtrSet.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <algorithm>
67 #include <cstdarg>
68 using namespace llvm;
70 namespace { // Anonymous namespace for class
71 struct PreVerifier : public FunctionPass {
72 static char ID; // Pass ID, replacement for typeid
74 PreVerifier() : FunctionPass(ID) {
75 initializePreVerifierPass(*PassRegistry::getPassRegistry());
78 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesAll();
82 // Check that the prerequisites for successful DominatorTree construction
83 // are satisfied.
84 bool runOnFunction(Function &F) {
85 bool Broken = false;
87 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
88 if (I->empty() || !I->back().isTerminator()) {
89 dbgs() << "Basic Block in function '" << F.getName()
90 << "' does not have terminator!\n";
91 WriteAsOperand(dbgs(), I, true);
92 dbgs() << "\n";
93 Broken = true;
97 if (Broken)
98 report_fatal_error("Broken module, no Basic Block terminator!");
100 return false;
105 char PreVerifier::ID = 0;
106 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
107 false, false)
108 static char &PreVerifyID = PreVerifier::ID;
110 namespace {
111 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
112 static char ID; // Pass ID, replacement for typeid
113 bool Broken; // Is this module found to be broken?
114 bool RealPass; // Are we not being run by a PassManager?
115 VerifierFailureAction action;
116 // What to do if verification fails.
117 Module *Mod; // Module we are verifying right now
118 LLVMContext *Context; // Context within which we are verifying
119 DominatorTree *DT; // Dominator Tree, caution can be null!
121 std::string Messages;
122 raw_string_ostream MessagesStr;
124 /// InstInThisBlock - when verifying a basic block, keep track of all of the
125 /// instructions we have seen so far. This allows us to do efficient
126 /// dominance checks for the case when an instruction has an operand that is
127 /// an instruction in the same block.
128 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
130 /// MDNodes - keep track of the metadata nodes that have been checked
131 /// already.
132 SmallPtrSet<MDNode *, 32> MDNodes;
134 Verifier()
135 : FunctionPass(ID),
136 Broken(false), RealPass(true), action(AbortProcessAction),
137 Mod(0), Context(0), DT(0), MessagesStr(Messages) {
138 initializeVerifierPass(*PassRegistry::getPassRegistry());
140 explicit Verifier(VerifierFailureAction ctn)
141 : FunctionPass(ID),
142 Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
143 MessagesStr(Messages) {
144 initializeVerifierPass(*PassRegistry::getPassRegistry());
147 bool doInitialization(Module &M) {
148 Mod = &M;
149 Context = &M.getContext();
151 // If this is a real pass, in a pass manager, we must abort before
152 // returning back to the pass manager, or else the pass manager may try to
153 // run other passes on the broken module.
154 if (RealPass)
155 return abortIfBroken();
156 return false;
159 bool runOnFunction(Function &F) {
160 // Get dominator information if we are being run by PassManager
161 if (RealPass) DT = &getAnalysis<DominatorTree>();
163 Mod = F.getParent();
164 if (!Context) Context = &F.getContext();
166 visit(F);
167 InstsInThisBlock.clear();
169 // If this is a real pass, in a pass manager, we must abort before
170 // returning back to the pass manager, or else the pass manager may try to
171 // run other passes on the broken module.
172 if (RealPass)
173 return abortIfBroken();
175 return false;
178 bool doFinalization(Module &M) {
179 // Scan through, checking all of the external function's linkage now...
180 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
181 visitGlobalValue(*I);
183 // Check to make sure function prototypes are okay.
184 if (I->isDeclaration()) visitFunction(*I);
187 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
188 I != E; ++I)
189 visitGlobalVariable(*I);
191 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
192 I != E; ++I)
193 visitGlobalAlias(*I);
195 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
196 E = M.named_metadata_end(); I != E; ++I)
197 visitNamedMDNode(*I);
199 // If the module is broken, abort at this time.
200 return abortIfBroken();
203 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
204 AU.setPreservesAll();
205 AU.addRequiredID(PreVerifyID);
206 if (RealPass)
207 AU.addRequired<DominatorTree>();
210 /// abortIfBroken - If the module is broken and we are supposed to abort on
211 /// this condition, do so.
213 bool abortIfBroken() {
214 if (!Broken) return false;
215 MessagesStr << "Broken module found, ";
216 switch (action) {
217 default: llvm_unreachable("Unknown action");
218 case AbortProcessAction:
219 MessagesStr << "compilation aborted!\n";
220 dbgs() << MessagesStr.str();
221 // Client should choose different reaction if abort is not desired
222 abort();
223 case PrintMessageAction:
224 MessagesStr << "verification continues.\n";
225 dbgs() << MessagesStr.str();
226 return false;
227 case ReturnStatusAction:
228 MessagesStr << "compilation terminated.\n";
229 return true;
234 // Verification methods...
235 void visitGlobalValue(GlobalValue &GV);
236 void visitGlobalVariable(GlobalVariable &GV);
237 void visitGlobalAlias(GlobalAlias &GA);
238 void visitNamedMDNode(NamedMDNode &NMD);
239 void visitMDNode(MDNode &MD, Function *F);
240 void visitFunction(Function &F);
241 void visitBasicBlock(BasicBlock &BB);
242 using InstVisitor<Verifier>::visit;
244 void visit(Instruction &I);
246 void visitTruncInst(TruncInst &I);
247 void visitZExtInst(ZExtInst &I);
248 void visitSExtInst(SExtInst &I);
249 void visitFPTruncInst(FPTruncInst &I);
250 void visitFPExtInst(FPExtInst &I);
251 void visitFPToUIInst(FPToUIInst &I);
252 void visitFPToSIInst(FPToSIInst &I);
253 void visitUIToFPInst(UIToFPInst &I);
254 void visitSIToFPInst(SIToFPInst &I);
255 void visitIntToPtrInst(IntToPtrInst &I);
256 void visitPtrToIntInst(PtrToIntInst &I);
257 void visitBitCastInst(BitCastInst &I);
258 void visitPHINode(PHINode &PN);
259 void visitBinaryOperator(BinaryOperator &B);
260 void visitICmpInst(ICmpInst &IC);
261 void visitFCmpInst(FCmpInst &FC);
262 void visitExtractElementInst(ExtractElementInst &EI);
263 void visitInsertElementInst(InsertElementInst &EI);
264 void visitShuffleVectorInst(ShuffleVectorInst &EI);
265 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
266 void visitCallInst(CallInst &CI);
267 void visitInvokeInst(InvokeInst &II);
268 void visitGetElementPtrInst(GetElementPtrInst &GEP);
269 void visitLoadInst(LoadInst &LI);
270 void visitStoreInst(StoreInst &SI);
271 void visitInstruction(Instruction &I);
272 void visitTerminatorInst(TerminatorInst &I);
273 void visitBranchInst(BranchInst &BI);
274 void visitReturnInst(ReturnInst &RI);
275 void visitSwitchInst(SwitchInst &SI);
276 void visitIndirectBrInst(IndirectBrInst &BI);
277 void visitSelectInst(SelectInst &SI);
278 void visitUserOp1(Instruction &I);
279 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
280 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
281 void visitAllocaInst(AllocaInst &AI);
282 void visitExtractValueInst(ExtractValueInst &EVI);
283 void visitInsertValueInst(InsertValueInst &IVI);
285 void VerifyCallSite(CallSite CS);
286 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
287 int VT, unsigned ArgNo, std::string &Suffix);
288 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
289 unsigned RetNum, unsigned ParamNum, ...);
290 void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
291 bool isReturnValue, const Value *V);
292 void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
293 const Value *V);
295 void WriteValue(const Value *V) {
296 if (!V) return;
297 if (isa<Instruction>(V)) {
298 MessagesStr << *V << '\n';
299 } else {
300 WriteAsOperand(MessagesStr, V, true, Mod);
301 MessagesStr << '\n';
305 void WriteType(const Type *T) {
306 if (!T) return;
307 MessagesStr << ' ' << *T;
311 // CheckFailed - A check failed, so print out the condition and the message
312 // that failed. This provides a nice place to put a breakpoint if you want
313 // to see why something is not correct.
314 void CheckFailed(const Twine &Message,
315 const Value *V1 = 0, const Value *V2 = 0,
316 const Value *V3 = 0, const Value *V4 = 0) {
317 MessagesStr << Message.str() << "\n";
318 WriteValue(V1);
319 WriteValue(V2);
320 WriteValue(V3);
321 WriteValue(V4);
322 Broken = true;
325 void CheckFailed(const Twine &Message, const Value *V1,
326 const Type *T2, const Value *V3 = 0) {
327 MessagesStr << Message.str() << "\n";
328 WriteValue(V1);
329 WriteType(T2);
330 WriteValue(V3);
331 Broken = true;
334 void CheckFailed(const Twine &Message, const Type *T1,
335 const Type *T2 = 0, const Type *T3 = 0) {
336 MessagesStr << Message.str() << "\n";
337 WriteType(T1);
338 WriteType(T2);
339 WriteType(T3);
340 Broken = true;
343 } // End anonymous namespace
345 char Verifier::ID = 0;
346 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
347 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
348 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
349 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
351 // Assert - We know that cond should be true, if not print an error message.
352 #define Assert(C, M) \
353 do { if (!(C)) { CheckFailed(M); return; } } while (0)
354 #define Assert1(C, M, V1) \
355 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
356 #define Assert2(C, M, V1, V2) \
357 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
358 #define Assert3(C, M, V1, V2, V3) \
359 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
360 #define Assert4(C, M, V1, V2, V3, V4) \
361 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
363 void Verifier::visit(Instruction &I) {
364 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
365 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
366 InstVisitor<Verifier>::visit(I);
370 void Verifier::visitGlobalValue(GlobalValue &GV) {
371 Assert1(!GV.isDeclaration() ||
372 GV.isMaterializable() ||
373 GV.hasExternalLinkage() ||
374 GV.hasDLLImportLinkage() ||
375 GV.hasExternalWeakLinkage() ||
376 (isa<GlobalAlias>(GV) &&
377 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
378 "Global is external, but doesn't have external or dllimport or weak linkage!",
379 &GV);
381 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
382 "Global is marked as dllimport, but not external", &GV);
384 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
385 "Only global variables can have appending linkage!", &GV);
387 if (GV.hasAppendingLinkage()) {
388 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
389 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
390 "Only global arrays can have appending linkage!", GVar);
393 Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
394 "linker_private_weak_def_auto can only have default visibility!",
395 &GV);
398 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
399 if (GV.hasInitializer()) {
400 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
401 "Global variable initializer type does not match global "
402 "variable type!", &GV);
404 // If the global has common linkage, it must have a zero initializer and
405 // cannot be constant.
406 if (GV.hasCommonLinkage()) {
407 Assert1(GV.getInitializer()->isNullValue(),
408 "'common' global must have a zero initializer!", &GV);
409 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
410 &GV);
412 } else {
413 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
414 GV.hasExternalWeakLinkage(),
415 "invalid linkage type for global declaration", &GV);
418 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
419 GV.getName() == "llvm.global_dtors")) {
420 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
421 "invalid linkage for intrinsic global variable", &GV);
422 // Don't worry about emitting an error for it not being an array,
423 // visitGlobalValue will complain on appending non-array.
424 if (const ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
425 const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
426 const PointerType *FuncPtrTy =
427 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
428 Assert1(STy && STy->getNumElements() == 2 &&
429 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
430 STy->getTypeAtIndex(1) == FuncPtrTy,
431 "wrong type for intrinsic global variable", &GV);
435 visitGlobalValue(GV);
438 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
439 Assert1(!GA.getName().empty(),
440 "Alias name cannot be empty!", &GA);
441 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
442 GA.hasWeakLinkage(),
443 "Alias should have external or external weak linkage!", &GA);
444 Assert1(GA.getAliasee(),
445 "Aliasee cannot be NULL!", &GA);
446 Assert1(GA.getType() == GA.getAliasee()->getType(),
447 "Alias and aliasee types should match!", &GA);
448 Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
450 if (!isa<GlobalValue>(GA.getAliasee())) {
451 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
452 Assert1(CE &&
453 (CE->getOpcode() == Instruction::BitCast ||
454 CE->getOpcode() == Instruction::GetElementPtr) &&
455 isa<GlobalValue>(CE->getOperand(0)),
456 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
457 &GA);
460 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
461 Assert1(Aliasee,
462 "Aliasing chain should end with function or global variable", &GA);
464 visitGlobalValue(GA);
467 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
468 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
469 MDNode *MD = NMD.getOperand(i);
470 if (!MD)
471 continue;
473 Assert1(!MD->isFunctionLocal(),
474 "Named metadata operand cannot be function local!", MD);
475 visitMDNode(*MD, 0);
479 void Verifier::visitMDNode(MDNode &MD, Function *F) {
480 // Only visit each node once. Metadata can be mutually recursive, so this
481 // avoids infinite recursion here, as well as being an optimization.
482 if (!MDNodes.insert(&MD))
483 return;
485 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
486 Value *Op = MD.getOperand(i);
487 if (!Op)
488 continue;
489 if (isa<Constant>(Op) || isa<MDString>(Op))
490 continue;
491 if (MDNode *N = dyn_cast<MDNode>(Op)) {
492 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
493 "Global metadata operand cannot be function local!", &MD, N);
494 visitMDNode(*N, F);
495 continue;
497 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
499 // If this was an instruction, bb, or argument, verify that it is in the
500 // function that we expect.
501 Function *ActualF = 0;
502 if (Instruction *I = dyn_cast<Instruction>(Op))
503 ActualF = I->getParent()->getParent();
504 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
505 ActualF = BB->getParent();
506 else if (Argument *A = dyn_cast<Argument>(Op))
507 ActualF = A->getParent();
508 assert(ActualF && "Unimplemented function local metadata case!");
510 Assert2(ActualF == F, "function-local metadata used in wrong function",
511 &MD, Op);
515 // VerifyParameterAttrs - Check the given attributes for an argument or return
516 // value of the specified type. The value V is printed in error messages.
517 void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
518 bool isReturnValue, const Value *V) {
519 if (Attrs == Attribute::None)
520 return;
522 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
523 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
524 " only applies to the function!", V);
526 if (isReturnValue) {
527 Attributes RetI = Attrs & Attribute::ParameterOnly;
528 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
529 " does not apply to return values!", V);
532 for (unsigned i = 0;
533 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
534 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
535 Assert1(!(MutI & (MutI - 1)), "Attributes " +
536 Attribute::getAsString(MutI) + " are incompatible!", V);
539 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
540 Assert1(!TypeI, "Wrong type for attribute " +
541 Attribute::getAsString(TypeI), V);
543 Attributes ByValI = Attrs & Attribute::ByVal;
544 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
545 Assert1(!ByValI || PTy->getElementType()->isSized(),
546 "Attribute " + Attribute::getAsString(ByValI) +
547 " does not support unsized types!", V);
548 } else {
549 Assert1(!ByValI,
550 "Attribute " + Attribute::getAsString(ByValI) +
551 " only applies to parameters with pointer type!", V);
555 // VerifyFunctionAttrs - Check parameter attributes against a function type.
556 // The value V is printed in error messages.
557 void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
558 const AttrListPtr &Attrs,
559 const Value *V) {
560 if (Attrs.isEmpty())
561 return;
563 bool SawNest = false;
565 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
566 const AttributeWithIndex &Attr = Attrs.getSlot(i);
568 const Type *Ty;
569 if (Attr.Index == 0)
570 Ty = FT->getReturnType();
571 else if (Attr.Index-1 < FT->getNumParams())
572 Ty = FT->getParamType(Attr.Index-1);
573 else
574 break; // VarArgs attributes, verified elsewhere.
576 VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
578 if (Attr.Attrs & Attribute::Nest) {
579 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
580 SawNest = true;
583 if (Attr.Attrs & Attribute::StructRet)
584 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
587 Attributes FAttrs = Attrs.getFnAttributes();
588 Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
589 Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
590 " does not apply to the function!", V);
592 for (unsigned i = 0;
593 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
594 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
595 Assert1(!(MutI & (MutI - 1)), "Attributes " +
596 Attribute::getAsString(MutI) + " are incompatible!", V);
600 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
601 if (Attrs.isEmpty())
602 return true;
604 unsigned LastSlot = Attrs.getNumSlots() - 1;
605 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
606 if (LastIndex <= Params
607 || (LastIndex == (unsigned)~0
608 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
609 return true;
611 return false;
614 // visitFunction - Verify that a function is ok.
616 void Verifier::visitFunction(Function &F) {
617 // Check function arguments.
618 const FunctionType *FT = F.getFunctionType();
619 unsigned NumArgs = F.arg_size();
621 Assert1(Context == &F.getContext(),
622 "Function context does not match Module context!", &F);
624 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
625 Assert2(FT->getNumParams() == NumArgs,
626 "# formal arguments must match # of arguments for function type!",
627 &F, FT);
628 Assert1(F.getReturnType()->isFirstClassType() ||
629 F.getReturnType()->isVoidTy() ||
630 F.getReturnType()->isStructTy(),
631 "Functions cannot return aggregate values!", &F);
633 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
634 "Invalid struct return type!", &F);
636 const AttrListPtr &Attrs = F.getAttributes();
638 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
639 "Attributes after last parameter!", &F);
641 // Check function attributes.
642 VerifyFunctionAttrs(FT, Attrs, &F);
644 // Check that this function meets the restrictions on this calling convention.
645 switch (F.getCallingConv()) {
646 default:
647 break;
648 case CallingConv::C:
649 break;
650 case CallingConv::Fast:
651 case CallingConv::Cold:
652 case CallingConv::X86_FastCall:
653 case CallingConv::X86_ThisCall:
654 case CallingConv::PTX_Kernel:
655 case CallingConv::PTX_Device:
656 Assert1(!F.isVarArg(),
657 "Varargs functions must have C calling conventions!", &F);
658 break;
661 bool isLLVMdotName = F.getName().size() >= 5 &&
662 F.getName().substr(0, 5) == "llvm.";
664 // Check that the argument values match the function type for this function...
665 unsigned i = 0;
666 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
667 I != E; ++I, ++i) {
668 Assert2(I->getType() == FT->getParamType(i),
669 "Argument value does not match function argument type!",
670 I, FT->getParamType(i));
671 Assert1(I->getType()->isFirstClassType(),
672 "Function arguments must have first-class types!", I);
673 if (!isLLVMdotName)
674 Assert2(!I->getType()->isMetadataTy(),
675 "Function takes metadata but isn't an intrinsic", I, &F);
678 if (F.isMaterializable()) {
679 // Function has a body somewhere we can't see.
680 } else if (F.isDeclaration()) {
681 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
682 F.hasExternalWeakLinkage(),
683 "invalid linkage type for function declaration", &F);
684 } else {
685 // Verify that this function (which has a body) is not named "llvm.*". It
686 // is not legal to define intrinsics.
687 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
689 // Check the entry node
690 BasicBlock *Entry = &F.getEntryBlock();
691 Assert1(pred_begin(Entry) == pred_end(Entry),
692 "Entry block to function must not have predecessors!", Entry);
694 // The address of the entry block cannot be taken, unless it is dead.
695 if (Entry->hasAddressTaken()) {
696 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
697 "blockaddress may not be used with the entry block!", Entry);
701 // If this function is actually an intrinsic, verify that it is only used in
702 // direct call/invokes, never having its "address taken".
703 if (F.getIntrinsicID()) {
704 const User *U;
705 if (F.hasAddressTaken(&U))
706 Assert1(0, "Invalid user of intrinsic instruction!", U);
710 // verifyBasicBlock - Verify that a basic block is well formed...
712 void Verifier::visitBasicBlock(BasicBlock &BB) {
713 InstsInThisBlock.clear();
715 // Ensure that basic blocks have terminators!
716 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
718 // Check constraints that this basic block imposes on all of the PHI nodes in
719 // it.
720 if (isa<PHINode>(BB.front())) {
721 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
722 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
723 std::sort(Preds.begin(), Preds.end());
724 PHINode *PN;
725 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
726 // Ensure that PHI nodes have at least one entry!
727 Assert1(PN->getNumIncomingValues() != 0,
728 "PHI nodes must have at least one entry. If the block is dead, "
729 "the PHI should be removed!", PN);
730 Assert1(PN->getNumIncomingValues() == Preds.size(),
731 "PHINode should have one entry for each predecessor of its "
732 "parent basic block!", PN);
734 // Get and sort all incoming values in the PHI node...
735 Values.clear();
736 Values.reserve(PN->getNumIncomingValues());
737 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
738 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
739 PN->getIncomingValue(i)));
740 std::sort(Values.begin(), Values.end());
742 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
743 // Check to make sure that if there is more than one entry for a
744 // particular basic block in this PHI node, that the incoming values are
745 // all identical.
747 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
748 Values[i].second == Values[i-1].second,
749 "PHI node has multiple entries for the same basic block with "
750 "different incoming values!", PN, Values[i].first,
751 Values[i].second, Values[i-1].second);
753 // Check to make sure that the predecessors and PHI node entries are
754 // matched up.
755 Assert3(Values[i].first == Preds[i],
756 "PHI node entries do not match predecessors!", PN,
757 Values[i].first, Preds[i]);
763 void Verifier::visitTerminatorInst(TerminatorInst &I) {
764 // Ensure that terminators only exist at the end of the basic block.
765 Assert1(&I == I.getParent()->getTerminator(),
766 "Terminator found in the middle of a basic block!", I.getParent());
767 visitInstruction(I);
770 void Verifier::visitBranchInst(BranchInst &BI) {
771 if (BI.isConditional()) {
772 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
773 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
775 visitTerminatorInst(BI);
778 void Verifier::visitReturnInst(ReturnInst &RI) {
779 Function *F = RI.getParent()->getParent();
780 unsigned N = RI.getNumOperands();
781 if (F->getReturnType()->isVoidTy())
782 Assert2(N == 0,
783 "Found return instr that returns non-void in Function of void "
784 "return type!", &RI, F->getReturnType());
785 else
786 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
787 "Function return type does not match operand "
788 "type of return inst!", &RI, F->getReturnType());
790 // Check to make sure that the return value has necessary properties for
791 // terminators...
792 visitTerminatorInst(RI);
795 void Verifier::visitSwitchInst(SwitchInst &SI) {
796 // Check to make sure that all of the constants in the switch instruction
797 // have the same type as the switched-on value.
798 const Type *SwitchTy = SI.getCondition()->getType();
799 SmallPtrSet<ConstantInt*, 32> Constants;
800 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
801 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
802 "Switch constants must all be same type as switch value!", &SI);
803 Assert2(Constants.insert(SI.getCaseValue(i)),
804 "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
807 visitTerminatorInst(SI);
810 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
811 Assert1(BI.getAddress()->getType()->isPointerTy(),
812 "Indirectbr operand must have pointer type!", &BI);
813 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
814 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
815 "Indirectbr destinations must all have pointer type!", &BI);
817 visitTerminatorInst(BI);
820 void Verifier::visitSelectInst(SelectInst &SI) {
821 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
822 SI.getOperand(2)),
823 "Invalid operands for select instruction!", &SI);
825 Assert1(SI.getTrueValue()->getType() == SI.getType(),
826 "Select values must have same type as select instruction!", &SI);
827 visitInstruction(SI);
830 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
831 /// a pass, if any exist, it's an error.
833 void Verifier::visitUserOp1(Instruction &I) {
834 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
837 void Verifier::visitTruncInst(TruncInst &I) {
838 // Get the source and destination types
839 const Type *SrcTy = I.getOperand(0)->getType();
840 const Type *DestTy = I.getType();
842 // Get the size of the types in bits, we'll need this later
843 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
844 unsigned DestBitSize = DestTy->getScalarSizeInBits();
846 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
847 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
848 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
849 "trunc source and destination must both be a vector or neither", &I);
850 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
852 visitInstruction(I);
855 void Verifier::visitZExtInst(ZExtInst &I) {
856 // Get the source and destination types
857 const Type *SrcTy = I.getOperand(0)->getType();
858 const Type *DestTy = I.getType();
860 // Get the size of the types in bits, we'll need this later
861 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
862 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
863 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
864 "zext source and destination must both be a vector or neither", &I);
865 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
866 unsigned DestBitSize = DestTy->getScalarSizeInBits();
868 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
870 visitInstruction(I);
873 void Verifier::visitSExtInst(SExtInst &I) {
874 // Get the source and destination types
875 const Type *SrcTy = I.getOperand(0)->getType();
876 const Type *DestTy = I.getType();
878 // Get the size of the types in bits, we'll need this later
879 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
880 unsigned DestBitSize = DestTy->getScalarSizeInBits();
882 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
883 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
884 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
885 "sext source and destination must both be a vector or neither", &I);
886 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
888 visitInstruction(I);
891 void Verifier::visitFPTruncInst(FPTruncInst &I) {
892 // Get the source and destination types
893 const Type *SrcTy = I.getOperand(0)->getType();
894 const Type *DestTy = I.getType();
895 // Get the size of the types in bits, we'll need this later
896 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
897 unsigned DestBitSize = DestTy->getScalarSizeInBits();
899 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
900 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
901 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
902 "fptrunc source and destination must both be a vector or neither",&I);
903 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
905 visitInstruction(I);
908 void Verifier::visitFPExtInst(FPExtInst &I) {
909 // Get the source and destination types
910 const Type *SrcTy = I.getOperand(0)->getType();
911 const Type *DestTy = I.getType();
913 // Get the size of the types in bits, we'll need this later
914 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
915 unsigned DestBitSize = DestTy->getScalarSizeInBits();
917 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
918 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
919 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
920 "fpext source and destination must both be a vector or neither", &I);
921 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
923 visitInstruction(I);
926 void Verifier::visitUIToFPInst(UIToFPInst &I) {
927 // Get the source and destination types
928 const Type *SrcTy = I.getOperand(0)->getType();
929 const Type *DestTy = I.getType();
931 bool SrcVec = SrcTy->isVectorTy();
932 bool DstVec = DestTy->isVectorTy();
934 Assert1(SrcVec == DstVec,
935 "UIToFP source and dest must both be vector or scalar", &I);
936 Assert1(SrcTy->isIntOrIntVectorTy(),
937 "UIToFP source must be integer or integer vector", &I);
938 Assert1(DestTy->isFPOrFPVectorTy(),
939 "UIToFP result must be FP or FP vector", &I);
941 if (SrcVec && DstVec)
942 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
943 cast<VectorType>(DestTy)->getNumElements(),
944 "UIToFP source and dest vector length mismatch", &I);
946 visitInstruction(I);
949 void Verifier::visitSIToFPInst(SIToFPInst &I) {
950 // Get the source and destination types
951 const Type *SrcTy = I.getOperand(0)->getType();
952 const Type *DestTy = I.getType();
954 bool SrcVec = SrcTy->isVectorTy();
955 bool DstVec = DestTy->isVectorTy();
957 Assert1(SrcVec == DstVec,
958 "SIToFP source and dest must both be vector or scalar", &I);
959 Assert1(SrcTy->isIntOrIntVectorTy(),
960 "SIToFP source must be integer or integer vector", &I);
961 Assert1(DestTy->isFPOrFPVectorTy(),
962 "SIToFP result must be FP or FP vector", &I);
964 if (SrcVec && DstVec)
965 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
966 cast<VectorType>(DestTy)->getNumElements(),
967 "SIToFP source and dest vector length mismatch", &I);
969 visitInstruction(I);
972 void Verifier::visitFPToUIInst(FPToUIInst &I) {
973 // Get the source and destination types
974 const Type *SrcTy = I.getOperand(0)->getType();
975 const Type *DestTy = I.getType();
977 bool SrcVec = SrcTy->isVectorTy();
978 bool DstVec = DestTy->isVectorTy();
980 Assert1(SrcVec == DstVec,
981 "FPToUI source and dest must both be vector or scalar", &I);
982 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
983 &I);
984 Assert1(DestTy->isIntOrIntVectorTy(),
985 "FPToUI result must be integer or integer vector", &I);
987 if (SrcVec && DstVec)
988 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
989 cast<VectorType>(DestTy)->getNumElements(),
990 "FPToUI source and dest vector length mismatch", &I);
992 visitInstruction(I);
995 void Verifier::visitFPToSIInst(FPToSIInst &I) {
996 // Get the source and destination types
997 const Type *SrcTy = I.getOperand(0)->getType();
998 const Type *DestTy = I.getType();
1000 bool SrcVec = SrcTy->isVectorTy();
1001 bool DstVec = DestTy->isVectorTy();
1003 Assert1(SrcVec == DstVec,
1004 "FPToSI source and dest must both be vector or scalar", &I);
1005 Assert1(SrcTy->isFPOrFPVectorTy(),
1006 "FPToSI source must be FP or FP vector", &I);
1007 Assert1(DestTy->isIntOrIntVectorTy(),
1008 "FPToSI result must be integer or integer vector", &I);
1010 if (SrcVec && DstVec)
1011 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1012 cast<VectorType>(DestTy)->getNumElements(),
1013 "FPToSI source and dest vector length mismatch", &I);
1015 visitInstruction(I);
1018 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1019 // Get the source and destination types
1020 const Type *SrcTy = I.getOperand(0)->getType();
1021 const Type *DestTy = I.getType();
1023 Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
1024 Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
1026 visitInstruction(I);
1029 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1030 // Get the source and destination types
1031 const Type *SrcTy = I.getOperand(0)->getType();
1032 const Type *DestTy = I.getType();
1034 Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
1035 Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
1037 visitInstruction(I);
1040 void Verifier::visitBitCastInst(BitCastInst &I) {
1041 // Get the source and destination types
1042 const Type *SrcTy = I.getOperand(0)->getType();
1043 const Type *DestTy = I.getType();
1045 // Get the size of the types in bits, we'll need this later
1046 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1047 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
1049 // BitCast implies a no-op cast of type only. No bits change.
1050 // However, you can't cast pointers to anything but pointers.
1051 Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
1052 "Bitcast requires both operands to be pointer or neither", &I);
1053 Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
1055 // Disallow aggregates.
1056 Assert1(!SrcTy->isAggregateType(),
1057 "Bitcast operand must not be aggregate", &I);
1058 Assert1(!DestTy->isAggregateType(),
1059 "Bitcast type must not be aggregate", &I);
1061 visitInstruction(I);
1064 /// visitPHINode - Ensure that a PHI node is well formed.
1066 void Verifier::visitPHINode(PHINode &PN) {
1067 // Ensure that the PHI nodes are all grouped together at the top of the block.
1068 // This can be tested by checking whether the instruction before this is
1069 // either nonexistent (because this is begin()) or is a PHI node. If not,
1070 // then there is some other instruction before a PHI.
1071 Assert2(&PN == &PN.getParent()->front() ||
1072 isa<PHINode>(--BasicBlock::iterator(&PN)),
1073 "PHI nodes not grouped at top of basic block!",
1074 &PN, PN.getParent());
1076 // Check that all of the values of the PHI node have the same type as the
1077 // result, and that the incoming blocks are really basic blocks.
1078 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1079 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1080 "PHI node operands are not the same type as the result!", &PN);
1083 // All other PHI node constraints are checked in the visitBasicBlock method.
1085 visitInstruction(PN);
1088 void Verifier::VerifyCallSite(CallSite CS) {
1089 Instruction *I = CS.getInstruction();
1091 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1092 "Called function must be a pointer!", I);
1093 const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1095 Assert1(FPTy->getElementType()->isFunctionTy(),
1096 "Called function is not pointer to function type!", I);
1097 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1099 // Verify that the correct number of arguments are being passed
1100 if (FTy->isVarArg())
1101 Assert1(CS.arg_size() >= FTy->getNumParams(),
1102 "Called function requires more parameters than were provided!",I);
1103 else
1104 Assert1(CS.arg_size() == FTy->getNumParams(),
1105 "Incorrect number of arguments passed to called function!", I);
1107 // Verify that all arguments to the call match the function type.
1108 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1109 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1110 "Call parameter type does not match function signature!",
1111 CS.getArgument(i), FTy->getParamType(i), I);
1113 const AttrListPtr &Attrs = CS.getAttributes();
1115 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1116 "Attributes after last parameter!", I);
1118 // Verify call attributes.
1119 VerifyFunctionAttrs(FTy, Attrs, I);
1121 if (FTy->isVarArg())
1122 // Check attributes on the varargs part.
1123 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1124 Attributes Attr = Attrs.getParamAttributes(Idx);
1126 VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1128 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1129 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1130 " cannot be used for vararg call arguments!", I);
1133 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1134 if (CS.getCalledFunction() == 0 ||
1135 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1136 for (FunctionType::param_iterator PI = FTy->param_begin(),
1137 PE = FTy->param_end(); PI != PE; ++PI)
1138 Assert1(!(*PI)->isMetadataTy(),
1139 "Function has metadata parameter but isn't an intrinsic", I);
1142 visitInstruction(*I);
1145 void Verifier::visitCallInst(CallInst &CI) {
1146 VerifyCallSite(&CI);
1148 if (Function *F = CI.getCalledFunction())
1149 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1150 visitIntrinsicFunctionCall(ID, CI);
1153 void Verifier::visitInvokeInst(InvokeInst &II) {
1154 VerifyCallSite(&II);
1155 visitTerminatorInst(II);
1158 /// visitBinaryOperator - Check that both arguments to the binary operator are
1159 /// of the same type!
1161 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1162 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1163 "Both operands to a binary operator are not of the same type!", &B);
1165 switch (B.getOpcode()) {
1166 // Check that integer arithmetic operators are only used with
1167 // integral operands.
1168 case Instruction::Add:
1169 case Instruction::Sub:
1170 case Instruction::Mul:
1171 case Instruction::SDiv:
1172 case Instruction::UDiv:
1173 case Instruction::SRem:
1174 case Instruction::URem:
1175 Assert1(B.getType()->isIntOrIntVectorTy(),
1176 "Integer arithmetic operators only work with integral types!", &B);
1177 Assert1(B.getType() == B.getOperand(0)->getType(),
1178 "Integer arithmetic operators must have same type "
1179 "for operands and result!", &B);
1180 break;
1181 // Check that floating-point arithmetic operators are only used with
1182 // floating-point operands.
1183 case Instruction::FAdd:
1184 case Instruction::FSub:
1185 case Instruction::FMul:
1186 case Instruction::FDiv:
1187 case Instruction::FRem:
1188 Assert1(B.getType()->isFPOrFPVectorTy(),
1189 "Floating-point arithmetic operators only work with "
1190 "floating-point types!", &B);
1191 Assert1(B.getType() == B.getOperand(0)->getType(),
1192 "Floating-point arithmetic operators must have same type "
1193 "for operands and result!", &B);
1194 break;
1195 // Check that logical operators are only used with integral operands.
1196 case Instruction::And:
1197 case Instruction::Or:
1198 case Instruction::Xor:
1199 Assert1(B.getType()->isIntOrIntVectorTy(),
1200 "Logical operators only work with integral types!", &B);
1201 Assert1(B.getType() == B.getOperand(0)->getType(),
1202 "Logical operators must have same type for operands and result!",
1203 &B);
1204 break;
1205 case Instruction::Shl:
1206 case Instruction::LShr:
1207 case Instruction::AShr:
1208 Assert1(B.getType()->isIntOrIntVectorTy(),
1209 "Shifts only work with integral types!", &B);
1210 Assert1(B.getType() == B.getOperand(0)->getType(),
1211 "Shift return type must be same as operands!", &B);
1212 break;
1213 default:
1214 llvm_unreachable("Unknown BinaryOperator opcode!");
1217 visitInstruction(B);
1220 void Verifier::visitICmpInst(ICmpInst &IC) {
1221 // Check that the operands are the same type
1222 const Type *Op0Ty = IC.getOperand(0)->getType();
1223 const Type *Op1Ty = IC.getOperand(1)->getType();
1224 Assert1(Op0Ty == Op1Ty,
1225 "Both operands to ICmp instruction are not of the same type!", &IC);
1226 // Check that the operands are the right type
1227 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
1228 "Invalid operand types for ICmp instruction", &IC);
1229 // Check that the predicate is valid.
1230 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1231 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1232 "Invalid predicate in ICmp instruction!", &IC);
1234 visitInstruction(IC);
1237 void Verifier::visitFCmpInst(FCmpInst &FC) {
1238 // Check that the operands are the same type
1239 const Type *Op0Ty = FC.getOperand(0)->getType();
1240 const Type *Op1Ty = FC.getOperand(1)->getType();
1241 Assert1(Op0Ty == Op1Ty,
1242 "Both operands to FCmp instruction are not of the same type!", &FC);
1243 // Check that the operands are the right type
1244 Assert1(Op0Ty->isFPOrFPVectorTy(),
1245 "Invalid operand types for FCmp instruction", &FC);
1246 // Check that the predicate is valid.
1247 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1248 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1249 "Invalid predicate in FCmp instruction!", &FC);
1251 visitInstruction(FC);
1254 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1255 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1256 EI.getOperand(1)),
1257 "Invalid extractelement operands!", &EI);
1258 visitInstruction(EI);
1261 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1262 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1263 IE.getOperand(1),
1264 IE.getOperand(2)),
1265 "Invalid insertelement operands!", &IE);
1266 visitInstruction(IE);
1269 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1270 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1271 SV.getOperand(2)),
1272 "Invalid shufflevector operands!", &SV);
1273 visitInstruction(SV);
1276 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1277 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1278 const Type *ElTy =
1279 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
1280 Idxs.begin(), Idxs.end());
1281 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1282 Assert2(GEP.getType()->isPointerTy() &&
1283 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1284 "GEP is not of right type for indices!", &GEP, ElTy);
1285 visitInstruction(GEP);
1288 void Verifier::visitLoadInst(LoadInst &LI) {
1289 const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1290 Assert1(PTy, "Load operand must be a pointer.", &LI);
1291 const Type *ElTy = PTy->getElementType();
1292 Assert2(ElTy == LI.getType(),
1293 "Load result type does not match pointer operand type!", &LI, ElTy);
1294 visitInstruction(LI);
1297 void Verifier::visitStoreInst(StoreInst &SI) {
1298 const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1299 Assert1(PTy, "Store operand must be a pointer.", &SI);
1300 const Type *ElTy = PTy->getElementType();
1301 Assert2(ElTy == SI.getOperand(0)->getType(),
1302 "Stored value type does not match pointer operand type!",
1303 &SI, ElTy);
1304 visitInstruction(SI);
1307 void Verifier::visitAllocaInst(AllocaInst &AI) {
1308 const PointerType *PTy = AI.getType();
1309 Assert1(PTy->getAddressSpace() == 0,
1310 "Allocation instruction pointer not in the generic address space!",
1311 &AI);
1312 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1313 &AI);
1314 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1315 "Alloca array size must have integer type", &AI);
1316 visitInstruction(AI);
1319 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1320 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1321 EVI.idx_begin(), EVI.idx_end()) ==
1322 EVI.getType(),
1323 "Invalid ExtractValueInst operands!", &EVI);
1325 visitInstruction(EVI);
1328 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1329 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1330 IVI.idx_begin(), IVI.idx_end()) ==
1331 IVI.getOperand(1)->getType(),
1332 "Invalid InsertValueInst operands!", &IVI);
1334 visitInstruction(IVI);
1337 /// verifyInstruction - Verify that an instruction is well formed.
1339 void Verifier::visitInstruction(Instruction &I) {
1340 BasicBlock *BB = I.getParent();
1341 Assert1(BB, "Instruction not embedded in basic block!", &I);
1343 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1344 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1345 UI != UE; ++UI)
1346 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
1347 "Only PHI nodes may reference their own value!", &I);
1350 // Check that void typed values don't have names
1351 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
1352 "Instruction has a name, but provides a void value!", &I);
1354 // Check that the return value of the instruction is either void or a legal
1355 // value type.
1356 Assert1(I.getType()->isVoidTy() ||
1357 I.getType()->isFirstClassType(),
1358 "Instruction returns a non-scalar type!", &I);
1360 // Check that the instruction doesn't produce metadata. Calls are already
1361 // checked against the callee type.
1362 Assert1(!I.getType()->isMetadataTy() ||
1363 isa<CallInst>(I) || isa<InvokeInst>(I),
1364 "Invalid use of metadata!", &I);
1366 // Check that all uses of the instruction, if they are instructions
1367 // themselves, actually have parent basic blocks. If the use is not an
1368 // instruction, it is an error!
1369 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1370 UI != UE; ++UI) {
1371 if (Instruction *Used = dyn_cast<Instruction>(*UI))
1372 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1373 " embedded in a basic block!", &I, Used);
1374 else {
1375 CheckFailed("Use of instruction is not an instruction!", *UI);
1376 return;
1380 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1381 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1383 // Check to make sure that only first-class-values are operands to
1384 // instructions.
1385 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1386 Assert1(0, "Instruction operands must be first-class values!", &I);
1389 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1390 // Check to make sure that the "address of" an intrinsic function is never
1391 // taken.
1392 Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
1393 "Cannot take the address of an intrinsic!", &I);
1394 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1395 &I);
1396 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1397 Assert1(OpBB->getParent() == BB->getParent(),
1398 "Referring to a basic block in another function!", &I);
1399 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1400 Assert1(OpArg->getParent() == BB->getParent(),
1401 "Referring to an argument in another function!", &I);
1402 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1403 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1404 &I);
1405 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1406 BasicBlock *OpBlock = Op->getParent();
1408 // Check that a definition dominates all of its uses.
1409 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1410 // Invoke results are only usable in the normal destination, not in the
1411 // exceptional destination.
1412 BasicBlock *NormalDest = II->getNormalDest();
1414 Assert2(NormalDest != II->getUnwindDest(),
1415 "No uses of invoke possible due to dominance structure!",
1416 Op, &I);
1418 // PHI nodes differ from other nodes because they actually "use" the
1419 // value in the predecessor basic blocks they correspond to.
1420 BasicBlock *UseBlock = BB;
1421 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
1422 unsigned j = PHINode::getIncomingValueNumForOperand(i);
1423 UseBlock = PN->getIncomingBlock(j);
1425 Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
1426 Op, &I);
1428 if (isa<PHINode>(I) && UseBlock == OpBlock) {
1429 // Special case of a phi node in the normal destination or the unwind
1430 // destination.
1431 Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
1432 "Invoke result not available in the unwind destination!",
1433 Op, &I);
1434 } else {
1435 Assert2(DT->dominates(NormalDest, UseBlock) ||
1436 !DT->isReachableFromEntry(UseBlock),
1437 "Invoke result does not dominate all uses!", Op, &I);
1439 // If the normal successor of an invoke instruction has multiple
1440 // predecessors, then the normal edge from the invoke is critical,
1441 // so the invoke value can only be live if the destination block
1442 // dominates all of it's predecessors (other than the invoke).
1443 if (!NormalDest->getSinglePredecessor() &&
1444 DT->isReachableFromEntry(UseBlock))
1445 // If it is used by something non-phi, then the other case is that
1446 // 'NormalDest' dominates all of its predecessors other than the
1447 // invoke. In this case, the invoke value can still be used.
1448 for (pred_iterator PI = pred_begin(NormalDest),
1449 E = pred_end(NormalDest); PI != E; ++PI)
1450 if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
1451 DT->isReachableFromEntry(*PI)) {
1452 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
1453 return;
1456 } else if (PHINode *PN = dyn_cast<PHINode>(&I)) {
1457 // PHI nodes are more difficult than other nodes because they actually
1458 // "use" the value in the predecessor basic blocks they correspond to.
1459 unsigned j = PHINode::getIncomingValueNumForOperand(i);
1460 BasicBlock *PredBB = PN->getIncomingBlock(j);
1461 Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
1462 !DT->isReachableFromEntry(PredBB)),
1463 "Instruction does not dominate all uses!", Op, &I);
1464 } else {
1465 if (OpBlock == BB) {
1466 // If they are in the same basic block, make sure that the definition
1467 // comes before the use.
1468 Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
1469 "Instruction does not dominate all uses!", Op, &I);
1472 // Definition must dominate use unless use is unreachable!
1473 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
1474 !DT->isReachableFromEntry(BB),
1475 "Instruction does not dominate all uses!", Op, &I);
1477 } else if (isa<InlineAsm>(I.getOperand(i))) {
1478 Assert1((i + 1 == e && isa<CallInst>(I)) ||
1479 (i + 3 == e && isa<InvokeInst>(I)),
1480 "Cannot take the address of an inline asm!", &I);
1483 InstsInThisBlock.insert(&I);
1486 // Flags used by TableGen to mark intrinsic parameters with the
1487 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1488 static const unsigned ExtendedElementVectorType = 0x40000000;
1489 static const unsigned TruncatedElementVectorType = 0x20000000;
1491 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1493 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1494 Function *IF = CI.getCalledFunction();
1495 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1496 IF);
1498 #define GET_INTRINSIC_VERIFIER
1499 #include "llvm/Intrinsics.gen"
1500 #undef GET_INTRINSIC_VERIFIER
1502 // If the intrinsic takes MDNode arguments, verify that they are either global
1503 // or are local to *this* function.
1504 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
1505 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
1506 visitMDNode(*MD, CI.getParent()->getParent());
1508 switch (ID) {
1509 default:
1510 break;
1511 case Intrinsic::dbg_declare: { // llvm.dbg.declare
1512 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
1513 "invalid llvm.dbg.declare intrinsic call 1", &CI);
1514 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
1515 Assert1(MD->getNumOperands() == 1,
1516 "invalid llvm.dbg.declare intrinsic call 2", &CI);
1517 } break;
1518 case Intrinsic::memcpy:
1519 case Intrinsic::memmove:
1520 case Intrinsic::memset:
1521 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
1522 "alignment argument of memory intrinsics must be a constant int",
1523 &CI);
1524 Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
1525 "isvolatile argument of memory intrinsics must be a constant int",
1526 &CI);
1527 break;
1528 case Intrinsic::gcroot:
1529 case Intrinsic::gcwrite:
1530 case Intrinsic::gcread:
1531 if (ID == Intrinsic::gcroot) {
1532 AllocaInst *AI =
1533 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
1534 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
1535 Assert1(isa<Constant>(CI.getArgOperand(1)),
1536 "llvm.gcroot parameter #2 must be a constant.", &CI);
1537 if (!AI->getType()->getElementType()->isPointerTy()) {
1538 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
1539 "llvm.gcroot parameter #1 must either be a pointer alloca, "
1540 "or argument #2 must be a non-null constant.", &CI);
1544 Assert1(CI.getParent()->getParent()->hasGC(),
1545 "Enclosing function does not use GC.", &CI);
1546 break;
1547 case Intrinsic::init_trampoline:
1548 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
1549 "llvm.init_trampoline parameter #2 must resolve to a function.",
1550 &CI);
1551 break;
1552 case Intrinsic::prefetch:
1553 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
1554 isa<ConstantInt>(CI.getArgOperand(2)) &&
1555 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
1556 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
1557 "invalid arguments to llvm.prefetch",
1558 &CI);
1559 break;
1560 case Intrinsic::stackprotector:
1561 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
1562 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1563 &CI);
1564 break;
1565 case Intrinsic::lifetime_start:
1566 case Intrinsic::lifetime_end:
1567 case Intrinsic::invariant_start:
1568 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
1569 "size argument of memory use markers must be a constant integer",
1570 &CI);
1571 break;
1572 case Intrinsic::invariant_end:
1573 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
1574 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
1575 break;
1579 /// Produce a string to identify an intrinsic parameter or return value.
1580 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1581 /// parameters beginning with NumRets.
1583 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
1584 if (ArgNo >= NumRets)
1585 return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
1586 if (NumRets == 1)
1587 return "Intrinsic result type";
1588 return "Intrinsic result type #" + utostr(ArgNo);
1591 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
1592 int VT, unsigned ArgNo, std::string &Suffix) {
1593 const FunctionType *FTy = F->getFunctionType();
1595 unsigned NumElts = 0;
1596 const Type *EltTy = Ty;
1597 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1598 if (VTy) {
1599 EltTy = VTy->getElementType();
1600 NumElts = VTy->getNumElements();
1603 const Type *RetTy = FTy->getReturnType();
1604 const StructType *ST = dyn_cast<StructType>(RetTy);
1605 unsigned NumRetVals;
1606 if (RetTy->isVoidTy())
1607 NumRetVals = 0;
1608 else if (ST)
1609 NumRetVals = ST->getNumElements();
1610 else
1611 NumRetVals = 1;
1613 if (VT < 0) {
1614 int Match = ~VT;
1616 // Check flags that indicate a type that is an integral vector type with
1617 // elements that are larger or smaller than the elements of the matched
1618 // type.
1619 if ((Match & (ExtendedElementVectorType |
1620 TruncatedElementVectorType)) != 0) {
1621 const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
1622 if (!VTy || !IEltTy) {
1623 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1624 "an integral vector type.", F);
1625 return false;
1627 // Adjust the current Ty (in the opposite direction) rather than
1628 // the type being matched against.
1629 if ((Match & ExtendedElementVectorType) != 0) {
1630 if ((IEltTy->getBitWidth() & 1) != 0) {
1631 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
1632 "element bit-width is odd.", F);
1633 return false;
1635 Ty = VectorType::getTruncatedElementVectorType(VTy);
1636 } else
1637 Ty = VectorType::getExtendedElementVectorType(VTy);
1638 Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
1641 if (Match <= static_cast<int>(NumRetVals - 1)) {
1642 if (ST)
1643 RetTy = ST->getElementType(Match);
1645 if (Ty != RetTy) {
1646 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1647 "match return type.", F);
1648 return false;
1650 } else {
1651 if (Ty != FTy->getParamType(Match - NumRetVals)) {
1652 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
1653 "match parameter %" + utostr(Match - NumRetVals) + ".", F);
1654 return false;
1657 } else if (VT == MVT::iAny) {
1658 if (!EltTy->isIntegerTy()) {
1659 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1660 "an integer type.", F);
1661 return false;
1664 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1665 Suffix += ".";
1667 if (EltTy != Ty)
1668 Suffix += "v" + utostr(NumElts);
1670 Suffix += "i" + utostr(GotBits);
1672 // Check some constraints on various intrinsics.
1673 switch (ID) {
1674 default: break; // Not everything needs to be checked.
1675 case Intrinsic::bswap:
1676 if (GotBits < 16 || GotBits % 16 != 0) {
1677 CheckFailed("Intrinsic requires even byte width argument", F);
1678 return false;
1680 break;
1682 } else if (VT == MVT::fAny) {
1683 if (!EltTy->isFloatingPointTy()) {
1684 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
1685 "a floating-point type.", F);
1686 return false;
1689 Suffix += ".";
1691 if (EltTy != Ty)
1692 Suffix += "v" + utostr(NumElts);
1694 Suffix += EVT::getEVT(EltTy).getEVTString();
1695 } else if (VT == MVT::vAny) {
1696 if (!VTy) {
1697 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
1699 return false;
1701 Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
1702 } else if (VT == MVT::iPTR) {
1703 if (!Ty->isPointerTy()) {
1704 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1705 "pointer and a pointer is required.", F);
1706 return false;
1708 } else if (VT == MVT::iPTRAny) {
1709 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1710 // and iPTR. In the verifier, we can not distinguish which case we have so
1711 // allow either case to be legal.
1712 if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
1713 EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
1714 if (PointeeVT == MVT::Other) {
1715 CheckFailed("Intrinsic has pointer to complex type.");
1716 return false;
1718 Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
1719 PointeeVT.getEVTString();
1720 } else {
1721 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
1722 "pointer and a pointer is required.", F);
1723 return false;
1725 } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
1726 EVT VVT = EVT((MVT::SimpleValueType)VT);
1728 // If this is a vector argument, verify the number and type of elements.
1729 if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
1730 CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
1731 return false;
1734 if (VVT.getVectorNumElements() != NumElts) {
1735 CheckFailed("Intrinsic prototype has incorrect number of "
1736 "vector elements!", F);
1737 return false;
1739 } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
1740 EltTy) {
1741 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
1742 return false;
1743 } else if (EltTy != Ty) {
1744 CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
1745 "and a scalar is required.", F);
1746 return false;
1749 return true;
1752 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1753 /// Intrinsics.gen. This implements a little state machine that verifies the
1754 /// prototype of intrinsics.
1755 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
1756 unsigned NumRetVals,
1757 unsigned NumParams, ...) {
1758 va_list VA;
1759 va_start(VA, NumParams);
1760 const FunctionType *FTy = F->getFunctionType();
1762 // For overloaded intrinsics, the Suffix of the function name must match the
1763 // types of the arguments. This variable keeps track of the expected
1764 // suffix, to be checked at the end.
1765 std::string Suffix;
1767 if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
1768 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1769 return;
1772 const Type *Ty = FTy->getReturnType();
1773 const StructType *ST = dyn_cast<StructType>(Ty);
1775 if (NumRetVals == 0 && !Ty->isVoidTy()) {
1776 CheckFailed("Intrinsic should return void", F);
1777 return;
1780 // Verify the return types.
1781 if (ST && ST->getNumElements() != NumRetVals) {
1782 CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
1783 return;
1786 for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
1787 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1789 if (ST) Ty = ST->getElementType(ArgNo);
1790 if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
1791 break;
1794 // Verify the parameter types.
1795 for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
1796 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1798 if (VT == MVT::isVoid && ArgNo > 0) {
1799 if (!FTy->isVarArg())
1800 CheckFailed("Intrinsic prototype has no '...'!", F);
1801 break;
1804 if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
1805 ArgNo + NumRetVals, Suffix))
1806 break;
1809 va_end(VA);
1811 // For intrinsics without pointer arguments, if we computed a Suffix then the
1812 // intrinsic is overloaded and we need to make sure that the name of the
1813 // function is correct. We add the suffix to the name of the intrinsic and
1814 // compare against the given function name. If they are not the same, the
1815 // function name is invalid. This ensures that overloading of intrinsics
1816 // uses a sane and consistent naming convention. Note that intrinsics with
1817 // pointer argument may or may not be overloaded so we will check assuming it
1818 // has a suffix and not.
1819 if (!Suffix.empty()) {
1820 std::string Name(Intrinsic::getName(ID));
1821 if (Name + Suffix != F->getName()) {
1822 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1823 F->getName().substr(Name.length()) + "'. It should be '" +
1824 Suffix + "'", F);
1828 // Check parameter attributes.
1829 Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
1830 "Intrinsic has wrong parameter attributes!", F);
1834 //===----------------------------------------------------------------------===//
1835 // Implement the public interfaces to this file...
1836 //===----------------------------------------------------------------------===//
1838 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1839 return new Verifier(action);
1843 /// verifyFunction - Check a function for errors, printing messages on stderr.
1844 /// Return true if the function is corrupt.
1846 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1847 Function &F = const_cast<Function&>(f);
1848 assert(!F.isDeclaration() && "Cannot verify external functions");
1850 FunctionPassManager FPM(F.getParent());
1851 Verifier *V = new Verifier(action);
1852 FPM.add(V);
1853 FPM.run(F);
1854 return V->Broken;
1857 /// verifyModule - Check a module for errors, printing messages on stderr.
1858 /// Return true if the module is corrupt.
1860 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1861 std::string *ErrorInfo) {
1862 PassManager PM;
1863 Verifier *V = new Verifier(action);
1864 PM.add(V);
1865 PM.run(const_cast<Module&>(M));
1867 if (ErrorInfo && V->Broken)
1868 *ErrorInfo = V->MessagesStr.str();
1869 return V->Broken;