1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/Analysis/Dominators.h"
53 #include "llvm/Assembly/Writer.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/Support/CallSite.h"
56 #include "llvm/Support/CFG.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/InstVisitor.h"
59 #include "llvm/ADT/SetVector.h"
60 #include "llvm/ADT/SmallPtrSet.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
70 namespace { // Anonymous namespace for class
71 struct PreVerifier
: public FunctionPass
{
72 static char ID
; // Pass ID, replacement for typeid
74 PreVerifier() : FunctionPass(ID
) {
75 initializePreVerifierPass(*PassRegistry::getPassRegistry());
78 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
82 // Check that the prerequisites for successful DominatorTree construction
84 bool runOnFunction(Function
&F
) {
87 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
88 if (I
->empty() || !I
->back().isTerminator()) {
89 dbgs() << "Basic Block in function '" << F
.getName()
90 << "' does not have terminator!\n";
91 WriteAsOperand(dbgs(), I
, true);
98 report_fatal_error("Broken module, no Basic Block terminator!");
105 char PreVerifier::ID
= 0;
106 INITIALIZE_PASS(PreVerifier
, "preverify", "Preliminary module verification",
108 static char &PreVerifyID
= PreVerifier::ID
;
111 struct Verifier
: public FunctionPass
, public InstVisitor
<Verifier
> {
112 static char ID
; // Pass ID, replacement for typeid
113 bool Broken
; // Is this module found to be broken?
114 bool RealPass
; // Are we not being run by a PassManager?
115 VerifierFailureAction action
;
116 // What to do if verification fails.
117 Module
*Mod
; // Module we are verifying right now
118 LLVMContext
*Context
; // Context within which we are verifying
119 DominatorTree
*DT
; // Dominator Tree, caution can be null!
121 std::string Messages
;
122 raw_string_ostream MessagesStr
;
124 /// InstInThisBlock - when verifying a basic block, keep track of all of the
125 /// instructions we have seen so far. This allows us to do efficient
126 /// dominance checks for the case when an instruction has an operand that is
127 /// an instruction in the same block.
128 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
130 /// MDNodes - keep track of the metadata nodes that have been checked
132 SmallPtrSet
<MDNode
*, 32> MDNodes
;
136 Broken(false), RealPass(true), action(AbortProcessAction
),
137 Mod(0), Context(0), DT(0), MessagesStr(Messages
) {
138 initializeVerifierPass(*PassRegistry::getPassRegistry());
140 explicit Verifier(VerifierFailureAction ctn
)
142 Broken(false), RealPass(true), action(ctn
), Mod(0), Context(0), DT(0),
143 MessagesStr(Messages
) {
144 initializeVerifierPass(*PassRegistry::getPassRegistry());
147 bool doInitialization(Module
&M
) {
149 Context
= &M
.getContext();
151 // If this is a real pass, in a pass manager, we must abort before
152 // returning back to the pass manager, or else the pass manager may try to
153 // run other passes on the broken module.
155 return abortIfBroken();
159 bool runOnFunction(Function
&F
) {
160 // Get dominator information if we are being run by PassManager
161 if (RealPass
) DT
= &getAnalysis
<DominatorTree
>();
164 if (!Context
) Context
= &F
.getContext();
167 InstsInThisBlock
.clear();
169 // If this is a real pass, in a pass manager, we must abort before
170 // returning back to the pass manager, or else the pass manager may try to
171 // run other passes on the broken module.
173 return abortIfBroken();
178 bool doFinalization(Module
&M
) {
179 // Scan through, checking all of the external function's linkage now...
180 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
181 visitGlobalValue(*I
);
183 // Check to make sure function prototypes are okay.
184 if (I
->isDeclaration()) visitFunction(*I
);
187 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
189 visitGlobalVariable(*I
);
191 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
193 visitGlobalAlias(*I
);
195 for (Module::named_metadata_iterator I
= M
.named_metadata_begin(),
196 E
= M
.named_metadata_end(); I
!= E
; ++I
)
197 visitNamedMDNode(*I
);
199 // If the module is broken, abort at this time.
200 return abortIfBroken();
203 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
204 AU
.setPreservesAll();
205 AU
.addRequiredID(PreVerifyID
);
207 AU
.addRequired
<DominatorTree
>();
210 /// abortIfBroken - If the module is broken and we are supposed to abort on
211 /// this condition, do so.
213 bool abortIfBroken() {
214 if (!Broken
) return false;
215 MessagesStr
<< "Broken module found, ";
217 default: llvm_unreachable("Unknown action");
218 case AbortProcessAction
:
219 MessagesStr
<< "compilation aborted!\n";
220 dbgs() << MessagesStr
.str();
221 // Client should choose different reaction if abort is not desired
223 case PrintMessageAction
:
224 MessagesStr
<< "verification continues.\n";
225 dbgs() << MessagesStr
.str();
227 case ReturnStatusAction
:
228 MessagesStr
<< "compilation terminated.\n";
234 // Verification methods...
235 void visitGlobalValue(GlobalValue
&GV
);
236 void visitGlobalVariable(GlobalVariable
&GV
);
237 void visitGlobalAlias(GlobalAlias
&GA
);
238 void visitNamedMDNode(NamedMDNode
&NMD
);
239 void visitMDNode(MDNode
&MD
, Function
*F
);
240 void visitFunction(Function
&F
);
241 void visitBasicBlock(BasicBlock
&BB
);
242 using InstVisitor
<Verifier
>::visit
;
244 void visit(Instruction
&I
);
246 void visitTruncInst(TruncInst
&I
);
247 void visitZExtInst(ZExtInst
&I
);
248 void visitSExtInst(SExtInst
&I
);
249 void visitFPTruncInst(FPTruncInst
&I
);
250 void visitFPExtInst(FPExtInst
&I
);
251 void visitFPToUIInst(FPToUIInst
&I
);
252 void visitFPToSIInst(FPToSIInst
&I
);
253 void visitUIToFPInst(UIToFPInst
&I
);
254 void visitSIToFPInst(SIToFPInst
&I
);
255 void visitIntToPtrInst(IntToPtrInst
&I
);
256 void visitPtrToIntInst(PtrToIntInst
&I
);
257 void visitBitCastInst(BitCastInst
&I
);
258 void visitPHINode(PHINode
&PN
);
259 void visitBinaryOperator(BinaryOperator
&B
);
260 void visitICmpInst(ICmpInst
&IC
);
261 void visitFCmpInst(FCmpInst
&FC
);
262 void visitExtractElementInst(ExtractElementInst
&EI
);
263 void visitInsertElementInst(InsertElementInst
&EI
);
264 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
265 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
266 void visitCallInst(CallInst
&CI
);
267 void visitInvokeInst(InvokeInst
&II
);
268 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
269 void visitLoadInst(LoadInst
&LI
);
270 void visitStoreInst(StoreInst
&SI
);
271 void visitInstruction(Instruction
&I
);
272 void visitTerminatorInst(TerminatorInst
&I
);
273 void visitBranchInst(BranchInst
&BI
);
274 void visitReturnInst(ReturnInst
&RI
);
275 void visitSwitchInst(SwitchInst
&SI
);
276 void visitIndirectBrInst(IndirectBrInst
&BI
);
277 void visitSelectInst(SelectInst
&SI
);
278 void visitUserOp1(Instruction
&I
);
279 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
280 void visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
);
281 void visitAllocaInst(AllocaInst
&AI
);
282 void visitExtractValueInst(ExtractValueInst
&EVI
);
283 void visitInsertValueInst(InsertValueInst
&IVI
);
285 void VerifyCallSite(CallSite CS
);
286 bool PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
287 int VT
, unsigned ArgNo
, std::string
&Suffix
);
288 void VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
289 unsigned RetNum
, unsigned ParamNum
, ...);
290 void VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
291 bool isReturnValue
, const Value
*V
);
292 void VerifyFunctionAttrs(const FunctionType
*FT
, const AttrListPtr
&Attrs
,
295 void WriteValue(const Value
*V
) {
297 if (isa
<Instruction
>(V
)) {
298 MessagesStr
<< *V
<< '\n';
300 WriteAsOperand(MessagesStr
, V
, true, Mod
);
305 void WriteType(const Type
*T
) {
307 MessagesStr
<< ' ' << *T
;
311 // CheckFailed - A check failed, so print out the condition and the message
312 // that failed. This provides a nice place to put a breakpoint if you want
313 // to see why something is not correct.
314 void CheckFailed(const Twine
&Message
,
315 const Value
*V1
= 0, const Value
*V2
= 0,
316 const Value
*V3
= 0, const Value
*V4
= 0) {
317 MessagesStr
<< Message
.str() << "\n";
325 void CheckFailed(const Twine
&Message
, const Value
*V1
,
326 const Type
*T2
, const Value
*V3
= 0) {
327 MessagesStr
<< Message
.str() << "\n";
334 void CheckFailed(const Twine
&Message
, const Type
*T1
,
335 const Type
*T2
= 0, const Type
*T3
= 0) {
336 MessagesStr
<< Message
.str() << "\n";
343 } // End anonymous namespace
345 char Verifier::ID
= 0;
346 INITIALIZE_PASS_BEGIN(Verifier
, "verify", "Module Verifier", false, false)
347 INITIALIZE_PASS_DEPENDENCY(PreVerifier
)
348 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
349 INITIALIZE_PASS_END(Verifier
, "verify", "Module Verifier", false, false)
351 // Assert - We know that cond should be true, if not print an error message.
352 #define Assert(C, M) \
353 do { if (!(C)) { CheckFailed(M); return; } } while (0)
354 #define Assert1(C, M, V1) \
355 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
356 #define Assert2(C, M, V1, V2) \
357 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
358 #define Assert3(C, M, V1, V2, V3) \
359 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
360 #define Assert4(C, M, V1, V2, V3, V4) \
361 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
363 void Verifier::visit(Instruction
&I
) {
364 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
365 Assert1(I
.getOperand(i
) != 0, "Operand is null", &I
);
366 InstVisitor
<Verifier
>::visit(I
);
370 void Verifier::visitGlobalValue(GlobalValue
&GV
) {
371 Assert1(!GV
.isDeclaration() ||
372 GV
.isMaterializable() ||
373 GV
.hasExternalLinkage() ||
374 GV
.hasDLLImportLinkage() ||
375 GV
.hasExternalWeakLinkage() ||
376 (isa
<GlobalAlias
>(GV
) &&
377 (GV
.hasLocalLinkage() || GV
.hasWeakLinkage())),
378 "Global is external, but doesn't have external or dllimport or weak linkage!",
381 Assert1(!GV
.hasDLLImportLinkage() || GV
.isDeclaration(),
382 "Global is marked as dllimport, but not external", &GV
);
384 Assert1(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
385 "Only global variables can have appending linkage!", &GV
);
387 if (GV
.hasAppendingLinkage()) {
388 GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
389 Assert1(GVar
&& GVar
->getType()->getElementType()->isArrayTy(),
390 "Only global arrays can have appending linkage!", GVar
);
393 Assert1(!GV
.hasLinkerPrivateWeakDefAutoLinkage() || GV
.hasDefaultVisibility(),
394 "linker_private_weak_def_auto can only have default visibility!",
398 void Verifier::visitGlobalVariable(GlobalVariable
&GV
) {
399 if (GV
.hasInitializer()) {
400 Assert1(GV
.getInitializer()->getType() == GV
.getType()->getElementType(),
401 "Global variable initializer type does not match global "
402 "variable type!", &GV
);
404 // If the global has common linkage, it must have a zero initializer and
405 // cannot be constant.
406 if (GV
.hasCommonLinkage()) {
407 Assert1(GV
.getInitializer()->isNullValue(),
408 "'common' global must have a zero initializer!", &GV
);
409 Assert1(!GV
.isConstant(), "'common' global may not be marked constant!",
413 Assert1(GV
.hasExternalLinkage() || GV
.hasDLLImportLinkage() ||
414 GV
.hasExternalWeakLinkage(),
415 "invalid linkage type for global declaration", &GV
);
418 if (GV
.hasName() && (GV
.getName() == "llvm.global_ctors" ||
419 GV
.getName() == "llvm.global_dtors")) {
420 Assert1(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
421 "invalid linkage for intrinsic global variable", &GV
);
422 // Don't worry about emitting an error for it not being an array,
423 // visitGlobalValue will complain on appending non-array.
424 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(GV
.getType())) {
425 const StructType
*STy
= dyn_cast
<StructType
>(ATy
->getElementType());
426 const PointerType
*FuncPtrTy
=
427 FunctionType::get(Type::getVoidTy(*Context
), false)->getPointerTo();
428 Assert1(STy
&& STy
->getNumElements() == 2 &&
429 STy
->getTypeAtIndex(0u)->isIntegerTy(32) &&
430 STy
->getTypeAtIndex(1) == FuncPtrTy
,
431 "wrong type for intrinsic global variable", &GV
);
435 visitGlobalValue(GV
);
438 void Verifier::visitGlobalAlias(GlobalAlias
&GA
) {
439 Assert1(!GA
.getName().empty(),
440 "Alias name cannot be empty!", &GA
);
441 Assert1(GA
.hasExternalLinkage() || GA
.hasLocalLinkage() ||
443 "Alias should have external or external weak linkage!", &GA
);
444 Assert1(GA
.getAliasee(),
445 "Aliasee cannot be NULL!", &GA
);
446 Assert1(GA
.getType() == GA
.getAliasee()->getType(),
447 "Alias and aliasee types should match!", &GA
);
448 Assert1(!GA
.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA
);
450 if (!isa
<GlobalValue
>(GA
.getAliasee())) {
451 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GA
.getAliasee());
453 (CE
->getOpcode() == Instruction::BitCast
||
454 CE
->getOpcode() == Instruction::GetElementPtr
) &&
455 isa
<GlobalValue
>(CE
->getOperand(0)),
456 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
460 const GlobalValue
* Aliasee
= GA
.resolveAliasedGlobal(/*stopOnWeak*/ false);
462 "Aliasing chain should end with function or global variable", &GA
);
464 visitGlobalValue(GA
);
467 void Verifier::visitNamedMDNode(NamedMDNode
&NMD
) {
468 for (unsigned i
= 0, e
= NMD
.getNumOperands(); i
!= e
; ++i
) {
469 MDNode
*MD
= NMD
.getOperand(i
);
473 Assert1(!MD
->isFunctionLocal(),
474 "Named metadata operand cannot be function local!", MD
);
479 void Verifier::visitMDNode(MDNode
&MD
, Function
*F
) {
480 // Only visit each node once. Metadata can be mutually recursive, so this
481 // avoids infinite recursion here, as well as being an optimization.
482 if (!MDNodes
.insert(&MD
))
485 for (unsigned i
= 0, e
= MD
.getNumOperands(); i
!= e
; ++i
) {
486 Value
*Op
= MD
.getOperand(i
);
489 if (isa
<Constant
>(Op
) || isa
<MDString
>(Op
))
491 if (MDNode
*N
= dyn_cast
<MDNode
>(Op
)) {
492 Assert2(MD
.isFunctionLocal() || !N
->isFunctionLocal(),
493 "Global metadata operand cannot be function local!", &MD
, N
);
497 Assert2(MD
.isFunctionLocal(), "Invalid operand for global metadata!", &MD
, Op
);
499 // If this was an instruction, bb, or argument, verify that it is in the
500 // function that we expect.
501 Function
*ActualF
= 0;
502 if (Instruction
*I
= dyn_cast
<Instruction
>(Op
))
503 ActualF
= I
->getParent()->getParent();
504 else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op
))
505 ActualF
= BB
->getParent();
506 else if (Argument
*A
= dyn_cast
<Argument
>(Op
))
507 ActualF
= A
->getParent();
508 assert(ActualF
&& "Unimplemented function local metadata case!");
510 Assert2(ActualF
== F
, "function-local metadata used in wrong function",
515 // VerifyParameterAttrs - Check the given attributes for an argument or return
516 // value of the specified type. The value V is printed in error messages.
517 void Verifier::VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
518 bool isReturnValue
, const Value
*V
) {
519 if (Attrs
== Attribute::None
)
522 Attributes FnCheckAttr
= Attrs
& Attribute::FunctionOnly
;
523 Assert1(!FnCheckAttr
, "Attribute " + Attribute::getAsString(FnCheckAttr
) +
524 " only applies to the function!", V
);
527 Attributes RetI
= Attrs
& Attribute::ParameterOnly
;
528 Assert1(!RetI
, "Attribute " + Attribute::getAsString(RetI
) +
529 " does not apply to return values!", V
);
533 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
534 Attributes MutI
= Attrs
& Attribute::MutuallyIncompatible
[i
];
535 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
536 Attribute::getAsString(MutI
) + " are incompatible!", V
);
539 Attributes TypeI
= Attrs
& Attribute::typeIncompatible(Ty
);
540 Assert1(!TypeI
, "Wrong type for attribute " +
541 Attribute::getAsString(TypeI
), V
);
543 Attributes ByValI
= Attrs
& Attribute::ByVal
;
544 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
545 Assert1(!ByValI
|| PTy
->getElementType()->isSized(),
546 "Attribute " + Attribute::getAsString(ByValI
) +
547 " does not support unsized types!", V
);
550 "Attribute " + Attribute::getAsString(ByValI
) +
551 " only applies to parameters with pointer type!", V
);
555 // VerifyFunctionAttrs - Check parameter attributes against a function type.
556 // The value V is printed in error messages.
557 void Verifier::VerifyFunctionAttrs(const FunctionType
*FT
,
558 const AttrListPtr
&Attrs
,
563 bool SawNest
= false;
565 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
566 const AttributeWithIndex
&Attr
= Attrs
.getSlot(i
);
570 Ty
= FT
->getReturnType();
571 else if (Attr
.Index
-1 < FT
->getNumParams())
572 Ty
= FT
->getParamType(Attr
.Index
-1);
574 break; // VarArgs attributes, verified elsewhere.
576 VerifyParameterAttrs(Attr
.Attrs
, Ty
, Attr
.Index
== 0, V
);
578 if (Attr
.Attrs
& Attribute::Nest
) {
579 Assert1(!SawNest
, "More than one parameter has attribute nest!", V
);
583 if (Attr
.Attrs
& Attribute::StructRet
)
584 Assert1(Attr
.Index
== 1, "Attribute sret not on first parameter!", V
);
587 Attributes FAttrs
= Attrs
.getFnAttributes();
588 Attributes NotFn
= FAttrs
& (~Attribute::FunctionOnly
);
589 Assert1(!NotFn
, "Attribute " + Attribute::getAsString(NotFn
) +
590 " does not apply to the function!", V
);
593 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
594 Attributes MutI
= FAttrs
& Attribute::MutuallyIncompatible
[i
];
595 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
596 Attribute::getAsString(MutI
) + " are incompatible!", V
);
600 static bool VerifyAttributeCount(const AttrListPtr
&Attrs
, unsigned Params
) {
604 unsigned LastSlot
= Attrs
.getNumSlots() - 1;
605 unsigned LastIndex
= Attrs
.getSlot(LastSlot
).Index
;
606 if (LastIndex
<= Params
607 || (LastIndex
== (unsigned)~0
608 && (LastSlot
== 0 || Attrs
.getSlot(LastSlot
- 1).Index
<= Params
)))
614 // visitFunction - Verify that a function is ok.
616 void Verifier::visitFunction(Function
&F
) {
617 // Check function arguments.
618 const FunctionType
*FT
= F
.getFunctionType();
619 unsigned NumArgs
= F
.arg_size();
621 Assert1(Context
== &F
.getContext(),
622 "Function context does not match Module context!", &F
);
624 Assert1(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
625 Assert2(FT
->getNumParams() == NumArgs
,
626 "# formal arguments must match # of arguments for function type!",
628 Assert1(F
.getReturnType()->isFirstClassType() ||
629 F
.getReturnType()->isVoidTy() ||
630 F
.getReturnType()->isStructTy(),
631 "Functions cannot return aggregate values!", &F
);
633 Assert1(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
634 "Invalid struct return type!", &F
);
636 const AttrListPtr
&Attrs
= F
.getAttributes();
638 Assert1(VerifyAttributeCount(Attrs
, FT
->getNumParams()),
639 "Attributes after last parameter!", &F
);
641 // Check function attributes.
642 VerifyFunctionAttrs(FT
, Attrs
, &F
);
644 // Check that this function meets the restrictions on this calling convention.
645 switch (F
.getCallingConv()) {
650 case CallingConv::Fast
:
651 case CallingConv::Cold
:
652 case CallingConv::X86_FastCall
:
653 case CallingConv::X86_ThisCall
:
654 case CallingConv::PTX_Kernel
:
655 case CallingConv::PTX_Device
:
656 Assert1(!F
.isVarArg(),
657 "Varargs functions must have C calling conventions!", &F
);
661 bool isLLVMdotName
= F
.getName().size() >= 5 &&
662 F
.getName().substr(0, 5) == "llvm.";
664 // Check that the argument values match the function type for this function...
666 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
668 Assert2(I
->getType() == FT
->getParamType(i
),
669 "Argument value does not match function argument type!",
670 I
, FT
->getParamType(i
));
671 Assert1(I
->getType()->isFirstClassType(),
672 "Function arguments must have first-class types!", I
);
674 Assert2(!I
->getType()->isMetadataTy(),
675 "Function takes metadata but isn't an intrinsic", I
, &F
);
678 if (F
.isMaterializable()) {
679 // Function has a body somewhere we can't see.
680 } else if (F
.isDeclaration()) {
681 Assert1(F
.hasExternalLinkage() || F
.hasDLLImportLinkage() ||
682 F
.hasExternalWeakLinkage(),
683 "invalid linkage type for function declaration", &F
);
685 // Verify that this function (which has a body) is not named "llvm.*". It
686 // is not legal to define intrinsics.
687 Assert1(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
689 // Check the entry node
690 BasicBlock
*Entry
= &F
.getEntryBlock();
691 Assert1(pred_begin(Entry
) == pred_end(Entry
),
692 "Entry block to function must not have predecessors!", Entry
);
694 // The address of the entry block cannot be taken, unless it is dead.
695 if (Entry
->hasAddressTaken()) {
696 Assert1(!BlockAddress::get(Entry
)->isConstantUsed(),
697 "blockaddress may not be used with the entry block!", Entry
);
701 // If this function is actually an intrinsic, verify that it is only used in
702 // direct call/invokes, never having its "address taken".
703 if (F
.getIntrinsicID()) {
705 if (F
.hasAddressTaken(&U
))
706 Assert1(0, "Invalid user of intrinsic instruction!", U
);
710 // verifyBasicBlock - Verify that a basic block is well formed...
712 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
713 InstsInThisBlock
.clear();
715 // Ensure that basic blocks have terminators!
716 Assert1(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
718 // Check constraints that this basic block imposes on all of the PHI nodes in
720 if (isa
<PHINode
>(BB
.front())) {
721 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
722 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
723 std::sort(Preds
.begin(), Preds
.end());
725 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
));++I
) {
726 // Ensure that PHI nodes have at least one entry!
727 Assert1(PN
->getNumIncomingValues() != 0,
728 "PHI nodes must have at least one entry. If the block is dead, "
729 "the PHI should be removed!", PN
);
730 Assert1(PN
->getNumIncomingValues() == Preds
.size(),
731 "PHINode should have one entry for each predecessor of its "
732 "parent basic block!", PN
);
734 // Get and sort all incoming values in the PHI node...
736 Values
.reserve(PN
->getNumIncomingValues());
737 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
738 Values
.push_back(std::make_pair(PN
->getIncomingBlock(i
),
739 PN
->getIncomingValue(i
)));
740 std::sort(Values
.begin(), Values
.end());
742 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
743 // Check to make sure that if there is more than one entry for a
744 // particular basic block in this PHI node, that the incoming values are
747 Assert4(i
== 0 || Values
[i
].first
!= Values
[i
-1].first
||
748 Values
[i
].second
== Values
[i
-1].second
,
749 "PHI node has multiple entries for the same basic block with "
750 "different incoming values!", PN
, Values
[i
].first
,
751 Values
[i
].second
, Values
[i
-1].second
);
753 // Check to make sure that the predecessors and PHI node entries are
755 Assert3(Values
[i
].first
== Preds
[i
],
756 "PHI node entries do not match predecessors!", PN
,
757 Values
[i
].first
, Preds
[i
]);
763 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
764 // Ensure that terminators only exist at the end of the basic block.
765 Assert1(&I
== I
.getParent()->getTerminator(),
766 "Terminator found in the middle of a basic block!", I
.getParent());
770 void Verifier::visitBranchInst(BranchInst
&BI
) {
771 if (BI
.isConditional()) {
772 Assert2(BI
.getCondition()->getType()->isIntegerTy(1),
773 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
775 visitTerminatorInst(BI
);
778 void Verifier::visitReturnInst(ReturnInst
&RI
) {
779 Function
*F
= RI
.getParent()->getParent();
780 unsigned N
= RI
.getNumOperands();
781 if (F
->getReturnType()->isVoidTy())
783 "Found return instr that returns non-void in Function of void "
784 "return type!", &RI
, F
->getReturnType());
786 Assert2(N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType(),
787 "Function return type does not match operand "
788 "type of return inst!", &RI
, F
->getReturnType());
790 // Check to make sure that the return value has necessary properties for
792 visitTerminatorInst(RI
);
795 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
796 // Check to make sure that all of the constants in the switch instruction
797 // have the same type as the switched-on value.
798 const Type
*SwitchTy
= SI
.getCondition()->getType();
799 SmallPtrSet
<ConstantInt
*, 32> Constants
;
800 for (unsigned i
= 1, e
= SI
.getNumCases(); i
!= e
; ++i
) {
801 Assert1(SI
.getCaseValue(i
)->getType() == SwitchTy
,
802 "Switch constants must all be same type as switch value!", &SI
);
803 Assert2(Constants
.insert(SI
.getCaseValue(i
)),
804 "Duplicate integer as switch case", &SI
, SI
.getCaseValue(i
));
807 visitTerminatorInst(SI
);
810 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
811 Assert1(BI
.getAddress()->getType()->isPointerTy(),
812 "Indirectbr operand must have pointer type!", &BI
);
813 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
814 Assert1(BI
.getDestination(i
)->getType()->isLabelTy(),
815 "Indirectbr destinations must all have pointer type!", &BI
);
817 visitTerminatorInst(BI
);
820 void Verifier::visitSelectInst(SelectInst
&SI
) {
821 Assert1(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
823 "Invalid operands for select instruction!", &SI
);
825 Assert1(SI
.getTrueValue()->getType() == SI
.getType(),
826 "Select values must have same type as select instruction!", &SI
);
827 visitInstruction(SI
);
830 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
831 /// a pass, if any exist, it's an error.
833 void Verifier::visitUserOp1(Instruction
&I
) {
834 Assert1(0, "User-defined operators should not live outside of a pass!", &I
);
837 void Verifier::visitTruncInst(TruncInst
&I
) {
838 // Get the source and destination types
839 const Type
*SrcTy
= I
.getOperand(0)->getType();
840 const Type
*DestTy
= I
.getType();
842 // Get the size of the types in bits, we'll need this later
843 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
844 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
846 Assert1(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
847 Assert1(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
848 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
849 "trunc source and destination must both be a vector or neither", &I
);
850 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for Trunc", &I
);
855 void Verifier::visitZExtInst(ZExtInst
&I
) {
856 // Get the source and destination types
857 const Type
*SrcTy
= I
.getOperand(0)->getType();
858 const Type
*DestTy
= I
.getType();
860 // Get the size of the types in bits, we'll need this later
861 Assert1(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
862 Assert1(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
863 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
864 "zext source and destination must both be a vector or neither", &I
);
865 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
866 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
868 Assert1(SrcBitSize
< DestBitSize
,"Type too small for ZExt", &I
);
873 void Verifier::visitSExtInst(SExtInst
&I
) {
874 // Get the source and destination types
875 const Type
*SrcTy
= I
.getOperand(0)->getType();
876 const Type
*DestTy
= I
.getType();
878 // Get the size of the types in bits, we'll need this later
879 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
880 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
882 Assert1(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
883 Assert1(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
884 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
885 "sext source and destination must both be a vector or neither", &I
);
886 Assert1(SrcBitSize
< DestBitSize
,"Type too small for SExt", &I
);
891 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
892 // Get the source and destination types
893 const Type
*SrcTy
= I
.getOperand(0)->getType();
894 const Type
*DestTy
= I
.getType();
895 // Get the size of the types in bits, we'll need this later
896 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
897 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
899 Assert1(SrcTy
->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I
);
900 Assert1(DestTy
->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I
);
901 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
902 "fptrunc source and destination must both be a vector or neither",&I
);
903 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for FPTrunc", &I
);
908 void Verifier::visitFPExtInst(FPExtInst
&I
) {
909 // Get the source and destination types
910 const Type
*SrcTy
= I
.getOperand(0)->getType();
911 const Type
*DestTy
= I
.getType();
913 // Get the size of the types in bits, we'll need this later
914 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
915 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
917 Assert1(SrcTy
->isFPOrFPVectorTy(),"FPExt only operates on FP", &I
);
918 Assert1(DestTy
->isFPOrFPVectorTy(),"FPExt only produces an FP", &I
);
919 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
920 "fpext source and destination must both be a vector or neither", &I
);
921 Assert1(SrcBitSize
< DestBitSize
,"DestTy too small for FPExt", &I
);
926 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
927 // Get the source and destination types
928 const Type
*SrcTy
= I
.getOperand(0)->getType();
929 const Type
*DestTy
= I
.getType();
931 bool SrcVec
= SrcTy
->isVectorTy();
932 bool DstVec
= DestTy
->isVectorTy();
934 Assert1(SrcVec
== DstVec
,
935 "UIToFP source and dest must both be vector or scalar", &I
);
936 Assert1(SrcTy
->isIntOrIntVectorTy(),
937 "UIToFP source must be integer or integer vector", &I
);
938 Assert1(DestTy
->isFPOrFPVectorTy(),
939 "UIToFP result must be FP or FP vector", &I
);
941 if (SrcVec
&& DstVec
)
942 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
943 cast
<VectorType
>(DestTy
)->getNumElements(),
944 "UIToFP source and dest vector length mismatch", &I
);
949 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
950 // Get the source and destination types
951 const Type
*SrcTy
= I
.getOperand(0)->getType();
952 const Type
*DestTy
= I
.getType();
954 bool SrcVec
= SrcTy
->isVectorTy();
955 bool DstVec
= DestTy
->isVectorTy();
957 Assert1(SrcVec
== DstVec
,
958 "SIToFP source and dest must both be vector or scalar", &I
);
959 Assert1(SrcTy
->isIntOrIntVectorTy(),
960 "SIToFP source must be integer or integer vector", &I
);
961 Assert1(DestTy
->isFPOrFPVectorTy(),
962 "SIToFP result must be FP or FP vector", &I
);
964 if (SrcVec
&& DstVec
)
965 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
966 cast
<VectorType
>(DestTy
)->getNumElements(),
967 "SIToFP source and dest vector length mismatch", &I
);
972 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
973 // Get the source and destination types
974 const Type
*SrcTy
= I
.getOperand(0)->getType();
975 const Type
*DestTy
= I
.getType();
977 bool SrcVec
= SrcTy
->isVectorTy();
978 bool DstVec
= DestTy
->isVectorTy();
980 Assert1(SrcVec
== DstVec
,
981 "FPToUI source and dest must both be vector or scalar", &I
);
982 Assert1(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
984 Assert1(DestTy
->isIntOrIntVectorTy(),
985 "FPToUI result must be integer or integer vector", &I
);
987 if (SrcVec
&& DstVec
)
988 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
989 cast
<VectorType
>(DestTy
)->getNumElements(),
990 "FPToUI source and dest vector length mismatch", &I
);
995 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
996 // Get the source and destination types
997 const Type
*SrcTy
= I
.getOperand(0)->getType();
998 const Type
*DestTy
= I
.getType();
1000 bool SrcVec
= SrcTy
->isVectorTy();
1001 bool DstVec
= DestTy
->isVectorTy();
1003 Assert1(SrcVec
== DstVec
,
1004 "FPToSI source and dest must both be vector or scalar", &I
);
1005 Assert1(SrcTy
->isFPOrFPVectorTy(),
1006 "FPToSI source must be FP or FP vector", &I
);
1007 Assert1(DestTy
->isIntOrIntVectorTy(),
1008 "FPToSI result must be integer or integer vector", &I
);
1010 if (SrcVec
&& DstVec
)
1011 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1012 cast
<VectorType
>(DestTy
)->getNumElements(),
1013 "FPToSI source and dest vector length mismatch", &I
);
1015 visitInstruction(I
);
1018 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
1019 // Get the source and destination types
1020 const Type
*SrcTy
= I
.getOperand(0)->getType();
1021 const Type
*DestTy
= I
.getType();
1023 Assert1(SrcTy
->isPointerTy(), "PtrToInt source must be pointer", &I
);
1024 Assert1(DestTy
->isIntegerTy(), "PtrToInt result must be integral", &I
);
1026 visitInstruction(I
);
1029 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
1030 // Get the source and destination types
1031 const Type
*SrcTy
= I
.getOperand(0)->getType();
1032 const Type
*DestTy
= I
.getType();
1034 Assert1(SrcTy
->isIntegerTy(), "IntToPtr source must be an integral", &I
);
1035 Assert1(DestTy
->isPointerTy(), "IntToPtr result must be a pointer",&I
);
1037 visitInstruction(I
);
1040 void Verifier::visitBitCastInst(BitCastInst
&I
) {
1041 // Get the source and destination types
1042 const Type
*SrcTy
= I
.getOperand(0)->getType();
1043 const Type
*DestTy
= I
.getType();
1045 // Get the size of the types in bits, we'll need this later
1046 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1047 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
1049 // BitCast implies a no-op cast of type only. No bits change.
1050 // However, you can't cast pointers to anything but pointers.
1051 Assert1(DestTy
->isPointerTy() == DestTy
->isPointerTy(),
1052 "Bitcast requires both operands to be pointer or neither", &I
);
1053 Assert1(SrcBitSize
== DestBitSize
, "Bitcast requires types of same width",&I
);
1055 // Disallow aggregates.
1056 Assert1(!SrcTy
->isAggregateType(),
1057 "Bitcast operand must not be aggregate", &I
);
1058 Assert1(!DestTy
->isAggregateType(),
1059 "Bitcast type must not be aggregate", &I
);
1061 visitInstruction(I
);
1064 /// visitPHINode - Ensure that a PHI node is well formed.
1066 void Verifier::visitPHINode(PHINode
&PN
) {
1067 // Ensure that the PHI nodes are all grouped together at the top of the block.
1068 // This can be tested by checking whether the instruction before this is
1069 // either nonexistent (because this is begin()) or is a PHI node. If not,
1070 // then there is some other instruction before a PHI.
1071 Assert2(&PN
== &PN
.getParent()->front() ||
1072 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
1073 "PHI nodes not grouped at top of basic block!",
1074 &PN
, PN
.getParent());
1076 // Check that all of the values of the PHI node have the same type as the
1077 // result, and that the incoming blocks are really basic blocks.
1078 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
1079 Assert1(PN
.getType() == PN
.getIncomingValue(i
)->getType(),
1080 "PHI node operands are not the same type as the result!", &PN
);
1083 // All other PHI node constraints are checked in the visitBasicBlock method.
1085 visitInstruction(PN
);
1088 void Verifier::VerifyCallSite(CallSite CS
) {
1089 Instruction
*I
= CS
.getInstruction();
1091 Assert1(CS
.getCalledValue()->getType()->isPointerTy(),
1092 "Called function must be a pointer!", I
);
1093 const PointerType
*FPTy
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1095 Assert1(FPTy
->getElementType()->isFunctionTy(),
1096 "Called function is not pointer to function type!", I
);
1097 const FunctionType
*FTy
= cast
<FunctionType
>(FPTy
->getElementType());
1099 // Verify that the correct number of arguments are being passed
1100 if (FTy
->isVarArg())
1101 Assert1(CS
.arg_size() >= FTy
->getNumParams(),
1102 "Called function requires more parameters than were provided!",I
);
1104 Assert1(CS
.arg_size() == FTy
->getNumParams(),
1105 "Incorrect number of arguments passed to called function!", I
);
1107 // Verify that all arguments to the call match the function type.
1108 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1109 Assert3(CS
.getArgument(i
)->getType() == FTy
->getParamType(i
),
1110 "Call parameter type does not match function signature!",
1111 CS
.getArgument(i
), FTy
->getParamType(i
), I
);
1113 const AttrListPtr
&Attrs
= CS
.getAttributes();
1115 Assert1(VerifyAttributeCount(Attrs
, CS
.arg_size()),
1116 "Attributes after last parameter!", I
);
1118 // Verify call attributes.
1119 VerifyFunctionAttrs(FTy
, Attrs
, I
);
1121 if (FTy
->isVarArg())
1122 // Check attributes on the varargs part.
1123 for (unsigned Idx
= 1 + FTy
->getNumParams(); Idx
<= CS
.arg_size(); ++Idx
) {
1124 Attributes Attr
= Attrs
.getParamAttributes(Idx
);
1126 VerifyParameterAttrs(Attr
, CS
.getArgument(Idx
-1)->getType(), false, I
);
1128 Attributes VArgI
= Attr
& Attribute::VarArgsIncompatible
;
1129 Assert1(!VArgI
, "Attribute " + Attribute::getAsString(VArgI
) +
1130 " cannot be used for vararg call arguments!", I
);
1133 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1134 if (CS
.getCalledFunction() == 0 ||
1135 !CS
.getCalledFunction()->getName().startswith("llvm.")) {
1136 for (FunctionType::param_iterator PI
= FTy
->param_begin(),
1137 PE
= FTy
->param_end(); PI
!= PE
; ++PI
)
1138 Assert1(!(*PI
)->isMetadataTy(),
1139 "Function has metadata parameter but isn't an intrinsic", I
);
1142 visitInstruction(*I
);
1145 void Verifier::visitCallInst(CallInst
&CI
) {
1146 VerifyCallSite(&CI
);
1148 if (Function
*F
= CI
.getCalledFunction())
1149 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
1150 visitIntrinsicFunctionCall(ID
, CI
);
1153 void Verifier::visitInvokeInst(InvokeInst
&II
) {
1154 VerifyCallSite(&II
);
1155 visitTerminatorInst(II
);
1158 /// visitBinaryOperator - Check that both arguments to the binary operator are
1159 /// of the same type!
1161 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
1162 Assert1(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
1163 "Both operands to a binary operator are not of the same type!", &B
);
1165 switch (B
.getOpcode()) {
1166 // Check that integer arithmetic operators are only used with
1167 // integral operands.
1168 case Instruction::Add
:
1169 case Instruction::Sub
:
1170 case Instruction::Mul
:
1171 case Instruction::SDiv
:
1172 case Instruction::UDiv
:
1173 case Instruction::SRem
:
1174 case Instruction::URem
:
1175 Assert1(B
.getType()->isIntOrIntVectorTy(),
1176 "Integer arithmetic operators only work with integral types!", &B
);
1177 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1178 "Integer arithmetic operators must have same type "
1179 "for operands and result!", &B
);
1181 // Check that floating-point arithmetic operators are only used with
1182 // floating-point operands.
1183 case Instruction::FAdd
:
1184 case Instruction::FSub
:
1185 case Instruction::FMul
:
1186 case Instruction::FDiv
:
1187 case Instruction::FRem
:
1188 Assert1(B
.getType()->isFPOrFPVectorTy(),
1189 "Floating-point arithmetic operators only work with "
1190 "floating-point types!", &B
);
1191 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1192 "Floating-point arithmetic operators must have same type "
1193 "for operands and result!", &B
);
1195 // Check that logical operators are only used with integral operands.
1196 case Instruction::And
:
1197 case Instruction::Or
:
1198 case Instruction::Xor
:
1199 Assert1(B
.getType()->isIntOrIntVectorTy(),
1200 "Logical operators only work with integral types!", &B
);
1201 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1202 "Logical operators must have same type for operands and result!",
1205 case Instruction::Shl
:
1206 case Instruction::LShr
:
1207 case Instruction::AShr
:
1208 Assert1(B
.getType()->isIntOrIntVectorTy(),
1209 "Shifts only work with integral types!", &B
);
1210 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1211 "Shift return type must be same as operands!", &B
);
1214 llvm_unreachable("Unknown BinaryOperator opcode!");
1217 visitInstruction(B
);
1220 void Verifier::visitICmpInst(ICmpInst
&IC
) {
1221 // Check that the operands are the same type
1222 const Type
*Op0Ty
= IC
.getOperand(0)->getType();
1223 const Type
*Op1Ty
= IC
.getOperand(1)->getType();
1224 Assert1(Op0Ty
== Op1Ty
,
1225 "Both operands to ICmp instruction are not of the same type!", &IC
);
1226 // Check that the operands are the right type
1227 Assert1(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPointerTy(),
1228 "Invalid operand types for ICmp instruction", &IC
);
1229 // Check that the predicate is valid.
1230 Assert1(IC
.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&&
1231 IC
.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
,
1232 "Invalid predicate in ICmp instruction!", &IC
);
1234 visitInstruction(IC
);
1237 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
1238 // Check that the operands are the same type
1239 const Type
*Op0Ty
= FC
.getOperand(0)->getType();
1240 const Type
*Op1Ty
= FC
.getOperand(1)->getType();
1241 Assert1(Op0Ty
== Op1Ty
,
1242 "Both operands to FCmp instruction are not of the same type!", &FC
);
1243 // Check that the operands are the right type
1244 Assert1(Op0Ty
->isFPOrFPVectorTy(),
1245 "Invalid operand types for FCmp instruction", &FC
);
1246 // Check that the predicate is valid.
1247 Assert1(FC
.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&&
1248 FC
.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
,
1249 "Invalid predicate in FCmp instruction!", &FC
);
1251 visitInstruction(FC
);
1254 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
1255 Assert1(ExtractElementInst::isValidOperands(EI
.getOperand(0),
1257 "Invalid extractelement operands!", &EI
);
1258 visitInstruction(EI
);
1261 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
1262 Assert1(InsertElementInst::isValidOperands(IE
.getOperand(0),
1265 "Invalid insertelement operands!", &IE
);
1266 visitInstruction(IE
);
1269 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
1270 Assert1(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
1272 "Invalid shufflevector operands!", &SV
);
1273 visitInstruction(SV
);
1276 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1277 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
1279 GetElementPtrInst::getIndexedType(GEP
.getOperand(0)->getType(),
1280 Idxs
.begin(), Idxs
.end());
1281 Assert1(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
1282 Assert2(GEP
.getType()->isPointerTy() &&
1283 cast
<PointerType
>(GEP
.getType())->getElementType() == ElTy
,
1284 "GEP is not of right type for indices!", &GEP
, ElTy
);
1285 visitInstruction(GEP
);
1288 void Verifier::visitLoadInst(LoadInst
&LI
) {
1289 const PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
1290 Assert1(PTy
, "Load operand must be a pointer.", &LI
);
1291 const Type
*ElTy
= PTy
->getElementType();
1292 Assert2(ElTy
== LI
.getType(),
1293 "Load result type does not match pointer operand type!", &LI
, ElTy
);
1294 visitInstruction(LI
);
1297 void Verifier::visitStoreInst(StoreInst
&SI
) {
1298 const PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
1299 Assert1(PTy
, "Store operand must be a pointer.", &SI
);
1300 const Type
*ElTy
= PTy
->getElementType();
1301 Assert2(ElTy
== SI
.getOperand(0)->getType(),
1302 "Stored value type does not match pointer operand type!",
1304 visitInstruction(SI
);
1307 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
1308 const PointerType
*PTy
= AI
.getType();
1309 Assert1(PTy
->getAddressSpace() == 0,
1310 "Allocation instruction pointer not in the generic address space!",
1312 Assert1(PTy
->getElementType()->isSized(), "Cannot allocate unsized type",
1314 Assert1(AI
.getArraySize()->getType()->isIntegerTy(),
1315 "Alloca array size must have integer type", &AI
);
1316 visitInstruction(AI
);
1319 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
1320 Assert1(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
1321 EVI
.idx_begin(), EVI
.idx_end()) ==
1323 "Invalid ExtractValueInst operands!", &EVI
);
1325 visitInstruction(EVI
);
1328 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
1329 Assert1(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
1330 IVI
.idx_begin(), IVI
.idx_end()) ==
1331 IVI
.getOperand(1)->getType(),
1332 "Invalid InsertValueInst operands!", &IVI
);
1334 visitInstruction(IVI
);
1337 /// verifyInstruction - Verify that an instruction is well formed.
1339 void Verifier::visitInstruction(Instruction
&I
) {
1340 BasicBlock
*BB
= I
.getParent();
1341 Assert1(BB
, "Instruction not embedded in basic block!", &I
);
1343 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
1344 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1346 Assert1(*UI
!= (User
*)&I
|| !DT
->isReachableFromEntry(BB
),
1347 "Only PHI nodes may reference their own value!", &I
);
1350 // Check that void typed values don't have names
1351 Assert1(!I
.getType()->isVoidTy() || !I
.hasName(),
1352 "Instruction has a name, but provides a void value!", &I
);
1354 // Check that the return value of the instruction is either void or a legal
1356 Assert1(I
.getType()->isVoidTy() ||
1357 I
.getType()->isFirstClassType(),
1358 "Instruction returns a non-scalar type!", &I
);
1360 // Check that the instruction doesn't produce metadata. Calls are already
1361 // checked against the callee type.
1362 Assert1(!I
.getType()->isMetadataTy() ||
1363 isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
1364 "Invalid use of metadata!", &I
);
1366 // Check that all uses of the instruction, if they are instructions
1367 // themselves, actually have parent basic blocks. If the use is not an
1368 // instruction, it is an error!
1369 for (User::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1371 if (Instruction
*Used
= dyn_cast
<Instruction
>(*UI
))
1372 Assert2(Used
->getParent() != 0, "Instruction referencing instruction not"
1373 " embedded in a basic block!", &I
, Used
);
1375 CheckFailed("Use of instruction is not an instruction!", *UI
);
1380 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1381 Assert1(I
.getOperand(i
) != 0, "Instruction has null operand!", &I
);
1383 // Check to make sure that only first-class-values are operands to
1385 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
1386 Assert1(0, "Instruction operands must be first-class values!", &I
);
1389 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
1390 // Check to make sure that the "address of" an intrinsic function is never
1392 Assert1(!F
->isIntrinsic() || (i
+ 1 == e
&& isa
<CallInst
>(I
)),
1393 "Cannot take the address of an intrinsic!", &I
);
1394 Assert1(F
->getParent() == Mod
, "Referencing function in another module!",
1396 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
1397 Assert1(OpBB
->getParent() == BB
->getParent(),
1398 "Referring to a basic block in another function!", &I
);
1399 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
1400 Assert1(OpArg
->getParent() == BB
->getParent(),
1401 "Referring to an argument in another function!", &I
);
1402 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
1403 Assert1(GV
->getParent() == Mod
, "Referencing global in another module!",
1405 } else if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
1406 BasicBlock
*OpBlock
= Op
->getParent();
1408 // Check that a definition dominates all of its uses.
1409 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
1410 // Invoke results are only usable in the normal destination, not in the
1411 // exceptional destination.
1412 BasicBlock
*NormalDest
= II
->getNormalDest();
1414 Assert2(NormalDest
!= II
->getUnwindDest(),
1415 "No uses of invoke possible due to dominance structure!",
1418 // PHI nodes differ from other nodes because they actually "use" the
1419 // value in the predecessor basic blocks they correspond to.
1420 BasicBlock
*UseBlock
= BB
;
1421 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
1422 unsigned j
= PHINode::getIncomingValueNumForOperand(i
);
1423 UseBlock
= PN
->getIncomingBlock(j
);
1425 Assert2(UseBlock
, "Invoke operand is PHI node with bad incoming-BB",
1428 if (isa
<PHINode
>(I
) && UseBlock
== OpBlock
) {
1429 // Special case of a phi node in the normal destination or the unwind
1431 Assert2(BB
== NormalDest
|| !DT
->isReachableFromEntry(UseBlock
),
1432 "Invoke result not available in the unwind destination!",
1435 Assert2(DT
->dominates(NormalDest
, UseBlock
) ||
1436 !DT
->isReachableFromEntry(UseBlock
),
1437 "Invoke result does not dominate all uses!", Op
, &I
);
1439 // If the normal successor of an invoke instruction has multiple
1440 // predecessors, then the normal edge from the invoke is critical,
1441 // so the invoke value can only be live if the destination block
1442 // dominates all of it's predecessors (other than the invoke).
1443 if (!NormalDest
->getSinglePredecessor() &&
1444 DT
->isReachableFromEntry(UseBlock
))
1445 // If it is used by something non-phi, then the other case is that
1446 // 'NormalDest' dominates all of its predecessors other than the
1447 // invoke. In this case, the invoke value can still be used.
1448 for (pred_iterator PI
= pred_begin(NormalDest
),
1449 E
= pred_end(NormalDest
); PI
!= E
; ++PI
)
1450 if (*PI
!= II
->getParent() && !DT
->dominates(NormalDest
, *PI
) &&
1451 DT
->isReachableFromEntry(*PI
)) {
1452 CheckFailed("Invoke result does not dominate all uses!", Op
,&I
);
1456 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
1457 // PHI nodes are more difficult than other nodes because they actually
1458 // "use" the value in the predecessor basic blocks they correspond to.
1459 unsigned j
= PHINode::getIncomingValueNumForOperand(i
);
1460 BasicBlock
*PredBB
= PN
->getIncomingBlock(j
);
1461 Assert2(PredBB
&& (DT
->dominates(OpBlock
, PredBB
) ||
1462 !DT
->isReachableFromEntry(PredBB
)),
1463 "Instruction does not dominate all uses!", Op
, &I
);
1465 if (OpBlock
== BB
) {
1466 // If they are in the same basic block, make sure that the definition
1467 // comes before the use.
1468 Assert2(InstsInThisBlock
.count(Op
) || !DT
->isReachableFromEntry(BB
),
1469 "Instruction does not dominate all uses!", Op
, &I
);
1472 // Definition must dominate use unless use is unreachable!
1473 Assert2(InstsInThisBlock
.count(Op
) || DT
->dominates(Op
, &I
) ||
1474 !DT
->isReachableFromEntry(BB
),
1475 "Instruction does not dominate all uses!", Op
, &I
);
1477 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
1478 Assert1((i
+ 1 == e
&& isa
<CallInst
>(I
)) ||
1479 (i
+ 3 == e
&& isa
<InvokeInst
>(I
)),
1480 "Cannot take the address of an inline asm!", &I
);
1483 InstsInThisBlock
.insert(&I
);
1486 // Flags used by TableGen to mark intrinsic parameters with the
1487 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1488 static const unsigned ExtendedElementVectorType
= 0x40000000;
1489 static const unsigned TruncatedElementVectorType
= 0x20000000;
1491 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1493 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
) {
1494 Function
*IF
= CI
.getCalledFunction();
1495 Assert1(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
1498 #define GET_INTRINSIC_VERIFIER
1499 #include "llvm/Intrinsics.gen"
1500 #undef GET_INTRINSIC_VERIFIER
1502 // If the intrinsic takes MDNode arguments, verify that they are either global
1503 // or are local to *this* function.
1504 for (unsigned i
= 0, e
= CI
.getNumArgOperands(); i
!= e
; ++i
)
1505 if (MDNode
*MD
= dyn_cast
<MDNode
>(CI
.getArgOperand(i
)))
1506 visitMDNode(*MD
, CI
.getParent()->getParent());
1511 case Intrinsic::dbg_declare
: { // llvm.dbg.declare
1512 Assert1(CI
.getArgOperand(0) && isa
<MDNode
>(CI
.getArgOperand(0)),
1513 "invalid llvm.dbg.declare intrinsic call 1", &CI
);
1514 MDNode
*MD
= cast
<MDNode
>(CI
.getArgOperand(0));
1515 Assert1(MD
->getNumOperands() == 1,
1516 "invalid llvm.dbg.declare intrinsic call 2", &CI
);
1518 case Intrinsic::memcpy
:
1519 case Intrinsic::memmove
:
1520 case Intrinsic::memset
:
1521 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(3)),
1522 "alignment argument of memory intrinsics must be a constant int",
1524 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(4)),
1525 "isvolatile argument of memory intrinsics must be a constant int",
1528 case Intrinsic::gcroot
:
1529 case Intrinsic::gcwrite
:
1530 case Intrinsic::gcread
:
1531 if (ID
== Intrinsic::gcroot
) {
1533 dyn_cast
<AllocaInst
>(CI
.getArgOperand(0)->stripPointerCasts());
1534 Assert1(AI
, "llvm.gcroot parameter #1 must be an alloca.", &CI
);
1535 Assert1(isa
<Constant
>(CI
.getArgOperand(1)),
1536 "llvm.gcroot parameter #2 must be a constant.", &CI
);
1537 if (!AI
->getType()->getElementType()->isPointerTy()) {
1538 Assert1(!isa
<ConstantPointerNull
>(CI
.getArgOperand(1)),
1539 "llvm.gcroot parameter #1 must either be a pointer alloca, "
1540 "or argument #2 must be a non-null constant.", &CI
);
1544 Assert1(CI
.getParent()->getParent()->hasGC(),
1545 "Enclosing function does not use GC.", &CI
);
1547 case Intrinsic::init_trampoline
:
1548 Assert1(isa
<Function
>(CI
.getArgOperand(1)->stripPointerCasts()),
1549 "llvm.init_trampoline parameter #2 must resolve to a function.",
1552 case Intrinsic::prefetch
:
1553 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(1)) &&
1554 isa
<ConstantInt
>(CI
.getArgOperand(2)) &&
1555 cast
<ConstantInt
>(CI
.getArgOperand(1))->getZExtValue() < 2 &&
1556 cast
<ConstantInt
>(CI
.getArgOperand(2))->getZExtValue() < 4,
1557 "invalid arguments to llvm.prefetch",
1560 case Intrinsic::stackprotector
:
1561 Assert1(isa
<AllocaInst
>(CI
.getArgOperand(1)->stripPointerCasts()),
1562 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1565 case Intrinsic::lifetime_start
:
1566 case Intrinsic::lifetime_end
:
1567 case Intrinsic::invariant_start
:
1568 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(0)),
1569 "size argument of memory use markers must be a constant integer",
1572 case Intrinsic::invariant_end
:
1573 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(1)),
1574 "llvm.invariant.end parameter #2 must be a constant integer", &CI
);
1579 /// Produce a string to identify an intrinsic parameter or return value.
1580 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1581 /// parameters beginning with NumRets.
1583 static std::string
IntrinsicParam(unsigned ArgNo
, unsigned NumRets
) {
1584 if (ArgNo
>= NumRets
)
1585 return "Intrinsic parameter #" + utostr(ArgNo
- NumRets
);
1587 return "Intrinsic result type";
1588 return "Intrinsic result type #" + utostr(ArgNo
);
1591 bool Verifier::PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
1592 int VT
, unsigned ArgNo
, std::string
&Suffix
) {
1593 const FunctionType
*FTy
= F
->getFunctionType();
1595 unsigned NumElts
= 0;
1596 const Type
*EltTy
= Ty
;
1597 const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1599 EltTy
= VTy
->getElementType();
1600 NumElts
= VTy
->getNumElements();
1603 const Type
*RetTy
= FTy
->getReturnType();
1604 const StructType
*ST
= dyn_cast
<StructType
>(RetTy
);
1605 unsigned NumRetVals
;
1606 if (RetTy
->isVoidTy())
1609 NumRetVals
= ST
->getNumElements();
1616 // Check flags that indicate a type that is an integral vector type with
1617 // elements that are larger or smaller than the elements of the matched
1619 if ((Match
& (ExtendedElementVectorType
|
1620 TruncatedElementVectorType
)) != 0) {
1621 const IntegerType
*IEltTy
= dyn_cast
<IntegerType
>(EltTy
);
1622 if (!VTy
|| !IEltTy
) {
1623 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1624 "an integral vector type.", F
);
1627 // Adjust the current Ty (in the opposite direction) rather than
1628 // the type being matched against.
1629 if ((Match
& ExtendedElementVectorType
) != 0) {
1630 if ((IEltTy
->getBitWidth() & 1) != 0) {
1631 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " vector "
1632 "element bit-width is odd.", F
);
1635 Ty
= VectorType::getTruncatedElementVectorType(VTy
);
1637 Ty
= VectorType::getExtendedElementVectorType(VTy
);
1638 Match
&= ~(ExtendedElementVectorType
| TruncatedElementVectorType
);
1641 if (Match
<= static_cast<int>(NumRetVals
- 1)) {
1643 RetTy
= ST
->getElementType(Match
);
1646 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " does not "
1647 "match return type.", F
);
1651 if (Ty
!= FTy
->getParamType(Match
- NumRetVals
)) {
1652 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " does not "
1653 "match parameter %" + utostr(Match
- NumRetVals
) + ".", F
);
1657 } else if (VT
== MVT::iAny
) {
1658 if (!EltTy
->isIntegerTy()) {
1659 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1660 "an integer type.", F
);
1664 unsigned GotBits
= cast
<IntegerType
>(EltTy
)->getBitWidth();
1668 Suffix
+= "v" + utostr(NumElts
);
1670 Suffix
+= "i" + utostr(GotBits
);
1672 // Check some constraints on various intrinsics.
1674 default: break; // Not everything needs to be checked.
1675 case Intrinsic::bswap
:
1676 if (GotBits
< 16 || GotBits
% 16 != 0) {
1677 CheckFailed("Intrinsic requires even byte width argument", F
);
1682 } else if (VT
== MVT::fAny
) {
1683 if (!EltTy
->isFloatingPointTy()) {
1684 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1685 "a floating-point type.", F
);
1692 Suffix
+= "v" + utostr(NumElts
);
1694 Suffix
+= EVT::getEVT(EltTy
).getEVTString();
1695 } else if (VT
== MVT::vAny
) {
1697 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a vector type.",
1701 Suffix
+= ".v" + utostr(NumElts
) + EVT::getEVT(EltTy
).getEVTString();
1702 } else if (VT
== MVT::iPTR
) {
1703 if (!Ty
->isPointerTy()) {
1704 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a "
1705 "pointer and a pointer is required.", F
);
1708 } else if (VT
== MVT::iPTRAny
) {
1709 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1710 // and iPTR. In the verifier, we can not distinguish which case we have so
1711 // allow either case to be legal.
1712 if (const PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
1713 EVT PointeeVT
= EVT::getEVT(PTyp
->getElementType(), true);
1714 if (PointeeVT
== MVT::Other
) {
1715 CheckFailed("Intrinsic has pointer to complex type.");
1718 Suffix
+= ".p" + utostr(PTyp
->getAddressSpace()) +
1719 PointeeVT
.getEVTString();
1721 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a "
1722 "pointer and a pointer is required.", F
);
1725 } else if (EVT((MVT::SimpleValueType
)VT
).isVector()) {
1726 EVT VVT
= EVT((MVT::SimpleValueType
)VT
);
1728 // If this is a vector argument, verify the number and type of elements.
1729 if (VVT
.getVectorElementType() != EVT::getEVT(EltTy
)) {
1730 CheckFailed("Intrinsic prototype has incorrect vector element type!", F
);
1734 if (VVT
.getVectorNumElements() != NumElts
) {
1735 CheckFailed("Intrinsic prototype has incorrect number of "
1736 "vector elements!", F
);
1739 } else if (EVT((MVT::SimpleValueType
)VT
).getTypeForEVT(Ty
->getContext()) !=
1741 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is wrong!", F
);
1743 } else if (EltTy
!= Ty
) {
1744 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is a vector "
1745 "and a scalar is required.", F
);
1752 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1753 /// Intrinsics.gen. This implements a little state machine that verifies the
1754 /// prototype of intrinsics.
1755 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
1756 unsigned NumRetVals
,
1757 unsigned NumParams
, ...) {
1759 va_start(VA
, NumParams
);
1760 const FunctionType
*FTy
= F
->getFunctionType();
1762 // For overloaded intrinsics, the Suffix of the function name must match the
1763 // types of the arguments. This variable keeps track of the expected
1764 // suffix, to be checked at the end.
1767 if (FTy
->getNumParams() + FTy
->isVarArg() != NumParams
) {
1768 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F
);
1772 const Type
*Ty
= FTy
->getReturnType();
1773 const StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1775 if (NumRetVals
== 0 && !Ty
->isVoidTy()) {
1776 CheckFailed("Intrinsic should return void", F
);
1780 // Verify the return types.
1781 if (ST
&& ST
->getNumElements() != NumRetVals
) {
1782 CheckFailed("Intrinsic prototype has incorrect number of return types!", F
);
1786 for (unsigned ArgNo
= 0; ArgNo
!= NumRetVals
; ++ArgNo
) {
1787 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1789 if (ST
) Ty
= ST
->getElementType(ArgNo
);
1790 if (!PerformTypeCheck(ID
, F
, Ty
, VT
, ArgNo
, Suffix
))
1794 // Verify the parameter types.
1795 for (unsigned ArgNo
= 0; ArgNo
!= NumParams
; ++ArgNo
) {
1796 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1798 if (VT
== MVT::isVoid
&& ArgNo
> 0) {
1799 if (!FTy
->isVarArg())
1800 CheckFailed("Intrinsic prototype has no '...'!", F
);
1804 if (!PerformTypeCheck(ID
, F
, FTy
->getParamType(ArgNo
), VT
,
1805 ArgNo
+ NumRetVals
, Suffix
))
1811 // For intrinsics without pointer arguments, if we computed a Suffix then the
1812 // intrinsic is overloaded and we need to make sure that the name of the
1813 // function is correct. We add the suffix to the name of the intrinsic and
1814 // compare against the given function name. If they are not the same, the
1815 // function name is invalid. This ensures that overloading of intrinsics
1816 // uses a sane and consistent naming convention. Note that intrinsics with
1817 // pointer argument may or may not be overloaded so we will check assuming it
1818 // has a suffix and not.
1819 if (!Suffix
.empty()) {
1820 std::string
Name(Intrinsic::getName(ID
));
1821 if (Name
+ Suffix
!= F
->getName()) {
1822 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1823 F
->getName().substr(Name
.length()) + "'. It should be '" +
1828 // Check parameter attributes.
1829 Assert1(F
->getAttributes() == Intrinsic::getAttributes(ID
),
1830 "Intrinsic has wrong parameter attributes!", F
);
1834 //===----------------------------------------------------------------------===//
1835 // Implement the public interfaces to this file...
1836 //===----------------------------------------------------------------------===//
1838 FunctionPass
*llvm::createVerifierPass(VerifierFailureAction action
) {
1839 return new Verifier(action
);
1843 /// verifyFunction - Check a function for errors, printing messages on stderr.
1844 /// Return true if the function is corrupt.
1846 bool llvm::verifyFunction(const Function
&f
, VerifierFailureAction action
) {
1847 Function
&F
= const_cast<Function
&>(f
);
1848 assert(!F
.isDeclaration() && "Cannot verify external functions");
1850 FunctionPassManager
FPM(F
.getParent());
1851 Verifier
*V
= new Verifier(action
);
1857 /// verifyModule - Check a module for errors, printing messages on stderr.
1858 /// Return true if the module is corrupt.
1860 bool llvm::verifyModule(const Module
&M
, VerifierFailureAction action
,
1861 std::string
*ErrorInfo
) {
1863 Verifier
*V
= new Verifier(action
);
1865 PM
.run(const_cast<Module
&>(M
));
1867 if (ErrorInfo
&& V
->Broken
)
1868 *ErrorInfo
= V
->MessagesStr
.str();