1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
13 //===----------------------------------------------------------------------===//
15 #include "CodeGenDAGPatterns.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/Debug.h"
25 //===----------------------------------------------------------------------===//
26 // EEVT::TypeSet Implementation
27 //===----------------------------------------------------------------------===//
29 static inline bool isInteger(MVT::SimpleValueType VT
) {
30 return EVT(VT
).isInteger();
32 static inline bool isFloatingPoint(MVT::SimpleValueType VT
) {
33 return EVT(VT
).isFloatingPoint();
35 static inline bool isVector(MVT::SimpleValueType VT
) {
36 return EVT(VT
).isVector();
38 static inline bool isScalar(MVT::SimpleValueType VT
) {
39 return !EVT(VT
).isVector();
42 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT
, TreePattern
&TP
) {
45 else if (VT
== MVT::fAny
)
46 EnforceFloatingPoint(TP
);
47 else if (VT
== MVT::vAny
)
50 assert((VT
< MVT::LAST_VALUETYPE
|| VT
== MVT::iPTR
||
51 VT
== MVT::iPTRAny
) && "Not a concrete type!");
52 TypeVec
.push_back(VT
);
57 EEVT::TypeSet::TypeSet(const std::vector
<MVT::SimpleValueType
> &VTList
) {
58 assert(!VTList
.empty() && "empty list?");
59 TypeVec
.append(VTList
.begin(), VTList
.end());
62 assert(VTList
[0] != MVT::iAny
&& VTList
[0] != MVT::vAny
&&
63 VTList
[0] != MVT::fAny
);
65 // Verify no duplicates.
66 array_pod_sort(TypeVec
.begin(), TypeVec
.end());
67 assert(std::unique(TypeVec
.begin(), TypeVec
.end()) == TypeVec
.end());
70 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
71 /// on completely unknown type sets.
72 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern
&TP
,
73 bool (*Pred
)(MVT::SimpleValueType
),
74 const char *PredicateName
) {
75 assert(isCompletelyUnknown());
76 const std::vector
<MVT::SimpleValueType
> &LegalTypes
=
77 TP
.getDAGPatterns().getTargetInfo().getLegalValueTypes();
79 for (unsigned i
= 0, e
= LegalTypes
.size(); i
!= e
; ++i
)
80 if (Pred
== 0 || Pred(LegalTypes
[i
]))
81 TypeVec
.push_back(LegalTypes
[i
]);
83 // If we have nothing that matches the predicate, bail out.
85 TP
.error("Type inference contradiction found, no " +
86 std::string(PredicateName
) + " types found");
87 // No need to sort with one element.
88 if (TypeVec
.size() == 1) return true;
91 array_pod_sort(TypeVec
.begin(), TypeVec
.end());
92 TypeVec
.erase(std::unique(TypeVec
.begin(), TypeVec
.end()), TypeVec
.end());
97 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
98 /// integer value type.
99 bool EEVT::TypeSet::hasIntegerTypes() const {
100 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
101 if (isInteger(TypeVec
[i
]))
106 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
107 /// a floating point value type.
108 bool EEVT::TypeSet::hasFloatingPointTypes() const {
109 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
110 if (isFloatingPoint(TypeVec
[i
]))
115 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
117 bool EEVT::TypeSet::hasVectorTypes() const {
118 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
119 if (isVector(TypeVec
[i
]))
125 std::string
EEVT::TypeSet::getName() const {
126 if (TypeVec
.empty()) return "<empty>";
130 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
) {
131 std::string VTName
= llvm::getEnumName(TypeVec
[i
]);
132 // Strip off MVT:: prefix if present.
133 if (VTName
.substr(0,5) == "MVT::")
134 VTName
= VTName
.substr(5);
135 if (i
) Result
+= ':';
139 if (TypeVec
.size() == 1)
141 return "{" + Result
+ "}";
144 /// MergeInTypeInfo - This merges in type information from the specified
145 /// argument. If 'this' changes, it returns true. If the two types are
146 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
147 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet
&InVT
, TreePattern
&TP
){
148 if (InVT
.isCompletelyUnknown() || *this == InVT
)
151 if (isCompletelyUnknown()) {
156 assert(TypeVec
.size() >= 1 && InVT
.TypeVec
.size() >= 1 && "No unknowns");
158 // Handle the abstract cases, seeing if we can resolve them better.
159 switch (TypeVec
[0]) {
163 if (InVT
.hasIntegerTypes()) {
164 EEVT::TypeSet
InCopy(InVT
);
165 InCopy
.EnforceInteger(TP
);
166 InCopy
.EnforceScalar(TP
);
168 if (InCopy
.isConcrete()) {
169 // If the RHS has one integer type, upgrade iPTR to i32.
170 TypeVec
[0] = InVT
.TypeVec
[0];
174 // If the input has multiple scalar integers, this doesn't add any info.
175 if (!InCopy
.isCompletelyUnknown())
181 // If the input constraint is iAny/iPTR and this is an integer type list,
182 // remove non-integer types from the list.
183 if ((InVT
.TypeVec
[0] == MVT::iPTR
|| InVT
.TypeVec
[0] == MVT::iPTRAny
) &&
185 bool MadeChange
= EnforceInteger(TP
);
187 // If we're merging in iPTR/iPTRAny and the node currently has a list of
188 // multiple different integer types, replace them with a single iPTR.
189 if ((InVT
.TypeVec
[0] == MVT::iPTR
|| InVT
.TypeVec
[0] == MVT::iPTRAny
) &&
190 TypeVec
.size() != 1) {
192 TypeVec
[0] = InVT
.TypeVec
[0];
199 // If this is a type list and the RHS is a typelist as well, eliminate entries
200 // from this list that aren't in the other one.
201 bool MadeChange
= false;
202 TypeSet
InputSet(*this);
204 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
) {
206 for (unsigned j
= 0, e
= InVT
.TypeVec
.size(); j
!= e
; ++j
)
207 if (TypeVec
[i
] == InVT
.TypeVec
[j
]) {
212 if (InInVT
) continue;
213 TypeVec
.erase(TypeVec
.begin()+i
--);
217 // If we removed all of our types, we have a type contradiction.
218 if (!TypeVec
.empty())
221 // FIXME: Really want an SMLoc here!
222 TP
.error("Type inference contradiction found, merging '" +
223 InVT
.getName() + "' into '" + InputSet
.getName() + "'");
224 return true; // unreachable
227 /// EnforceInteger - Remove all non-integer types from this set.
228 bool EEVT::TypeSet::EnforceInteger(TreePattern
&TP
) {
229 // If we know nothing, then get the full set.
231 return FillWithPossibleTypes(TP
, isInteger
, "integer");
232 if (!hasFloatingPointTypes())
235 TypeSet
InputSet(*this);
237 // Filter out all the fp types.
238 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
239 if (!isInteger(TypeVec
[i
]))
240 TypeVec
.erase(TypeVec
.begin()+i
--);
243 TP
.error("Type inference contradiction found, '" +
244 InputSet
.getName() + "' needs to be integer");
248 /// EnforceFloatingPoint - Remove all integer types from this set.
249 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern
&TP
) {
250 // If we know nothing, then get the full set.
252 return FillWithPossibleTypes(TP
, isFloatingPoint
, "floating point");
254 if (!hasIntegerTypes())
257 TypeSet
InputSet(*this);
259 // Filter out all the fp types.
260 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
261 if (!isFloatingPoint(TypeVec
[i
]))
262 TypeVec
.erase(TypeVec
.begin()+i
--);
265 TP
.error("Type inference contradiction found, '" +
266 InputSet
.getName() + "' needs to be floating point");
270 /// EnforceScalar - Remove all vector types from this.
271 bool EEVT::TypeSet::EnforceScalar(TreePattern
&TP
) {
272 // If we know nothing, then get the full set.
274 return FillWithPossibleTypes(TP
, isScalar
, "scalar");
276 if (!hasVectorTypes())
279 TypeSet
InputSet(*this);
281 // Filter out all the vector types.
282 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
283 if (!isScalar(TypeVec
[i
]))
284 TypeVec
.erase(TypeVec
.begin()+i
--);
287 TP
.error("Type inference contradiction found, '" +
288 InputSet
.getName() + "' needs to be scalar");
292 /// EnforceVector - Remove all vector types from this.
293 bool EEVT::TypeSet::EnforceVector(TreePattern
&TP
) {
294 // If we know nothing, then get the full set.
296 return FillWithPossibleTypes(TP
, isVector
, "vector");
298 TypeSet
InputSet(*this);
299 bool MadeChange
= false;
301 // Filter out all the scalar types.
302 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
303 if (!isVector(TypeVec
[i
])) {
304 TypeVec
.erase(TypeVec
.begin()+i
--);
309 TP
.error("Type inference contradiction found, '" +
310 InputSet
.getName() + "' needs to be a vector");
316 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
317 /// this an other based on this information.
318 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet
&Other
, TreePattern
&TP
) {
319 // Both operands must be integer or FP, but we don't care which.
320 bool MadeChange
= false;
322 if (isCompletelyUnknown())
323 MadeChange
= FillWithPossibleTypes(TP
);
325 if (Other
.isCompletelyUnknown())
326 MadeChange
= Other
.FillWithPossibleTypes(TP
);
328 // If one side is known to be integer or known to be FP but the other side has
329 // no information, get at least the type integrality info in there.
330 if (!hasFloatingPointTypes())
331 MadeChange
|= Other
.EnforceInteger(TP
);
332 else if (!hasIntegerTypes())
333 MadeChange
|= Other
.EnforceFloatingPoint(TP
);
334 if (!Other
.hasFloatingPointTypes())
335 MadeChange
|= EnforceInteger(TP
);
336 else if (!Other
.hasIntegerTypes())
337 MadeChange
|= EnforceFloatingPoint(TP
);
339 assert(!isCompletelyUnknown() && !Other
.isCompletelyUnknown() &&
340 "Should have a type list now");
342 // If one contains vectors but the other doesn't pull vectors out.
343 if (!hasVectorTypes())
344 MadeChange
|= Other
.EnforceScalar(TP
);
345 if (!hasVectorTypes())
346 MadeChange
|= EnforceScalar(TP
);
348 if (TypeVec
.size() == 1 && Other
.TypeVec
.size() == 1) {
349 // If we are down to concrete types, this code does not currently
350 // handle nodes which have multiple types, where some types are
351 // integer, and some are fp. Assert that this is not the case.
352 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
353 !(Other
.hasIntegerTypes() && Other
.hasFloatingPointTypes()) &&
354 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
356 // Otherwise, if these are both vector types, either this vector
357 // must have a larger bitsize than the other, or this element type
358 // must be larger than the other.
359 EVT
Type(TypeVec
[0]);
360 EVT
OtherType(Other
.TypeVec
[0]);
362 if (hasVectorTypes() && Other
.hasVectorTypes()) {
363 if (Type
.getSizeInBits() >= OtherType
.getSizeInBits())
364 if (Type
.getVectorElementType().getSizeInBits()
365 >= OtherType
.getVectorElementType().getSizeInBits())
366 TP
.error("Type inference contradiction found, '" +
367 getName() + "' element type not smaller than '" +
368 Other
.getName() +"'!");
371 // For scalar types, the bitsize of this type must be larger
372 // than that of the other.
373 if (Type
.getSizeInBits() >= OtherType
.getSizeInBits())
374 TP
.error("Type inference contradiction found, '" +
375 getName() + "' is not smaller than '" +
376 Other
.getName() +"'!");
381 // Handle int and fp as disjoint sets. This won't work for patterns
382 // that have mixed fp/int types but those are likely rare and would
383 // not have been accepted by this code previously.
385 // Okay, find the smallest type from the current set and remove it from the
387 MVT::SimpleValueType SmallestInt
= MVT::LAST_VALUETYPE
;
388 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
389 if (isInteger(TypeVec
[i
])) {
390 SmallestInt
= TypeVec
[i
];
393 for (unsigned i
= 1, e
= TypeVec
.size(); i
!= e
; ++i
)
394 if (isInteger(TypeVec
[i
]) && TypeVec
[i
] < SmallestInt
)
395 SmallestInt
= TypeVec
[i
];
397 MVT::SimpleValueType SmallestFP
= MVT::LAST_VALUETYPE
;
398 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
399 if (isFloatingPoint(TypeVec
[i
])) {
400 SmallestFP
= TypeVec
[i
];
403 for (unsigned i
= 1, e
= TypeVec
.size(); i
!= e
; ++i
)
404 if (isFloatingPoint(TypeVec
[i
]) && TypeVec
[i
] < SmallestFP
)
405 SmallestFP
= TypeVec
[i
];
407 int OtherIntSize
= 0;
409 for (SmallVector
<MVT::SimpleValueType
, 2>::iterator TVI
=
410 Other
.TypeVec
.begin();
411 TVI
!= Other
.TypeVec
.end();
413 if (isInteger(*TVI
)) {
415 if (*TVI
== SmallestInt
) {
416 TVI
= Other
.TypeVec
.erase(TVI
);
422 else if (isFloatingPoint(*TVI
)) {
424 if (*TVI
== SmallestFP
) {
425 TVI
= Other
.TypeVec
.erase(TVI
);
434 // If this is the only type in the large set, the constraint can never be
436 if ((Other
.hasIntegerTypes() && OtherIntSize
== 0)
437 || (Other
.hasFloatingPointTypes() && OtherFPSize
== 0))
438 TP
.error("Type inference contradiction found, '" +
439 Other
.getName() + "' has nothing larger than '" + getName() +"'!");
441 // Okay, find the largest type in the Other set and remove it from the
443 MVT::SimpleValueType LargestInt
= MVT::Other
;
444 for (unsigned i
= 0, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
445 if (isInteger(Other
.TypeVec
[i
])) {
446 LargestInt
= Other
.TypeVec
[i
];
449 for (unsigned i
= 1, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
450 if (isInteger(Other
.TypeVec
[i
]) && Other
.TypeVec
[i
] > LargestInt
)
451 LargestInt
= Other
.TypeVec
[i
];
453 MVT::SimpleValueType LargestFP
= MVT::Other
;
454 for (unsigned i
= 0, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
455 if (isFloatingPoint(Other
.TypeVec
[i
])) {
456 LargestFP
= Other
.TypeVec
[i
];
459 for (unsigned i
= 1, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
460 if (isFloatingPoint(Other
.TypeVec
[i
]) && Other
.TypeVec
[i
] > LargestFP
)
461 LargestFP
= Other
.TypeVec
[i
];
465 for (SmallVector
<MVT::SimpleValueType
, 2>::iterator TVI
=
467 TVI
!= TypeVec
.end();
469 if (isInteger(*TVI
)) {
471 if (*TVI
== LargestInt
) {
472 TVI
= TypeVec
.erase(TVI
);
478 else if (isFloatingPoint(*TVI
)) {
480 if (*TVI
== LargestFP
) {
481 TVI
= TypeVec
.erase(TVI
);
490 // If this is the only type in the small set, the constraint can never be
492 if ((hasIntegerTypes() && IntSize
== 0)
493 || (hasFloatingPointTypes() && FPSize
== 0))
494 TP
.error("Type inference contradiction found, '" +
495 getName() + "' has nothing smaller than '" + Other
.getName()+"'!");
500 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
501 /// whose element is specified by VTOperand.
502 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet
&VTOperand
,
504 // "This" must be a vector and "VTOperand" must be a scalar.
505 bool MadeChange
= false;
506 MadeChange
|= EnforceVector(TP
);
507 MadeChange
|= VTOperand
.EnforceScalar(TP
);
509 // If we know the vector type, it forces the scalar to agree.
511 EVT IVT
= getConcrete();
512 IVT
= IVT
.getVectorElementType();
514 VTOperand
.MergeInTypeInfo(IVT
.getSimpleVT().SimpleTy
, TP
);
517 // If the scalar type is known, filter out vector types whose element types
519 if (!VTOperand
.isConcrete())
522 MVT::SimpleValueType VT
= VTOperand
.getConcrete();
524 TypeSet
InputSet(*this);
526 // Filter out all the types which don't have the right element type.
527 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
) {
528 assert(isVector(TypeVec
[i
]) && "EnforceVector didn't work");
529 if (EVT(TypeVec
[i
]).getVectorElementType().getSimpleVT().SimpleTy
!= VT
) {
530 TypeVec
.erase(TypeVec
.begin()+i
--);
535 if (TypeVec
.empty()) // FIXME: Really want an SMLoc here!
536 TP
.error("Type inference contradiction found, forcing '" +
537 InputSet
.getName() + "' to have a vector element");
541 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
542 /// vector type specified by VTOperand.
543 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet
&VTOperand
,
545 // "This" must be a vector and "VTOperand" must be a vector.
546 bool MadeChange
= false;
547 MadeChange
|= EnforceVector(TP
);
548 MadeChange
|= VTOperand
.EnforceVector(TP
);
550 // "This" must be larger than "VTOperand."
551 MadeChange
|= VTOperand
.EnforceSmallerThan(*this, TP
);
553 // If we know the vector type, it forces the scalar types to agree.
555 EVT IVT
= getConcrete();
556 IVT
= IVT
.getVectorElementType();
558 EEVT::TypeSet
EltTypeSet(IVT
.getSimpleVT().SimpleTy
, TP
);
559 MadeChange
|= VTOperand
.EnforceVectorEltTypeIs(EltTypeSet
, TP
);
560 } else if (VTOperand
.isConcrete()) {
561 EVT IVT
= VTOperand
.getConcrete();
562 IVT
= IVT
.getVectorElementType();
564 EEVT::TypeSet
EltTypeSet(IVT
.getSimpleVT().SimpleTy
, TP
);
565 MadeChange
|= EnforceVectorEltTypeIs(EltTypeSet
, TP
);
571 //===----------------------------------------------------------------------===//
572 // Helpers for working with extended types.
574 bool RecordPtrCmp::operator()(const Record
*LHS
, const Record
*RHS
) const {
575 return LHS
->getID() < RHS
->getID();
578 /// Dependent variable map for CodeGenDAGPattern variant generation
579 typedef std::map
<std::string
, int> DepVarMap
;
581 /// Const iterator shorthand for DepVarMap
582 typedef DepVarMap::const_iterator DepVarMap_citer
;
584 static void FindDepVarsOf(TreePatternNode
*N
, DepVarMap
&DepMap
) {
586 if (dynamic_cast<DefInit
*>(N
->getLeafValue()) != NULL
)
587 DepMap
[N
->getName()]++;
589 for (size_t i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
590 FindDepVarsOf(N
->getChild(i
), DepMap
);
594 /// Find dependent variables within child patterns
595 static void FindDepVars(TreePatternNode
*N
, MultipleUseVarSet
&DepVars
) {
597 FindDepVarsOf(N
, depcounts
);
598 for (DepVarMap_citer i
= depcounts
.begin(); i
!= depcounts
.end(); ++i
) {
599 if (i
->second
> 1) // std::pair<std::string, int>
600 DepVars
.insert(i
->first
);
605 /// Dump the dependent variable set:
606 static void DumpDepVars(MultipleUseVarSet
&DepVars
) {
607 if (DepVars
.empty()) {
608 DEBUG(errs() << "<empty set>");
610 DEBUG(errs() << "[ ");
611 for (MultipleUseVarSet::const_iterator i
= DepVars
.begin(),
612 e
= DepVars
.end(); i
!= e
; ++i
) {
613 DEBUG(errs() << (*i
) << " ");
615 DEBUG(errs() << "]");
621 //===----------------------------------------------------------------------===//
622 // TreePredicateFn Implementation
623 //===----------------------------------------------------------------------===//
625 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
626 TreePredicateFn::TreePredicateFn(TreePattern
*N
) : PatFragRec(N
) {
627 assert((getPredCode().empty() || getImmCode().empty()) &&
628 ".td file corrupt: can't have a node predicate *and* an imm predicate");
631 std::string
TreePredicateFn::getPredCode() const {
632 return PatFragRec
->getRecord()->getValueAsCode("PredicateCode");
635 std::string
TreePredicateFn::getImmCode() const {
636 return PatFragRec
->getRecord()->getValueAsCode("ImmediateCode");
640 /// isAlwaysTrue - Return true if this is a noop predicate.
641 bool TreePredicateFn::isAlwaysTrue() const {
642 return getPredCode().empty() && getImmCode().empty();
645 /// Return the name to use in the generated code to reference this, this is
646 /// "Predicate_foo" if from a pattern fragment "foo".
647 std::string
TreePredicateFn::getFnName() const {
648 return "Predicate_" + PatFragRec
->getRecord()->getName();
651 /// getCodeToRunOnSDNode - Return the code for the function body that
652 /// evaluates this predicate. The argument is expected to be in "Node",
653 /// not N. This handles casting and conversion to a concrete node type as
655 std::string
TreePredicateFn::getCodeToRunOnSDNode() const {
656 // Handle immediate predicates first.
657 std::string ImmCode
= getImmCode();
658 if (!ImmCode
.empty()) {
660 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
661 return Result
+ ImmCode
;
664 // Handle arbitrary node predicates.
665 assert(!getPredCode().empty() && "Don't have any predicate code!");
666 std::string ClassName
;
667 if (PatFragRec
->getOnlyTree()->isLeaf())
668 ClassName
= "SDNode";
670 Record
*Op
= PatFragRec
->getOnlyTree()->getOperator();
671 ClassName
= PatFragRec
->getDAGPatterns().getSDNodeInfo(Op
).getSDClassName();
674 if (ClassName
== "SDNode")
675 Result
= " SDNode *N = Node;\n";
677 Result
= " " + ClassName
+ "*N = cast<" + ClassName
+ ">(Node);\n";
679 return Result
+ getPredCode();
682 //===----------------------------------------------------------------------===//
683 // PatternToMatch implementation
687 /// getPatternSize - Return the 'size' of this pattern. We want to match large
688 /// patterns before small ones. This is used to determine the size of a
690 static unsigned getPatternSize(const TreePatternNode
*P
,
691 const CodeGenDAGPatterns
&CGP
) {
692 unsigned Size
= 3; // The node itself.
693 // If the root node is a ConstantSDNode, increases its size.
694 // e.g. (set R32:$dst, 0).
695 if (P
->isLeaf() && dynamic_cast<IntInit
*>(P
->getLeafValue()))
698 // FIXME: This is a hack to statically increase the priority of patterns
699 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
700 // Later we can allow complexity / cost for each pattern to be (optionally)
701 // specified. To get best possible pattern match we'll need to dynamically
702 // calculate the complexity of all patterns a dag can potentially map to.
703 const ComplexPattern
*AM
= P
->getComplexPatternInfo(CGP
);
705 Size
+= AM
->getNumOperands() * 3;
707 // If this node has some predicate function that must match, it adds to the
708 // complexity of this node.
709 if (!P
->getPredicateFns().empty())
712 // Count children in the count if they are also nodes.
713 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
) {
714 TreePatternNode
*Child
= P
->getChild(i
);
715 if (!Child
->isLeaf() && Child
->getNumTypes() &&
716 Child
->getType(0) != MVT::Other
)
717 Size
+= getPatternSize(Child
, CGP
);
718 else if (Child
->isLeaf()) {
719 if (dynamic_cast<IntInit
*>(Child
->getLeafValue()))
720 Size
+= 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
721 else if (Child
->getComplexPatternInfo(CGP
))
722 Size
+= getPatternSize(Child
, CGP
);
723 else if (!Child
->getPredicateFns().empty())
731 /// Compute the complexity metric for the input pattern. This roughly
732 /// corresponds to the number of nodes that are covered.
733 unsigned PatternToMatch::
734 getPatternComplexity(const CodeGenDAGPatterns
&CGP
) const {
735 return getPatternSize(getSrcPattern(), CGP
) + getAddedComplexity();
739 /// getPredicateCheck - Return a single string containing all of this
740 /// pattern's predicates concatenated with "&&" operators.
742 std::string
PatternToMatch::getPredicateCheck() const {
743 std::string PredicateCheck
;
744 for (unsigned i
= 0, e
= Predicates
->getSize(); i
!= e
; ++i
) {
745 if (DefInit
*Pred
= dynamic_cast<DefInit
*>(Predicates
->getElement(i
))) {
746 Record
*Def
= Pred
->getDef();
747 if (!Def
->isSubClassOf("Predicate")) {
751 assert(0 && "Unknown predicate type!");
753 if (!PredicateCheck
.empty())
754 PredicateCheck
+= " && ";
755 PredicateCheck
+= "(" + Def
->getValueAsString("CondString") + ")";
759 return PredicateCheck
;
762 //===----------------------------------------------------------------------===//
763 // SDTypeConstraint implementation
766 SDTypeConstraint::SDTypeConstraint(Record
*R
) {
767 OperandNo
= R
->getValueAsInt("OperandNum");
769 if (R
->isSubClassOf("SDTCisVT")) {
770 ConstraintType
= SDTCisVT
;
771 x
.SDTCisVT_Info
.VT
= getValueType(R
->getValueAsDef("VT"));
772 if (x
.SDTCisVT_Info
.VT
== MVT::isVoid
)
773 throw TGError(R
->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
775 } else if (R
->isSubClassOf("SDTCisPtrTy")) {
776 ConstraintType
= SDTCisPtrTy
;
777 } else if (R
->isSubClassOf("SDTCisInt")) {
778 ConstraintType
= SDTCisInt
;
779 } else if (R
->isSubClassOf("SDTCisFP")) {
780 ConstraintType
= SDTCisFP
;
781 } else if (R
->isSubClassOf("SDTCisVec")) {
782 ConstraintType
= SDTCisVec
;
783 } else if (R
->isSubClassOf("SDTCisSameAs")) {
784 ConstraintType
= SDTCisSameAs
;
785 x
.SDTCisSameAs_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOperandNum");
786 } else if (R
->isSubClassOf("SDTCisVTSmallerThanOp")) {
787 ConstraintType
= SDTCisVTSmallerThanOp
;
788 x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
=
789 R
->getValueAsInt("OtherOperandNum");
790 } else if (R
->isSubClassOf("SDTCisOpSmallerThanOp")) {
791 ConstraintType
= SDTCisOpSmallerThanOp
;
792 x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
=
793 R
->getValueAsInt("BigOperandNum");
794 } else if (R
->isSubClassOf("SDTCisEltOfVec")) {
795 ConstraintType
= SDTCisEltOfVec
;
796 x
.SDTCisEltOfVec_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOpNum");
797 } else if (R
->isSubClassOf("SDTCisSubVecOfVec")) {
798 ConstraintType
= SDTCisSubVecOfVec
;
799 x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
=
800 R
->getValueAsInt("OtherOpNum");
802 errs() << "Unrecognized SDTypeConstraint '" << R
->getName() << "'!\n";
807 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
808 /// N, and the result number in ResNo.
809 static TreePatternNode
*getOperandNum(unsigned OpNo
, TreePatternNode
*N
,
810 const SDNodeInfo
&NodeInfo
,
812 unsigned NumResults
= NodeInfo
.getNumResults();
813 if (OpNo
< NumResults
) {
820 if (OpNo
>= N
->getNumChildren()) {
821 errs() << "Invalid operand number in type constraint "
822 << (OpNo
+NumResults
) << " ";
828 return N
->getChild(OpNo
);
831 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
832 /// constraint to the nodes operands. This returns true if it makes a
833 /// change, false otherwise. If a type contradiction is found, throw an
835 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode
*N
,
836 const SDNodeInfo
&NodeInfo
,
837 TreePattern
&TP
) const {
838 unsigned ResNo
= 0; // The result number being referenced.
839 TreePatternNode
*NodeToApply
= getOperandNum(OperandNo
, N
, NodeInfo
, ResNo
);
841 switch (ConstraintType
) {
842 default: assert(0 && "Unknown constraint type!");
844 // Operand must be a particular type.
845 return NodeToApply
->UpdateNodeType(ResNo
, x
.SDTCisVT_Info
.VT
, TP
);
847 // Operand must be same as target pointer type.
848 return NodeToApply
->UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
850 // Require it to be one of the legal integer VTs.
851 return NodeToApply
->getExtType(ResNo
).EnforceInteger(TP
);
853 // Require it to be one of the legal fp VTs.
854 return NodeToApply
->getExtType(ResNo
).EnforceFloatingPoint(TP
);
856 // Require it to be one of the legal vector VTs.
857 return NodeToApply
->getExtType(ResNo
).EnforceVector(TP
);
860 TreePatternNode
*OtherNode
=
861 getOperandNum(x
.SDTCisSameAs_Info
.OtherOperandNum
, N
, NodeInfo
, OResNo
);
862 return NodeToApply
->UpdateNodeType(OResNo
, OtherNode
->getExtType(ResNo
),TP
)|
863 OtherNode
->UpdateNodeType(ResNo
,NodeToApply
->getExtType(OResNo
),TP
);
865 case SDTCisVTSmallerThanOp
: {
866 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
867 // have an integer type that is smaller than the VT.
868 if (!NodeToApply
->isLeaf() ||
869 !dynamic_cast<DefInit
*>(NodeToApply
->getLeafValue()) ||
870 !static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef()
871 ->isSubClassOf("ValueType"))
872 TP
.error(N
->getOperator()->getName() + " expects a VT operand!");
873 MVT::SimpleValueType VT
=
874 getValueType(static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef());
876 EEVT::TypeSet
TypeListTmp(VT
, TP
);
879 TreePatternNode
*OtherNode
=
880 getOperandNum(x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
, N
, NodeInfo
,
883 return TypeListTmp
.EnforceSmallerThan(OtherNode
->getExtType(OResNo
), TP
);
885 case SDTCisOpSmallerThanOp
: {
887 TreePatternNode
*BigOperand
=
888 getOperandNum(x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
, N
, NodeInfo
,
890 return NodeToApply
->getExtType(ResNo
).
891 EnforceSmallerThan(BigOperand
->getExtType(BResNo
), TP
);
893 case SDTCisEltOfVec
: {
895 TreePatternNode
*VecOperand
=
896 getOperandNum(x
.SDTCisEltOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
899 // Filter vector types out of VecOperand that don't have the right element
901 return VecOperand
->getExtType(VResNo
).
902 EnforceVectorEltTypeIs(NodeToApply
->getExtType(ResNo
), TP
);
904 case SDTCisSubVecOfVec
: {
906 TreePatternNode
*BigVecOperand
=
907 getOperandNum(x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
910 // Filter vector types out of BigVecOperand that don't have the
911 // right subvector type.
912 return BigVecOperand
->getExtType(VResNo
).
913 EnforceVectorSubVectorTypeIs(NodeToApply
->getExtType(ResNo
), TP
);
919 //===----------------------------------------------------------------------===//
920 // SDNodeInfo implementation
922 SDNodeInfo::SDNodeInfo(Record
*R
) : Def(R
) {
923 EnumName
= R
->getValueAsString("Opcode");
924 SDClassName
= R
->getValueAsString("SDClass");
925 Record
*TypeProfile
= R
->getValueAsDef("TypeProfile");
926 NumResults
= TypeProfile
->getValueAsInt("NumResults");
927 NumOperands
= TypeProfile
->getValueAsInt("NumOperands");
929 // Parse the properties.
931 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
932 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
) {
933 if (PropList
[i
]->getName() == "SDNPCommutative") {
934 Properties
|= 1 << SDNPCommutative
;
935 } else if (PropList
[i
]->getName() == "SDNPAssociative") {
936 Properties
|= 1 << SDNPAssociative
;
937 } else if (PropList
[i
]->getName() == "SDNPHasChain") {
938 Properties
|= 1 << SDNPHasChain
;
939 } else if (PropList
[i
]->getName() == "SDNPOutGlue") {
940 Properties
|= 1 << SDNPOutGlue
;
941 } else if (PropList
[i
]->getName() == "SDNPInGlue") {
942 Properties
|= 1 << SDNPInGlue
;
943 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
944 Properties
|= 1 << SDNPOptInGlue
;
945 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
946 Properties
|= 1 << SDNPMayStore
;
947 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
948 Properties
|= 1 << SDNPMayLoad
;
949 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
950 Properties
|= 1 << SDNPSideEffect
;
951 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
952 Properties
|= 1 << SDNPMemOperand
;
953 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
954 Properties
|= 1 << SDNPVariadic
;
956 errs() << "Unknown SD Node property '" << PropList
[i
]->getName()
957 << "' on node '" << R
->getName() << "'!\n";
963 // Parse the type constraints.
964 std::vector
<Record
*> ConstraintList
=
965 TypeProfile
->getValueAsListOfDefs("Constraints");
966 TypeConstraints
.assign(ConstraintList
.begin(), ConstraintList
.end());
969 /// getKnownType - If the type constraints on this node imply a fixed type
970 /// (e.g. all stores return void, etc), then return it as an
971 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
972 MVT::SimpleValueType
SDNodeInfo::getKnownType(unsigned ResNo
) const {
973 unsigned NumResults
= getNumResults();
974 assert(NumResults
<= 1 &&
975 "We only work with nodes with zero or one result so far!");
976 assert(ResNo
== 0 && "Only handles single result nodes so far");
978 for (unsigned i
= 0, e
= TypeConstraints
.size(); i
!= e
; ++i
) {
979 // Make sure that this applies to the correct node result.
980 if (TypeConstraints
[i
].OperandNo
>= NumResults
) // FIXME: need value #
983 switch (TypeConstraints
[i
].ConstraintType
) {
985 case SDTypeConstraint::SDTCisVT
:
986 return TypeConstraints
[i
].x
.SDTCisVT_Info
.VT
;
987 case SDTypeConstraint::SDTCisPtrTy
:
994 //===----------------------------------------------------------------------===//
995 // TreePatternNode implementation
998 TreePatternNode::~TreePatternNode() {
999 #if 0 // FIXME: implement refcounted tree nodes!
1000 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1005 static unsigned GetNumNodeResults(Record
*Operator
, CodeGenDAGPatterns
&CDP
) {
1006 if (Operator
->getName() == "set" ||
1007 Operator
->getName() == "implicit")
1008 return 0; // All return nothing.
1010 if (Operator
->isSubClassOf("Intrinsic"))
1011 return CDP
.getIntrinsic(Operator
).IS
.RetVTs
.size();
1013 if (Operator
->isSubClassOf("SDNode"))
1014 return CDP
.getSDNodeInfo(Operator
).getNumResults();
1016 if (Operator
->isSubClassOf("PatFrag")) {
1017 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1018 // the forward reference case where one pattern fragment references another
1019 // before it is processed.
1020 if (TreePattern
*PFRec
= CDP
.getPatternFragmentIfRead(Operator
))
1021 return PFRec
->getOnlyTree()->getNumTypes();
1023 // Get the result tree.
1024 DagInit
*Tree
= Operator
->getValueAsDag("Fragment");
1026 if (Tree
&& dynamic_cast<DefInit
*>(Tree
->getOperator()))
1027 Op
= dynamic_cast<DefInit
*>(Tree
->getOperator())->getDef();
1028 assert(Op
&& "Invalid Fragment");
1029 return GetNumNodeResults(Op
, CDP
);
1032 if (Operator
->isSubClassOf("Instruction")) {
1033 CodeGenInstruction
&InstInfo
= CDP
.getTargetInfo().getInstruction(Operator
);
1035 // FIXME: Should allow access to all the results here.
1036 unsigned NumDefsToAdd
= InstInfo
.Operands
.NumDefs
? 1 : 0;
1038 // Add on one implicit def if it has a resolvable type.
1039 if (InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo()) !=MVT::Other
)
1041 return NumDefsToAdd
;
1044 if (Operator
->isSubClassOf("SDNodeXForm"))
1045 return 1; // FIXME: Generalize SDNodeXForm
1048 errs() << "Unhandled node in GetNumNodeResults\n";
1052 void TreePatternNode::print(raw_ostream
&OS
) const {
1054 OS
<< *getLeafValue();
1056 OS
<< '(' << getOperator()->getName();
1058 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1059 OS
<< ':' << getExtType(i
).getName();
1062 if (getNumChildren() != 0) {
1064 getChild(0)->print(OS
);
1065 for (unsigned i
= 1, e
= getNumChildren(); i
!= e
; ++i
) {
1067 getChild(i
)->print(OS
);
1073 for (unsigned i
= 0, e
= PredicateFns
.size(); i
!= e
; ++i
)
1074 OS
<< "<<P:" << PredicateFns
[i
].getFnName() << ">>";
1076 OS
<< "<<X:" << TransformFn
->getName() << ">>";
1077 if (!getName().empty())
1078 OS
<< ":$" << getName();
1081 void TreePatternNode::dump() const {
1085 /// isIsomorphicTo - Return true if this node is recursively
1086 /// isomorphic to the specified node. For this comparison, the node's
1087 /// entire state is considered. The assigned name is ignored, since
1088 /// nodes with differing names are considered isomorphic. However, if
1089 /// the assigned name is present in the dependent variable set, then
1090 /// the assigned name is considered significant and the node is
1091 /// isomorphic if the names match.
1092 bool TreePatternNode::isIsomorphicTo(const TreePatternNode
*N
,
1093 const MultipleUseVarSet
&DepVars
) const {
1094 if (N
== this) return true;
1095 if (N
->isLeaf() != isLeaf() || getExtTypes() != N
->getExtTypes() ||
1096 getPredicateFns() != N
->getPredicateFns() ||
1097 getTransformFn() != N
->getTransformFn())
1101 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
1102 if (DefInit
*NDI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
1103 return ((DI
->getDef() == NDI
->getDef())
1104 && (DepVars
.find(getName()) == DepVars
.end()
1105 || getName() == N
->getName()));
1108 return getLeafValue() == N
->getLeafValue();
1111 if (N
->getOperator() != getOperator() ||
1112 N
->getNumChildren() != getNumChildren()) return false;
1113 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1114 if (!getChild(i
)->isIsomorphicTo(N
->getChild(i
), DepVars
))
1119 /// clone - Make a copy of this tree and all of its children.
1121 TreePatternNode
*TreePatternNode::clone() const {
1122 TreePatternNode
*New
;
1124 New
= new TreePatternNode(getLeafValue(), getNumTypes());
1126 std::vector
<TreePatternNode
*> CChildren
;
1127 CChildren
.reserve(Children
.size());
1128 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1129 CChildren
.push_back(getChild(i
)->clone());
1130 New
= new TreePatternNode(getOperator(), CChildren
, getNumTypes());
1132 New
->setName(getName());
1134 New
->setPredicateFns(getPredicateFns());
1135 New
->setTransformFn(getTransformFn());
1139 /// RemoveAllTypes - Recursively strip all the types of this tree.
1140 void TreePatternNode::RemoveAllTypes() {
1141 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1142 Types
[i
] = EEVT::TypeSet(); // Reset to unknown type.
1143 if (isLeaf()) return;
1144 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1145 getChild(i
)->RemoveAllTypes();
1149 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1150 /// with actual values specified by ArgMap.
1151 void TreePatternNode::
1152 SubstituteFormalArguments(std::map
<std::string
, TreePatternNode
*> &ArgMap
) {
1153 if (isLeaf()) return;
1155 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1156 TreePatternNode
*Child
= getChild(i
);
1157 if (Child
->isLeaf()) {
1158 Init
*Val
= Child
->getLeafValue();
1159 if (dynamic_cast<DefInit
*>(Val
) &&
1160 static_cast<DefInit
*>(Val
)->getDef()->getName() == "node") {
1161 // We found a use of a formal argument, replace it with its value.
1162 TreePatternNode
*NewChild
= ArgMap
[Child
->getName()];
1163 assert(NewChild
&& "Couldn't find formal argument!");
1164 assert((Child
->getPredicateFns().empty() ||
1165 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
1166 "Non-empty child predicate clobbered!");
1167 setChild(i
, NewChild
);
1170 getChild(i
)->SubstituteFormalArguments(ArgMap
);
1176 /// InlinePatternFragments - If this pattern refers to any pattern
1177 /// fragments, inline them into place, giving us a pattern without any
1178 /// PatFrag references.
1179 TreePatternNode
*TreePatternNode::InlinePatternFragments(TreePattern
&TP
) {
1180 if (isLeaf()) return this; // nothing to do.
1181 Record
*Op
= getOperator();
1183 if (!Op
->isSubClassOf("PatFrag")) {
1184 // Just recursively inline children nodes.
1185 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1186 TreePatternNode
*Child
= getChild(i
);
1187 TreePatternNode
*NewChild
= Child
->InlinePatternFragments(TP
);
1189 assert((Child
->getPredicateFns().empty() ||
1190 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
1191 "Non-empty child predicate clobbered!");
1193 setChild(i
, NewChild
);
1198 // Otherwise, we found a reference to a fragment. First, look up its
1199 // TreePattern record.
1200 TreePattern
*Frag
= TP
.getDAGPatterns().getPatternFragment(Op
);
1202 // Verify that we are passing the right number of operands.
1203 if (Frag
->getNumArgs() != Children
.size())
1204 TP
.error("'" + Op
->getName() + "' fragment requires " +
1205 utostr(Frag
->getNumArgs()) + " operands!");
1207 TreePatternNode
*FragTree
= Frag
->getOnlyTree()->clone();
1209 TreePredicateFn
PredFn(Frag
);
1210 if (!PredFn
.isAlwaysTrue())
1211 FragTree
->addPredicateFn(PredFn
);
1213 // Resolve formal arguments to their actual value.
1214 if (Frag
->getNumArgs()) {
1215 // Compute the map of formal to actual arguments.
1216 std::map
<std::string
, TreePatternNode
*> ArgMap
;
1217 for (unsigned i
= 0, e
= Frag
->getNumArgs(); i
!= e
; ++i
)
1218 ArgMap
[Frag
->getArgName(i
)] = getChild(i
)->InlinePatternFragments(TP
);
1220 FragTree
->SubstituteFormalArguments(ArgMap
);
1223 FragTree
->setName(getName());
1224 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1225 FragTree
->UpdateNodeType(i
, getExtType(i
), TP
);
1227 // Transfer in the old predicates.
1228 for (unsigned i
= 0, e
= getPredicateFns().size(); i
!= e
; ++i
)
1229 FragTree
->addPredicateFn(getPredicateFns()[i
]);
1231 // Get a new copy of this fragment to stitch into here.
1232 //delete this; // FIXME: implement refcounting!
1234 // The fragment we inlined could have recursive inlining that is needed. See
1235 // if there are any pattern fragments in it and inline them as needed.
1236 return FragTree
->InlinePatternFragments(TP
);
1239 /// getImplicitType - Check to see if the specified record has an implicit
1240 /// type which should be applied to it. This will infer the type of register
1241 /// references from the register file information, for example.
1243 static EEVT::TypeSet
getImplicitType(Record
*R
, unsigned ResNo
,
1244 bool NotRegisters
, TreePattern
&TP
) {
1245 // Check to see if this is a register operand.
1246 if (R
->isSubClassOf("RegisterOperand")) {
1247 assert(ResNo
== 0 && "Regoperand ref only has one result!");
1249 return EEVT::TypeSet(); // Unknown.
1250 Record
*RegClass
= R
->getValueAsDef("RegClass");
1251 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1252 return EEVT::TypeSet(T
.getRegisterClass(RegClass
).getValueTypes());
1255 // Check to see if this is a register or a register class.
1256 if (R
->isSubClassOf("RegisterClass")) {
1257 assert(ResNo
== 0 && "Regclass ref only has one result!");
1259 return EEVT::TypeSet(); // Unknown.
1260 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1261 return EEVT::TypeSet(T
.getRegisterClass(R
).getValueTypes());
1264 if (R
->isSubClassOf("PatFrag")) {
1265 assert(ResNo
== 0 && "FIXME: PatFrag with multiple results?");
1266 // Pattern fragment types will be resolved when they are inlined.
1267 return EEVT::TypeSet(); // Unknown.
1270 if (R
->isSubClassOf("Register")) {
1271 assert(ResNo
== 0 && "Registers only produce one result!");
1273 return EEVT::TypeSet(); // Unknown.
1274 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1275 return EEVT::TypeSet(T
.getRegisterVTs(R
));
1278 if (R
->isSubClassOf("SubRegIndex")) {
1279 assert(ResNo
== 0 && "SubRegisterIndices only produce one result!");
1280 return EEVT::TypeSet();
1283 if (R
->isSubClassOf("ValueType") || R
->isSubClassOf("CondCode")) {
1284 assert(ResNo
== 0 && "This node only has one result!");
1285 // Using a VTSDNode or CondCodeSDNode.
1286 return EEVT::TypeSet(MVT::Other
, TP
);
1289 if (R
->isSubClassOf("ComplexPattern")) {
1290 assert(ResNo
== 0 && "FIXME: ComplexPattern with multiple results?");
1292 return EEVT::TypeSet(); // Unknown.
1293 return EEVT::TypeSet(TP
.getDAGPatterns().getComplexPattern(R
).getValueType(),
1296 if (R
->isSubClassOf("PointerLikeRegClass")) {
1297 assert(ResNo
== 0 && "Regclass can only have one result!");
1298 return EEVT::TypeSet(MVT::iPTR
, TP
);
1301 if (R
->getName() == "node" || R
->getName() == "srcvalue" ||
1302 R
->getName() == "zero_reg") {
1304 return EEVT::TypeSet(); // Unknown.
1307 TP
.error("Unknown node flavor used in pattern: " + R
->getName());
1308 return EEVT::TypeSet(MVT::Other
, TP
);
1312 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1313 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1314 const CodeGenIntrinsic
*TreePatternNode::
1315 getIntrinsicInfo(const CodeGenDAGPatterns
&CDP
) const {
1316 if (getOperator() != CDP
.get_intrinsic_void_sdnode() &&
1317 getOperator() != CDP
.get_intrinsic_w_chain_sdnode() &&
1318 getOperator() != CDP
.get_intrinsic_wo_chain_sdnode())
1322 dynamic_cast<IntInit
*>(getChild(0)->getLeafValue())->getValue();
1323 return &CDP
.getIntrinsicInfo(IID
);
1326 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1327 /// return the ComplexPattern information, otherwise return null.
1328 const ComplexPattern
*
1329 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns
&CGP
) const {
1330 if (!isLeaf()) return 0;
1332 DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue());
1333 if (DI
&& DI
->getDef()->isSubClassOf("ComplexPattern"))
1334 return &CGP
.getComplexPattern(DI
->getDef());
1338 /// NodeHasProperty - Return true if this node has the specified property.
1339 bool TreePatternNode::NodeHasProperty(SDNP Property
,
1340 const CodeGenDAGPatterns
&CGP
) const {
1342 if (const ComplexPattern
*CP
= getComplexPatternInfo(CGP
))
1343 return CP
->hasProperty(Property
);
1347 Record
*Operator
= getOperator();
1348 if (!Operator
->isSubClassOf("SDNode")) return false;
1350 return CGP
.getSDNodeInfo(Operator
).hasProperty(Property
);
1356 /// TreeHasProperty - Return true if any node in this tree has the specified
1358 bool TreePatternNode::TreeHasProperty(SDNP Property
,
1359 const CodeGenDAGPatterns
&CGP
) const {
1360 if (NodeHasProperty(Property
, CGP
))
1362 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1363 if (getChild(i
)->TreeHasProperty(Property
, CGP
))
1368 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1369 /// commutative intrinsic.
1371 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns
&CDP
) const {
1372 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
))
1373 return Int
->isCommutative
;
1378 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1379 /// this node and its children in the tree. This returns true if it makes a
1380 /// change, false otherwise. If a type contradiction is found, throw an
1382 bool TreePatternNode::ApplyTypeConstraints(TreePattern
&TP
, bool NotRegisters
) {
1383 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
1385 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
1386 // If it's a regclass or something else known, include the type.
1387 bool MadeChange
= false;
1388 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1389 MadeChange
|= UpdateNodeType(i
, getImplicitType(DI
->getDef(), i
,
1390 NotRegisters
, TP
), TP
);
1394 if (IntInit
*II
= dynamic_cast<IntInit
*>(getLeafValue())) {
1395 assert(Types
.size() == 1 && "Invalid IntInit");
1397 // Int inits are always integers. :)
1398 bool MadeChange
= Types
[0].EnforceInteger(TP
);
1400 if (!Types
[0].isConcrete())
1403 MVT::SimpleValueType VT
= getType(0);
1404 if (VT
== MVT::iPTR
|| VT
== MVT::iPTRAny
)
1407 unsigned Size
= EVT(VT
).getSizeInBits();
1408 // Make sure that the value is representable for this type.
1409 if (Size
>= 32) return MadeChange
;
1411 int Val
= (II
->getValue() << (32-Size
)) >> (32-Size
);
1412 if (Val
== II
->getValue()) return MadeChange
;
1414 // If sign-extended doesn't fit, does it fit as unsigned?
1416 unsigned UnsignedVal
;
1417 ValueMask
= unsigned(~uint32_t(0UL) >> (32-Size
));
1418 UnsignedVal
= unsigned(II
->getValue());
1420 if ((ValueMask
& UnsignedVal
) == UnsignedVal
)
1423 TP
.error("Integer value '" + itostr(II
->getValue())+
1424 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1430 // special handling for set, which isn't really an SDNode.
1431 if (getOperator()->getName() == "set") {
1432 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1433 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1434 unsigned NC
= getNumChildren();
1436 TreePatternNode
*SetVal
= getChild(NC
-1);
1437 bool MadeChange
= SetVal
->ApplyTypeConstraints(TP
, NotRegisters
);
1439 for (unsigned i
= 0; i
< NC
-1; ++i
) {
1440 TreePatternNode
*Child
= getChild(i
);
1441 MadeChange
|= Child
->ApplyTypeConstraints(TP
, NotRegisters
);
1443 // Types of operands must match.
1444 MadeChange
|= Child
->UpdateNodeType(0, SetVal
->getExtType(i
), TP
);
1445 MadeChange
|= SetVal
->UpdateNodeType(i
, Child
->getExtType(0), TP
);
1450 if (getOperator()->getName() == "implicit") {
1451 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1453 bool MadeChange
= false;
1454 for (unsigned i
= 0; i
< getNumChildren(); ++i
)
1455 MadeChange
= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
1459 if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1460 bool MadeChange
= false;
1461 MadeChange
|= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
1462 MadeChange
|= getChild(1)->ApplyTypeConstraints(TP
, NotRegisters
);
1464 assert(getChild(0)->getNumTypes() == 1 &&
1465 getChild(1)->getNumTypes() == 1 && "Unhandled case");
1467 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
1468 // what type it gets, so if it didn't get a concrete type just give it the
1469 // first viable type from the reg class.
1470 if (!getChild(1)->hasTypeSet(0) &&
1471 !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1472 MVT::SimpleValueType RCVT
= getChild(1)->getExtType(0).getTypeList()[0];
1473 MadeChange
|= getChild(1)->UpdateNodeType(0, RCVT
, TP
);
1478 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
)) {
1479 bool MadeChange
= false;
1481 // Apply the result type to the node.
1482 unsigned NumRetVTs
= Int
->IS
.RetVTs
.size();
1483 unsigned NumParamVTs
= Int
->IS
.ParamVTs
.size();
1485 for (unsigned i
= 0, e
= NumRetVTs
; i
!= e
; ++i
)
1486 MadeChange
|= UpdateNodeType(i
, Int
->IS
.RetVTs
[i
], TP
);
1488 if (getNumChildren() != NumParamVTs
+ 1)
1489 TP
.error("Intrinsic '" + Int
->Name
+ "' expects " +
1490 utostr(NumParamVTs
) + " operands, not " +
1491 utostr(getNumChildren() - 1) + " operands!");
1493 // Apply type info to the intrinsic ID.
1494 MadeChange
|= getChild(0)->UpdateNodeType(0, MVT::iPTR
, TP
);
1496 for (unsigned i
= 0, e
= getNumChildren()-1; i
!= e
; ++i
) {
1497 MadeChange
|= getChild(i
+1)->ApplyTypeConstraints(TP
, NotRegisters
);
1499 MVT::SimpleValueType OpVT
= Int
->IS
.ParamVTs
[i
];
1500 assert(getChild(i
+1)->getNumTypes() == 1 && "Unhandled case");
1501 MadeChange
|= getChild(i
+1)->UpdateNodeType(0, OpVT
, TP
);
1506 if (getOperator()->isSubClassOf("SDNode")) {
1507 const SDNodeInfo
&NI
= CDP
.getSDNodeInfo(getOperator());
1509 // Check that the number of operands is sane. Negative operands -> varargs.
1510 if (NI
.getNumOperands() >= 0 &&
1511 getNumChildren() != (unsigned)NI
.getNumOperands())
1512 TP
.error(getOperator()->getName() + " node requires exactly " +
1513 itostr(NI
.getNumOperands()) + " operands!");
1515 bool MadeChange
= NI
.ApplyTypeConstraints(this, TP
);
1516 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1517 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
1521 if (getOperator()->isSubClassOf("Instruction")) {
1522 const DAGInstruction
&Inst
= CDP
.getInstruction(getOperator());
1523 CodeGenInstruction
&InstInfo
=
1524 CDP
.getTargetInfo().getInstruction(getOperator());
1526 bool MadeChange
= false;
1528 // Apply the result types to the node, these come from the things in the
1529 // (outs) list of the instruction.
1530 // FIXME: Cap at one result so far.
1531 unsigned NumResultsToAdd
= InstInfo
.Operands
.NumDefs
? 1 : 0;
1532 for (unsigned ResNo
= 0; ResNo
!= NumResultsToAdd
; ++ResNo
) {
1533 Record
*ResultNode
= Inst
.getResult(ResNo
);
1535 if (ResultNode
->isSubClassOf("PointerLikeRegClass")) {
1536 MadeChange
|= UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
1537 } else if (ResultNode
->isSubClassOf("RegisterOperand")) {
1538 Record
*RegClass
= ResultNode
->getValueAsDef("RegClass");
1539 const CodeGenRegisterClass
&RC
=
1540 CDP
.getTargetInfo().getRegisterClass(RegClass
);
1541 MadeChange
|= UpdateNodeType(ResNo
, RC
.getValueTypes(), TP
);
1542 } else if (ResultNode
->getName() == "unknown") {
1545 assert(ResultNode
->isSubClassOf("RegisterClass") &&
1546 "Operands should be register classes!");
1547 const CodeGenRegisterClass
&RC
=
1548 CDP
.getTargetInfo().getRegisterClass(ResultNode
);
1549 MadeChange
|= UpdateNodeType(ResNo
, RC
.getValueTypes(), TP
);
1553 // If the instruction has implicit defs, we apply the first one as a result.
1554 // FIXME: This sucks, it should apply all implicit defs.
1555 if (!InstInfo
.ImplicitDefs
.empty()) {
1556 unsigned ResNo
= NumResultsToAdd
;
1558 // FIXME: Generalize to multiple possible types and multiple possible
1560 MVT::SimpleValueType VT
=
1561 InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo());
1563 if (VT
!= MVT::Other
)
1564 MadeChange
|= UpdateNodeType(ResNo
, VT
, TP
);
1567 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1569 if (getOperator()->getName() == "INSERT_SUBREG") {
1570 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1571 MadeChange
|= UpdateNodeType(0, getChild(0)->getExtType(0), TP
);
1572 MadeChange
|= getChild(0)->UpdateNodeType(0, getExtType(0), TP
);
1575 unsigned ChildNo
= 0;
1576 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
) {
1577 Record
*OperandNode
= Inst
.getOperand(i
);
1579 // If the instruction expects a predicate or optional def operand, we
1580 // codegen this by setting the operand to it's default value if it has a
1581 // non-empty DefaultOps field.
1582 if ((OperandNode
->isSubClassOf("PredicateOperand") ||
1583 OperandNode
->isSubClassOf("OptionalDefOperand")) &&
1584 !CDP
.getDefaultOperand(OperandNode
).DefaultOps
.empty())
1587 // Verify that we didn't run out of provided operands.
1588 if (ChildNo
>= getNumChildren())
1589 TP
.error("Instruction '" + getOperator()->getName() +
1590 "' expects more operands than were provided.");
1592 MVT::SimpleValueType VT
;
1593 TreePatternNode
*Child
= getChild(ChildNo
++);
1594 unsigned ChildResNo
= 0; // Instructions always use res #0 of their op.
1596 if (OperandNode
->isSubClassOf("RegisterClass")) {
1597 const CodeGenRegisterClass
&RC
=
1598 CDP
.getTargetInfo().getRegisterClass(OperandNode
);
1599 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, RC
.getValueTypes(), TP
);
1600 } else if (OperandNode
->isSubClassOf("RegisterOperand")) {
1601 Record
*RegClass
= OperandNode
->getValueAsDef("RegClass");
1602 const CodeGenRegisterClass
&RC
=
1603 CDP
.getTargetInfo().getRegisterClass(RegClass
);
1604 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, RC
.getValueTypes(), TP
);
1605 } else if (OperandNode
->isSubClassOf("Operand")) {
1606 VT
= getValueType(OperandNode
->getValueAsDef("Type"));
1607 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, VT
, TP
);
1608 } else if (OperandNode
->isSubClassOf("PointerLikeRegClass")) {
1609 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, MVT::iPTR
, TP
);
1610 } else if (OperandNode
->getName() == "unknown") {
1613 assert(0 && "Unknown operand type!");
1616 MadeChange
|= Child
->ApplyTypeConstraints(TP
, NotRegisters
);
1619 if (ChildNo
!= getNumChildren())
1620 TP
.error("Instruction '" + getOperator()->getName() +
1621 "' was provided too many operands!");
1626 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1628 // Node transforms always take one operand.
1629 if (getNumChildren() != 1)
1630 TP
.error("Node transform '" + getOperator()->getName() +
1631 "' requires one operand!");
1633 bool MadeChange
= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
1636 // If either the output or input of the xform does not have exact
1637 // type info. We assume they must be the same. Otherwise, it is perfectly
1638 // legal to transform from one type to a completely different type.
1640 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1641 bool MadeChange
= UpdateNodeType(getChild(0)->getExtType(), TP
);
1642 MadeChange
|= getChild(0)->UpdateNodeType(getExtType(), TP
);
1649 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1650 /// RHS of a commutative operation, not the on LHS.
1651 static bool OnlyOnRHSOfCommutative(TreePatternNode
*N
) {
1652 if (!N
->isLeaf() && N
->getOperator()->getName() == "imm")
1654 if (N
->isLeaf() && dynamic_cast<IntInit
*>(N
->getLeafValue()))
1660 /// canPatternMatch - If it is impossible for this pattern to match on this
1661 /// target, fill in Reason and return false. Otherwise, return true. This is
1662 /// used as a sanity check for .td files (to prevent people from writing stuff
1663 /// that can never possibly work), and to prevent the pattern permuter from
1664 /// generating stuff that is useless.
1665 bool TreePatternNode::canPatternMatch(std::string
&Reason
,
1666 const CodeGenDAGPatterns
&CDP
) {
1667 if (isLeaf()) return true;
1669 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1670 if (!getChild(i
)->canPatternMatch(Reason
, CDP
))
1673 // If this is an intrinsic, handle cases that would make it not match. For
1674 // example, if an operand is required to be an immediate.
1675 if (getOperator()->isSubClassOf("Intrinsic")) {
1680 // If this node is a commutative operator, check that the LHS isn't an
1682 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(getOperator());
1683 bool isCommIntrinsic
= isCommutativeIntrinsic(CDP
);
1684 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
1685 // Scan all of the operands of the node and make sure that only the last one
1686 // is a constant node, unless the RHS also is.
1687 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1688 bool Skip
= isCommIntrinsic
? 1 : 0; // First operand is intrinsic id.
1689 for (unsigned i
= Skip
, e
= getNumChildren()-1; i
!= e
; ++i
)
1690 if (OnlyOnRHSOfCommutative(getChild(i
))) {
1691 Reason
="Immediate value must be on the RHS of commutative operators!";
1700 //===----------------------------------------------------------------------===//
1701 // TreePattern implementation
1704 TreePattern::TreePattern(Record
*TheRec
, ListInit
*RawPat
, bool isInput
,
1705 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1706 isInputPattern
= isInput
;
1707 for (unsigned i
= 0, e
= RawPat
->getSize(); i
!= e
; ++i
)
1708 Trees
.push_back(ParseTreePattern(RawPat
->getElement(i
), ""));
1711 TreePattern::TreePattern(Record
*TheRec
, DagInit
*Pat
, bool isInput
,
1712 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1713 isInputPattern
= isInput
;
1714 Trees
.push_back(ParseTreePattern(Pat
, ""));
1717 TreePattern::TreePattern(Record
*TheRec
, TreePatternNode
*Pat
, bool isInput
,
1718 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1719 isInputPattern
= isInput
;
1720 Trees
.push_back(Pat
);
1723 void TreePattern::error(const std::string
&Msg
) const {
1725 throw TGError(TheRecord
->getLoc(), "In " + TheRecord
->getName() + ": " + Msg
);
1728 void TreePattern::ComputeNamedNodes() {
1729 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1730 ComputeNamedNodes(Trees
[i
]);
1733 void TreePattern::ComputeNamedNodes(TreePatternNode
*N
) {
1734 if (!N
->getName().empty())
1735 NamedNodes
[N
->getName()].push_back(N
);
1737 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
1738 ComputeNamedNodes(N
->getChild(i
));
1742 TreePatternNode
*TreePattern::ParseTreePattern(Init
*TheInit
, StringRef OpName
){
1743 if (DefInit
*DI
= dynamic_cast<DefInit
*>(TheInit
)) {
1744 Record
*R
= DI
->getDef();
1746 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1747 // TreePatternNode of its own. For example:
1748 /// (foo GPR, imm) -> (foo GPR, (imm))
1749 if (R
->isSubClassOf("SDNode") || R
->isSubClassOf("PatFrag"))
1750 return ParseTreePattern(new DagInit(DI
, "",
1751 std::vector
<std::pair
<Init
*, std::string
> >()),
1755 TreePatternNode
*Res
= new TreePatternNode(DI
, 1);
1756 if (R
->getName() == "node" && !OpName
.empty()) {
1758 error("'node' argument requires a name to match with operand list");
1759 Args
.push_back(OpName
);
1762 Res
->setName(OpName
);
1766 if (IntInit
*II
= dynamic_cast<IntInit
*>(TheInit
)) {
1767 if (!OpName
.empty())
1768 error("Constant int argument should not have a name!");
1769 return new TreePatternNode(II
, 1);
1772 if (BitsInit
*BI
= dynamic_cast<BitsInit
*>(TheInit
)) {
1773 // Turn this into an IntInit.
1774 Init
*II
= BI
->convertInitializerTo(new IntRecTy());
1775 if (II
== 0 || !dynamic_cast<IntInit
*>(II
))
1776 error("Bits value must be constants!");
1777 return ParseTreePattern(II
, OpName
);
1780 DagInit
*Dag
= dynamic_cast<DagInit
*>(TheInit
);
1783 error("Pattern has unexpected init kind!");
1785 DefInit
*OpDef
= dynamic_cast<DefInit
*>(Dag
->getOperator());
1786 if (!OpDef
) error("Pattern has unexpected operator type!");
1787 Record
*Operator
= OpDef
->getDef();
1789 if (Operator
->isSubClassOf("ValueType")) {
1790 // If the operator is a ValueType, then this must be "type cast" of a leaf
1792 if (Dag
->getNumArgs() != 1)
1793 error("Type cast only takes one operand!");
1795 TreePatternNode
*New
= ParseTreePattern(Dag
->getArg(0), Dag
->getArgName(0));
1797 // Apply the type cast.
1798 assert(New
->getNumTypes() == 1 && "FIXME: Unhandled");
1799 New
->UpdateNodeType(0, getValueType(Operator
), *this);
1801 if (!OpName
.empty())
1802 error("ValueType cast should not have a name!");
1806 // Verify that this is something that makes sense for an operator.
1807 if (!Operator
->isSubClassOf("PatFrag") &&
1808 !Operator
->isSubClassOf("SDNode") &&
1809 !Operator
->isSubClassOf("Instruction") &&
1810 !Operator
->isSubClassOf("SDNodeXForm") &&
1811 !Operator
->isSubClassOf("Intrinsic") &&
1812 Operator
->getName() != "set" &&
1813 Operator
->getName() != "implicit")
1814 error("Unrecognized node '" + Operator
->getName() + "'!");
1816 // Check to see if this is something that is illegal in an input pattern.
1817 if (isInputPattern
) {
1818 if (Operator
->isSubClassOf("Instruction") ||
1819 Operator
->isSubClassOf("SDNodeXForm"))
1820 error("Cannot use '" + Operator
->getName() + "' in an input pattern!");
1822 if (Operator
->isSubClassOf("Intrinsic"))
1823 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
1825 if (Operator
->isSubClassOf("SDNode") &&
1826 Operator
->getName() != "imm" &&
1827 Operator
->getName() != "fpimm" &&
1828 Operator
->getName() != "tglobaltlsaddr" &&
1829 Operator
->getName() != "tconstpool" &&
1830 Operator
->getName() != "tjumptable" &&
1831 Operator
->getName() != "tframeindex" &&
1832 Operator
->getName() != "texternalsym" &&
1833 Operator
->getName() != "tblockaddress" &&
1834 Operator
->getName() != "tglobaladdr" &&
1835 Operator
->getName() != "bb" &&
1836 Operator
->getName() != "vt")
1837 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
1840 std::vector
<TreePatternNode
*> Children
;
1842 // Parse all the operands.
1843 for (unsigned i
= 0, e
= Dag
->getNumArgs(); i
!= e
; ++i
)
1844 Children
.push_back(ParseTreePattern(Dag
->getArg(i
), Dag
->getArgName(i
)));
1846 // If the operator is an intrinsic, then this is just syntactic sugar for for
1847 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1848 // convert the intrinsic name to a number.
1849 if (Operator
->isSubClassOf("Intrinsic")) {
1850 const CodeGenIntrinsic
&Int
= getDAGPatterns().getIntrinsic(Operator
);
1851 unsigned IID
= getDAGPatterns().getIntrinsicID(Operator
)+1;
1853 // If this intrinsic returns void, it must have side-effects and thus a
1855 if (Int
.IS
.RetVTs
.empty())
1856 Operator
= getDAGPatterns().get_intrinsic_void_sdnode();
1857 else if (Int
.ModRef
!= CodeGenIntrinsic::NoMem
)
1858 // Has side-effects, requires chain.
1859 Operator
= getDAGPatterns().get_intrinsic_w_chain_sdnode();
1860 else // Otherwise, no chain.
1861 Operator
= getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1863 TreePatternNode
*IIDNode
= new TreePatternNode(new IntInit(IID
), 1);
1864 Children
.insert(Children
.begin(), IIDNode
);
1867 unsigned NumResults
= GetNumNodeResults(Operator
, CDP
);
1868 TreePatternNode
*Result
= new TreePatternNode(Operator
, Children
, NumResults
);
1869 Result
->setName(OpName
);
1871 if (!Dag
->getName().empty()) {
1872 assert(Result
->getName().empty());
1873 Result
->setName(Dag
->getName());
1878 /// SimplifyTree - See if we can simplify this tree to eliminate something that
1879 /// will never match in favor of something obvious that will. This is here
1880 /// strictly as a convenience to target authors because it allows them to write
1881 /// more type generic things and have useless type casts fold away.
1883 /// This returns true if any change is made.
1884 static bool SimplifyTree(TreePatternNode
*&N
) {
1888 // If we have a bitconvert with a resolved type and if the source and
1889 // destination types are the same, then the bitconvert is useless, remove it.
1890 if (N
->getOperator()->getName() == "bitconvert" &&
1891 N
->getExtType(0).isConcrete() &&
1892 N
->getExtType(0) == N
->getChild(0)->getExtType(0) &&
1893 N
->getName().empty()) {
1899 // Walk all children.
1900 bool MadeChange
= false;
1901 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
1902 TreePatternNode
*Child
= N
->getChild(i
);
1903 MadeChange
|= SimplifyTree(Child
);
1904 N
->setChild(i
, Child
);
1911 /// InferAllTypes - Infer/propagate as many types throughout the expression
1912 /// patterns as possible. Return true if all types are inferred, false
1913 /// otherwise. Throw an exception if a type contradiction is found.
1915 InferAllTypes(const StringMap
<SmallVector
<TreePatternNode
*,1> > *InNamedTypes
) {
1916 if (NamedNodes
.empty())
1917 ComputeNamedNodes();
1919 bool MadeChange
= true;
1920 while (MadeChange
) {
1922 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
) {
1923 MadeChange
|= Trees
[i
]->ApplyTypeConstraints(*this, false);
1924 MadeChange
|= SimplifyTree(Trees
[i
]);
1927 // If there are constraints on our named nodes, apply them.
1928 for (StringMap
<SmallVector
<TreePatternNode
*,1> >::iterator
1929 I
= NamedNodes
.begin(), E
= NamedNodes
.end(); I
!= E
; ++I
) {
1930 SmallVectorImpl
<TreePatternNode
*> &Nodes
= I
->second
;
1932 // If we have input named node types, propagate their types to the named
1935 // FIXME: Should be error?
1936 assert(InNamedTypes
->count(I
->getKey()) &&
1937 "Named node in output pattern but not input pattern?");
1939 const SmallVectorImpl
<TreePatternNode
*> &InNodes
=
1940 InNamedTypes
->find(I
->getKey())->second
;
1942 // The input types should be fully resolved by now.
1943 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
1944 // If this node is a register class, and it is the root of the pattern
1945 // then we're mapping something onto an input register. We allow
1946 // changing the type of the input register in this case. This allows
1947 // us to match things like:
1948 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1949 if (Nodes
[i
] == Trees
[0] && Nodes
[i
]->isLeaf()) {
1950 DefInit
*DI
= dynamic_cast<DefInit
*>(Nodes
[i
]->getLeafValue());
1951 if (DI
&& (DI
->getDef()->isSubClassOf("RegisterClass") ||
1952 DI
->getDef()->isSubClassOf("RegisterOperand")))
1956 assert(Nodes
[i
]->getNumTypes() == 1 &&
1957 InNodes
[0]->getNumTypes() == 1 &&
1958 "FIXME: cannot name multiple result nodes yet");
1959 MadeChange
|= Nodes
[i
]->UpdateNodeType(0, InNodes
[0]->getExtType(0),
1964 // If there are multiple nodes with the same name, they must all have the
1966 if (I
->second
.size() > 1) {
1967 for (unsigned i
= 0, e
= Nodes
.size()-1; i
!= e
; ++i
) {
1968 TreePatternNode
*N1
= Nodes
[i
], *N2
= Nodes
[i
+1];
1969 assert(N1
->getNumTypes() == 1 && N2
->getNumTypes() == 1 &&
1970 "FIXME: cannot name multiple result nodes yet");
1972 MadeChange
|= N1
->UpdateNodeType(0, N2
->getExtType(0), *this);
1973 MadeChange
|= N2
->UpdateNodeType(0, N1
->getExtType(0), *this);
1979 bool HasUnresolvedTypes
= false;
1980 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1981 HasUnresolvedTypes
|= Trees
[i
]->ContainsUnresolvedType();
1982 return !HasUnresolvedTypes
;
1985 void TreePattern::print(raw_ostream
&OS
) const {
1986 OS
<< getRecord()->getName();
1987 if (!Args
.empty()) {
1988 OS
<< "(" << Args
[0];
1989 for (unsigned i
= 1, e
= Args
.size(); i
!= e
; ++i
)
1990 OS
<< ", " << Args
[i
];
1995 if (Trees
.size() > 1)
1997 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
) {
1999 Trees
[i
]->print(OS
);
2003 if (Trees
.size() > 1)
2007 void TreePattern::dump() const { print(errs()); }
2009 //===----------------------------------------------------------------------===//
2010 // CodeGenDAGPatterns implementation
2013 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper
&R
) :
2014 Records(R
), Target(R
) {
2016 Intrinsics
= LoadIntrinsics(Records
, false);
2017 TgtIntrinsics
= LoadIntrinsics(Records
, true);
2019 ParseNodeTransforms();
2020 ParseComplexPatterns();
2021 ParsePatternFragments();
2022 ParseDefaultOperands();
2023 ParseInstructions();
2026 // Generate variants. For example, commutative patterns can match
2027 // multiple ways. Add them to PatternsToMatch as well.
2030 // Infer instruction flags. For example, we can detect loads,
2031 // stores, and side effects in many cases by examining an
2032 // instruction's pattern.
2033 InferInstructionFlags();
2036 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2037 for (pf_iterator I
= PatternFragments
.begin(),
2038 E
= PatternFragments
.end(); I
!= E
; ++I
)
2043 Record
*CodeGenDAGPatterns::getSDNodeNamed(const std::string
&Name
) const {
2044 Record
*N
= Records
.getDef(Name
);
2045 if (!N
|| !N
->isSubClassOf("SDNode")) {
2046 errs() << "Error getting SDNode '" << Name
<< "'!\n";
2052 // Parse all of the SDNode definitions for the target, populating SDNodes.
2053 void CodeGenDAGPatterns::ParseNodeInfo() {
2054 std::vector
<Record
*> Nodes
= Records
.getAllDerivedDefinitions("SDNode");
2055 while (!Nodes
.empty()) {
2056 SDNodes
.insert(std::make_pair(Nodes
.back(), Nodes
.back()));
2060 // Get the builtin intrinsic nodes.
2061 intrinsic_void_sdnode
= getSDNodeNamed("intrinsic_void");
2062 intrinsic_w_chain_sdnode
= getSDNodeNamed("intrinsic_w_chain");
2063 intrinsic_wo_chain_sdnode
= getSDNodeNamed("intrinsic_wo_chain");
2066 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2067 /// map, and emit them to the file as functions.
2068 void CodeGenDAGPatterns::ParseNodeTransforms() {
2069 std::vector
<Record
*> Xforms
= Records
.getAllDerivedDefinitions("SDNodeXForm");
2070 while (!Xforms
.empty()) {
2071 Record
*XFormNode
= Xforms
.back();
2072 Record
*SDNode
= XFormNode
->getValueAsDef("Opcode");
2073 std::string Code
= XFormNode
->getValueAsCode("XFormFunction");
2074 SDNodeXForms
.insert(std::make_pair(XFormNode
, NodeXForm(SDNode
, Code
)));
2080 void CodeGenDAGPatterns::ParseComplexPatterns() {
2081 std::vector
<Record
*> AMs
= Records
.getAllDerivedDefinitions("ComplexPattern");
2082 while (!AMs
.empty()) {
2083 ComplexPatterns
.insert(std::make_pair(AMs
.back(), AMs
.back()));
2089 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2090 /// file, building up the PatternFragments map. After we've collected them all,
2091 /// inline fragments together as necessary, so that there are no references left
2092 /// inside a pattern fragment to a pattern fragment.
2094 void CodeGenDAGPatterns::ParsePatternFragments() {
2095 std::vector
<Record
*> Fragments
= Records
.getAllDerivedDefinitions("PatFrag");
2097 // First step, parse all of the fragments.
2098 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
2099 DagInit
*Tree
= Fragments
[i
]->getValueAsDag("Fragment");
2100 TreePattern
*P
= new TreePattern(Fragments
[i
], Tree
, true, *this);
2101 PatternFragments
[Fragments
[i
]] = P
;
2103 // Validate the argument list, converting it to set, to discard duplicates.
2104 std::vector
<std::string
> &Args
= P
->getArgList();
2105 std::set
<std::string
> OperandsSet(Args
.begin(), Args
.end());
2107 if (OperandsSet
.count(""))
2108 P
->error("Cannot have unnamed 'node' values in pattern fragment!");
2110 // Parse the operands list.
2111 DagInit
*OpsList
= Fragments
[i
]->getValueAsDag("Operands");
2112 DefInit
*OpsOp
= dynamic_cast<DefInit
*>(OpsList
->getOperator());
2113 // Special cases: ops == outs == ins. Different names are used to
2114 // improve readability.
2116 (OpsOp
->getDef()->getName() != "ops" &&
2117 OpsOp
->getDef()->getName() != "outs" &&
2118 OpsOp
->getDef()->getName() != "ins"))
2119 P
->error("Operands list should start with '(ops ... '!");
2121 // Copy over the arguments.
2123 for (unsigned j
= 0, e
= OpsList
->getNumArgs(); j
!= e
; ++j
) {
2124 if (!dynamic_cast<DefInit
*>(OpsList
->getArg(j
)) ||
2125 static_cast<DefInit
*>(OpsList
->getArg(j
))->
2126 getDef()->getName() != "node")
2127 P
->error("Operands list should all be 'node' values.");
2128 if (OpsList
->getArgName(j
).empty())
2129 P
->error("Operands list should have names for each operand!");
2130 if (!OperandsSet
.count(OpsList
->getArgName(j
)))
2131 P
->error("'" + OpsList
->getArgName(j
) +
2132 "' does not occur in pattern or was multiply specified!");
2133 OperandsSet
.erase(OpsList
->getArgName(j
));
2134 Args
.push_back(OpsList
->getArgName(j
));
2137 if (!OperandsSet
.empty())
2138 P
->error("Operands list does not contain an entry for operand '" +
2139 *OperandsSet
.begin() + "'!");
2141 // If there is a code init for this fragment, keep track of the fact that
2142 // this fragment uses it.
2143 TreePredicateFn
PredFn(P
);
2144 if (!PredFn
.isAlwaysTrue())
2145 P
->getOnlyTree()->addPredicateFn(PredFn
);
2147 // If there is a node transformation corresponding to this, keep track of
2149 Record
*Transform
= Fragments
[i
]->getValueAsDef("OperandTransform");
2150 if (!getSDNodeTransform(Transform
).second
.empty()) // not noop xform?
2151 P
->getOnlyTree()->setTransformFn(Transform
);
2154 // Now that we've parsed all of the tree fragments, do a closure on them so
2155 // that there are not references to PatFrags left inside of them.
2156 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
2157 TreePattern
*ThePat
= PatternFragments
[Fragments
[i
]];
2158 ThePat
->InlinePatternFragments();
2160 // Infer as many types as possible. Don't worry about it if we don't infer
2161 // all of them, some may depend on the inputs of the pattern.
2163 ThePat
->InferAllTypes();
2165 // If this pattern fragment is not supported by this target (no types can
2166 // satisfy its constraints), just ignore it. If the bogus pattern is
2167 // actually used by instructions, the type consistency error will be
2171 // If debugging, print out the pattern fragment result.
2172 DEBUG(ThePat
->dump());
2176 void CodeGenDAGPatterns::ParseDefaultOperands() {
2177 std::vector
<Record
*> DefaultOps
[2];
2178 DefaultOps
[0] = Records
.getAllDerivedDefinitions("PredicateOperand");
2179 DefaultOps
[1] = Records
.getAllDerivedDefinitions("OptionalDefOperand");
2181 // Find some SDNode.
2182 assert(!SDNodes
.empty() && "No SDNodes parsed?");
2183 Init
*SomeSDNode
= new DefInit(SDNodes
.begin()->first
);
2185 for (unsigned iter
= 0; iter
!= 2; ++iter
) {
2186 for (unsigned i
= 0, e
= DefaultOps
[iter
].size(); i
!= e
; ++i
) {
2187 DagInit
*DefaultInfo
= DefaultOps
[iter
][i
]->getValueAsDag("DefaultOps");
2189 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2190 // SomeSDnode so that we can parse this.
2191 std::vector
<std::pair
<Init
*, std::string
> > Ops
;
2192 for (unsigned op
= 0, e
= DefaultInfo
->getNumArgs(); op
!= e
; ++op
)
2193 Ops
.push_back(std::make_pair(DefaultInfo
->getArg(op
),
2194 DefaultInfo
->getArgName(op
)));
2195 DagInit
*DI
= new DagInit(SomeSDNode
, "", Ops
);
2197 // Create a TreePattern to parse this.
2198 TreePattern
P(DefaultOps
[iter
][i
], DI
, false, *this);
2199 assert(P
.getNumTrees() == 1 && "This ctor can only produce one tree!");
2201 // Copy the operands over into a DAGDefaultOperand.
2202 DAGDefaultOperand DefaultOpInfo
;
2204 TreePatternNode
*T
= P
.getTree(0);
2205 for (unsigned op
= 0, e
= T
->getNumChildren(); op
!= e
; ++op
) {
2206 TreePatternNode
*TPN
= T
->getChild(op
);
2207 while (TPN
->ApplyTypeConstraints(P
, false))
2208 /* Resolve all types */;
2210 if (TPN
->ContainsUnresolvedType()) {
2212 throw "Value #" + utostr(i
) + " of PredicateOperand '" +
2213 DefaultOps
[iter
][i
]->getName() +"' doesn't have a concrete type!";
2215 throw "Value #" + utostr(i
) + " of OptionalDefOperand '" +
2216 DefaultOps
[iter
][i
]->getName() +"' doesn't have a concrete type!";
2218 DefaultOpInfo
.DefaultOps
.push_back(TPN
);
2221 // Insert it into the DefaultOperands map so we can find it later.
2222 DefaultOperands
[DefaultOps
[iter
][i
]] = DefaultOpInfo
;
2227 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2228 /// instruction input. Return true if this is a real use.
2229 static bool HandleUse(TreePattern
*I
, TreePatternNode
*Pat
,
2230 std::map
<std::string
, TreePatternNode
*> &InstInputs
) {
2231 // No name -> not interesting.
2232 if (Pat
->getName().empty()) {
2233 if (Pat
->isLeaf()) {
2234 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
2235 if (DI
&& (DI
->getDef()->isSubClassOf("RegisterClass") ||
2236 DI
->getDef()->isSubClassOf("RegisterOperand")))
2237 I
->error("Input " + DI
->getDef()->getName() + " must be named!");
2243 if (Pat
->isLeaf()) {
2244 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
2245 if (!DI
) I
->error("Input $" + Pat
->getName() + " must be an identifier!");
2248 Rec
= Pat
->getOperator();
2251 // SRCVALUE nodes are ignored.
2252 if (Rec
->getName() == "srcvalue")
2255 TreePatternNode
*&Slot
= InstInputs
[Pat
->getName()];
2261 if (Slot
->isLeaf()) {
2262 SlotRec
= dynamic_cast<DefInit
*>(Slot
->getLeafValue())->getDef();
2264 assert(Slot
->getNumChildren() == 0 && "can't be a use with children!");
2265 SlotRec
= Slot
->getOperator();
2268 // Ensure that the inputs agree if we've already seen this input.
2270 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
2271 if (Slot
->getExtTypes() != Pat
->getExtTypes())
2272 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
2276 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2277 /// part of "I", the instruction), computing the set of inputs and outputs of
2278 /// the pattern. Report errors if we see anything naughty.
2279 void CodeGenDAGPatterns::
2280 FindPatternInputsAndOutputs(TreePattern
*I
, TreePatternNode
*Pat
,
2281 std::map
<std::string
, TreePatternNode
*> &InstInputs
,
2282 std::map
<std::string
, TreePatternNode
*>&InstResults
,
2283 std::vector
<Record
*> &InstImpResults
) {
2284 if (Pat
->isLeaf()) {
2285 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
2286 if (!isUse
&& Pat
->getTransformFn())
2287 I
->error("Cannot specify a transform function for a non-input value!");
2291 if (Pat
->getOperator()->getName() == "implicit") {
2292 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
2293 TreePatternNode
*Dest
= Pat
->getChild(i
);
2294 if (!Dest
->isLeaf())
2295 I
->error("implicitly defined value should be a register!");
2297 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
2298 if (!Val
|| !Val
->getDef()->isSubClassOf("Register"))
2299 I
->error("implicitly defined value should be a register!");
2300 InstImpResults
.push_back(Val
->getDef());
2305 if (Pat
->getOperator()->getName() != "set") {
2306 // If this is not a set, verify that the children nodes are not void typed,
2308 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
2309 if (Pat
->getChild(i
)->getNumTypes() == 0)
2310 I
->error("Cannot have void nodes inside of patterns!");
2311 FindPatternInputsAndOutputs(I
, Pat
->getChild(i
), InstInputs
, InstResults
,
2315 // If this is a non-leaf node with no children, treat it basically as if
2316 // it were a leaf. This handles nodes like (imm).
2317 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
2319 if (!isUse
&& Pat
->getTransformFn())
2320 I
->error("Cannot specify a transform function for a non-input value!");
2324 // Otherwise, this is a set, validate and collect instruction results.
2325 if (Pat
->getNumChildren() == 0)
2326 I
->error("set requires operands!");
2328 if (Pat
->getTransformFn())
2329 I
->error("Cannot specify a transform function on a set node!");
2331 // Check the set destinations.
2332 unsigned NumDests
= Pat
->getNumChildren()-1;
2333 for (unsigned i
= 0; i
!= NumDests
; ++i
) {
2334 TreePatternNode
*Dest
= Pat
->getChild(i
);
2335 if (!Dest
->isLeaf())
2336 I
->error("set destination should be a register!");
2338 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
2340 I
->error("set destination should be a register!");
2342 if (Val
->getDef()->isSubClassOf("RegisterClass") ||
2343 Val
->getDef()->isSubClassOf("RegisterOperand") ||
2344 Val
->getDef()->isSubClassOf("PointerLikeRegClass")) {
2345 if (Dest
->getName().empty())
2346 I
->error("set destination must have a name!");
2347 if (InstResults
.count(Dest
->getName()))
2348 I
->error("cannot set '" + Dest
->getName() +"' multiple times");
2349 InstResults
[Dest
->getName()] = Dest
;
2350 } else if (Val
->getDef()->isSubClassOf("Register")) {
2351 InstImpResults
.push_back(Val
->getDef());
2353 I
->error("set destination should be a register!");
2357 // Verify and collect info from the computation.
2358 FindPatternInputsAndOutputs(I
, Pat
->getChild(NumDests
),
2359 InstInputs
, InstResults
, InstImpResults
);
2362 //===----------------------------------------------------------------------===//
2363 // Instruction Analysis
2364 //===----------------------------------------------------------------------===//
2366 class InstAnalyzer
{
2367 const CodeGenDAGPatterns
&CDP
;
2371 bool &HasSideEffects
;
2374 InstAnalyzer(const CodeGenDAGPatterns
&cdp
,
2375 bool &maystore
, bool &mayload
, bool &isbc
, bool &hse
, bool &isv
)
2376 : CDP(cdp
), mayStore(maystore
), mayLoad(mayload
), IsBitcast(isbc
),
2377 HasSideEffects(hse
), IsVariadic(isv
) {
2380 /// Analyze - Analyze the specified instruction, returning true if the
2381 /// instruction had a pattern.
2382 bool Analyze(Record
*InstRecord
) {
2383 const TreePattern
*Pattern
= CDP
.getInstruction(InstRecord
).getPattern();
2386 return false; // No pattern.
2389 // FIXME: Assume only the first tree is the pattern. The others are clobber
2391 AnalyzeNode(Pattern
->getTree(0));
2396 bool IsNodeBitcast(const TreePatternNode
*N
) const {
2397 if (HasSideEffects
|| mayLoad
|| mayStore
|| IsVariadic
)
2400 if (N
->getNumChildren() != 2)
2403 const TreePatternNode
*N0
= N
->getChild(0);
2404 if (!N0
->isLeaf() || !dynamic_cast<DefInit
*>(N0
->getLeafValue()))
2407 const TreePatternNode
*N1
= N
->getChild(1);
2410 if (N1
->getNumChildren() != 1 || !N1
->getChild(0)->isLeaf())
2413 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N1
->getOperator());
2414 if (OpInfo
.getNumResults() != 1 || OpInfo
.getNumOperands() != 1)
2416 return OpInfo
.getEnumName() == "ISD::BITCAST";
2419 void AnalyzeNode(const TreePatternNode
*N
) {
2421 if (DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
2422 Record
*LeafRec
= DI
->getDef();
2423 // Handle ComplexPattern leaves.
2424 if (LeafRec
->isSubClassOf("ComplexPattern")) {
2425 const ComplexPattern
&CP
= CDP
.getComplexPattern(LeafRec
);
2426 if (CP
.hasProperty(SDNPMayStore
)) mayStore
= true;
2427 if (CP
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
2428 if (CP
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
2434 // Analyze children.
2435 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2436 AnalyzeNode(N
->getChild(i
));
2438 // Ignore set nodes, which are not SDNodes.
2439 if (N
->getOperator()->getName() == "set") {
2440 IsBitcast
= IsNodeBitcast(N
);
2444 // Get information about the SDNode for the operator.
2445 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N
->getOperator());
2447 // Notice properties of the node.
2448 if (OpInfo
.hasProperty(SDNPMayStore
)) mayStore
= true;
2449 if (OpInfo
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
2450 if (OpInfo
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
2451 if (OpInfo
.hasProperty(SDNPVariadic
)) IsVariadic
= true;
2453 if (const CodeGenIntrinsic
*IntInfo
= N
->getIntrinsicInfo(CDP
)) {
2454 // If this is an intrinsic, analyze it.
2455 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadArgMem
)
2456 mayLoad
= true;// These may load memory.
2458 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadWriteArgMem
)
2459 mayStore
= true;// Intrinsics that can write to memory are 'mayStore'.
2461 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadWriteMem
)
2462 // WriteMem intrinsics can have other strange effects.
2463 HasSideEffects
= true;
2469 static void InferFromPattern(const CodeGenInstruction
&Inst
,
2470 bool &MayStore
, bool &MayLoad
,
2472 bool &HasSideEffects
, bool &IsVariadic
,
2473 const CodeGenDAGPatterns
&CDP
) {
2474 MayStore
= MayLoad
= IsBitcast
= HasSideEffects
= IsVariadic
= false;
2477 InstAnalyzer(CDP
, MayStore
, MayLoad
, IsBitcast
, HasSideEffects
, IsVariadic
)
2478 .Analyze(Inst
.TheDef
);
2480 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
2481 if (Inst
.mayStore
) { // If the .td file explicitly sets mayStore, use it.
2482 // If we decided that this is a store from the pattern, then the .td file
2483 // entry is redundant.
2486 "Warning: mayStore flag explicitly set on instruction '%s'"
2487 " but flag already inferred from pattern.\n",
2488 Inst
.TheDef
->getName().c_str());
2492 if (Inst
.mayLoad
) { // If the .td file explicitly sets mayLoad, use it.
2493 // If we decided that this is a load from the pattern, then the .td file
2494 // entry is redundant.
2497 "Warning: mayLoad flag explicitly set on instruction '%s'"
2498 " but flag already inferred from pattern.\n",
2499 Inst
.TheDef
->getName().c_str());
2503 if (Inst
.neverHasSideEffects
) {
2505 fprintf(stderr
, "Warning: neverHasSideEffects set on instruction '%s' "
2506 "which already has a pattern\n", Inst
.TheDef
->getName().c_str());
2507 HasSideEffects
= false;
2510 if (Inst
.hasSideEffects
) {
2512 fprintf(stderr
, "Warning: hasSideEffects set on instruction '%s' "
2513 "which already inferred this.\n", Inst
.TheDef
->getName().c_str());
2514 HasSideEffects
= true;
2517 if (Inst
.Operands
.isVariadic
)
2518 IsVariadic
= true; // Can warn if we want.
2521 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2522 /// any fragments involved. This populates the Instructions list with fully
2523 /// resolved instructions.
2524 void CodeGenDAGPatterns::ParseInstructions() {
2525 std::vector
<Record
*> Instrs
= Records
.getAllDerivedDefinitions("Instruction");
2527 for (unsigned i
= 0, e
= Instrs
.size(); i
!= e
; ++i
) {
2530 if (dynamic_cast<ListInit
*>(Instrs
[i
]->getValueInit("Pattern")))
2531 LI
= Instrs
[i
]->getValueAsListInit("Pattern");
2533 // If there is no pattern, only collect minimal information about the
2534 // instruction for its operand list. We have to assume that there is one
2535 // result, as we have no detailed info.
2536 if (!LI
|| LI
->getSize() == 0) {
2537 std::vector
<Record
*> Results
;
2538 std::vector
<Record
*> Operands
;
2540 CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instrs
[i
]);
2542 if (InstInfo
.Operands
.size() != 0) {
2543 if (InstInfo
.Operands
.NumDefs
== 0) {
2544 // These produce no results
2545 for (unsigned j
= 0, e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
2546 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
2548 // Assume the first operand is the result.
2549 Results
.push_back(InstInfo
.Operands
[0].Rec
);
2551 // The rest are inputs.
2552 for (unsigned j
= 1, e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
2553 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
2557 // Create and insert the instruction.
2558 std::vector
<Record
*> ImpResults
;
2559 Instructions
.insert(std::make_pair(Instrs
[i
],
2560 DAGInstruction(0, Results
, Operands
, ImpResults
)));
2561 continue; // no pattern.
2564 // Parse the instruction.
2565 TreePattern
*I
= new TreePattern(Instrs
[i
], LI
, true, *this);
2566 // Inline pattern fragments into it.
2567 I
->InlinePatternFragments();
2569 // Infer as many types as possible. If we cannot infer all of them, we can
2570 // never do anything with this instruction pattern: report it to the user.
2571 if (!I
->InferAllTypes())
2572 I
->error("Could not infer all types in pattern!");
2574 // InstInputs - Keep track of all of the inputs of the instruction, along
2575 // with the record they are declared as.
2576 std::map
<std::string
, TreePatternNode
*> InstInputs
;
2578 // InstResults - Keep track of all the virtual registers that are 'set'
2579 // in the instruction, including what reg class they are.
2580 std::map
<std::string
, TreePatternNode
*> InstResults
;
2582 std::vector
<Record
*> InstImpResults
;
2584 // Verify that the top-level forms in the instruction are of void type, and
2585 // fill in the InstResults map.
2586 for (unsigned j
= 0, e
= I
->getNumTrees(); j
!= e
; ++j
) {
2587 TreePatternNode
*Pat
= I
->getTree(j
);
2588 if (Pat
->getNumTypes() != 0)
2589 I
->error("Top-level forms in instruction pattern should have"
2592 // Find inputs and outputs, and verify the structure of the uses/defs.
2593 FindPatternInputsAndOutputs(I
, Pat
, InstInputs
, InstResults
,
2597 // Now that we have inputs and outputs of the pattern, inspect the operands
2598 // list for the instruction. This determines the order that operands are
2599 // added to the machine instruction the node corresponds to.
2600 unsigned NumResults
= InstResults
.size();
2602 // Parse the operands list from the (ops) list, validating it.
2603 assert(I
->getArgList().empty() && "Args list should still be empty here!");
2604 CodeGenInstruction
&CGI
= Target
.getInstruction(Instrs
[i
]);
2606 // Check that all of the results occur first in the list.
2607 std::vector
<Record
*> Results
;
2608 TreePatternNode
*Res0Node
= 0;
2609 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
2610 if (i
== CGI
.Operands
.size())
2611 I
->error("'" + InstResults
.begin()->first
+
2612 "' set but does not appear in operand list!");
2613 const std::string
&OpName
= CGI
.Operands
[i
].Name
;
2615 // Check that it exists in InstResults.
2616 TreePatternNode
*RNode
= InstResults
[OpName
];
2618 I
->error("Operand $" + OpName
+ " does not exist in operand list!");
2622 Record
*R
= dynamic_cast<DefInit
*>(RNode
->getLeafValue())->getDef();
2624 I
->error("Operand $" + OpName
+ " should be a set destination: all "
2625 "outputs must occur before inputs in operand list!");
2627 if (CGI
.Operands
[i
].Rec
!= R
)
2628 I
->error("Operand $" + OpName
+ " class mismatch!");
2630 // Remember the return type.
2631 Results
.push_back(CGI
.Operands
[i
].Rec
);
2633 // Okay, this one checks out.
2634 InstResults
.erase(OpName
);
2637 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2638 // the copy while we're checking the inputs.
2639 std::map
<std::string
, TreePatternNode
*> InstInputsCheck(InstInputs
);
2641 std::vector
<TreePatternNode
*> ResultNodeOperands
;
2642 std::vector
<Record
*> Operands
;
2643 for (unsigned i
= NumResults
, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
2644 CGIOperandList::OperandInfo
&Op
= CGI
.Operands
[i
];
2645 const std::string
&OpName
= Op
.Name
;
2647 I
->error("Operand #" + utostr(i
) + " in operands list has no name!");
2649 if (!InstInputsCheck
.count(OpName
)) {
2650 // If this is an predicate operand or optional def operand with an
2651 // DefaultOps set filled in, we can ignore this. When we codegen it,
2652 // we will do so as always executed.
2653 if (Op
.Rec
->isSubClassOf("PredicateOperand") ||
2654 Op
.Rec
->isSubClassOf("OptionalDefOperand")) {
2655 // Does it have a non-empty DefaultOps field? If so, ignore this
2657 if (!getDefaultOperand(Op
.Rec
).DefaultOps
.empty())
2660 I
->error("Operand $" + OpName
+
2661 " does not appear in the instruction pattern");
2663 TreePatternNode
*InVal
= InstInputsCheck
[OpName
];
2664 InstInputsCheck
.erase(OpName
); // It occurred, remove from map.
2666 if (InVal
->isLeaf() &&
2667 dynamic_cast<DefInit
*>(InVal
->getLeafValue())) {
2668 Record
*InRec
= static_cast<DefInit
*>(InVal
->getLeafValue())->getDef();
2669 if (Op
.Rec
!= InRec
&& !InRec
->isSubClassOf("ComplexPattern"))
2670 I
->error("Operand $" + OpName
+ "'s register class disagrees"
2671 " between the operand and pattern");
2673 Operands
.push_back(Op
.Rec
);
2675 // Construct the result for the dest-pattern operand list.
2676 TreePatternNode
*OpNode
= InVal
->clone();
2678 // No predicate is useful on the result.
2679 OpNode
->clearPredicateFns();
2681 // Promote the xform function to be an explicit node if set.
2682 if (Record
*Xform
= OpNode
->getTransformFn()) {
2683 OpNode
->setTransformFn(0);
2684 std::vector
<TreePatternNode
*> Children
;
2685 Children
.push_back(OpNode
);
2686 OpNode
= new TreePatternNode(Xform
, Children
, OpNode
->getNumTypes());
2689 ResultNodeOperands
.push_back(OpNode
);
2692 if (!InstInputsCheck
.empty())
2693 I
->error("Input operand $" + InstInputsCheck
.begin()->first
+
2694 " occurs in pattern but not in operands list!");
2696 TreePatternNode
*ResultPattern
=
2697 new TreePatternNode(I
->getRecord(), ResultNodeOperands
,
2698 GetNumNodeResults(I
->getRecord(), *this));
2699 // Copy fully inferred output node type to instruction result pattern.
2700 for (unsigned i
= 0; i
!= NumResults
; ++i
)
2701 ResultPattern
->setType(i
, Res0Node
->getExtType(i
));
2703 // Create and insert the instruction.
2704 // FIXME: InstImpResults should not be part of DAGInstruction.
2705 DAGInstruction
TheInst(I
, Results
, Operands
, InstImpResults
);
2706 Instructions
.insert(std::make_pair(I
->getRecord(), TheInst
));
2708 // Use a temporary tree pattern to infer all types and make sure that the
2709 // constructed result is correct. This depends on the instruction already
2710 // being inserted into the Instructions map.
2711 TreePattern
Temp(I
->getRecord(), ResultPattern
, false, *this);
2712 Temp
.InferAllTypes(&I
->getNamedNodesMap());
2714 DAGInstruction
&TheInsertedInst
= Instructions
.find(I
->getRecord())->second
;
2715 TheInsertedInst
.setResultPattern(Temp
.getOnlyTree());
2720 // If we can, convert the instructions to be patterns that are matched!
2721 for (std::map
<Record
*, DAGInstruction
, RecordPtrCmp
>::iterator II
=
2722 Instructions
.begin(),
2723 E
= Instructions
.end(); II
!= E
; ++II
) {
2724 DAGInstruction
&TheInst
= II
->second
;
2725 const TreePattern
*I
= TheInst
.getPattern();
2726 if (I
== 0) continue; // No pattern.
2728 // FIXME: Assume only the first tree is the pattern. The others are clobber
2730 TreePatternNode
*Pattern
= I
->getTree(0);
2731 TreePatternNode
*SrcPattern
;
2732 if (Pattern
->getOperator()->getName() == "set") {
2733 SrcPattern
= Pattern
->getChild(Pattern
->getNumChildren()-1)->clone();
2735 // Not a set (store or something?)
2736 SrcPattern
= Pattern
;
2739 Record
*Instr
= II
->first
;
2740 AddPatternToMatch(I
,
2741 PatternToMatch(Instr
,
2742 Instr
->getValueAsListInit("Predicates"),
2744 TheInst
.getResultPattern(),
2745 TheInst
.getImpResults(),
2746 Instr
->getValueAsInt("AddedComplexity"),
2752 typedef std::pair
<const TreePatternNode
*, unsigned> NameRecord
;
2754 static void FindNames(const TreePatternNode
*P
,
2755 std::map
<std::string
, NameRecord
> &Names
,
2756 const TreePattern
*PatternTop
) {
2757 if (!P
->getName().empty()) {
2758 NameRecord
&Rec
= Names
[P
->getName()];
2759 // If this is the first instance of the name, remember the node.
2760 if (Rec
.second
++ == 0)
2762 else if (Rec
.first
->getExtTypes() != P
->getExtTypes())
2763 PatternTop
->error("repetition of value: $" + P
->getName() +
2764 " where different uses have different types!");
2768 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
)
2769 FindNames(P
->getChild(i
), Names
, PatternTop
);
2773 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern
*Pattern
,
2774 const PatternToMatch
&PTM
) {
2775 // Do some sanity checking on the pattern we're about to match.
2777 if (!PTM
.getSrcPattern()->canPatternMatch(Reason
, *this))
2778 Pattern
->error("Pattern can never match: " + Reason
);
2780 // If the source pattern's root is a complex pattern, that complex pattern
2781 // must specify the nodes it can potentially match.
2782 if (const ComplexPattern
*CP
=
2783 PTM
.getSrcPattern()->getComplexPatternInfo(*this))
2784 if (CP
->getRootNodes().empty())
2785 Pattern
->error("ComplexPattern at root must specify list of opcodes it"
2789 // Find all of the named values in the input and output, ensure they have the
2791 std::map
<std::string
, NameRecord
> SrcNames
, DstNames
;
2792 FindNames(PTM
.getSrcPattern(), SrcNames
, Pattern
);
2793 FindNames(PTM
.getDstPattern(), DstNames
, Pattern
);
2795 // Scan all of the named values in the destination pattern, rejecting them if
2796 // they don't exist in the input pattern.
2797 for (std::map
<std::string
, NameRecord
>::iterator
2798 I
= DstNames
.begin(), E
= DstNames
.end(); I
!= E
; ++I
) {
2799 if (SrcNames
[I
->first
].first
== 0)
2800 Pattern
->error("Pattern has input without matching name in output: $" +
2804 // Scan all of the named values in the source pattern, rejecting them if the
2805 // name isn't used in the dest, and isn't used to tie two values together.
2806 for (std::map
<std::string
, NameRecord
>::iterator
2807 I
= SrcNames
.begin(), E
= SrcNames
.end(); I
!= E
; ++I
)
2808 if (DstNames
[I
->first
].first
== 0 && SrcNames
[I
->first
].second
== 1)
2809 Pattern
->error("Pattern has dead named input: $" + I
->first
);
2811 PatternsToMatch
.push_back(PTM
);
2816 void CodeGenDAGPatterns::InferInstructionFlags() {
2817 const std::vector
<const CodeGenInstruction
*> &Instructions
=
2818 Target
.getInstructionsByEnumValue();
2819 for (unsigned i
= 0, e
= Instructions
.size(); i
!= e
; ++i
) {
2820 CodeGenInstruction
&InstInfo
=
2821 const_cast<CodeGenInstruction
&>(*Instructions
[i
]);
2822 // Determine properties of the instruction from its pattern.
2823 bool MayStore
, MayLoad
, IsBitcast
, HasSideEffects
, IsVariadic
;
2824 InferFromPattern(InstInfo
, MayStore
, MayLoad
, IsBitcast
,
2825 HasSideEffects
, IsVariadic
, *this);
2826 InstInfo
.mayStore
= MayStore
;
2827 InstInfo
.mayLoad
= MayLoad
;
2828 InstInfo
.isBitcast
= IsBitcast
;
2829 InstInfo
.hasSideEffects
= HasSideEffects
;
2830 InstInfo
.Operands
.isVariadic
= IsVariadic
;
2834 /// Given a pattern result with an unresolved type, see if we can find one
2835 /// instruction with an unresolved result type. Force this result type to an
2836 /// arbitrary element if it's possible types to converge results.
2837 static bool ForceArbitraryInstResultType(TreePatternNode
*N
, TreePattern
&TP
) {
2841 // Analyze children.
2842 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2843 if (ForceArbitraryInstResultType(N
->getChild(i
), TP
))
2846 if (!N
->getOperator()->isSubClassOf("Instruction"))
2849 // If this type is already concrete or completely unknown we can't do
2851 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
) {
2852 if (N
->getExtType(i
).isCompletelyUnknown() || N
->getExtType(i
).isConcrete())
2855 // Otherwise, force its type to the first possibility (an arbitrary choice).
2856 if (N
->getExtType(i
).MergeInTypeInfo(N
->getExtType(i
).getTypeList()[0], TP
))
2863 void CodeGenDAGPatterns::ParsePatterns() {
2864 std::vector
<Record
*> Patterns
= Records
.getAllDerivedDefinitions("Pattern");
2866 for (unsigned i
= 0, e
= Patterns
.size(); i
!= e
; ++i
) {
2867 Record
*CurPattern
= Patterns
[i
];
2868 DagInit
*Tree
= CurPattern
->getValueAsDag("PatternToMatch");
2869 TreePattern
*Pattern
= new TreePattern(CurPattern
, Tree
, true, *this);
2871 // Inline pattern fragments into it.
2872 Pattern
->InlinePatternFragments();
2874 ListInit
*LI
= CurPattern
->getValueAsListInit("ResultInstrs");
2875 if (LI
->getSize() == 0) continue; // no pattern.
2877 // Parse the instruction.
2878 TreePattern
*Result
= new TreePattern(CurPattern
, LI
, false, *this);
2880 // Inline pattern fragments into it.
2881 Result
->InlinePatternFragments();
2883 if (Result
->getNumTrees() != 1)
2884 Result
->error("Cannot handle instructions producing instructions "
2885 "with temporaries yet!");
2887 bool IterateInference
;
2888 bool InferredAllPatternTypes
, InferredAllResultTypes
;
2890 // Infer as many types as possible. If we cannot infer all of them, we
2891 // can never do anything with this pattern: report it to the user.
2892 InferredAllPatternTypes
=
2893 Pattern
->InferAllTypes(&Pattern
->getNamedNodesMap());
2895 // Infer as many types as possible. If we cannot infer all of them, we
2896 // can never do anything with this pattern: report it to the user.
2897 InferredAllResultTypes
=
2898 Result
->InferAllTypes(&Pattern
->getNamedNodesMap());
2900 IterateInference
= false;
2902 // Apply the type of the result to the source pattern. This helps us
2903 // resolve cases where the input type is known to be a pointer type (which
2904 // is considered resolved), but the result knows it needs to be 32- or
2905 // 64-bits. Infer the other way for good measure.
2906 for (unsigned i
= 0, e
= std::min(Result
->getTree(0)->getNumTypes(),
2907 Pattern
->getTree(0)->getNumTypes());
2909 IterateInference
= Pattern
->getTree(0)->
2910 UpdateNodeType(i
, Result
->getTree(0)->getExtType(i
), *Result
);
2911 IterateInference
|= Result
->getTree(0)->
2912 UpdateNodeType(i
, Pattern
->getTree(0)->getExtType(i
), *Result
);
2915 // If our iteration has converged and the input pattern's types are fully
2916 // resolved but the result pattern is not fully resolved, we may have a
2917 // situation where we have two instructions in the result pattern and
2918 // the instructions require a common register class, but don't care about
2919 // what actual MVT is used. This is actually a bug in our modelling:
2920 // output patterns should have register classes, not MVTs.
2922 // In any case, to handle this, we just go through and disambiguate some
2923 // arbitrary types to the result pattern's nodes.
2924 if (!IterateInference
&& InferredAllPatternTypes
&&
2925 !InferredAllResultTypes
)
2926 IterateInference
= ForceArbitraryInstResultType(Result
->getTree(0),
2928 } while (IterateInference
);
2930 // Verify that we inferred enough types that we can do something with the
2931 // pattern and result. If these fire the user has to add type casts.
2932 if (!InferredAllPatternTypes
)
2933 Pattern
->error("Could not infer all types in pattern!");
2934 if (!InferredAllResultTypes
) {
2936 Result
->error("Could not infer all types in pattern result!");
2939 // Validate that the input pattern is correct.
2940 std::map
<std::string
, TreePatternNode
*> InstInputs
;
2941 std::map
<std::string
, TreePatternNode
*> InstResults
;
2942 std::vector
<Record
*> InstImpResults
;
2943 for (unsigned j
= 0, ee
= Pattern
->getNumTrees(); j
!= ee
; ++j
)
2944 FindPatternInputsAndOutputs(Pattern
, Pattern
->getTree(j
),
2945 InstInputs
, InstResults
,
2948 // Promote the xform function to be an explicit node if set.
2949 TreePatternNode
*DstPattern
= Result
->getOnlyTree();
2950 std::vector
<TreePatternNode
*> ResultNodeOperands
;
2951 for (unsigned ii
= 0, ee
= DstPattern
->getNumChildren(); ii
!= ee
; ++ii
) {
2952 TreePatternNode
*OpNode
= DstPattern
->getChild(ii
);
2953 if (Record
*Xform
= OpNode
->getTransformFn()) {
2954 OpNode
->setTransformFn(0);
2955 std::vector
<TreePatternNode
*> Children
;
2956 Children
.push_back(OpNode
);
2957 OpNode
= new TreePatternNode(Xform
, Children
, OpNode
->getNumTypes());
2959 ResultNodeOperands
.push_back(OpNode
);
2961 DstPattern
= Result
->getOnlyTree();
2962 if (!DstPattern
->isLeaf())
2963 DstPattern
= new TreePatternNode(DstPattern
->getOperator(),
2965 DstPattern
->getNumTypes());
2967 for (unsigned i
= 0, e
= Result
->getOnlyTree()->getNumTypes(); i
!= e
; ++i
)
2968 DstPattern
->setType(i
, Result
->getOnlyTree()->getExtType(i
));
2970 TreePattern
Temp(Result
->getRecord(), DstPattern
, false, *this);
2971 Temp
.InferAllTypes();
2974 AddPatternToMatch(Pattern
,
2975 PatternToMatch(CurPattern
,
2976 CurPattern
->getValueAsListInit("Predicates"),
2977 Pattern
->getTree(0),
2978 Temp
.getOnlyTree(), InstImpResults
,
2979 CurPattern
->getValueAsInt("AddedComplexity"),
2980 CurPattern
->getID()));
2984 /// CombineChildVariants - Given a bunch of permutations of each child of the
2985 /// 'operator' node, put them together in all possible ways.
2986 static void CombineChildVariants(TreePatternNode
*Orig
,
2987 const std::vector
<std::vector
<TreePatternNode
*> > &ChildVariants
,
2988 std::vector
<TreePatternNode
*> &OutVariants
,
2989 CodeGenDAGPatterns
&CDP
,
2990 const MultipleUseVarSet
&DepVars
) {
2991 // Make sure that each operand has at least one variant to choose from.
2992 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
2993 if (ChildVariants
[i
].empty())
2996 // The end result is an all-pairs construction of the resultant pattern.
2997 std::vector
<unsigned> Idxs
;
2998 Idxs
.resize(ChildVariants
.size());
3002 DEBUG(if (!Idxs
.empty()) {
3003 errs() << Orig
->getOperator()->getName() << ": Idxs = [ ";
3004 for (unsigned i
= 0; i
< Idxs
.size(); ++i
) {
3005 errs() << Idxs
[i
] << " ";
3010 // Create the variant and add it to the output list.
3011 std::vector
<TreePatternNode
*> NewChildren
;
3012 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
3013 NewChildren
.push_back(ChildVariants
[i
][Idxs
[i
]]);
3014 TreePatternNode
*R
= new TreePatternNode(Orig
->getOperator(), NewChildren
,
3015 Orig
->getNumTypes());
3017 // Copy over properties.
3018 R
->setName(Orig
->getName());
3019 R
->setPredicateFns(Orig
->getPredicateFns());
3020 R
->setTransformFn(Orig
->getTransformFn());
3021 for (unsigned i
= 0, e
= Orig
->getNumTypes(); i
!= e
; ++i
)
3022 R
->setType(i
, Orig
->getExtType(i
));
3024 // If this pattern cannot match, do not include it as a variant.
3025 std::string ErrString
;
3026 if (!R
->canPatternMatch(ErrString
, CDP
)) {
3029 bool AlreadyExists
= false;
3031 // Scan to see if this pattern has already been emitted. We can get
3032 // duplication due to things like commuting:
3033 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3034 // which are the same pattern. Ignore the dups.
3035 for (unsigned i
= 0, e
= OutVariants
.size(); i
!= e
; ++i
)
3036 if (R
->isIsomorphicTo(OutVariants
[i
], DepVars
)) {
3037 AlreadyExists
= true;
3044 OutVariants
.push_back(R
);
3047 // Increment indices to the next permutation by incrementing the
3048 // indicies from last index backward, e.g., generate the sequence
3049 // [0, 0], [0, 1], [1, 0], [1, 1].
3051 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
3052 if (++Idxs
[IdxsIdx
] == ChildVariants
[IdxsIdx
].size())
3057 NotDone
= (IdxsIdx
>= 0);
3061 /// CombineChildVariants - A helper function for binary operators.
3063 static void CombineChildVariants(TreePatternNode
*Orig
,
3064 const std::vector
<TreePatternNode
*> &LHS
,
3065 const std::vector
<TreePatternNode
*> &RHS
,
3066 std::vector
<TreePatternNode
*> &OutVariants
,
3067 CodeGenDAGPatterns
&CDP
,
3068 const MultipleUseVarSet
&DepVars
) {
3069 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
3070 ChildVariants
.push_back(LHS
);
3071 ChildVariants
.push_back(RHS
);
3072 CombineChildVariants(Orig
, ChildVariants
, OutVariants
, CDP
, DepVars
);
3076 static void GatherChildrenOfAssociativeOpcode(TreePatternNode
*N
,
3077 std::vector
<TreePatternNode
*> &Children
) {
3078 assert(N
->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3079 Record
*Operator
= N
->getOperator();
3081 // Only permit raw nodes.
3082 if (!N
->getName().empty() || !N
->getPredicateFns().empty() ||
3083 N
->getTransformFn()) {
3084 Children
.push_back(N
);
3088 if (N
->getChild(0)->isLeaf() || N
->getChild(0)->getOperator() != Operator
)
3089 Children
.push_back(N
->getChild(0));
3091 GatherChildrenOfAssociativeOpcode(N
->getChild(0), Children
);
3093 if (N
->getChild(1)->isLeaf() || N
->getChild(1)->getOperator() != Operator
)
3094 Children
.push_back(N
->getChild(1));
3096 GatherChildrenOfAssociativeOpcode(N
->getChild(1), Children
);
3099 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3100 /// the (potentially recursive) pattern by using algebraic laws.
3102 static void GenerateVariantsOf(TreePatternNode
*N
,
3103 std::vector
<TreePatternNode
*> &OutVariants
,
3104 CodeGenDAGPatterns
&CDP
,
3105 const MultipleUseVarSet
&DepVars
) {
3106 // We cannot permute leaves.
3108 OutVariants
.push_back(N
);
3112 // Look up interesting info about the node.
3113 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(N
->getOperator());
3115 // If this node is associative, re-associate.
3116 if (NodeInfo
.hasProperty(SDNPAssociative
)) {
3117 // Re-associate by pulling together all of the linked operators
3118 std::vector
<TreePatternNode
*> MaximalChildren
;
3119 GatherChildrenOfAssociativeOpcode(N
, MaximalChildren
);
3121 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3123 if (MaximalChildren
.size() == 3) {
3124 // Find the variants of all of our maximal children.
3125 std::vector
<TreePatternNode
*> AVariants
, BVariants
, CVariants
;
3126 GenerateVariantsOf(MaximalChildren
[0], AVariants
, CDP
, DepVars
);
3127 GenerateVariantsOf(MaximalChildren
[1], BVariants
, CDP
, DepVars
);
3128 GenerateVariantsOf(MaximalChildren
[2], CVariants
, CDP
, DepVars
);
3130 // There are only two ways we can permute the tree:
3131 // (A op B) op C and A op (B op C)
3132 // Within these forms, we can also permute A/B/C.
3134 // Generate legal pair permutations of A/B/C.
3135 std::vector
<TreePatternNode
*> ABVariants
;
3136 std::vector
<TreePatternNode
*> BAVariants
;
3137 std::vector
<TreePatternNode
*> ACVariants
;
3138 std::vector
<TreePatternNode
*> CAVariants
;
3139 std::vector
<TreePatternNode
*> BCVariants
;
3140 std::vector
<TreePatternNode
*> CBVariants
;
3141 CombineChildVariants(N
, AVariants
, BVariants
, ABVariants
, CDP
, DepVars
);
3142 CombineChildVariants(N
, BVariants
, AVariants
, BAVariants
, CDP
, DepVars
);
3143 CombineChildVariants(N
, AVariants
, CVariants
, ACVariants
, CDP
, DepVars
);
3144 CombineChildVariants(N
, CVariants
, AVariants
, CAVariants
, CDP
, DepVars
);
3145 CombineChildVariants(N
, BVariants
, CVariants
, BCVariants
, CDP
, DepVars
);
3146 CombineChildVariants(N
, CVariants
, BVariants
, CBVariants
, CDP
, DepVars
);
3148 // Combine those into the result: (x op x) op x
3149 CombineChildVariants(N
, ABVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
3150 CombineChildVariants(N
, BAVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
3151 CombineChildVariants(N
, ACVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
3152 CombineChildVariants(N
, CAVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
3153 CombineChildVariants(N
, BCVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
3154 CombineChildVariants(N
, CBVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
3156 // Combine those into the result: x op (x op x)
3157 CombineChildVariants(N
, CVariants
, ABVariants
, OutVariants
, CDP
, DepVars
);
3158 CombineChildVariants(N
, CVariants
, BAVariants
, OutVariants
, CDP
, DepVars
);
3159 CombineChildVariants(N
, BVariants
, ACVariants
, OutVariants
, CDP
, DepVars
);
3160 CombineChildVariants(N
, BVariants
, CAVariants
, OutVariants
, CDP
, DepVars
);
3161 CombineChildVariants(N
, AVariants
, BCVariants
, OutVariants
, CDP
, DepVars
);
3162 CombineChildVariants(N
, AVariants
, CBVariants
, OutVariants
, CDP
, DepVars
);
3167 // Compute permutations of all children.
3168 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
3169 ChildVariants
.resize(N
->getNumChildren());
3170 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
3171 GenerateVariantsOf(N
->getChild(i
), ChildVariants
[i
], CDP
, DepVars
);
3173 // Build all permutations based on how the children were formed.
3174 CombineChildVariants(N
, ChildVariants
, OutVariants
, CDP
, DepVars
);
3176 // If this node is commutative, consider the commuted order.
3177 bool isCommIntrinsic
= N
->isCommutativeIntrinsic(CDP
);
3178 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
3179 assert((N
->getNumChildren()==2 || isCommIntrinsic
) &&
3180 "Commutative but doesn't have 2 children!");
3181 // Don't count children which are actually register references.
3183 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
3184 TreePatternNode
*Child
= N
->getChild(i
);
3185 if (Child
->isLeaf())
3186 if (DefInit
*DI
= dynamic_cast<DefInit
*>(Child
->getLeafValue())) {
3187 Record
*RR
= DI
->getDef();
3188 if (RR
->isSubClassOf("Register"))
3193 // Consider the commuted order.
3194 if (isCommIntrinsic
) {
3195 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3196 // operands are the commutative operands, and there might be more operands
3199 "Commutative intrinsic should have at least 3 childrean!");
3200 std::vector
<std::vector
<TreePatternNode
*> > Variants
;
3201 Variants
.push_back(ChildVariants
[0]); // Intrinsic id.
3202 Variants
.push_back(ChildVariants
[2]);
3203 Variants
.push_back(ChildVariants
[1]);
3204 for (unsigned i
= 3; i
!= NC
; ++i
)
3205 Variants
.push_back(ChildVariants
[i
]);
3206 CombineChildVariants(N
, Variants
, OutVariants
, CDP
, DepVars
);
3208 CombineChildVariants(N
, ChildVariants
[1], ChildVariants
[0],
3209 OutVariants
, CDP
, DepVars
);
3214 // GenerateVariants - Generate variants. For example, commutative patterns can
3215 // match multiple ways. Add them to PatternsToMatch as well.
3216 void CodeGenDAGPatterns::GenerateVariants() {
3217 DEBUG(errs() << "Generating instruction variants.\n");
3219 // Loop over all of the patterns we've collected, checking to see if we can
3220 // generate variants of the instruction, through the exploitation of
3221 // identities. This permits the target to provide aggressive matching without
3222 // the .td file having to contain tons of variants of instructions.
3224 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3225 // intentionally do not reconsider these. Any variants of added patterns have
3226 // already been added.
3228 for (unsigned i
= 0, e
= PatternsToMatch
.size(); i
!= e
; ++i
) {
3229 MultipleUseVarSet DepVars
;
3230 std::vector
<TreePatternNode
*> Variants
;
3231 FindDepVars(PatternsToMatch
[i
].getSrcPattern(), DepVars
);
3232 DEBUG(errs() << "Dependent/multiply used variables: ");
3233 DEBUG(DumpDepVars(DepVars
));
3234 DEBUG(errs() << "\n");
3235 GenerateVariantsOf(PatternsToMatch
[i
].getSrcPattern(), Variants
, *this,
3238 assert(!Variants
.empty() && "Must create at least original variant!");
3239 Variants
.erase(Variants
.begin()); // Remove the original pattern.
3241 if (Variants
.empty()) // No variants for this pattern.
3244 DEBUG(errs() << "FOUND VARIANTS OF: ";
3245 PatternsToMatch
[i
].getSrcPattern()->dump();
3248 for (unsigned v
= 0, e
= Variants
.size(); v
!= e
; ++v
) {
3249 TreePatternNode
*Variant
= Variants
[v
];
3251 DEBUG(errs() << " VAR#" << v
<< ": ";
3255 // Scan to see if an instruction or explicit pattern already matches this.
3256 bool AlreadyExists
= false;
3257 for (unsigned p
= 0, e
= PatternsToMatch
.size(); p
!= e
; ++p
) {
3258 // Skip if the top level predicates do not match.
3259 if (PatternsToMatch
[i
].getPredicates() !=
3260 PatternsToMatch
[p
].getPredicates())
3262 // Check to see if this variant already exists.
3263 if (Variant
->isIsomorphicTo(PatternsToMatch
[p
].getSrcPattern(),
3265 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3266 AlreadyExists
= true;
3270 // If we already have it, ignore the variant.
3271 if (AlreadyExists
) continue;
3273 // Otherwise, add it to the list of patterns we have.
3275 push_back(PatternToMatch(PatternsToMatch
[i
].getSrcRecord(),
3276 PatternsToMatch
[i
].getPredicates(),
3277 Variant
, PatternsToMatch
[i
].getDstPattern(),
3278 PatternsToMatch
[i
].getDstRegs(),
3279 PatternsToMatch
[i
].getAddedComplexity(),
3280 Record::getNewUID()));
3283 DEBUG(errs() << "\n");