Unbreak
[llvm/systemz.git] / lib / Target / CellSPU / SPUISelDAGToDAG.cpp
blob8f704ecaa5bb7c359fd8b7a00e8ac69c3efda71d
1 //===-- SPUISelDAGToDAG.cpp - CellSPU pattern matching inst selector ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for the Cell SPU,
11 // converting from a legalized dag to a SPU-target dag.
13 //===----------------------------------------------------------------------===//
15 #include "SPU.h"
16 #include "SPUTargetMachine.h"
17 #include "SPUISelLowering.h"
18 #include "SPUHazardRecognizers.h"
19 #include "SPUFrameInfo.h"
20 #include "SPURegisterNames.h"
21 #include "SPUTargetMachine.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Constants.h"
31 #include "llvm/GlobalValue.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
41 namespace {
42 //! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
43 bool
44 isI64IntS10Immediate(ConstantSDNode *CN)
46 return isS10Constant(CN->getSExtValue());
49 //! ConstantSDNode predicate for i32 sign-extended, 10-bit immediates
50 bool
51 isI32IntS10Immediate(ConstantSDNode *CN)
53 return isS10Constant(CN->getSExtValue());
56 //! ConstantSDNode predicate for i32 unsigned 10-bit immediate values
57 bool
58 isI32IntU10Immediate(ConstantSDNode *CN)
60 return isU10Constant(CN->getSExtValue());
63 //! ConstantSDNode predicate for i16 sign-extended, 10-bit immediate values
64 bool
65 isI16IntS10Immediate(ConstantSDNode *CN)
67 return isS10Constant(CN->getSExtValue());
70 //! SDNode predicate for i16 sign-extended, 10-bit immediate values
71 bool
72 isI16IntS10Immediate(SDNode *N)
74 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
75 return (CN != 0 && isI16IntS10Immediate(CN));
78 //! ConstantSDNode predicate for i16 unsigned 10-bit immediate values
79 bool
80 isI16IntU10Immediate(ConstantSDNode *CN)
82 return isU10Constant((short) CN->getZExtValue());
85 //! SDNode predicate for i16 sign-extended, 10-bit immediate values
86 bool
87 isI16IntU10Immediate(SDNode *N)
89 return (N->getOpcode() == ISD::Constant
90 && isI16IntU10Immediate(cast<ConstantSDNode>(N)));
93 //! ConstantSDNode predicate for signed 16-bit values
94 /*!
95 \arg CN The constant SelectionDAG node holding the value
96 \arg Imm The returned 16-bit value, if returning true
98 This predicate tests the value in \a CN to see whether it can be
99 represented as a 16-bit, sign-extended quantity. Returns true if
100 this is the case.
102 bool
103 isIntS16Immediate(ConstantSDNode *CN, short &Imm)
105 MVT vt = CN->getValueType(0);
106 Imm = (short) CN->getZExtValue();
107 if (vt.getSimpleVT() >= MVT::i1 && vt.getSimpleVT() <= MVT::i16) {
108 return true;
109 } else if (vt == MVT::i32) {
110 int32_t i_val = (int32_t) CN->getZExtValue();
111 short s_val = (short) i_val;
112 return i_val == s_val;
113 } else {
114 int64_t i_val = (int64_t) CN->getZExtValue();
115 short s_val = (short) i_val;
116 return i_val == s_val;
119 return false;
122 //! SDNode predicate for signed 16-bit values.
123 bool
124 isIntS16Immediate(SDNode *N, short &Imm)
126 return (N->getOpcode() == ISD::Constant
127 && isIntS16Immediate(cast<ConstantSDNode>(N), Imm));
130 //! ConstantFPSDNode predicate for representing floats as 16-bit sign ext.
131 static bool
132 isFPS16Immediate(ConstantFPSDNode *FPN, short &Imm)
134 MVT vt = FPN->getValueType(0);
135 if (vt == MVT::f32) {
136 int val = FloatToBits(FPN->getValueAPF().convertToFloat());
137 int sval = (int) ((val << 16) >> 16);
138 Imm = (short) val;
139 return val == sval;
142 return false;
145 bool
146 isHighLow(const SDValue &Op)
148 return (Op.getOpcode() == SPUISD::IndirectAddr
149 && ((Op.getOperand(0).getOpcode() == SPUISD::Hi
150 && Op.getOperand(1).getOpcode() == SPUISD::Lo)
151 || (Op.getOperand(0).getOpcode() == SPUISD::Lo
152 && Op.getOperand(1).getOpcode() == SPUISD::Hi)));
155 //===------------------------------------------------------------------===//
156 //! MVT to "useful stuff" mapping structure:
158 struct valtype_map_s {
159 MVT VT;
160 unsigned ldresult_ins; /// LDRESULT instruction (0 = undefined)
161 bool ldresult_imm; /// LDRESULT instruction requires immediate?
162 unsigned lrinst; /// LR instruction
165 const valtype_map_s valtype_map[] = {
166 { MVT::i8, SPU::ORBIr8, true, SPU::LRr8 },
167 { MVT::i16, SPU::ORHIr16, true, SPU::LRr16 },
168 { MVT::i32, SPU::ORIr32, true, SPU::LRr32 },
169 { MVT::i64, SPU::ORr64, false, SPU::LRr64 },
170 { MVT::f32, SPU::ORf32, false, SPU::LRf32 },
171 { MVT::f64, SPU::ORf64, false, SPU::LRf64 },
172 // vector types... (sigh!)
173 { MVT::v16i8, 0, false, SPU::LRv16i8 },
174 { MVT::v8i16, 0, false, SPU::LRv8i16 },
175 { MVT::v4i32, 0, false, SPU::LRv4i32 },
176 { MVT::v2i64, 0, false, SPU::LRv2i64 },
177 { MVT::v4f32, 0, false, SPU::LRv4f32 },
178 { MVT::v2f64, 0, false, SPU::LRv2f64 }
181 const size_t n_valtype_map = sizeof(valtype_map) / sizeof(valtype_map[0]);
183 const valtype_map_s *getValueTypeMapEntry(MVT VT)
185 const valtype_map_s *retval = 0;
186 for (size_t i = 0; i < n_valtype_map; ++i) {
187 if (valtype_map[i].VT == VT) {
188 retval = valtype_map + i;
189 break;
194 #ifndef NDEBUG
195 if (retval == 0) {
196 std::string msg;
197 raw_string_ostream Msg(msg);
198 Msg << "SPUISelDAGToDAG.cpp: getValueTypeMapEntry returns NULL for "
199 << VT.getMVTString();
200 llvm_report_error(Msg.str());
202 #endif
204 return retval;
207 //! Generate the carry-generate shuffle mask.
208 SDValue getCarryGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
209 SmallVector<SDValue, 16 > ShufBytes;
211 // Create the shuffle mask for "rotating" the borrow up one register slot
212 // once the borrow is generated.
213 ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
214 ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
215 ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
216 ShufBytes.push_back(DAG.getConstant(0x80808080, MVT::i32));
218 return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
219 &ShufBytes[0], ShufBytes.size());
222 //! Generate the borrow-generate shuffle mask
223 SDValue getBorrowGenerateShufMask(SelectionDAG &DAG, DebugLoc dl) {
224 SmallVector<SDValue, 16 > ShufBytes;
226 // Create the shuffle mask for "rotating" the borrow up one register slot
227 // once the borrow is generated.
228 ShufBytes.push_back(DAG.getConstant(0x04050607, MVT::i32));
229 ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
230 ShufBytes.push_back(DAG.getConstant(0x0c0d0e0f, MVT::i32));
231 ShufBytes.push_back(DAG.getConstant(0xc0c0c0c0, MVT::i32));
233 return DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
234 &ShufBytes[0], ShufBytes.size());
237 //===------------------------------------------------------------------===//
238 /// SPUDAGToDAGISel - Cell SPU-specific code to select SPU machine
239 /// instructions for SelectionDAG operations.
241 class SPUDAGToDAGISel :
242 public SelectionDAGISel
244 SPUTargetMachine &TM;
245 SPUTargetLowering &SPUtli;
246 unsigned GlobalBaseReg;
248 public:
249 explicit SPUDAGToDAGISel(SPUTargetMachine &tm) :
250 SelectionDAGISel(tm),
251 TM(tm),
252 SPUtli(*tm.getTargetLowering())
255 virtual bool runOnFunction(Function &Fn) {
256 // Make sure we re-emit a set of the global base reg if necessary
257 GlobalBaseReg = 0;
258 SelectionDAGISel::runOnFunction(Fn);
259 return true;
262 /// getI32Imm - Return a target constant with the specified value, of type
263 /// i32.
264 inline SDValue getI32Imm(uint32_t Imm) {
265 return CurDAG->getTargetConstant(Imm, MVT::i32);
268 /// getI64Imm - Return a target constant with the specified value, of type
269 /// i64.
270 inline SDValue getI64Imm(uint64_t Imm) {
271 return CurDAG->getTargetConstant(Imm, MVT::i64);
274 /// getSmallIPtrImm - Return a target constant of pointer type.
275 inline SDValue getSmallIPtrImm(unsigned Imm) {
276 return CurDAG->getTargetConstant(Imm, SPUtli.getPointerTy());
279 SDNode *emitBuildVector(SDValue build_vec) {
280 MVT vecVT = build_vec.getValueType();
281 MVT eltVT = vecVT.getVectorElementType();
282 SDNode *bvNode = build_vec.getNode();
283 DebugLoc dl = bvNode->getDebugLoc();
285 // Check to see if this vector can be represented as a CellSPU immediate
286 // constant by invoking all of the instruction selection predicates:
287 if (((vecVT == MVT::v8i16) &&
288 (SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i16).getNode() != 0)) ||
289 ((vecVT == MVT::v4i32) &&
290 ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
291 (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
292 (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i32).getNode() != 0) ||
293 (SPU::get_v4i32_imm(bvNode, *CurDAG).getNode() != 0))) ||
294 ((vecVT == MVT::v2i64) &&
295 ((SPU::get_vec_i16imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
296 (SPU::get_ILHUvec_imm(bvNode, *CurDAG, MVT::i64).getNode() != 0) ||
297 (SPU::get_vec_u18imm(bvNode, *CurDAG, MVT::i64).getNode() != 0))))
298 return Select(build_vec);
300 // No, need to emit a constant pool spill:
301 std::vector<Constant*> CV;
303 for (size_t i = 0; i < build_vec.getNumOperands(); ++i) {
304 ConstantSDNode *V = dyn_cast<ConstantSDNode > (build_vec.getOperand(i));
305 CV.push_back(const_cast<ConstantInt *> (V->getConstantIntValue()));
308 Constant *CP = ConstantVector::get(CV);
309 SDValue CPIdx = CurDAG->getConstantPool(CP, SPUtli.getPointerTy());
310 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
311 SDValue CGPoolOffset =
312 SPU::LowerConstantPool(CPIdx, *CurDAG,
313 SPUtli.getSPUTargetMachine());
314 return SelectCode(CurDAG->getLoad(build_vec.getValueType(), dl,
315 CurDAG->getEntryNode(), CGPoolOffset,
316 PseudoSourceValue::getConstantPool(), 0,
317 false, Alignment));
320 /// Select - Convert the specified operand from a target-independent to a
321 /// target-specific node if it hasn't already been changed.
322 SDNode *Select(SDValue Op);
324 //! Emit the instruction sequence for i64 shl
325 SDNode *SelectSHLi64(SDValue &Op, MVT OpVT);
327 //! Emit the instruction sequence for i64 srl
328 SDNode *SelectSRLi64(SDValue &Op, MVT OpVT);
330 //! Emit the instruction sequence for i64 sra
331 SDNode *SelectSRAi64(SDValue &Op, MVT OpVT);
333 //! Emit the necessary sequence for loading i64 constants:
334 SDNode *SelectI64Constant(SDValue &Op, MVT OpVT, DebugLoc dl);
336 //! Alternate instruction emit sequence for loading i64 constants
337 SDNode *SelectI64Constant(uint64_t i64const, MVT OpVT, DebugLoc dl);
339 //! Returns true if the address N is an A-form (local store) address
340 bool SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
341 SDValue &Index);
343 //! D-form address predicate
344 bool SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
345 SDValue &Index);
347 /// Alternate D-form address using i7 offset predicate
348 bool SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
349 SDValue &Base);
351 /// D-form address selection workhorse
352 bool DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Disp,
353 SDValue &Base, int minOffset, int maxOffset);
355 //! Address predicate if N can be expressed as an indexed [r+r] operation.
356 bool SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
357 SDValue &Index);
359 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
360 /// inline asm expressions.
361 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
362 char ConstraintCode,
363 std::vector<SDValue> &OutOps) {
364 SDValue Op0, Op1;
365 switch (ConstraintCode) {
366 default: return true;
367 case 'm': // memory
368 if (!SelectDFormAddr(Op, Op, Op0, Op1)
369 && !SelectAFormAddr(Op, Op, Op0, Op1))
370 SelectXFormAddr(Op, Op, Op0, Op1);
371 break;
372 case 'o': // offsetable
373 if (!SelectDFormAddr(Op, Op, Op0, Op1)
374 && !SelectAFormAddr(Op, Op, Op0, Op1)) {
375 Op0 = Op;
376 Op1 = getSmallIPtrImm(0);
378 break;
379 case 'v': // not offsetable
380 #if 1
381 llvm_unreachable("InlineAsmMemoryOperand 'v' constraint not handled.");
382 #else
383 SelectAddrIdxOnly(Op, Op, Op0, Op1);
384 #endif
385 break;
388 OutOps.push_back(Op0);
389 OutOps.push_back(Op1);
390 return false;
393 /// InstructionSelect - This callback is invoked by
394 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
395 virtual void InstructionSelect();
397 virtual const char *getPassName() const {
398 return "Cell SPU DAG->DAG Pattern Instruction Selection";
401 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
402 /// this target when scheduling the DAG.
403 virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() {
404 const TargetInstrInfo *II = TM.getInstrInfo();
405 assert(II && "No InstrInfo?");
406 return new SPUHazardRecognizer(*II);
409 // Include the pieces autogenerated from the target description.
410 #include "SPUGenDAGISel.inc"
414 /// InstructionSelect - This callback is invoked by
415 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
416 void
417 SPUDAGToDAGISel::InstructionSelect()
419 DEBUG(BB->dump());
421 // Select target instructions for the DAG.
422 SelectRoot(*CurDAG);
423 CurDAG->RemoveDeadNodes();
427 \arg Op The ISD instruction operand
428 \arg N The address to be tested
429 \arg Base The base address
430 \arg Index The base address index
432 bool
433 SPUDAGToDAGISel::SelectAFormAddr(SDValue Op, SDValue N, SDValue &Base,
434 SDValue &Index) {
435 // These match the addr256k operand type:
436 MVT OffsVT = MVT::i16;
437 SDValue Zero = CurDAG->getTargetConstant(0, OffsVT);
439 switch (N.getOpcode()) {
440 case ISD::Constant:
441 case ISD::ConstantPool:
442 case ISD::GlobalAddress:
443 llvm_report_error("SPU SelectAFormAddr: Constant/Pool/Global not lowered.");
444 /*NOTREACHED*/
446 case ISD::TargetConstant:
447 case ISD::TargetGlobalAddress:
448 case ISD::TargetJumpTable:
449 llvm_report_error("SPUSelectAFormAddr: Target Constant/Pool/Global "
450 "not wrapped as A-form address.");
451 /*NOTREACHED*/
453 case SPUISD::AFormAddr:
454 // Just load from memory if there's only a single use of the location,
455 // otherwise, this will get handled below with D-form offset addresses
456 if (N.hasOneUse()) {
457 SDValue Op0 = N.getOperand(0);
458 switch (Op0.getOpcode()) {
459 case ISD::TargetConstantPool:
460 case ISD::TargetJumpTable:
461 Base = Op0;
462 Index = Zero;
463 return true;
465 case ISD::TargetGlobalAddress: {
466 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op0);
467 GlobalValue *GV = GSDN->getGlobal();
468 if (GV->getAlignment() == 16) {
469 Base = Op0;
470 Index = Zero;
471 return true;
473 break;
477 break;
479 return false;
482 bool
483 SPUDAGToDAGISel::SelectDForm2Addr(SDValue Op, SDValue N, SDValue &Disp,
484 SDValue &Base) {
485 const int minDForm2Offset = -(1 << 7);
486 const int maxDForm2Offset = (1 << 7) - 1;
487 return DFormAddressPredicate(Op, N, Disp, Base, minDForm2Offset,
488 maxDForm2Offset);
492 \arg Op The ISD instruction (ignored)
493 \arg N The address to be tested
494 \arg Base Base address register/pointer
495 \arg Index Base address index
497 Examine the input address by a base register plus a signed 10-bit
498 displacement, [r+I10] (D-form address).
500 \return true if \a N is a D-form address with \a Base and \a Index set
501 to non-empty SDValue instances.
503 bool
504 SPUDAGToDAGISel::SelectDFormAddr(SDValue Op, SDValue N, SDValue &Base,
505 SDValue &Index) {
506 return DFormAddressPredicate(Op, N, Base, Index,
507 SPUFrameInfo::minFrameOffset(),
508 SPUFrameInfo::maxFrameOffset());
511 bool
512 SPUDAGToDAGISel::DFormAddressPredicate(SDValue Op, SDValue N, SDValue &Base,
513 SDValue &Index, int minOffset,
514 int maxOffset) {
515 unsigned Opc = N.getOpcode();
516 MVT PtrTy = SPUtli.getPointerTy();
518 if (Opc == ISD::FrameIndex) {
519 // Stack frame index must be less than 512 (divided by 16):
520 FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N);
521 int FI = int(FIN->getIndex());
522 DEBUG(cerr << "SelectDFormAddr: ISD::FrameIndex = "
523 << FI << "\n");
524 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
525 Base = CurDAG->getTargetConstant(0, PtrTy);
526 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
527 return true;
529 } else if (Opc == ISD::ADD) {
530 // Generated by getelementptr
531 const SDValue Op0 = N.getOperand(0);
532 const SDValue Op1 = N.getOperand(1);
534 if ((Op0.getOpcode() == SPUISD::Hi && Op1.getOpcode() == SPUISD::Lo)
535 || (Op1.getOpcode() == SPUISD::Hi && Op0.getOpcode() == SPUISD::Lo)) {
536 Base = CurDAG->getTargetConstant(0, PtrTy);
537 Index = N;
538 return true;
539 } else if (Op1.getOpcode() == ISD::Constant
540 || Op1.getOpcode() == ISD::TargetConstant) {
541 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op1);
542 int32_t offset = int32_t(CN->getSExtValue());
544 if (Op0.getOpcode() == ISD::FrameIndex) {
545 FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op0);
546 int FI = int(FIN->getIndex());
547 DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
548 << " frame index = " << FI << "\n");
550 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
551 Base = CurDAG->getTargetConstant(offset, PtrTy);
552 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
553 return true;
555 } else if (offset > minOffset && offset < maxOffset) {
556 Base = CurDAG->getTargetConstant(offset, PtrTy);
557 Index = Op0;
558 return true;
560 } else if (Op0.getOpcode() == ISD::Constant
561 || Op0.getOpcode() == ISD::TargetConstant) {
562 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0);
563 int32_t offset = int32_t(CN->getSExtValue());
565 if (Op1.getOpcode() == ISD::FrameIndex) {
566 FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op1);
567 int FI = int(FIN->getIndex());
568 DEBUG(cerr << "SelectDFormAddr: ISD::ADD offset = " << offset
569 << " frame index = " << FI << "\n");
571 if (SPUFrameInfo::FItoStackOffset(FI) < maxOffset) {
572 Base = CurDAG->getTargetConstant(offset, PtrTy);
573 Index = CurDAG->getTargetFrameIndex(FI, PtrTy);
574 return true;
576 } else if (offset > minOffset && offset < maxOffset) {
577 Base = CurDAG->getTargetConstant(offset, PtrTy);
578 Index = Op1;
579 return true;
582 } else if (Opc == SPUISD::IndirectAddr) {
583 // Indirect with constant offset -> D-Form address
584 const SDValue Op0 = N.getOperand(0);
585 const SDValue Op1 = N.getOperand(1);
587 if (Op0.getOpcode() == SPUISD::Hi
588 && Op1.getOpcode() == SPUISD::Lo) {
589 // (SPUindirect (SPUhi <arg>, 0), (SPUlo <arg>, 0))
590 Base = CurDAG->getTargetConstant(0, PtrTy);
591 Index = N;
592 return true;
593 } else if (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1)) {
594 int32_t offset = 0;
595 SDValue idxOp;
597 if (isa<ConstantSDNode>(Op1)) {
598 ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
599 offset = int32_t(CN->getSExtValue());
600 idxOp = Op0;
601 } else if (isa<ConstantSDNode>(Op0)) {
602 ConstantSDNode *CN = cast<ConstantSDNode>(Op0);
603 offset = int32_t(CN->getSExtValue());
604 idxOp = Op1;
607 if (offset >= minOffset && offset <= maxOffset) {
608 Base = CurDAG->getTargetConstant(offset, PtrTy);
609 Index = idxOp;
610 return true;
613 } else if (Opc == SPUISD::AFormAddr) {
614 Base = CurDAG->getTargetConstant(0, N.getValueType());
615 Index = N;
616 return true;
617 } else if (Opc == SPUISD::LDRESULT) {
618 Base = CurDAG->getTargetConstant(0, N.getValueType());
619 Index = N;
620 return true;
621 } else if (Opc == ISD::Register || Opc == ISD::CopyFromReg) {
622 unsigned OpOpc = Op.getOpcode();
624 if (OpOpc == ISD::STORE || OpOpc == ISD::LOAD) {
625 // Direct load/store without getelementptr
626 SDValue Addr, Offs;
628 // Get the register from CopyFromReg
629 if (Opc == ISD::CopyFromReg)
630 Addr = N.getOperand(1);
631 else
632 Addr = N; // Register
634 Offs = ((OpOpc == ISD::STORE) ? Op.getOperand(3) : Op.getOperand(2));
636 if (Offs.getOpcode() == ISD::Constant || Offs.getOpcode() == ISD::UNDEF) {
637 if (Offs.getOpcode() == ISD::UNDEF)
638 Offs = CurDAG->getTargetConstant(0, Offs.getValueType());
640 Base = Offs;
641 Index = Addr;
642 return true;
644 } else {
645 /* If otherwise unadorned, default to D-form address with 0 offset: */
646 if (Opc == ISD::CopyFromReg) {
647 Index = N.getOperand(1);
648 } else {
649 Index = N;
652 Base = CurDAG->getTargetConstant(0, Index.getValueType());
653 return true;
657 return false;
661 \arg Op The ISD instruction operand
662 \arg N The address operand
663 \arg Base The base pointer operand
664 \arg Index The offset/index operand
666 If the address \a N can be expressed as an A-form or D-form address, returns
667 false. Otherwise, creates two operands, Base and Index that will become the
668 (r)(r) X-form address.
670 bool
671 SPUDAGToDAGISel::SelectXFormAddr(SDValue Op, SDValue N, SDValue &Base,
672 SDValue &Index) {
673 if (!SelectAFormAddr(Op, N, Base, Index)
674 && !SelectDFormAddr(Op, N, Base, Index)) {
675 // If the address is neither A-form or D-form, punt and use an X-form
676 // address:
677 Base = N.getOperand(1);
678 Index = N.getOperand(0);
679 return true;
682 return false;
685 //! Convert the operand from a target-independent to a target-specific node
688 SDNode *
689 SPUDAGToDAGISel::Select(SDValue Op) {
690 SDNode *N = Op.getNode();
691 unsigned Opc = N->getOpcode();
692 int n_ops = -1;
693 unsigned NewOpc;
694 MVT OpVT = Op.getValueType();
695 SDValue Ops[8];
696 DebugLoc dl = N->getDebugLoc();
698 if (N->isMachineOpcode()) {
699 return NULL; // Already selected.
702 if (Opc == ISD::FrameIndex) {
703 int FI = cast<FrameIndexSDNode>(N)->getIndex();
704 SDValue TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
705 SDValue Imm0 = CurDAG->getTargetConstant(0, Op.getValueType());
707 if (FI < 128) {
708 NewOpc = SPU::AIr32;
709 Ops[0] = TFI;
710 Ops[1] = Imm0;
711 n_ops = 2;
712 } else {
713 NewOpc = SPU::Ar32;
714 Ops[0] = CurDAG->getRegister(SPU::R1, Op.getValueType());
715 Ops[1] = SDValue(CurDAG->getTargetNode(SPU::ILAr32, dl, Op.getValueType(),
716 TFI, Imm0), 0);
717 n_ops = 2;
719 } else if (Opc == ISD::Constant && OpVT == MVT::i64) {
720 // Catch the i64 constants that end up here. Note: The backend doesn't
721 // attempt to legalize the constant (it's useless because DAGCombiner
722 // will insert 64-bit constants and we can't stop it).
723 return SelectI64Constant(Op, OpVT, Op.getDebugLoc());
724 } else if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND)
725 && OpVT == MVT::i64) {
726 SDValue Op0 = Op.getOperand(0);
727 MVT Op0VT = Op0.getValueType();
728 MVT Op0VecVT = MVT::getVectorVT(Op0VT, (128 / Op0VT.getSizeInBits()));
729 MVT OpVecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
730 SDValue shufMask;
732 switch (Op0VT.getSimpleVT()) {
733 default:
734 llvm_report_error("CellSPU Select: Unhandled zero/any extend MVT");
735 /*NOTREACHED*/
736 case MVT::i32:
737 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
738 CurDAG->getConstant(0x80808080, MVT::i32),
739 CurDAG->getConstant(0x00010203, MVT::i32),
740 CurDAG->getConstant(0x80808080, MVT::i32),
741 CurDAG->getConstant(0x08090a0b, MVT::i32));
742 break;
744 case MVT::i16:
745 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
746 CurDAG->getConstant(0x80808080, MVT::i32),
747 CurDAG->getConstant(0x80800203, MVT::i32),
748 CurDAG->getConstant(0x80808080, MVT::i32),
749 CurDAG->getConstant(0x80800a0b, MVT::i32));
750 break;
752 case MVT::i8:
753 shufMask = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
754 CurDAG->getConstant(0x80808080, MVT::i32),
755 CurDAG->getConstant(0x80808003, MVT::i32),
756 CurDAG->getConstant(0x80808080, MVT::i32),
757 CurDAG->getConstant(0x8080800b, MVT::i32));
758 break;
761 SDNode *shufMaskLoad = emitBuildVector(shufMask);
762 SDNode *PromoteScalar =
763 SelectCode(CurDAG->getNode(SPUISD::PREFSLOT2VEC, dl, Op0VecVT, Op0));
765 SDValue zextShuffle =
766 CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
767 SDValue(PromoteScalar, 0),
768 SDValue(PromoteScalar, 0),
769 SDValue(shufMaskLoad, 0));
771 // N.B.: BIT_CONVERT replaces and updates the zextShuffle node, so we
772 // re-use it in the VEC2PREFSLOT selection without needing to explicitly
773 // call SelectCode (it's already done for us.)
774 SelectCode(CurDAG->getNode(ISD::BIT_CONVERT, dl, OpVecVT, zextShuffle));
775 return SelectCode(CurDAG->getNode(SPUISD::VEC2PREFSLOT, dl, OpVT,
776 zextShuffle));
777 } else if (Opc == ISD::ADD && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
778 SDNode *CGLoad =
779 emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
781 return SelectCode(CurDAG->getNode(SPUISD::ADD64_MARKER, dl, OpVT,
782 Op.getOperand(0), Op.getOperand(1),
783 SDValue(CGLoad, 0)));
784 } else if (Opc == ISD::SUB && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
785 SDNode *CGLoad =
786 emitBuildVector(getBorrowGenerateShufMask(*CurDAG, dl));
788 return SelectCode(CurDAG->getNode(SPUISD::SUB64_MARKER, dl, OpVT,
789 Op.getOperand(0), Op.getOperand(1),
790 SDValue(CGLoad, 0)));
791 } else if (Opc == ISD::MUL && (OpVT == MVT::i64 || OpVT == MVT::v2i64)) {
792 SDNode *CGLoad =
793 emitBuildVector(getCarryGenerateShufMask(*CurDAG, dl));
795 return SelectCode(CurDAG->getNode(SPUISD::MUL64_MARKER, dl, OpVT,
796 Op.getOperand(0), Op.getOperand(1),
797 SDValue(CGLoad, 0)));
798 } else if (Opc == ISD::TRUNCATE) {
799 SDValue Op0 = Op.getOperand(0);
800 if ((Op0.getOpcode() == ISD::SRA || Op0.getOpcode() == ISD::SRL)
801 && OpVT == MVT::i32
802 && Op0.getValueType() == MVT::i64) {
803 // Catch (truncate:i32 ([sra|srl]:i64 arg, c), where c >= 32
805 // Take advantage of the fact that the upper 32 bits are in the
806 // i32 preferred slot and avoid shuffle gymnastics:
807 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
808 if (CN != 0) {
809 unsigned shift_amt = unsigned(CN->getZExtValue());
811 if (shift_amt >= 32) {
812 SDNode *hi32 =
813 CurDAG->getTargetNode(SPU::ORr32_r64, dl, OpVT,
814 Op0.getOperand(0));
816 shift_amt -= 32;
817 if (shift_amt > 0) {
818 // Take care of the additional shift, if present:
819 SDValue shift = CurDAG->getTargetConstant(shift_amt, MVT::i32);
820 unsigned Opc = SPU::ROTMAIr32_i32;
822 if (Op0.getOpcode() == ISD::SRL)
823 Opc = SPU::ROTMr32;
825 hi32 = CurDAG->getTargetNode(Opc, dl, OpVT, SDValue(hi32, 0),
826 shift);
829 return hi32;
833 } else if (Opc == ISD::SHL) {
834 if (OpVT == MVT::i64) {
835 return SelectSHLi64(Op, OpVT);
837 } else if (Opc == ISD::SRL) {
838 if (OpVT == MVT::i64) {
839 return SelectSRLi64(Op, OpVT);
841 } else if (Opc == ISD::SRA) {
842 if (OpVT == MVT::i64) {
843 return SelectSRAi64(Op, OpVT);
845 } else if (Opc == ISD::FNEG
846 && (OpVT == MVT::f64 || OpVT == MVT::v2f64)) {
847 DebugLoc dl = Op.getDebugLoc();
848 // Check if the pattern is a special form of DFNMS:
849 // (fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))
850 SDValue Op0 = Op.getOperand(0);
851 if (Op0.getOpcode() == ISD::FSUB) {
852 SDValue Op00 = Op0.getOperand(0);
853 if (Op00.getOpcode() == ISD::FMUL) {
854 unsigned Opc = SPU::DFNMSf64;
855 if (OpVT == MVT::v2f64)
856 Opc = SPU::DFNMSv2f64;
858 return CurDAG->getTargetNode(Opc, dl, OpVT,
859 Op00.getOperand(0),
860 Op00.getOperand(1),
861 Op0.getOperand(1));
865 SDValue negConst = CurDAG->getConstant(0x8000000000000000ULL, MVT::i64);
866 SDNode *signMask = 0;
867 unsigned Opc = SPU::XORfneg64;
869 if (OpVT == MVT::f64) {
870 signMask = SelectI64Constant(negConst, MVT::i64, dl);
871 } else if (OpVT == MVT::v2f64) {
872 Opc = SPU::XORfnegvec;
873 signMask = emitBuildVector(CurDAG->getNode(ISD::BUILD_VECTOR, dl,
874 MVT::v2i64,
875 negConst, negConst));
878 return CurDAG->getTargetNode(Opc, dl, OpVT,
879 Op.getOperand(0), SDValue(signMask, 0));
880 } else if (Opc == ISD::FABS) {
881 if (OpVT == MVT::f64) {
882 SDNode *signMask = SelectI64Constant(0x7fffffffffffffffULL, MVT::i64, dl);
883 return CurDAG->getTargetNode(SPU::ANDfabs64, dl, OpVT,
884 Op.getOperand(0), SDValue(signMask, 0));
885 } else if (OpVT == MVT::v2f64) {
886 SDValue absConst = CurDAG->getConstant(0x7fffffffffffffffULL, MVT::i64);
887 SDValue absVec = CurDAG->getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64,
888 absConst, absConst);
889 SDNode *signMask = emitBuildVector(absVec);
890 return CurDAG->getTargetNode(SPU::ANDfabsvec, dl, OpVT,
891 Op.getOperand(0), SDValue(signMask, 0));
893 } else if (Opc == SPUISD::LDRESULT) {
894 // Custom select instructions for LDRESULT
895 MVT VT = N->getValueType(0);
896 SDValue Arg = N->getOperand(0);
897 SDValue Chain = N->getOperand(1);
898 SDNode *Result;
899 const valtype_map_s *vtm = getValueTypeMapEntry(VT);
901 if (vtm->ldresult_ins == 0) {
902 std::string msg;
903 raw_string_ostream Msg(msg);
904 Msg << "LDRESULT for unsupported type: "
905 << VT.getMVTString();
906 llvm_report_error(Msg.str());
909 Opc = vtm->ldresult_ins;
910 if (vtm->ldresult_imm) {
911 SDValue Zero = CurDAG->getTargetConstant(0, VT);
913 Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Zero, Chain);
914 } else {
915 Result = CurDAG->getTargetNode(Opc, dl, VT, MVT::Other, Arg, Arg, Chain);
918 return Result;
919 } else if (Opc == SPUISD::IndirectAddr) {
920 // Look at the operands: SelectCode() will catch the cases that aren't
921 // specifically handled here.
923 // SPUInstrInfo catches the following patterns:
924 // (SPUindirect (SPUhi ...), (SPUlo ...))
925 // (SPUindirect $sp, imm)
926 MVT VT = Op.getValueType();
927 SDValue Op0 = N->getOperand(0);
928 SDValue Op1 = N->getOperand(1);
929 RegisterSDNode *RN;
931 if ((Op0.getOpcode() != SPUISD::Hi && Op1.getOpcode() != SPUISD::Lo)
932 || (Op0.getOpcode() == ISD::Register
933 && ((RN = dyn_cast<RegisterSDNode>(Op0.getNode())) != 0
934 && RN->getReg() != SPU::R1))) {
935 NewOpc = SPU::Ar32;
936 if (Op1.getOpcode() == ISD::Constant) {
937 ConstantSDNode *CN = cast<ConstantSDNode>(Op1);
938 Op1 = CurDAG->getTargetConstant(CN->getSExtValue(), VT);
939 NewOpc = (isI32IntS10Immediate(CN) ? SPU::AIr32 : SPU::Ar32);
941 Ops[0] = Op0;
942 Ops[1] = Op1;
943 n_ops = 2;
947 if (n_ops > 0) {
948 if (N->hasOneUse())
949 return CurDAG->SelectNodeTo(N, NewOpc, OpVT, Ops, n_ops);
950 else
951 return CurDAG->getTargetNode(NewOpc, dl, OpVT, Ops, n_ops);
952 } else
953 return SelectCode(Op);
957 * Emit the instruction sequence for i64 left shifts. The basic algorithm
958 * is to fill the bottom two word slots with zeros so that zeros are shifted
959 * in as the entire quadword is shifted left.
961 * \note This code could also be used to implement v2i64 shl.
963 * @param Op The shl operand
964 * @param OpVT Op's machine value value type (doesn't need to be passed, but
965 * makes life easier.)
966 * @return The SDNode with the entire instruction sequence
968 SDNode *
969 SPUDAGToDAGISel::SelectSHLi64(SDValue &Op, MVT OpVT) {
970 SDValue Op0 = Op.getOperand(0);
971 MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
972 SDValue ShiftAmt = Op.getOperand(1);
973 MVT ShiftAmtVT = ShiftAmt.getValueType();
974 SDNode *VecOp0, *SelMask, *ZeroFill, *Shift = 0;
975 SDValue SelMaskVal;
976 DebugLoc dl = Op.getDebugLoc();
978 VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
979 SelMaskVal = CurDAG->getTargetConstant(0xff00ULL, MVT::i16);
980 SelMask = CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT, SelMaskVal);
981 ZeroFill = CurDAG->getTargetNode(SPU::ILv2i64, dl, VecVT,
982 CurDAG->getTargetConstant(0, OpVT));
983 VecOp0 = CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
984 SDValue(ZeroFill, 0),
985 SDValue(VecOp0, 0),
986 SDValue(SelMask, 0));
988 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
989 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
990 unsigned bits = unsigned(CN->getZExtValue()) & 7;
992 if (bytes > 0) {
993 Shift =
994 CurDAG->getTargetNode(SPU::SHLQBYIv2i64, dl, VecVT,
995 SDValue(VecOp0, 0),
996 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
999 if (bits > 0) {
1000 Shift =
1001 CurDAG->getTargetNode(SPU::SHLQBIIv2i64, dl, VecVT,
1002 SDValue((Shift != 0 ? Shift : VecOp0), 0),
1003 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1005 } else {
1006 SDNode *Bytes =
1007 CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
1008 ShiftAmt,
1009 CurDAG->getTargetConstant(3, ShiftAmtVT));
1010 SDNode *Bits =
1011 CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
1012 ShiftAmt,
1013 CurDAG->getTargetConstant(7, ShiftAmtVT));
1014 Shift =
1015 CurDAG->getTargetNode(SPU::SHLQBYv2i64, dl, VecVT,
1016 SDValue(VecOp0, 0), SDValue(Bytes, 0));
1017 Shift =
1018 CurDAG->getTargetNode(SPU::SHLQBIv2i64, dl, VecVT,
1019 SDValue(Shift, 0), SDValue(Bits, 0));
1022 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
1026 * Emit the instruction sequence for i64 logical right shifts.
1028 * @param Op The shl operand
1029 * @param OpVT Op's machine value value type (doesn't need to be passed, but
1030 * makes life easier.)
1031 * @return The SDNode with the entire instruction sequence
1033 SDNode *
1034 SPUDAGToDAGISel::SelectSRLi64(SDValue &Op, MVT OpVT) {
1035 SDValue Op0 = Op.getOperand(0);
1036 MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
1037 SDValue ShiftAmt = Op.getOperand(1);
1038 MVT ShiftAmtVT = ShiftAmt.getValueType();
1039 SDNode *VecOp0, *Shift = 0;
1040 DebugLoc dl = Op.getDebugLoc();
1042 VecOp0 = CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op0);
1044 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
1045 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
1046 unsigned bits = unsigned(CN->getZExtValue()) & 7;
1048 if (bytes > 0) {
1049 Shift =
1050 CurDAG->getTargetNode(SPU::ROTQMBYIv2i64, dl, VecVT,
1051 SDValue(VecOp0, 0),
1052 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
1055 if (bits > 0) {
1056 Shift =
1057 CurDAG->getTargetNode(SPU::ROTQMBIIv2i64, dl, VecVT,
1058 SDValue((Shift != 0 ? Shift : VecOp0), 0),
1059 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1061 } else {
1062 SDNode *Bytes =
1063 CurDAG->getTargetNode(SPU::ROTMIr32, dl, ShiftAmtVT,
1064 ShiftAmt,
1065 CurDAG->getTargetConstant(3, ShiftAmtVT));
1066 SDNode *Bits =
1067 CurDAG->getTargetNode(SPU::ANDIr32, dl, ShiftAmtVT,
1068 ShiftAmt,
1069 CurDAG->getTargetConstant(7, ShiftAmtVT));
1071 // Ensure that the shift amounts are negated!
1072 Bytes = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
1073 SDValue(Bytes, 0),
1074 CurDAG->getTargetConstant(0, ShiftAmtVT));
1076 Bits = CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
1077 SDValue(Bits, 0),
1078 CurDAG->getTargetConstant(0, ShiftAmtVT));
1080 Shift =
1081 CurDAG->getTargetNode(SPU::ROTQMBYv2i64, dl, VecVT,
1082 SDValue(VecOp0, 0), SDValue(Bytes, 0));
1083 Shift =
1084 CurDAG->getTargetNode(SPU::ROTQMBIv2i64, dl, VecVT,
1085 SDValue(Shift, 0), SDValue(Bits, 0));
1088 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
1092 * Emit the instruction sequence for i64 arithmetic right shifts.
1094 * @param Op The shl operand
1095 * @param OpVT Op's machine value value type (doesn't need to be passed, but
1096 * makes life easier.)
1097 * @return The SDNode with the entire instruction sequence
1099 SDNode *
1100 SPUDAGToDAGISel::SelectSRAi64(SDValue &Op, MVT OpVT) {
1101 // Promote Op0 to vector
1102 MVT VecVT = MVT::getVectorVT(OpVT, (128 / OpVT.getSizeInBits()));
1103 SDValue ShiftAmt = Op.getOperand(1);
1104 MVT ShiftAmtVT = ShiftAmt.getValueType();
1105 DebugLoc dl = Op.getDebugLoc();
1107 SDNode *VecOp0 =
1108 CurDAG->getTargetNode(SPU::ORv2i64_i64, dl, VecVT, Op.getOperand(0));
1110 SDValue SignRotAmt = CurDAG->getTargetConstant(31, ShiftAmtVT);
1111 SDNode *SignRot =
1112 CurDAG->getTargetNode(SPU::ROTMAIv2i64_i32, dl, MVT::v2i64,
1113 SDValue(VecOp0, 0), SignRotAmt);
1114 SDNode *UpperHalfSign =
1115 CurDAG->getTargetNode(SPU::ORi32_v4i32, dl, MVT::i32, SDValue(SignRot, 0));
1117 SDNode *UpperHalfSignMask =
1118 CurDAG->getTargetNode(SPU::FSM64r32, dl, VecVT, SDValue(UpperHalfSign, 0));
1119 SDNode *UpperLowerMask =
1120 CurDAG->getTargetNode(SPU::FSMBIv2i64, dl, VecVT,
1121 CurDAG->getTargetConstant(0xff00ULL, MVT::i16));
1122 SDNode *UpperLowerSelect =
1123 CurDAG->getTargetNode(SPU::SELBv2i64, dl, VecVT,
1124 SDValue(UpperHalfSignMask, 0),
1125 SDValue(VecOp0, 0),
1126 SDValue(UpperLowerMask, 0));
1128 SDNode *Shift = 0;
1130 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(ShiftAmt)) {
1131 unsigned bytes = unsigned(CN->getZExtValue()) >> 3;
1132 unsigned bits = unsigned(CN->getZExtValue()) & 7;
1134 if (bytes > 0) {
1135 bytes = 31 - bytes;
1136 Shift =
1137 CurDAG->getTargetNode(SPU::ROTQBYIv2i64, dl, VecVT,
1138 SDValue(UpperLowerSelect, 0),
1139 CurDAG->getTargetConstant(bytes, ShiftAmtVT));
1142 if (bits > 0) {
1143 bits = 8 - bits;
1144 Shift =
1145 CurDAG->getTargetNode(SPU::ROTQBIIv2i64, dl, VecVT,
1146 SDValue((Shift != 0 ? Shift : UpperLowerSelect), 0),
1147 CurDAG->getTargetConstant(bits, ShiftAmtVT));
1149 } else {
1150 SDNode *NegShift =
1151 CurDAG->getTargetNode(SPU::SFIr32, dl, ShiftAmtVT,
1152 ShiftAmt, CurDAG->getTargetConstant(0, ShiftAmtVT));
1154 Shift =
1155 CurDAG->getTargetNode(SPU::ROTQBYBIv2i64_r32, dl, VecVT,
1156 SDValue(UpperLowerSelect, 0), SDValue(NegShift, 0));
1157 Shift =
1158 CurDAG->getTargetNode(SPU::ROTQBIv2i64, dl, VecVT,
1159 SDValue(Shift, 0), SDValue(NegShift, 0));
1162 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT, SDValue(Shift, 0));
1166 Do the necessary magic necessary to load a i64 constant
1168 SDNode *SPUDAGToDAGISel::SelectI64Constant(SDValue& Op, MVT OpVT,
1169 DebugLoc dl) {
1170 ConstantSDNode *CN = cast<ConstantSDNode>(Op.getNode());
1171 return SelectI64Constant(CN->getZExtValue(), OpVT, dl);
1174 SDNode *SPUDAGToDAGISel::SelectI64Constant(uint64_t Value64, MVT OpVT,
1175 DebugLoc dl) {
1176 MVT OpVecVT = MVT::getVectorVT(OpVT, 2);
1177 SDValue i64vec =
1178 SPU::LowerV2I64Splat(OpVecVT, *CurDAG, Value64, dl);
1180 // Here's where it gets interesting, because we have to parse out the
1181 // subtree handed back in i64vec:
1183 if (i64vec.getOpcode() == ISD::BIT_CONVERT) {
1184 // The degenerate case where the upper and lower bits in the splat are
1185 // identical:
1186 SDValue Op0 = i64vec.getOperand(0);
1188 ReplaceUses(i64vec, Op0);
1189 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
1190 SDValue(emitBuildVector(Op0), 0));
1191 } else if (i64vec.getOpcode() == SPUISD::SHUFB) {
1192 SDValue lhs = i64vec.getOperand(0);
1193 SDValue rhs = i64vec.getOperand(1);
1194 SDValue shufmask = i64vec.getOperand(2);
1196 if (lhs.getOpcode() == ISD::BIT_CONVERT) {
1197 ReplaceUses(lhs, lhs.getOperand(0));
1198 lhs = lhs.getOperand(0);
1201 SDNode *lhsNode = (lhs.getNode()->isMachineOpcode()
1202 ? lhs.getNode()
1203 : emitBuildVector(lhs));
1205 if (rhs.getOpcode() == ISD::BIT_CONVERT) {
1206 ReplaceUses(rhs, rhs.getOperand(0));
1207 rhs = rhs.getOperand(0);
1210 SDNode *rhsNode = (rhs.getNode()->isMachineOpcode()
1211 ? rhs.getNode()
1212 : emitBuildVector(rhs));
1214 if (shufmask.getOpcode() == ISD::BIT_CONVERT) {
1215 ReplaceUses(shufmask, shufmask.getOperand(0));
1216 shufmask = shufmask.getOperand(0);
1219 SDNode *shufMaskNode = (shufmask.getNode()->isMachineOpcode()
1220 ? shufmask.getNode()
1221 : emitBuildVector(shufmask));
1223 SDNode *shufNode =
1224 Select(CurDAG->getNode(SPUISD::SHUFB, dl, OpVecVT,
1225 SDValue(lhsNode, 0), SDValue(rhsNode, 0),
1226 SDValue(shufMaskNode, 0)));
1228 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
1229 SDValue(shufNode, 0));
1230 } else if (i64vec.getOpcode() == ISD::BUILD_VECTOR) {
1231 return CurDAG->getTargetNode(SPU::ORi64_v2i64, dl, OpVT,
1232 SDValue(emitBuildVector(i64vec), 0));
1233 } else {
1234 llvm_report_error("SPUDAGToDAGISel::SelectI64Constant: Unhandled i64vec"
1235 "condition");
1239 /// createSPUISelDag - This pass converts a legalized DAG into a
1240 /// SPU-specific DAG, ready for instruction scheduling.
1242 FunctionPass *llvm::createSPUISelDag(SPUTargetMachine &TM) {
1243 return new SPUDAGToDAGISel(TM);