Merge branch 'master' into systemz
[llvm/systemz.git] / lib / Support / APInt.cpp
bloba034fd1e797076b69a121fcfcee5a77f33861b52
1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "apint"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <cmath>
24 #include <limits>
25 #include <cstring>
26 #include <cstdlib>
27 using namespace llvm;
29 /// A utility function for allocating memory, checking for allocation failures,
30 /// and ensuring the contents are zeroed.
31 inline static uint64_t* getClearedMemory(unsigned numWords) {
32 uint64_t * result = new uint64_t[numWords];
33 assert(result && "APInt memory allocation fails!");
34 memset(result, 0, numWords * sizeof(uint64_t));
35 return result;
38 /// A utility function for allocating memory and checking for allocation
39 /// failure. The content is not zeroed.
40 inline static uint64_t* getMemory(unsigned numWords) {
41 uint64_t * result = new uint64_t[numWords];
42 assert(result && "APInt memory allocation fails!");
43 return result;
46 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
47 pVal = getClearedMemory(getNumWords());
48 pVal[0] = val;
49 if (isSigned && int64_t(val) < 0)
50 for (unsigned i = 1; i < getNumWords(); ++i)
51 pVal[i] = -1ULL;
54 void APInt::initSlowCase(const APInt& that) {
55 pVal = getMemory(getNumWords());
56 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
60 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
61 : BitWidth(numBits), VAL(0) {
62 assert(BitWidth && "bitwidth too small");
63 assert(bigVal && "Null pointer detected!");
64 if (isSingleWord())
65 VAL = bigVal[0];
66 else {
67 // Get memory, cleared to 0
68 pVal = getClearedMemory(getNumWords());
69 // Calculate the number of words to copy
70 unsigned words = std::min<unsigned>(numWords, getNumWords());
71 // Copy the words from bigVal to pVal
72 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
74 // Make sure unused high bits are cleared
75 clearUnusedBits();
78 APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
79 uint8_t radix)
80 : BitWidth(numbits), VAL(0) {
81 assert(BitWidth && "bitwidth too small");
82 fromString(numbits, StrStart, slen, radix);
85 APInt& APInt::AssignSlowCase(const APInt& RHS) {
86 // Don't do anything for X = X
87 if (this == &RHS)
88 return *this;
90 if (BitWidth == RHS.getBitWidth()) {
91 // assume same bit-width single-word case is already handled
92 assert(!isSingleWord());
93 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
94 return *this;
97 if (isSingleWord()) {
98 // assume case where both are single words is already handled
99 assert(!RHS.isSingleWord());
100 VAL = 0;
101 pVal = getMemory(RHS.getNumWords());
102 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
103 } else if (getNumWords() == RHS.getNumWords())
104 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
105 else if (RHS.isSingleWord()) {
106 delete [] pVal;
107 VAL = RHS.VAL;
108 } else {
109 delete [] pVal;
110 pVal = getMemory(RHS.getNumWords());
111 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
113 BitWidth = RHS.BitWidth;
114 return clearUnusedBits();
117 APInt& APInt::operator=(uint64_t RHS) {
118 if (isSingleWord())
119 VAL = RHS;
120 else {
121 pVal[0] = RHS;
122 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
124 return clearUnusedBits();
127 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
128 void APInt::Profile(FoldingSetNodeID& ID) const {
129 ID.AddInteger(BitWidth);
131 if (isSingleWord()) {
132 ID.AddInteger(VAL);
133 return;
136 unsigned NumWords = getNumWords();
137 for (unsigned i = 0; i < NumWords; ++i)
138 ID.AddInteger(pVal[i]);
141 /// add_1 - This function adds a single "digit" integer, y, to the multiple
142 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
143 /// 1 is returned if there is a carry out, otherwise 0 is returned.
144 /// @returns the carry of the addition.
145 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
146 for (unsigned i = 0; i < len; ++i) {
147 dest[i] = y + x[i];
148 if (dest[i] < y)
149 y = 1; // Carry one to next digit.
150 else {
151 y = 0; // No need to carry so exit early
152 break;
155 return y;
158 /// @brief Prefix increment operator. Increments the APInt by one.
159 APInt& APInt::operator++() {
160 if (isSingleWord())
161 ++VAL;
162 else
163 add_1(pVal, pVal, getNumWords(), 1);
164 return clearUnusedBits();
167 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
168 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
169 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
170 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
171 /// In other words, if y > x then this function returns 1, otherwise 0.
172 /// @returns the borrow out of the subtraction
173 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
174 for (unsigned i = 0; i < len; ++i) {
175 uint64_t X = x[i];
176 x[i] -= y;
177 if (y > X)
178 y = 1; // We have to "borrow 1" from next "digit"
179 else {
180 y = 0; // No need to borrow
181 break; // Remaining digits are unchanged so exit early
184 return bool(y);
187 /// @brief Prefix decrement operator. Decrements the APInt by one.
188 APInt& APInt::operator--() {
189 if (isSingleWord())
190 --VAL;
191 else
192 sub_1(pVal, getNumWords(), 1);
193 return clearUnusedBits();
196 /// add - This function adds the integer array x to the integer array Y and
197 /// places the result in dest.
198 /// @returns the carry out from the addition
199 /// @brief General addition of 64-bit integer arrays
200 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
201 unsigned len) {
202 bool carry = false;
203 for (unsigned i = 0; i< len; ++i) {
204 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
205 dest[i] = x[i] + y[i] + carry;
206 carry = dest[i] < limit || (carry && dest[i] == limit);
208 return carry;
211 /// Adds the RHS APint to this APInt.
212 /// @returns this, after addition of RHS.
213 /// @brief Addition assignment operator.
214 APInt& APInt::operator+=(const APInt& RHS) {
215 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
216 if (isSingleWord())
217 VAL += RHS.VAL;
218 else {
219 add(pVal, pVal, RHS.pVal, getNumWords());
221 return clearUnusedBits();
224 /// Subtracts the integer array y from the integer array x
225 /// @returns returns the borrow out.
226 /// @brief Generalized subtraction of 64-bit integer arrays.
227 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
228 unsigned len) {
229 bool borrow = false;
230 for (unsigned i = 0; i < len; ++i) {
231 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
232 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
233 dest[i] = x_tmp - y[i];
235 return borrow;
238 /// Subtracts the RHS APInt from this APInt
239 /// @returns this, after subtraction
240 /// @brief Subtraction assignment operator.
241 APInt& APInt::operator-=(const APInt& RHS) {
242 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
243 if (isSingleWord())
244 VAL -= RHS.VAL;
245 else
246 sub(pVal, pVal, RHS.pVal, getNumWords());
247 return clearUnusedBits();
250 /// Multiplies an integer array, x by a a uint64_t integer and places the result
251 /// into dest.
252 /// @returns the carry out of the multiplication.
253 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
254 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
255 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
256 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
257 uint64_t carry = 0;
259 // For each digit of x.
260 for (unsigned i = 0; i < len; ++i) {
261 // Split x into high and low words
262 uint64_t lx = x[i] & 0xffffffffULL;
263 uint64_t hx = x[i] >> 32;
264 // hasCarry - A flag to indicate if there is a carry to the next digit.
265 // hasCarry == 0, no carry
266 // hasCarry == 1, has carry
267 // hasCarry == 2, no carry and the calculation result == 0.
268 uint8_t hasCarry = 0;
269 dest[i] = carry + lx * ly;
270 // Determine if the add above introduces carry.
271 hasCarry = (dest[i] < carry) ? 1 : 0;
272 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
273 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
274 // (2^32 - 1) + 2^32 = 2^64.
275 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
277 carry += (lx * hy) & 0xffffffffULL;
278 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
279 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
280 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
282 return carry;
285 /// Multiplies integer array x by integer array y and stores the result into
286 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
287 /// @brief Generalized multiplicate of integer arrays.
288 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
289 unsigned ylen) {
290 dest[xlen] = mul_1(dest, x, xlen, y[0]);
291 for (unsigned i = 1; i < ylen; ++i) {
292 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
293 uint64_t carry = 0, lx = 0, hx = 0;
294 for (unsigned j = 0; j < xlen; ++j) {
295 lx = x[j] & 0xffffffffULL;
296 hx = x[j] >> 32;
297 // hasCarry - A flag to indicate if has carry.
298 // hasCarry == 0, no carry
299 // hasCarry == 1, has carry
300 // hasCarry == 2, no carry and the calculation result == 0.
301 uint8_t hasCarry = 0;
302 uint64_t resul = carry + lx * ly;
303 hasCarry = (resul < carry) ? 1 : 0;
304 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
305 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
307 carry += (lx * hy) & 0xffffffffULL;
308 resul = (carry << 32) | (resul & 0xffffffffULL);
309 dest[i+j] += resul;
310 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
311 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
312 ((lx * hy) >> 32) + hx * hy;
314 dest[i+xlen] = carry;
318 APInt& APInt::operator*=(const APInt& RHS) {
319 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
320 if (isSingleWord()) {
321 VAL *= RHS.VAL;
322 clearUnusedBits();
323 return *this;
326 // Get some bit facts about LHS and check for zero
327 unsigned lhsBits = getActiveBits();
328 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
329 if (!lhsWords)
330 // 0 * X ===> 0
331 return *this;
333 // Get some bit facts about RHS and check for zero
334 unsigned rhsBits = RHS.getActiveBits();
335 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
336 if (!rhsWords) {
337 // X * 0 ===> 0
338 clear();
339 return *this;
342 // Allocate space for the result
343 unsigned destWords = rhsWords + lhsWords;
344 uint64_t *dest = getMemory(destWords);
346 // Perform the long multiply
347 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
349 // Copy result back into *this
350 clear();
351 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
352 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
354 // delete dest array and return
355 delete[] dest;
356 return *this;
359 APInt& APInt::operator&=(const APInt& RHS) {
360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
361 if (isSingleWord()) {
362 VAL &= RHS.VAL;
363 return *this;
365 unsigned numWords = getNumWords();
366 for (unsigned i = 0; i < numWords; ++i)
367 pVal[i] &= RHS.pVal[i];
368 return *this;
371 APInt& APInt::operator|=(const APInt& RHS) {
372 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
373 if (isSingleWord()) {
374 VAL |= RHS.VAL;
375 return *this;
377 unsigned numWords = getNumWords();
378 for (unsigned i = 0; i < numWords; ++i)
379 pVal[i] |= RHS.pVal[i];
380 return *this;
383 APInt& APInt::operator^=(const APInt& RHS) {
384 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
385 if (isSingleWord()) {
386 VAL ^= RHS.VAL;
387 this->clearUnusedBits();
388 return *this;
390 unsigned numWords = getNumWords();
391 for (unsigned i = 0; i < numWords; ++i)
392 pVal[i] ^= RHS.pVal[i];
393 return clearUnusedBits();
396 APInt APInt::AndSlowCase(const APInt& RHS) const {
397 unsigned numWords = getNumWords();
398 uint64_t* val = getMemory(numWords);
399 for (unsigned i = 0; i < numWords; ++i)
400 val[i] = pVal[i] & RHS.pVal[i];
401 return APInt(val, getBitWidth());
404 APInt APInt::OrSlowCase(const APInt& RHS) const {
405 unsigned numWords = getNumWords();
406 uint64_t *val = getMemory(numWords);
407 for (unsigned i = 0; i < numWords; ++i)
408 val[i] = pVal[i] | RHS.pVal[i];
409 return APInt(val, getBitWidth());
412 APInt APInt::XorSlowCase(const APInt& RHS) const {
413 unsigned numWords = getNumWords();
414 uint64_t *val = getMemory(numWords);
415 for (unsigned i = 0; i < numWords; ++i)
416 val[i] = pVal[i] ^ RHS.pVal[i];
418 // 0^0==1 so clear the high bits in case they got set.
419 return APInt(val, getBitWidth()).clearUnusedBits();
422 bool APInt::operator !() const {
423 if (isSingleWord())
424 return !VAL;
426 for (unsigned i = 0; i < getNumWords(); ++i)
427 if (pVal[i])
428 return false;
429 return true;
432 APInt APInt::operator*(const APInt& RHS) const {
433 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
434 if (isSingleWord())
435 return APInt(BitWidth, VAL * RHS.VAL);
436 APInt Result(*this);
437 Result *= RHS;
438 return Result.clearUnusedBits();
441 APInt APInt::operator+(const APInt& RHS) const {
442 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
443 if (isSingleWord())
444 return APInt(BitWidth, VAL + RHS.VAL);
445 APInt Result(BitWidth, 0);
446 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
447 return Result.clearUnusedBits();
450 APInt APInt::operator-(const APInt& RHS) const {
451 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
452 if (isSingleWord())
453 return APInt(BitWidth, VAL - RHS.VAL);
454 APInt Result(BitWidth, 0);
455 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
456 return Result.clearUnusedBits();
459 bool APInt::operator[](unsigned bitPosition) const {
460 return (maskBit(bitPosition) &
461 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
464 bool APInt::EqualSlowCase(const APInt& RHS) const {
465 // Get some facts about the number of bits used in the two operands.
466 unsigned n1 = getActiveBits();
467 unsigned n2 = RHS.getActiveBits();
469 // If the number of bits isn't the same, they aren't equal
470 if (n1 != n2)
471 return false;
473 // If the number of bits fits in a word, we only need to compare the low word.
474 if (n1 <= APINT_BITS_PER_WORD)
475 return pVal[0] == RHS.pVal[0];
477 // Otherwise, compare everything
478 for (int i = whichWord(n1 - 1); i >= 0; --i)
479 if (pVal[i] != RHS.pVal[i])
480 return false;
481 return true;
484 bool APInt::EqualSlowCase(uint64_t Val) const {
485 unsigned n = getActiveBits();
486 if (n <= APINT_BITS_PER_WORD)
487 return pVal[0] == Val;
488 else
489 return false;
492 bool APInt::ult(const APInt& RHS) const {
493 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
494 if (isSingleWord())
495 return VAL < RHS.VAL;
497 // Get active bit length of both operands
498 unsigned n1 = getActiveBits();
499 unsigned n2 = RHS.getActiveBits();
501 // If magnitude of LHS is less than RHS, return true.
502 if (n1 < n2)
503 return true;
505 // If magnitude of RHS is greather than LHS, return false.
506 if (n2 < n1)
507 return false;
509 // If they bot fit in a word, just compare the low order word
510 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
511 return pVal[0] < RHS.pVal[0];
513 // Otherwise, compare all words
514 unsigned topWord = whichWord(std::max(n1,n2)-1);
515 for (int i = topWord; i >= 0; --i) {
516 if (pVal[i] > RHS.pVal[i])
517 return false;
518 if (pVal[i] < RHS.pVal[i])
519 return true;
521 return false;
524 bool APInt::slt(const APInt& RHS) const {
525 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
526 if (isSingleWord()) {
527 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
528 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
529 return lhsSext < rhsSext;
532 APInt lhs(*this);
533 APInt rhs(RHS);
534 bool lhsNeg = isNegative();
535 bool rhsNeg = rhs.isNegative();
536 if (lhsNeg) {
537 // Sign bit is set so perform two's complement to make it positive
538 lhs.flip();
539 lhs++;
541 if (rhsNeg) {
542 // Sign bit is set so perform two's complement to make it positive
543 rhs.flip();
544 rhs++;
547 // Now we have unsigned values to compare so do the comparison if necessary
548 // based on the negativeness of the values.
549 if (lhsNeg)
550 if (rhsNeg)
551 return lhs.ugt(rhs);
552 else
553 return true;
554 else if (rhsNeg)
555 return false;
556 else
557 return lhs.ult(rhs);
560 APInt& APInt::set(unsigned bitPosition) {
561 if (isSingleWord())
562 VAL |= maskBit(bitPosition);
563 else
564 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
565 return *this;
568 /// Set the given bit to 0 whose position is given as "bitPosition".
569 /// @brief Set a given bit to 0.
570 APInt& APInt::clear(unsigned bitPosition) {
571 if (isSingleWord())
572 VAL &= ~maskBit(bitPosition);
573 else
574 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
575 return *this;
578 /// @brief Toggle every bit to its opposite value.
580 /// Toggle a given bit to its opposite value whose position is given
581 /// as "bitPosition".
582 /// @brief Toggles a given bit to its opposite value.
583 APInt& APInt::flip(unsigned bitPosition) {
584 assert(bitPosition < BitWidth && "Out of the bit-width range!");
585 if ((*this)[bitPosition]) clear(bitPosition);
586 else set(bitPosition);
587 return *this;
590 unsigned APInt::getBitsNeeded(const char* str, unsigned slen, uint8_t radix) {
591 assert(str != 0 && "Invalid value string");
592 assert(slen > 0 && "Invalid string length");
594 // Each computation below needs to know if its negative
595 unsigned isNegative = str[0] == '-';
596 if (isNegative) {
597 slen--;
598 str++;
600 // For radixes of power-of-two values, the bits required is accurately and
601 // easily computed
602 if (radix == 2)
603 return slen + isNegative;
604 if (radix == 8)
605 return slen * 3 + isNegative;
606 if (radix == 16)
607 return slen * 4 + isNegative;
609 // Otherwise it must be radix == 10, the hard case
610 assert(radix == 10 && "Invalid radix");
612 // This is grossly inefficient but accurate. We could probably do something
613 // with a computation of roughly slen*64/20 and then adjust by the value of
614 // the first few digits. But, I'm not sure how accurate that could be.
616 // Compute a sufficient number of bits that is always large enough but might
617 // be too large. This avoids the assertion in the constructor.
618 unsigned sufficient = slen*64/18;
620 // Convert to the actual binary value.
621 APInt tmp(sufficient, str, slen, radix);
623 // Compute how many bits are required.
624 return isNegative + tmp.logBase2() + 1;
627 // From http://www.burtleburtle.net, byBob Jenkins.
628 // When targeting x86, both GCC and LLVM seem to recognize this as a
629 // rotate instruction.
630 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
632 // From http://www.burtleburtle.net, by Bob Jenkins.
633 #define mix(a,b,c) \
635 a -= c; a ^= rot(c, 4); c += b; \
636 b -= a; b ^= rot(a, 6); a += c; \
637 c -= b; c ^= rot(b, 8); b += a; \
638 a -= c; a ^= rot(c,16); c += b; \
639 b -= a; b ^= rot(a,19); a += c; \
640 c -= b; c ^= rot(b, 4); b += a; \
643 // From http://www.burtleburtle.net, by Bob Jenkins.
644 #define final(a,b,c) \
646 c ^= b; c -= rot(b,14); \
647 a ^= c; a -= rot(c,11); \
648 b ^= a; b -= rot(a,25); \
649 c ^= b; c -= rot(b,16); \
650 a ^= c; a -= rot(c,4); \
651 b ^= a; b -= rot(a,14); \
652 c ^= b; c -= rot(b,24); \
655 // hashword() was adapted from http://www.burtleburtle.net, by Bob
656 // Jenkins. k is a pointer to an array of uint32_t values; length is
657 // the length of the key, in 32-bit chunks. This version only handles
658 // keys that are a multiple of 32 bits in size.
659 static inline uint32_t hashword(const uint64_t *k64, size_t length)
661 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
662 uint32_t a,b,c;
664 /* Set up the internal state */
665 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
667 /*------------------------------------------------- handle most of the key */
668 while (length > 3)
670 a += k[0];
671 b += k[1];
672 c += k[2];
673 mix(a,b,c);
674 length -= 3;
675 k += 3;
678 /*------------------------------------------- handle the last 3 uint32_t's */
679 switch (length) { /* all the case statements fall through */
680 case 3 : c+=k[2];
681 case 2 : b+=k[1];
682 case 1 : a+=k[0];
683 final(a,b,c);
684 case 0: /* case 0: nothing left to add */
685 break;
687 /*------------------------------------------------------ report the result */
688 return c;
691 // hashword8() was adapted from http://www.burtleburtle.net, by Bob
692 // Jenkins. This computes a 32-bit hash from one 64-bit word. When
693 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this
694 // function into about 35 instructions when inlined.
695 static inline uint32_t hashword8(const uint64_t k64)
697 uint32_t a,b,c;
698 a = b = c = 0xdeadbeef + 4;
699 b += k64 >> 32;
700 a += k64 & 0xffffffff;
701 final(a,b,c);
702 return c;
704 #undef final
705 #undef mix
706 #undef rot
708 uint64_t APInt::getHashValue() const {
709 uint64_t hash;
710 if (isSingleWord())
711 hash = hashword8(VAL);
712 else
713 hash = hashword(pVal, getNumWords()*2);
714 return hash;
717 /// HiBits - This function returns the high "numBits" bits of this APInt.
718 APInt APInt::getHiBits(unsigned numBits) const {
719 return APIntOps::lshr(*this, BitWidth - numBits);
722 /// LoBits - This function returns the low "numBits" bits of this APInt.
723 APInt APInt::getLoBits(unsigned numBits) const {
724 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
725 BitWidth - numBits);
728 bool APInt::isPowerOf2() const {
729 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
732 unsigned APInt::countLeadingZerosSlowCase() const {
733 unsigned Count = 0;
734 for (unsigned i = getNumWords(); i > 0u; --i) {
735 if (pVal[i-1] == 0)
736 Count += APINT_BITS_PER_WORD;
737 else {
738 Count += CountLeadingZeros_64(pVal[i-1]);
739 break;
742 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
743 if (remainder)
744 Count -= APINT_BITS_PER_WORD - remainder;
745 return std::min(Count, BitWidth);
748 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
749 unsigned Count = 0;
750 if (skip)
751 V <<= skip;
752 while (V && (V & (1ULL << 63))) {
753 Count++;
754 V <<= 1;
756 return Count;
759 unsigned APInt::countLeadingOnes() const {
760 if (isSingleWord())
761 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
763 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
764 unsigned shift;
765 if (!highWordBits) {
766 highWordBits = APINT_BITS_PER_WORD;
767 shift = 0;
768 } else {
769 shift = APINT_BITS_PER_WORD - highWordBits;
771 int i = getNumWords() - 1;
772 unsigned Count = countLeadingOnes_64(pVal[i], shift);
773 if (Count == highWordBits) {
774 for (i--; i >= 0; --i) {
775 if (pVal[i] == -1ULL)
776 Count += APINT_BITS_PER_WORD;
777 else {
778 Count += countLeadingOnes_64(pVal[i], 0);
779 break;
783 return Count;
786 unsigned APInt::countTrailingZeros() const {
787 if (isSingleWord())
788 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
789 unsigned Count = 0;
790 unsigned i = 0;
791 for (; i < getNumWords() && pVal[i] == 0; ++i)
792 Count += APINT_BITS_PER_WORD;
793 if (i < getNumWords())
794 Count += CountTrailingZeros_64(pVal[i]);
795 return std::min(Count, BitWidth);
798 unsigned APInt::countTrailingOnesSlowCase() const {
799 unsigned Count = 0;
800 unsigned i = 0;
801 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
802 Count += APINT_BITS_PER_WORD;
803 if (i < getNumWords())
804 Count += CountTrailingOnes_64(pVal[i]);
805 return std::min(Count, BitWidth);
808 unsigned APInt::countPopulationSlowCase() const {
809 unsigned Count = 0;
810 for (unsigned i = 0; i < getNumWords(); ++i)
811 Count += CountPopulation_64(pVal[i]);
812 return Count;
815 APInt APInt::byteSwap() const {
816 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
817 if (BitWidth == 16)
818 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
819 else if (BitWidth == 32)
820 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
821 else if (BitWidth == 48) {
822 unsigned Tmp1 = unsigned(VAL >> 16);
823 Tmp1 = ByteSwap_32(Tmp1);
824 uint16_t Tmp2 = uint16_t(VAL);
825 Tmp2 = ByteSwap_16(Tmp2);
826 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
827 } else if (BitWidth == 64)
828 return APInt(BitWidth, ByteSwap_64(VAL));
829 else {
830 APInt Result(BitWidth, 0);
831 char *pByte = (char*)Result.pVal;
832 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
833 char Tmp = pByte[i];
834 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
835 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
837 return Result;
841 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
842 const APInt& API2) {
843 APInt A = API1, B = API2;
844 while (!!B) {
845 APInt T = B;
846 B = APIntOps::urem(A, B);
847 A = T;
849 return A;
852 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
853 union {
854 double D;
855 uint64_t I;
856 } T;
857 T.D = Double;
859 // Get the sign bit from the highest order bit
860 bool isNeg = T.I >> 63;
862 // Get the 11-bit exponent and adjust for the 1023 bit bias
863 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
865 // If the exponent is negative, the value is < 0 so just return 0.
866 if (exp < 0)
867 return APInt(width, 0u);
869 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
870 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
872 // If the exponent doesn't shift all bits out of the mantissa
873 if (exp < 52)
874 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
875 APInt(width, mantissa >> (52 - exp));
877 // If the client didn't provide enough bits for us to shift the mantissa into
878 // then the result is undefined, just return 0
879 if (width <= exp - 52)
880 return APInt(width, 0);
882 // Otherwise, we have to shift the mantissa bits up to the right location
883 APInt Tmp(width, mantissa);
884 Tmp = Tmp.shl((unsigned)exp - 52);
885 return isNeg ? -Tmp : Tmp;
888 /// RoundToDouble - This function convert this APInt to a double.
889 /// The layout for double is as following (IEEE Standard 754):
890 /// --------------------------------------
891 /// | Sign Exponent Fraction Bias |
892 /// |-------------------------------------- |
893 /// | 1[63] 11[62-52] 52[51-00] 1023 |
894 /// --------------------------------------
895 double APInt::roundToDouble(bool isSigned) const {
897 // Handle the simple case where the value is contained in one uint64_t.
898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
899 if (isSigned) {
900 int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
901 return double(sext);
902 } else
903 return double(VAL);
906 // Determine if the value is negative.
907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
909 // Construct the absolute value if we're negative.
910 APInt Tmp(isNeg ? -(*this) : (*this));
912 // Figure out how many bits we're using.
913 unsigned n = Tmp.getActiveBits();
915 // The exponent (without bias normalization) is just the number of bits
916 // we are using. Note that the sign bit is gone since we constructed the
917 // absolute value.
918 uint64_t exp = n;
920 // Return infinity for exponent overflow
921 if (exp > 1023) {
922 if (!isSigned || !isNeg)
923 return std::numeric_limits<double>::infinity();
924 else
925 return -std::numeric_limits<double>::infinity();
927 exp += 1023; // Increment for 1023 bias
929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
930 // extract the high 52 bits from the correct words in pVal.
931 uint64_t mantissa;
932 unsigned hiWord = whichWord(n-1);
933 if (hiWord == 0) {
934 mantissa = Tmp.pVal[0];
935 if (n > 52)
936 mantissa >>= n - 52; // shift down, we want the top 52 bits.
937 } else {
938 assert(hiWord > 0 && "huh?");
939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
941 mantissa = hibits | lobits;
944 // The leading bit of mantissa is implicit, so get rid of it.
945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
946 union {
947 double D;
948 uint64_t I;
949 } T;
950 T.I = sign | (exp << 52) | mantissa;
951 return T.D;
954 // Truncate to new width.
955 APInt &APInt::trunc(unsigned width) {
956 assert(width < BitWidth && "Invalid APInt Truncate request");
957 assert(width && "Can't truncate to 0 bits");
958 unsigned wordsBefore = getNumWords();
959 BitWidth = width;
960 unsigned wordsAfter = getNumWords();
961 if (wordsBefore != wordsAfter) {
962 if (wordsAfter == 1) {
963 uint64_t *tmp = pVal;
964 VAL = pVal[0];
965 delete [] tmp;
966 } else {
967 uint64_t *newVal = getClearedMemory(wordsAfter);
968 for (unsigned i = 0; i < wordsAfter; ++i)
969 newVal[i] = pVal[i];
970 delete [] pVal;
971 pVal = newVal;
974 return clearUnusedBits();
977 // Sign extend to a new width.
978 APInt &APInt::sext(unsigned width) {
979 assert(width > BitWidth && "Invalid APInt SignExtend request");
980 // If the sign bit isn't set, this is the same as zext.
981 if (!isNegative()) {
982 zext(width);
983 return *this;
986 // The sign bit is set. First, get some facts
987 unsigned wordsBefore = getNumWords();
988 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
989 BitWidth = width;
990 unsigned wordsAfter = getNumWords();
992 // Mask the high order word appropriately
993 if (wordsBefore == wordsAfter) {
994 unsigned newWordBits = width % APINT_BITS_PER_WORD;
995 // The extension is contained to the wordsBefore-1th word.
996 uint64_t mask = ~0ULL;
997 if (newWordBits)
998 mask >>= APINT_BITS_PER_WORD - newWordBits;
999 mask <<= wordBits;
1000 if (wordsBefore == 1)
1001 VAL |= mask;
1002 else
1003 pVal[wordsBefore-1] |= mask;
1004 return clearUnusedBits();
1007 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1008 uint64_t *newVal = getMemory(wordsAfter);
1009 if (wordsBefore == 1)
1010 newVal[0] = VAL | mask;
1011 else {
1012 for (unsigned i = 0; i < wordsBefore; ++i)
1013 newVal[i] = pVal[i];
1014 newVal[wordsBefore-1] |= mask;
1016 for (unsigned i = wordsBefore; i < wordsAfter; i++)
1017 newVal[i] = -1ULL;
1018 if (wordsBefore != 1)
1019 delete [] pVal;
1020 pVal = newVal;
1021 return clearUnusedBits();
1024 // Zero extend to a new width.
1025 APInt &APInt::zext(unsigned width) {
1026 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
1027 unsigned wordsBefore = getNumWords();
1028 BitWidth = width;
1029 unsigned wordsAfter = getNumWords();
1030 if (wordsBefore != wordsAfter) {
1031 uint64_t *newVal = getClearedMemory(wordsAfter);
1032 if (wordsBefore == 1)
1033 newVal[0] = VAL;
1034 else
1035 for (unsigned i = 0; i < wordsBefore; ++i)
1036 newVal[i] = pVal[i];
1037 if (wordsBefore != 1)
1038 delete [] pVal;
1039 pVal = newVal;
1041 return *this;
1044 APInt &APInt::zextOrTrunc(unsigned width) {
1045 if (BitWidth < width)
1046 return zext(width);
1047 if (BitWidth > width)
1048 return trunc(width);
1049 return *this;
1052 APInt &APInt::sextOrTrunc(unsigned width) {
1053 if (BitWidth < width)
1054 return sext(width);
1055 if (BitWidth > width)
1056 return trunc(width);
1057 return *this;
1060 /// Arithmetic right-shift this APInt by shiftAmt.
1061 /// @brief Arithmetic right-shift function.
1062 APInt APInt::ashr(const APInt &shiftAmt) const {
1063 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1066 /// Arithmetic right-shift this APInt by shiftAmt.
1067 /// @brief Arithmetic right-shift function.
1068 APInt APInt::ashr(unsigned shiftAmt) const {
1069 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1070 // Handle a degenerate case
1071 if (shiftAmt == 0)
1072 return *this;
1074 // Handle single word shifts with built-in ashr
1075 if (isSingleWord()) {
1076 if (shiftAmt == BitWidth)
1077 return APInt(BitWidth, 0); // undefined
1078 else {
1079 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1080 return APInt(BitWidth,
1081 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1085 // If all the bits were shifted out, the result is, technically, undefined.
1086 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1087 // issues in the algorithm below.
1088 if (shiftAmt == BitWidth) {
1089 if (isNegative())
1090 return APInt(BitWidth, -1ULL, true);
1091 else
1092 return APInt(BitWidth, 0);
1095 // Create some space for the result.
1096 uint64_t * val = new uint64_t[getNumWords()];
1098 // Compute some values needed by the following shift algorithms
1099 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1100 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1101 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1102 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1103 if (bitsInWord == 0)
1104 bitsInWord = APINT_BITS_PER_WORD;
1106 // If we are shifting whole words, just move whole words
1107 if (wordShift == 0) {
1108 // Move the words containing significant bits
1109 for (unsigned i = 0; i <= breakWord; ++i)
1110 val[i] = pVal[i+offset]; // move whole word
1112 // Adjust the top significant word for sign bit fill, if negative
1113 if (isNegative())
1114 if (bitsInWord < APINT_BITS_PER_WORD)
1115 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1116 } else {
1117 // Shift the low order words
1118 for (unsigned i = 0; i < breakWord; ++i) {
1119 // This combines the shifted corresponding word with the low bits from
1120 // the next word (shifted into this word's high bits).
1121 val[i] = (pVal[i+offset] >> wordShift) |
1122 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1125 // Shift the break word. In this case there are no bits from the next word
1126 // to include in this word.
1127 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1129 // Deal with sign extenstion in the break word, and possibly the word before
1130 // it.
1131 if (isNegative()) {
1132 if (wordShift > bitsInWord) {
1133 if (breakWord > 0)
1134 val[breakWord-1] |=
1135 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1136 val[breakWord] |= ~0ULL;
1137 } else
1138 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1142 // Remaining words are 0 or -1, just assign them.
1143 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1144 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1145 val[i] = fillValue;
1146 return APInt(val, BitWidth).clearUnusedBits();
1149 /// Logical right-shift this APInt by shiftAmt.
1150 /// @brief Logical right-shift function.
1151 APInt APInt::lshr(const APInt &shiftAmt) const {
1152 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1155 /// Logical right-shift this APInt by shiftAmt.
1156 /// @brief Logical right-shift function.
1157 APInt APInt::lshr(unsigned shiftAmt) const {
1158 if (isSingleWord()) {
1159 if (shiftAmt == BitWidth)
1160 return APInt(BitWidth, 0);
1161 else
1162 return APInt(BitWidth, this->VAL >> shiftAmt);
1165 // If all the bits were shifted out, the result is 0. This avoids issues
1166 // with shifting by the size of the integer type, which produces undefined
1167 // results. We define these "undefined results" to always be 0.
1168 if (shiftAmt == BitWidth)
1169 return APInt(BitWidth, 0);
1171 // If none of the bits are shifted out, the result is *this. This avoids
1172 // issues with shifting by the size of the integer type, which produces
1173 // undefined results in the code below. This is also an optimization.
1174 if (shiftAmt == 0)
1175 return *this;
1177 // Create some space for the result.
1178 uint64_t * val = new uint64_t[getNumWords()];
1180 // If we are shifting less than a word, compute the shift with a simple carry
1181 if (shiftAmt < APINT_BITS_PER_WORD) {
1182 uint64_t carry = 0;
1183 for (int i = getNumWords()-1; i >= 0; --i) {
1184 val[i] = (pVal[i] >> shiftAmt) | carry;
1185 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1187 return APInt(val, BitWidth).clearUnusedBits();
1190 // Compute some values needed by the remaining shift algorithms
1191 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1192 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1194 // If we are shifting whole words, just move whole words
1195 if (wordShift == 0) {
1196 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1197 val[i] = pVal[i+offset];
1198 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1199 val[i] = 0;
1200 return APInt(val,BitWidth).clearUnusedBits();
1203 // Shift the low order words
1204 unsigned breakWord = getNumWords() - offset -1;
1205 for (unsigned i = 0; i < breakWord; ++i)
1206 val[i] = (pVal[i+offset] >> wordShift) |
1207 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1208 // Shift the break word.
1209 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1211 // Remaining words are 0
1212 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1213 val[i] = 0;
1214 return APInt(val, BitWidth).clearUnusedBits();
1217 /// Left-shift this APInt by shiftAmt.
1218 /// @brief Left-shift function.
1219 APInt APInt::shl(const APInt &shiftAmt) const {
1220 // It's undefined behavior in C to shift by BitWidth or greater.
1221 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1224 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1225 // If all the bits were shifted out, the result is 0. This avoids issues
1226 // with shifting by the size of the integer type, which produces undefined
1227 // results. We define these "undefined results" to always be 0.
1228 if (shiftAmt == BitWidth)
1229 return APInt(BitWidth, 0);
1231 // If none of the bits are shifted out, the result is *this. This avoids a
1232 // lshr by the words size in the loop below which can produce incorrect
1233 // results. It also avoids the expensive computation below for a common case.
1234 if (shiftAmt == 0)
1235 return *this;
1237 // Create some space for the result.
1238 uint64_t * val = new uint64_t[getNumWords()];
1240 // If we are shifting less than a word, do it the easy way
1241 if (shiftAmt < APINT_BITS_PER_WORD) {
1242 uint64_t carry = 0;
1243 for (unsigned i = 0; i < getNumWords(); i++) {
1244 val[i] = pVal[i] << shiftAmt | carry;
1245 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1247 return APInt(val, BitWidth).clearUnusedBits();
1250 // Compute some values needed by the remaining shift algorithms
1251 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1252 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1254 // If we are shifting whole words, just move whole words
1255 if (wordShift == 0) {
1256 for (unsigned i = 0; i < offset; i++)
1257 val[i] = 0;
1258 for (unsigned i = offset; i < getNumWords(); i++)
1259 val[i] = pVal[i-offset];
1260 return APInt(val,BitWidth).clearUnusedBits();
1263 // Copy whole words from this to Result.
1264 unsigned i = getNumWords() - 1;
1265 for (; i > offset; --i)
1266 val[i] = pVal[i-offset] << wordShift |
1267 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1268 val[offset] = pVal[0] << wordShift;
1269 for (i = 0; i < offset; ++i)
1270 val[i] = 0;
1271 return APInt(val, BitWidth).clearUnusedBits();
1274 APInt APInt::rotl(const APInt &rotateAmt) const {
1275 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1278 APInt APInt::rotl(unsigned rotateAmt) const {
1279 if (rotateAmt == 0)
1280 return *this;
1281 // Don't get too fancy, just use existing shift/or facilities
1282 APInt hi(*this);
1283 APInt lo(*this);
1284 hi.shl(rotateAmt);
1285 lo.lshr(BitWidth - rotateAmt);
1286 return hi | lo;
1289 APInt APInt::rotr(const APInt &rotateAmt) const {
1290 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1293 APInt APInt::rotr(unsigned rotateAmt) const {
1294 if (rotateAmt == 0)
1295 return *this;
1296 // Don't get too fancy, just use existing shift/or facilities
1297 APInt hi(*this);
1298 APInt lo(*this);
1299 lo.lshr(rotateAmt);
1300 hi.shl(BitWidth - rotateAmt);
1301 return hi | lo;
1304 // Square Root - this method computes and returns the square root of "this".
1305 // Three mechanisms are used for computation. For small values (<= 5 bits),
1306 // a table lookup is done. This gets some performance for common cases. For
1307 // values using less than 52 bits, the value is converted to double and then
1308 // the libc sqrt function is called. The result is rounded and then converted
1309 // back to a uint64_t which is then used to construct the result. Finally,
1310 // the Babylonian method for computing square roots is used.
1311 APInt APInt::sqrt() const {
1313 // Determine the magnitude of the value.
1314 unsigned magnitude = getActiveBits();
1316 // Use a fast table for some small values. This also gets rid of some
1317 // rounding errors in libc sqrt for small values.
1318 if (magnitude <= 5) {
1319 static const uint8_t results[32] = {
1320 /* 0 */ 0,
1321 /* 1- 2 */ 1, 1,
1322 /* 3- 6 */ 2, 2, 2, 2,
1323 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1324 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1325 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1326 /* 31 */ 6
1328 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1331 // If the magnitude of the value fits in less than 52 bits (the precision of
1332 // an IEEE double precision floating point value), then we can use the
1333 // libc sqrt function which will probably use a hardware sqrt computation.
1334 // This should be faster than the algorithm below.
1335 if (magnitude < 52) {
1336 #ifdef _MSC_VER
1337 // Amazingly, VC++ doesn't have round().
1338 return APInt(BitWidth,
1339 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1340 #else
1341 return APInt(BitWidth,
1342 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1343 #endif
1346 // Okay, all the short cuts are exhausted. We must compute it. The following
1347 // is a classical Babylonian method for computing the square root. This code
1348 // was adapted to APINt from a wikipedia article on such computations.
1349 // See http://www.wikipedia.org/ and go to the page named
1350 // Calculate_an_integer_square_root.
1351 unsigned nbits = BitWidth, i = 4;
1352 APInt testy(BitWidth, 16);
1353 APInt x_old(BitWidth, 1);
1354 APInt x_new(BitWidth, 0);
1355 APInt two(BitWidth, 2);
1357 // Select a good starting value using binary logarithms.
1358 for (;; i += 2, testy = testy.shl(2))
1359 if (i >= nbits || this->ule(testy)) {
1360 x_old = x_old.shl(i / 2);
1361 break;
1364 // Use the Babylonian method to arrive at the integer square root:
1365 for (;;) {
1366 x_new = (this->udiv(x_old) + x_old).udiv(two);
1367 if (x_old.ule(x_new))
1368 break;
1369 x_old = x_new;
1372 // Make sure we return the closest approximation
1373 // NOTE: The rounding calculation below is correct. It will produce an
1374 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1375 // determined to be a rounding issue with pari/gp as it begins to use a
1376 // floating point representation after 192 bits. There are no discrepancies
1377 // between this algorithm and pari/gp for bit widths < 192 bits.
1378 APInt square(x_old * x_old);
1379 APInt nextSquare((x_old + 1) * (x_old +1));
1380 if (this->ult(square))
1381 return x_old;
1382 else if (this->ule(nextSquare)) {
1383 APInt midpoint((nextSquare - square).udiv(two));
1384 APInt offset(*this - square);
1385 if (offset.ult(midpoint))
1386 return x_old;
1387 else
1388 return x_old + 1;
1389 } else
1390 llvm_unreachable("Error in APInt::sqrt computation");
1391 return x_old + 1;
1394 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1395 /// iterative extended Euclidean algorithm is used to solve for this value,
1396 /// however we simplify it to speed up calculating only the inverse, and take
1397 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1398 /// (potentially large) APInts around.
1399 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1400 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1402 // Using the properties listed at the following web page (accessed 06/21/08):
1403 // http://www.numbertheory.org/php/euclid.html
1404 // (especially the properties numbered 3, 4 and 9) it can be proved that
1405 // BitWidth bits suffice for all the computations in the algorithm implemented
1406 // below. More precisely, this number of bits suffice if the multiplicative
1407 // inverse exists, but may not suffice for the general extended Euclidean
1408 // algorithm.
1410 APInt r[2] = { modulo, *this };
1411 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1412 APInt q(BitWidth, 0);
1414 unsigned i;
1415 for (i = 0; r[i^1] != 0; i ^= 1) {
1416 // An overview of the math without the confusing bit-flipping:
1417 // q = r[i-2] / r[i-1]
1418 // r[i] = r[i-2] % r[i-1]
1419 // t[i] = t[i-2] - t[i-1] * q
1420 udivrem(r[i], r[i^1], q, r[i]);
1421 t[i] -= t[i^1] * q;
1424 // If this APInt and the modulo are not coprime, there is no multiplicative
1425 // inverse, so return 0. We check this by looking at the next-to-last
1426 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1427 // algorithm.
1428 if (r[i] != 1)
1429 return APInt(BitWidth, 0);
1431 // The next-to-last t is the multiplicative inverse. However, we are
1432 // interested in a positive inverse. Calcuate a positive one from a negative
1433 // one if necessary. A simple addition of the modulo suffices because
1434 // abs(t[i]) is known to be less than *this/2 (see the link above).
1435 return t[i].isNegative() ? t[i] + modulo : t[i];
1438 /// Calculate the magic numbers required to implement a signed integer division
1439 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1440 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1441 /// Warren, Jr., chapter 10.
1442 APInt::ms APInt::magic() const {
1443 const APInt& d = *this;
1444 unsigned p;
1445 APInt ad, anc, delta, q1, r1, q2, r2, t;
1446 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1447 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1448 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1449 struct ms mag;
1451 ad = d.abs();
1452 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1453 anc = t - 1 - t.urem(ad); // absolute value of nc
1454 p = d.getBitWidth() - 1; // initialize p
1455 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1456 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1457 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1458 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1459 do {
1460 p = p + 1;
1461 q1 = q1<<1; // update q1 = 2p/abs(nc)
1462 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1463 if (r1.uge(anc)) { // must be unsigned comparison
1464 q1 = q1 + 1;
1465 r1 = r1 - anc;
1467 q2 = q2<<1; // update q2 = 2p/abs(d)
1468 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1469 if (r2.uge(ad)) { // must be unsigned comparison
1470 q2 = q2 + 1;
1471 r2 = r2 - ad;
1473 delta = ad - r2;
1474 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1476 mag.m = q2 + 1;
1477 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1478 mag.s = p - d.getBitWidth(); // resulting shift
1479 return mag;
1482 /// Calculate the magic numbers required to implement an unsigned integer
1483 /// division by a constant as a sequence of multiplies, adds and shifts.
1484 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1485 /// S. Warren, Jr., chapter 10.
1486 APInt::mu APInt::magicu() const {
1487 const APInt& d = *this;
1488 unsigned p;
1489 APInt nc, delta, q1, r1, q2, r2;
1490 struct mu magu;
1491 magu.a = 0; // initialize "add" indicator
1492 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1493 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1494 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1496 nc = allOnes - (-d).urem(d);
1497 p = d.getBitWidth() - 1; // initialize p
1498 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1499 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1500 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1501 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1502 do {
1503 p = p + 1;
1504 if (r1.uge(nc - r1)) {
1505 q1 = q1 + q1 + 1; // update q1
1506 r1 = r1 + r1 - nc; // update r1
1508 else {
1509 q1 = q1+q1; // update q1
1510 r1 = r1+r1; // update r1
1512 if ((r2 + 1).uge(d - r2)) {
1513 if (q2.uge(signedMax)) magu.a = 1;
1514 q2 = q2+q2 + 1; // update q2
1515 r2 = r2+r2 + 1 - d; // update r2
1517 else {
1518 if (q2.uge(signedMin)) magu.a = 1;
1519 q2 = q2+q2; // update q2
1520 r2 = r2+r2 + 1; // update r2
1522 delta = d - 1 - r2;
1523 } while (p < d.getBitWidth()*2 &&
1524 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1525 magu.m = q2 + 1; // resulting magic number
1526 magu.s = p - d.getBitWidth(); // resulting shift
1527 return magu;
1530 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1531 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1532 /// variables here have the same names as in the algorithm. Comments explain
1533 /// the algorithm and any deviation from it.
1534 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1535 unsigned m, unsigned n) {
1536 assert(u && "Must provide dividend");
1537 assert(v && "Must provide divisor");
1538 assert(q && "Must provide quotient");
1539 assert(u != v && u != q && v != q && "Must us different memory");
1540 assert(n>1 && "n must be > 1");
1542 // Knuth uses the value b as the base of the number system. In our case b
1543 // is 2^31 so we just set it to -1u.
1544 uint64_t b = uint64_t(1) << 32;
1546 #if 0
1547 DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1548 DEBUG(errs() << "KnuthDiv: original:");
1549 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1550 DEBUG(errs() << " by");
1551 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1552 DEBUG(errs() << '\n');
1553 #endif
1554 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1555 // u and v by d. Note that we have taken Knuth's advice here to use a power
1556 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1557 // 2 allows us to shift instead of multiply and it is easy to determine the
1558 // shift amount from the leading zeros. We are basically normalizing the u
1559 // and v so that its high bits are shifted to the top of v's range without
1560 // overflow. Note that this can require an extra word in u so that u must
1561 // be of length m+n+1.
1562 unsigned shift = CountLeadingZeros_32(v[n-1]);
1563 unsigned v_carry = 0;
1564 unsigned u_carry = 0;
1565 if (shift) {
1566 for (unsigned i = 0; i < m+n; ++i) {
1567 unsigned u_tmp = u[i] >> (32 - shift);
1568 u[i] = (u[i] << shift) | u_carry;
1569 u_carry = u_tmp;
1571 for (unsigned i = 0; i < n; ++i) {
1572 unsigned v_tmp = v[i] >> (32 - shift);
1573 v[i] = (v[i] << shift) | v_carry;
1574 v_carry = v_tmp;
1577 u[m+n] = u_carry;
1578 #if 0
1579 DEBUG(errs() << "KnuthDiv: normal:");
1580 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1581 DEBUG(errs() << " by");
1582 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1583 DEBUG(errs() << '\n');
1584 #endif
1586 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1587 int j = m;
1588 do {
1589 DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
1590 // D3. [Calculate q'.].
1591 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1592 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1593 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1594 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1595 // on v[n-2] determines at high speed most of the cases in which the trial
1596 // value qp is one too large, and it eliminates all cases where qp is two
1597 // too large.
1598 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1599 DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
1600 uint64_t qp = dividend / v[n-1];
1601 uint64_t rp = dividend % v[n-1];
1602 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1603 qp--;
1604 rp += v[n-1];
1605 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1606 qp--;
1608 DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1610 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1611 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1612 // consists of a simple multiplication by a one-place number, combined with
1613 // a subtraction.
1614 bool isNeg = false;
1615 for (unsigned i = 0; i < n; ++i) {
1616 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1617 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1618 bool borrow = subtrahend > u_tmp;
1619 DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
1620 << ", subtrahend == " << subtrahend
1621 << ", borrow = " << borrow << '\n');
1623 uint64_t result = u_tmp - subtrahend;
1624 unsigned k = j + i;
1625 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1626 u[k++] = (unsigned)(result >> 32); // subtract high word
1627 while (borrow && k <= m+n) { // deal with borrow to the left
1628 borrow = u[k] == 0;
1629 u[k]--;
1630 k++;
1632 isNeg |= borrow;
1633 DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1634 u[j+i+1] << '\n');
1636 DEBUG(errs() << "KnuthDiv: after subtraction:");
1637 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1638 DEBUG(errs() << '\n');
1639 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1640 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1641 // true value plus b**(n+1), namely as the b's complement of
1642 // the true value, and a "borrow" to the left should be remembered.
1644 if (isNeg) {
1645 bool carry = true; // true because b's complement is "complement + 1"
1646 for (unsigned i = 0; i <= m+n; ++i) {
1647 u[i] = ~u[i] + carry; // b's complement
1648 carry = carry && u[i] == 0;
1651 DEBUG(errs() << "KnuthDiv: after complement:");
1652 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1653 DEBUG(errs() << '\n');
1655 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1656 // negative, go to step D6; otherwise go on to step D7.
1657 q[j] = (unsigned)qp;
1658 if (isNeg) {
1659 // D6. [Add back]. The probability that this step is necessary is very
1660 // small, on the order of only 2/b. Make sure that test data accounts for
1661 // this possibility. Decrease q[j] by 1
1662 q[j]--;
1663 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1664 // A carry will occur to the left of u[j+n], and it should be ignored
1665 // since it cancels with the borrow that occurred in D4.
1666 bool carry = false;
1667 for (unsigned i = 0; i < n; i++) {
1668 unsigned limit = std::min(u[j+i],v[i]);
1669 u[j+i] += v[i] + carry;
1670 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1672 u[j+n] += carry;
1674 DEBUG(errs() << "KnuthDiv: after correction:");
1675 DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
1676 DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1678 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1679 } while (--j >= 0);
1681 DEBUG(errs() << "KnuthDiv: quotient:");
1682 DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
1683 DEBUG(errs() << '\n');
1685 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1686 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1687 // compute the remainder (urem uses this).
1688 if (r) {
1689 // The value d is expressed by the "shift" value above since we avoided
1690 // multiplication by d by using a shift left. So, all we have to do is
1691 // shift right here. In order to mak
1692 if (shift) {
1693 unsigned carry = 0;
1694 DEBUG(errs() << "KnuthDiv: remainder:");
1695 for (int i = n-1; i >= 0; i--) {
1696 r[i] = (u[i] >> shift) | carry;
1697 carry = u[i] << (32 - shift);
1698 DEBUG(errs() << " " << r[i]);
1700 } else {
1701 for (int i = n-1; i >= 0; i--) {
1702 r[i] = u[i];
1703 DEBUG(errs() << " " << r[i]);
1706 DEBUG(errs() << '\n');
1708 #if 0
1709 DEBUG(errs() << '\n');
1710 #endif
1713 void APInt::divide(const APInt LHS, unsigned lhsWords,
1714 const APInt &RHS, unsigned rhsWords,
1715 APInt *Quotient, APInt *Remainder)
1717 assert(lhsWords >= rhsWords && "Fractional result");
1719 // First, compose the values into an array of 32-bit words instead of
1720 // 64-bit words. This is a necessity of both the "short division" algorithm
1721 // and the the Knuth "classical algorithm" which requires there to be native
1722 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1723 // can't use 64-bit operands here because we don't have native results of
1724 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1725 // work on large-endian machines.
1726 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1727 unsigned n = rhsWords * 2;
1728 unsigned m = (lhsWords * 2) - n;
1730 // Allocate space for the temporary values we need either on the stack, if
1731 // it will fit, or on the heap if it won't.
1732 unsigned SPACE[128];
1733 unsigned *U = 0;
1734 unsigned *V = 0;
1735 unsigned *Q = 0;
1736 unsigned *R = 0;
1737 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1738 U = &SPACE[0];
1739 V = &SPACE[m+n+1];
1740 Q = &SPACE[(m+n+1) + n];
1741 if (Remainder)
1742 R = &SPACE[(m+n+1) + n + (m+n)];
1743 } else {
1744 U = new unsigned[m + n + 1];
1745 V = new unsigned[n];
1746 Q = new unsigned[m+n];
1747 if (Remainder)
1748 R = new unsigned[n];
1751 // Initialize the dividend
1752 memset(U, 0, (m+n+1)*sizeof(unsigned));
1753 for (unsigned i = 0; i < lhsWords; ++i) {
1754 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1755 U[i * 2] = (unsigned)(tmp & mask);
1756 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1758 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1760 // Initialize the divisor
1761 memset(V, 0, (n)*sizeof(unsigned));
1762 for (unsigned i = 0; i < rhsWords; ++i) {
1763 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1764 V[i * 2] = (unsigned)(tmp & mask);
1765 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1768 // initialize the quotient and remainder
1769 memset(Q, 0, (m+n) * sizeof(unsigned));
1770 if (Remainder)
1771 memset(R, 0, n * sizeof(unsigned));
1773 // Now, adjust m and n for the Knuth division. n is the number of words in
1774 // the divisor. m is the number of words by which the dividend exceeds the
1775 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1776 // contain any zero words or the Knuth algorithm fails.
1777 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1778 n--;
1779 m++;
1781 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1782 m--;
1784 // If we're left with only a single word for the divisor, Knuth doesn't work
1785 // so we implement the short division algorithm here. This is much simpler
1786 // and faster because we are certain that we can divide a 64-bit quantity
1787 // by a 32-bit quantity at hardware speed and short division is simply a
1788 // series of such operations. This is just like doing short division but we
1789 // are using base 2^32 instead of base 10.
1790 assert(n != 0 && "Divide by zero?");
1791 if (n == 1) {
1792 unsigned divisor = V[0];
1793 unsigned remainder = 0;
1794 for (int i = m+n-1; i >= 0; i--) {
1795 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1796 if (partial_dividend == 0) {
1797 Q[i] = 0;
1798 remainder = 0;
1799 } else if (partial_dividend < divisor) {
1800 Q[i] = 0;
1801 remainder = (unsigned)partial_dividend;
1802 } else if (partial_dividend == divisor) {
1803 Q[i] = 1;
1804 remainder = 0;
1805 } else {
1806 Q[i] = (unsigned)(partial_dividend / divisor);
1807 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1810 if (R)
1811 R[0] = remainder;
1812 } else {
1813 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1814 // case n > 1.
1815 KnuthDiv(U, V, Q, R, m, n);
1818 // If the caller wants the quotient
1819 if (Quotient) {
1820 // Set up the Quotient value's memory.
1821 if (Quotient->BitWidth != LHS.BitWidth) {
1822 if (Quotient->isSingleWord())
1823 Quotient->VAL = 0;
1824 else
1825 delete [] Quotient->pVal;
1826 Quotient->BitWidth = LHS.BitWidth;
1827 if (!Quotient->isSingleWord())
1828 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1829 } else
1830 Quotient->clear();
1832 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1833 // order words.
1834 if (lhsWords == 1) {
1835 uint64_t tmp =
1836 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1837 if (Quotient->isSingleWord())
1838 Quotient->VAL = tmp;
1839 else
1840 Quotient->pVal[0] = tmp;
1841 } else {
1842 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1843 for (unsigned i = 0; i < lhsWords; ++i)
1844 Quotient->pVal[i] =
1845 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1849 // If the caller wants the remainder
1850 if (Remainder) {
1851 // Set up the Remainder value's memory.
1852 if (Remainder->BitWidth != RHS.BitWidth) {
1853 if (Remainder->isSingleWord())
1854 Remainder->VAL = 0;
1855 else
1856 delete [] Remainder->pVal;
1857 Remainder->BitWidth = RHS.BitWidth;
1858 if (!Remainder->isSingleWord())
1859 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1860 } else
1861 Remainder->clear();
1863 // The remainder is in R. Reconstitute the remainder into Remainder's low
1864 // order words.
1865 if (rhsWords == 1) {
1866 uint64_t tmp =
1867 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1868 if (Remainder->isSingleWord())
1869 Remainder->VAL = tmp;
1870 else
1871 Remainder->pVal[0] = tmp;
1872 } else {
1873 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1874 for (unsigned i = 0; i < rhsWords; ++i)
1875 Remainder->pVal[i] =
1876 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1880 // Clean up the memory we allocated.
1881 if (U != &SPACE[0]) {
1882 delete [] U;
1883 delete [] V;
1884 delete [] Q;
1885 delete [] R;
1889 APInt APInt::udiv(const APInt& RHS) const {
1890 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1892 // First, deal with the easy case
1893 if (isSingleWord()) {
1894 assert(RHS.VAL != 0 && "Divide by zero?");
1895 return APInt(BitWidth, VAL / RHS.VAL);
1898 // Get some facts about the LHS and RHS number of bits and words
1899 unsigned rhsBits = RHS.getActiveBits();
1900 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1901 assert(rhsWords && "Divided by zero???");
1902 unsigned lhsBits = this->getActiveBits();
1903 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1905 // Deal with some degenerate cases
1906 if (!lhsWords)
1907 // 0 / X ===> 0
1908 return APInt(BitWidth, 0);
1909 else if (lhsWords < rhsWords || this->ult(RHS)) {
1910 // X / Y ===> 0, iff X < Y
1911 return APInt(BitWidth, 0);
1912 } else if (*this == RHS) {
1913 // X / X ===> 1
1914 return APInt(BitWidth, 1);
1915 } else if (lhsWords == 1 && rhsWords == 1) {
1916 // All high words are zero, just use native divide
1917 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1920 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1921 APInt Quotient(1,0); // to hold result.
1922 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1923 return Quotient;
1926 APInt APInt::urem(const APInt& RHS) const {
1927 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1928 if (isSingleWord()) {
1929 assert(RHS.VAL != 0 && "Remainder by zero?");
1930 return APInt(BitWidth, VAL % RHS.VAL);
1933 // Get some facts about the LHS
1934 unsigned lhsBits = getActiveBits();
1935 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1937 // Get some facts about the RHS
1938 unsigned rhsBits = RHS.getActiveBits();
1939 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1940 assert(rhsWords && "Performing remainder operation by zero ???");
1942 // Check the degenerate cases
1943 if (lhsWords == 0) {
1944 // 0 % Y ===> 0
1945 return APInt(BitWidth, 0);
1946 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1947 // X % Y ===> X, iff X < Y
1948 return *this;
1949 } else if (*this == RHS) {
1950 // X % X == 0;
1951 return APInt(BitWidth, 0);
1952 } else if (lhsWords == 1) {
1953 // All high words are zero, just use native remainder
1954 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1957 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1958 APInt Remainder(1,0);
1959 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1960 return Remainder;
1963 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1964 APInt &Quotient, APInt &Remainder) {
1965 // Get some size facts about the dividend and divisor
1966 unsigned lhsBits = LHS.getActiveBits();
1967 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1968 unsigned rhsBits = RHS.getActiveBits();
1969 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1971 // Check the degenerate cases
1972 if (lhsWords == 0) {
1973 Quotient = 0; // 0 / Y ===> 0
1974 Remainder = 0; // 0 % Y ===> 0
1975 return;
1978 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1979 Quotient = 0; // X / Y ===> 0, iff X < Y
1980 Remainder = LHS; // X % Y ===> X, iff X < Y
1981 return;
1984 if (LHS == RHS) {
1985 Quotient = 1; // X / X ===> 1
1986 Remainder = 0; // X % X ===> 0;
1987 return;
1990 if (lhsWords == 1 && rhsWords == 1) {
1991 // There is only one word to consider so use the native versions.
1992 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1993 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1994 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1995 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
1996 return;
1999 // Okay, lets do it the long way
2000 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2003 void APInt::fromString(unsigned numbits, const char *str, unsigned slen,
2004 uint8_t radix) {
2005 // Check our assumptions here
2006 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2007 "Radix should be 2, 8, 10, or 16!");
2008 assert(str && "String is null?");
2009 bool isNeg = str[0] == '-';
2010 if (isNeg)
2011 str++, slen--;
2012 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2013 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2014 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2015 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
2017 // Allocate memory
2018 if (!isSingleWord())
2019 pVal = getClearedMemory(getNumWords());
2021 // Figure out if we can shift instead of multiply
2022 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2024 // Set up an APInt for the digit to add outside the loop so we don't
2025 // constantly construct/destruct it.
2026 APInt apdigit(getBitWidth(), 0);
2027 APInt apradix(getBitWidth(), radix);
2029 // Enter digit traversal loop
2030 for (unsigned i = 0; i < slen; i++) {
2031 // Get a digit
2032 unsigned digit = 0;
2033 char cdigit = str[i];
2034 if (radix == 16) {
2035 if (!isxdigit(cdigit))
2036 llvm_unreachable("Invalid hex digit in string");
2037 if (isdigit(cdigit))
2038 digit = cdigit - '0';
2039 else if (cdigit >= 'a')
2040 digit = cdigit - 'a' + 10;
2041 else if (cdigit >= 'A')
2042 digit = cdigit - 'A' + 10;
2043 else
2044 llvm_unreachable("huh? we shouldn't get here");
2045 } else if (isdigit(cdigit)) {
2046 digit = cdigit - '0';
2047 assert((radix == 10 ||
2048 (radix == 8 && digit != 8 && digit != 9) ||
2049 (radix == 2 && (digit == 0 || digit == 1))) &&
2050 "Invalid digit in string for given radix");
2051 } else {
2052 llvm_unreachable("Invalid character in digit string");
2055 // Shift or multiply the value by the radix
2056 if (slen > 1) {
2057 if (shift)
2058 *this <<= shift;
2059 else
2060 *this *= apradix;
2063 // Add in the digit we just interpreted
2064 if (apdigit.isSingleWord())
2065 apdigit.VAL = digit;
2066 else
2067 apdigit.pVal[0] = digit;
2068 *this += apdigit;
2070 // If its negative, put it in two's complement form
2071 if (isNeg) {
2072 (*this)--;
2073 this->flip();
2077 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2078 bool Signed) const {
2079 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
2080 "Radix should be 2, 8, 10, or 16!");
2082 // First, check for a zero value and just short circuit the logic below.
2083 if (*this == 0) {
2084 Str.push_back('0');
2085 return;
2088 static const char Digits[] = "0123456789ABCDEF";
2090 if (isSingleWord()) {
2091 char Buffer[65];
2092 char *BufPtr = Buffer+65;
2094 uint64_t N;
2095 if (Signed) {
2096 int64_t I = getSExtValue();
2097 if (I < 0) {
2098 Str.push_back('-');
2099 I = -I;
2101 N = I;
2102 } else {
2103 N = getZExtValue();
2106 while (N) {
2107 *--BufPtr = Digits[N % Radix];
2108 N /= Radix;
2110 Str.append(BufPtr, Buffer+65);
2111 return;
2114 APInt Tmp(*this);
2116 if (Signed && isNegative()) {
2117 // They want to print the signed version and it is a negative value
2118 // Flip the bits and add one to turn it into the equivalent positive
2119 // value and put a '-' in the result.
2120 Tmp.flip();
2121 Tmp++;
2122 Str.push_back('-');
2125 // We insert the digits backward, then reverse them to get the right order.
2126 unsigned StartDig = Str.size();
2128 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2129 // because the number of bits per digit (1, 3 and 4 respectively) divides
2130 // equaly. We just shift until the value is zero.
2131 if (Radix != 10) {
2132 // Just shift tmp right for each digit width until it becomes zero
2133 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2134 unsigned MaskAmt = Radix - 1;
2136 while (Tmp != 0) {
2137 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2138 Str.push_back(Digits[Digit]);
2139 Tmp = Tmp.lshr(ShiftAmt);
2141 } else {
2142 APInt divisor(4, 10);
2143 while (Tmp != 0) {
2144 APInt APdigit(1, 0);
2145 APInt tmp2(Tmp.getBitWidth(), 0);
2146 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2147 &APdigit);
2148 unsigned Digit = (unsigned)APdigit.getZExtValue();
2149 assert(Digit < Radix && "divide failed");
2150 Str.push_back(Digits[Digit]);
2151 Tmp = tmp2;
2155 // Reverse the digits before returning.
2156 std::reverse(Str.begin()+StartDig, Str.end());
2159 /// toString - This returns the APInt as a std::string. Note that this is an
2160 /// inefficient method. It is better to pass in a SmallVector/SmallString
2161 /// to the methods above.
2162 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2163 SmallString<40> S;
2164 toString(S, Radix, Signed);
2165 return S.c_str();
2169 void APInt::dump() const {
2170 SmallString<40> S, U;
2171 this->toStringUnsigned(U);
2172 this->toStringSigned(S);
2173 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2176 void APInt::print(raw_ostream &OS, bool isSigned) const {
2177 SmallString<40> S;
2178 this->toString(S, 10, isSigned);
2179 OS << S.c_str();
2182 std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
2183 raw_os_ostream OS(o);
2184 OS << I;
2185 return o;
2188 // This implements a variety of operations on a representation of
2189 // arbitrary precision, two's-complement, bignum integer values.
2191 /* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2192 and unrestricting assumption. */
2193 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2194 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2196 /* Some handy functions local to this file. */
2197 namespace {
2199 /* Returns the integer part with the least significant BITS set.
2200 BITS cannot be zero. */
2201 static inline integerPart
2202 lowBitMask(unsigned int bits)
2204 assert (bits != 0 && bits <= integerPartWidth);
2206 return ~(integerPart) 0 >> (integerPartWidth - bits);
2209 /* Returns the value of the lower half of PART. */
2210 static inline integerPart
2211 lowHalf(integerPart part)
2213 return part & lowBitMask(integerPartWidth / 2);
2216 /* Returns the value of the upper half of PART. */
2217 static inline integerPart
2218 highHalf(integerPart part)
2220 return part >> (integerPartWidth / 2);
2223 /* Returns the bit number of the most significant set bit of a part.
2224 If the input number has no bits set -1U is returned. */
2225 static unsigned int
2226 partMSB(integerPart value)
2228 unsigned int n, msb;
2230 if (value == 0)
2231 return -1U;
2233 n = integerPartWidth / 2;
2235 msb = 0;
2236 do {
2237 if (value >> n) {
2238 value >>= n;
2239 msb += n;
2242 n >>= 1;
2243 } while (n);
2245 return msb;
2248 /* Returns the bit number of the least significant set bit of a
2249 part. If the input number has no bits set -1U is returned. */
2250 static unsigned int
2251 partLSB(integerPart value)
2253 unsigned int n, lsb;
2255 if (value == 0)
2256 return -1U;
2258 lsb = integerPartWidth - 1;
2259 n = integerPartWidth / 2;
2261 do {
2262 if (value << n) {
2263 value <<= n;
2264 lsb -= n;
2267 n >>= 1;
2268 } while (n);
2270 return lsb;
2274 /* Sets the least significant part of a bignum to the input value, and
2275 zeroes out higher parts. */
2276 void
2277 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2279 unsigned int i;
2281 assert (parts > 0);
2283 dst[0] = part;
2284 for(i = 1; i < parts; i++)
2285 dst[i] = 0;
2288 /* Assign one bignum to another. */
2289 void
2290 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2292 unsigned int i;
2294 for(i = 0; i < parts; i++)
2295 dst[i] = src[i];
2298 /* Returns true if a bignum is zero, false otherwise. */
2299 bool
2300 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2302 unsigned int i;
2304 for(i = 0; i < parts; i++)
2305 if (src[i])
2306 return false;
2308 return true;
2311 /* Extract the given bit of a bignum; returns 0 or 1. */
2313 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2315 return(parts[bit / integerPartWidth]
2316 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2319 /* Set the given bit of a bignum. */
2320 void
2321 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2323 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2326 /* Returns the bit number of the least significant set bit of a
2327 number. If the input number has no bits set -1U is returned. */
2328 unsigned int
2329 APInt::tcLSB(const integerPart *parts, unsigned int n)
2331 unsigned int i, lsb;
2333 for(i = 0; i < n; i++) {
2334 if (parts[i] != 0) {
2335 lsb = partLSB(parts[i]);
2337 return lsb + i * integerPartWidth;
2341 return -1U;
2344 /* Returns the bit number of the most significant set bit of a number.
2345 If the input number has no bits set -1U is returned. */
2346 unsigned int
2347 APInt::tcMSB(const integerPart *parts, unsigned int n)
2349 unsigned int msb;
2351 do {
2352 --n;
2354 if (parts[n] != 0) {
2355 msb = partMSB(parts[n]);
2357 return msb + n * integerPartWidth;
2359 } while (n);
2361 return -1U;
2364 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2365 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2366 the least significant bit of DST. All high bits above srcBITS in
2367 DST are zero-filled. */
2368 void
2369 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2370 unsigned int srcBits, unsigned int srcLSB)
2372 unsigned int firstSrcPart, dstParts, shift, n;
2374 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2375 assert (dstParts <= dstCount);
2377 firstSrcPart = srcLSB / integerPartWidth;
2378 tcAssign (dst, src + firstSrcPart, dstParts);
2380 shift = srcLSB % integerPartWidth;
2381 tcShiftRight (dst, dstParts, shift);
2383 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2384 in DST. If this is less that srcBits, append the rest, else
2385 clear the high bits. */
2386 n = dstParts * integerPartWidth - shift;
2387 if (n < srcBits) {
2388 integerPart mask = lowBitMask (srcBits - n);
2389 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2390 << n % integerPartWidth);
2391 } else if (n > srcBits) {
2392 if (srcBits % integerPartWidth)
2393 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2396 /* Clear high parts. */
2397 while (dstParts < dstCount)
2398 dst[dstParts++] = 0;
2401 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2402 integerPart
2403 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2404 integerPart c, unsigned int parts)
2406 unsigned int i;
2408 assert(c <= 1);
2410 for(i = 0; i < parts; i++) {
2411 integerPart l;
2413 l = dst[i];
2414 if (c) {
2415 dst[i] += rhs[i] + 1;
2416 c = (dst[i] <= l);
2417 } else {
2418 dst[i] += rhs[i];
2419 c = (dst[i] < l);
2423 return c;
2426 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2427 integerPart
2428 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2429 integerPart c, unsigned int parts)
2431 unsigned int i;
2433 assert(c <= 1);
2435 for(i = 0; i < parts; i++) {
2436 integerPart l;
2438 l = dst[i];
2439 if (c) {
2440 dst[i] -= rhs[i] + 1;
2441 c = (dst[i] >= l);
2442 } else {
2443 dst[i] -= rhs[i];
2444 c = (dst[i] > l);
2448 return c;
2451 /* Negate a bignum in-place. */
2452 void
2453 APInt::tcNegate(integerPart *dst, unsigned int parts)
2455 tcComplement(dst, parts);
2456 tcIncrement(dst, parts);
2459 /* DST += SRC * MULTIPLIER + CARRY if add is true
2460 DST = SRC * MULTIPLIER + CARRY if add is false
2462 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2463 they must start at the same point, i.e. DST == SRC.
2465 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2466 returned. Otherwise DST is filled with the least significant
2467 DSTPARTS parts of the result, and if all of the omitted higher
2468 parts were zero return zero, otherwise overflow occurred and
2469 return one. */
2471 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2472 integerPart multiplier, integerPart carry,
2473 unsigned int srcParts, unsigned int dstParts,
2474 bool add)
2476 unsigned int i, n;
2478 /* Otherwise our writes of DST kill our later reads of SRC. */
2479 assert(dst <= src || dst >= src + srcParts);
2480 assert(dstParts <= srcParts + 1);
2482 /* N loops; minimum of dstParts and srcParts. */
2483 n = dstParts < srcParts ? dstParts: srcParts;
2485 for(i = 0; i < n; i++) {
2486 integerPart low, mid, high, srcPart;
2488 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2490 This cannot overflow, because
2492 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2494 which is less than n^2. */
2496 srcPart = src[i];
2498 if (multiplier == 0 || srcPart == 0) {
2499 low = carry;
2500 high = 0;
2501 } else {
2502 low = lowHalf(srcPart) * lowHalf(multiplier);
2503 high = highHalf(srcPart) * highHalf(multiplier);
2505 mid = lowHalf(srcPart) * highHalf(multiplier);
2506 high += highHalf(mid);
2507 mid <<= integerPartWidth / 2;
2508 if (low + mid < low)
2509 high++;
2510 low += mid;
2512 mid = highHalf(srcPart) * lowHalf(multiplier);
2513 high += highHalf(mid);
2514 mid <<= integerPartWidth / 2;
2515 if (low + mid < low)
2516 high++;
2517 low += mid;
2519 /* Now add carry. */
2520 if (low + carry < low)
2521 high++;
2522 low += carry;
2525 if (add) {
2526 /* And now DST[i], and store the new low part there. */
2527 if (low + dst[i] < low)
2528 high++;
2529 dst[i] += low;
2530 } else
2531 dst[i] = low;
2533 carry = high;
2536 if (i < dstParts) {
2537 /* Full multiplication, there is no overflow. */
2538 assert(i + 1 == dstParts);
2539 dst[i] = carry;
2540 return 0;
2541 } else {
2542 /* We overflowed if there is carry. */
2543 if (carry)
2544 return 1;
2546 /* We would overflow if any significant unwritten parts would be
2547 non-zero. This is true if any remaining src parts are non-zero
2548 and the multiplier is non-zero. */
2549 if (multiplier)
2550 for(; i < srcParts; i++)
2551 if (src[i])
2552 return 1;
2554 /* We fitted in the narrow destination. */
2555 return 0;
2559 /* DST = LHS * RHS, where DST has the same width as the operands and
2560 is filled with the least significant parts of the result. Returns
2561 one if overflow occurred, otherwise zero. DST must be disjoint
2562 from both operands. */
2564 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2565 const integerPart *rhs, unsigned int parts)
2567 unsigned int i;
2568 int overflow;
2570 assert(dst != lhs && dst != rhs);
2572 overflow = 0;
2573 tcSet(dst, 0, parts);
2575 for(i = 0; i < parts; i++)
2576 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2577 parts - i, true);
2579 return overflow;
2582 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2583 operands. No overflow occurs. DST must be disjoint from both
2584 operands. Returns the number of parts required to hold the
2585 result. */
2586 unsigned int
2587 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2588 const integerPart *rhs, unsigned int lhsParts,
2589 unsigned int rhsParts)
2591 /* Put the narrower number on the LHS for less loops below. */
2592 if (lhsParts > rhsParts) {
2593 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2594 } else {
2595 unsigned int n;
2597 assert(dst != lhs && dst != rhs);
2599 tcSet(dst, 0, rhsParts);
2601 for(n = 0; n < lhsParts; n++)
2602 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2604 n = lhsParts + rhsParts;
2606 return n - (dst[n - 1] == 0);
2610 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2611 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2612 set REMAINDER to the remainder, return zero. i.e.
2614 OLD_LHS = RHS * LHS + REMAINDER
2616 SCRATCH is a bignum of the same size as the operands and result for
2617 use by the routine; its contents need not be initialized and are
2618 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2621 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2622 integerPart *remainder, integerPart *srhs,
2623 unsigned int parts)
2625 unsigned int n, shiftCount;
2626 integerPart mask;
2628 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2630 shiftCount = tcMSB(rhs, parts) + 1;
2631 if (shiftCount == 0)
2632 return true;
2634 shiftCount = parts * integerPartWidth - shiftCount;
2635 n = shiftCount / integerPartWidth;
2636 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2638 tcAssign(srhs, rhs, parts);
2639 tcShiftLeft(srhs, parts, shiftCount);
2640 tcAssign(remainder, lhs, parts);
2641 tcSet(lhs, 0, parts);
2643 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2644 the total. */
2645 for(;;) {
2646 int compare;
2648 compare = tcCompare(remainder, srhs, parts);
2649 if (compare >= 0) {
2650 tcSubtract(remainder, srhs, 0, parts);
2651 lhs[n] |= mask;
2654 if (shiftCount == 0)
2655 break;
2656 shiftCount--;
2657 tcShiftRight(srhs, parts, 1);
2658 if ((mask >>= 1) == 0)
2659 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2662 return false;
2665 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2666 There are no restrictions on COUNT. */
2667 void
2668 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2670 if (count) {
2671 unsigned int jump, shift;
2673 /* Jump is the inter-part jump; shift is is intra-part shift. */
2674 jump = count / integerPartWidth;
2675 shift = count % integerPartWidth;
2677 while (parts > jump) {
2678 integerPart part;
2680 parts--;
2682 /* dst[i] comes from the two parts src[i - jump] and, if we have
2683 an intra-part shift, src[i - jump - 1]. */
2684 part = dst[parts - jump];
2685 if (shift) {
2686 part <<= shift;
2687 if (parts >= jump + 1)
2688 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2691 dst[parts] = part;
2694 while (parts > 0)
2695 dst[--parts] = 0;
2699 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2700 zero. There are no restrictions on COUNT. */
2701 void
2702 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2704 if (count) {
2705 unsigned int i, jump, shift;
2707 /* Jump is the inter-part jump; shift is is intra-part shift. */
2708 jump = count / integerPartWidth;
2709 shift = count % integerPartWidth;
2711 /* Perform the shift. This leaves the most significant COUNT bits
2712 of the result at zero. */
2713 for(i = 0; i < parts; i++) {
2714 integerPart part;
2716 if (i + jump >= parts) {
2717 part = 0;
2718 } else {
2719 part = dst[i + jump];
2720 if (shift) {
2721 part >>= shift;
2722 if (i + jump + 1 < parts)
2723 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2727 dst[i] = part;
2732 /* Bitwise and of two bignums. */
2733 void
2734 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2736 unsigned int i;
2738 for(i = 0; i < parts; i++)
2739 dst[i] &= rhs[i];
2742 /* Bitwise inclusive or of two bignums. */
2743 void
2744 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2746 unsigned int i;
2748 for(i = 0; i < parts; i++)
2749 dst[i] |= rhs[i];
2752 /* Bitwise exclusive or of two bignums. */
2753 void
2754 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2756 unsigned int i;
2758 for(i = 0; i < parts; i++)
2759 dst[i] ^= rhs[i];
2762 /* Complement a bignum in-place. */
2763 void
2764 APInt::tcComplement(integerPart *dst, unsigned int parts)
2766 unsigned int i;
2768 for(i = 0; i < parts; i++)
2769 dst[i] = ~dst[i];
2772 /* Comparison (unsigned) of two bignums. */
2774 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2775 unsigned int parts)
2777 while (parts) {
2778 parts--;
2779 if (lhs[parts] == rhs[parts])
2780 continue;
2782 if (lhs[parts] > rhs[parts])
2783 return 1;
2784 else
2785 return -1;
2788 return 0;
2791 /* Increment a bignum in-place, return the carry flag. */
2792 integerPart
2793 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2795 unsigned int i;
2797 for(i = 0; i < parts; i++)
2798 if (++dst[i] != 0)
2799 break;
2801 return i == parts;
2804 /* Set the least significant BITS bits of a bignum, clear the
2805 rest. */
2806 void
2807 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2808 unsigned int bits)
2810 unsigned int i;
2812 i = 0;
2813 while (bits > integerPartWidth) {
2814 dst[i++] = ~(integerPart) 0;
2815 bits -= integerPartWidth;
2818 if (bits)
2819 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2821 while (i < parts)
2822 dst[i++] = 0;