Merge branch 'master' into systemz
[llvm/systemz.git] / lib / Target / X86 / X86FloatingPoint.cpp
blob14bffdc7999b19be20d57187fefa7290f8fe4dde
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // virtual registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
15 // This pass is hampered by the lack of decent CFG manipulation routines for
16 // machine code. In particular, this wants to be able to split critical edges
17 // as necessary, traverse the machine basic block CFG in depth-first order, and
18 // allow there to be multiple machine basic blocks for each LLVM basicblock
19 // (needed for critical edge splitting).
21 // In particular, this pass currently barfs on critical edges. Because of this,
22 // it requires the instruction selector to insert FP_REG_KILL instructions on
23 // the exits of any basic block that has critical edges going from it, or which
24 // branch to a critical basic block.
26 // FIXME: this is not implemented yet. The stackifier pass only works on local
27 // basic blocks.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "x86-codegen"
32 #include "X86.h"
33 #include "X86InstrInfo.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include <algorithm>
49 using namespace llvm;
51 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
52 STATISTIC(NumFP , "Number of floating point instructions");
54 namespace {
55 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
56 static char ID;
57 FPS() : MachineFunctionPass(&ID) {}
59 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60 AU.addPreservedID(MachineLoopInfoID);
61 AU.addPreservedID(MachineDominatorsID);
62 MachineFunctionPass::getAnalysisUsage(AU);
65 virtual bool runOnMachineFunction(MachineFunction &MF);
67 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
69 private:
70 const TargetInstrInfo *TII; // Machine instruction info.
71 MachineBasicBlock *MBB; // Current basic block
72 unsigned Stack[8]; // FP<n> Registers in each stack slot...
73 unsigned RegMap[8]; // Track which stack slot contains each register
74 unsigned StackTop; // The current top of the FP stack.
76 void dumpStack() const {
77 cerr << "Stack contents:";
78 for (unsigned i = 0; i != StackTop; ++i) {
79 cerr << " FP" << Stack[i];
80 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
82 cerr << "\n";
84 private:
85 /// isStackEmpty - Return true if the FP stack is empty.
86 bool isStackEmpty() const {
87 return StackTop == 0;
90 // getSlot - Return the stack slot number a particular register number is
91 // in.
92 unsigned getSlot(unsigned RegNo) const {
93 assert(RegNo < 8 && "Regno out of range!");
94 return RegMap[RegNo];
97 // getStackEntry - Return the X86::FP<n> register in register ST(i).
98 unsigned getStackEntry(unsigned STi) const {
99 assert(STi < StackTop && "Access past stack top!");
100 return Stack[StackTop-1-STi];
103 // getSTReg - Return the X86::ST(i) register which contains the specified
104 // FP<RegNo> register.
105 unsigned getSTReg(unsigned RegNo) const {
106 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
109 // pushReg - Push the specified FP<n> register onto the stack.
110 void pushReg(unsigned Reg) {
111 assert(Reg < 8 && "Register number out of range!");
112 assert(StackTop < 8 && "Stack overflow!");
113 Stack[StackTop] = Reg;
114 RegMap[Reg] = StackTop++;
117 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
118 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
119 MachineInstr *MI = I;
120 DebugLoc dl = MI->getDebugLoc();
121 if (isAtTop(RegNo)) return;
123 unsigned STReg = getSTReg(RegNo);
124 unsigned RegOnTop = getStackEntry(0);
126 // Swap the slots the regs are in.
127 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
129 // Swap stack slot contents.
130 assert(RegMap[RegOnTop] < StackTop);
131 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
133 // Emit an fxch to update the runtime processors version of the state.
134 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
135 NumFXCH++;
138 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
139 DebugLoc dl = I->getDebugLoc();
140 unsigned STReg = getSTReg(RegNo);
141 pushReg(AsReg); // New register on top of stack
143 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
146 // popStackAfter - Pop the current value off of the top of the FP stack
147 // after the specified instruction.
148 void popStackAfter(MachineBasicBlock::iterator &I);
150 // freeStackSlotAfter - Free the specified register from the register stack,
151 // so that it is no longer in a register. If the register is currently at
152 // the top of the stack, we just pop the current instruction, otherwise we
153 // store the current top-of-stack into the specified slot, then pop the top
154 // of stack.
155 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
157 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
159 void handleZeroArgFP(MachineBasicBlock::iterator &I);
160 void handleOneArgFP(MachineBasicBlock::iterator &I);
161 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
162 void handleTwoArgFP(MachineBasicBlock::iterator &I);
163 void handleCompareFP(MachineBasicBlock::iterator &I);
164 void handleCondMovFP(MachineBasicBlock::iterator &I);
165 void handleSpecialFP(MachineBasicBlock::iterator &I);
167 char FPS::ID = 0;
170 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
172 /// getFPReg - Return the X86::FPx register number for the specified operand.
173 /// For example, this returns 3 for X86::FP3.
174 static unsigned getFPReg(const MachineOperand &MO) {
175 assert(MO.isReg() && "Expected an FP register!");
176 unsigned Reg = MO.getReg();
177 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
178 return Reg - X86::FP0;
182 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
183 /// register references into FP stack references.
185 bool FPS::runOnMachineFunction(MachineFunction &MF) {
186 // We only need to run this pass if there are any FP registers used in this
187 // function. If it is all integer, there is nothing for us to do!
188 bool FPIsUsed = false;
190 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
191 for (unsigned i = 0; i <= 6; ++i)
192 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
193 FPIsUsed = true;
194 break;
197 // Early exit.
198 if (!FPIsUsed) return false;
200 TII = MF.getTarget().getInstrInfo();
201 StackTop = 0;
203 // Process the function in depth first order so that we process at least one
204 // of the predecessors for every reachable block in the function.
205 SmallPtrSet<MachineBasicBlock*, 8> Processed;
206 MachineBasicBlock *Entry = MF.begin();
208 bool Changed = false;
209 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
210 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
211 I != E; ++I)
212 Changed |= processBasicBlock(MF, **I);
214 return Changed;
217 /// processBasicBlock - Loop over all of the instructions in the basic block,
218 /// transforming FP instructions into their stack form.
220 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
221 bool Changed = false;
222 MBB = &BB;
224 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
225 MachineInstr *MI = I;
226 unsigned Flags = MI->getDesc().TSFlags;
228 unsigned FPInstClass = Flags & X86II::FPTypeMask;
229 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
230 FPInstClass = X86II::SpecialFP;
232 if (FPInstClass == X86II::NotFP)
233 continue; // Efficiently ignore non-fp insts!
235 MachineInstr *PrevMI = 0;
236 if (I != BB.begin())
237 PrevMI = prior(I);
239 ++NumFP; // Keep track of # of pseudo instrs
240 DOUT << "\nFPInst:\t" << *MI;
242 // Get dead variables list now because the MI pointer may be deleted as part
243 // of processing!
244 SmallVector<unsigned, 8> DeadRegs;
245 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
246 const MachineOperand &MO = MI->getOperand(i);
247 if (MO.isReg() && MO.isDead())
248 DeadRegs.push_back(MO.getReg());
251 switch (FPInstClass) {
252 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
253 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
254 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
255 case X86II::TwoArgFP: handleTwoArgFP(I); break;
256 case X86II::CompareFP: handleCompareFP(I); break;
257 case X86II::CondMovFP: handleCondMovFP(I); break;
258 case X86II::SpecialFP: handleSpecialFP(I); break;
259 default: llvm_unreachable("Unknown FP Type!");
262 // Check to see if any of the values defined by this instruction are dead
263 // after definition. If so, pop them.
264 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
265 unsigned Reg = DeadRegs[i];
266 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
267 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
268 freeStackSlotAfter(I, Reg-X86::FP0);
272 // Print out all of the instructions expanded to if -debug
273 DEBUG(
274 MachineBasicBlock::iterator PrevI(PrevMI);
275 if (I == PrevI) {
276 cerr << "Just deleted pseudo instruction\n";
277 } else {
278 MachineBasicBlock::iterator Start = I;
279 // Rewind to first instruction newly inserted.
280 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
281 cerr << "Inserted instructions:\n\t";
282 Start->print(*cerr.stream(), &MF.getTarget());
283 while (++Start != next(I)) {}
285 dumpStack();
288 Changed = true;
291 assert(isStackEmpty() && "Stack not empty at end of basic block?");
292 return Changed;
295 //===----------------------------------------------------------------------===//
296 // Efficient Lookup Table Support
297 //===----------------------------------------------------------------------===//
299 namespace {
300 struct TableEntry {
301 unsigned from;
302 unsigned to;
303 bool operator<(const TableEntry &TE) const { return from < TE.from; }
304 friend bool operator<(const TableEntry &TE, unsigned V) {
305 return TE.from < V;
307 friend bool operator<(unsigned V, const TableEntry &TE) {
308 return V < TE.from;
313 #ifndef NDEBUG
314 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
315 for (unsigned i = 0; i != NumEntries-1; ++i)
316 if (!(Table[i] < Table[i+1])) return false;
317 return true;
319 #endif
321 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
322 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
323 if (I != Table+N && I->from == Opcode)
324 return I->to;
325 return -1;
328 #ifdef NDEBUG
329 #define ASSERT_SORTED(TABLE)
330 #else
331 #define ASSERT_SORTED(TABLE) \
332 { static bool TABLE##Checked = false; \
333 if (!TABLE##Checked) { \
334 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
335 "All lookup tables must be sorted for efficient access!"); \
336 TABLE##Checked = true; \
339 #endif
341 //===----------------------------------------------------------------------===//
342 // Register File -> Register Stack Mapping Methods
343 //===----------------------------------------------------------------------===//
345 // OpcodeTable - Sorted map of register instructions to their stack version.
346 // The first element is an register file pseudo instruction, the second is the
347 // concrete X86 instruction which uses the register stack.
349 static const TableEntry OpcodeTable[] = {
350 { X86::ABS_Fp32 , X86::ABS_F },
351 { X86::ABS_Fp64 , X86::ABS_F },
352 { X86::ABS_Fp80 , X86::ABS_F },
353 { X86::ADD_Fp32m , X86::ADD_F32m },
354 { X86::ADD_Fp64m , X86::ADD_F64m },
355 { X86::ADD_Fp64m32 , X86::ADD_F32m },
356 { X86::ADD_Fp80m32 , X86::ADD_F32m },
357 { X86::ADD_Fp80m64 , X86::ADD_F64m },
358 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
359 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
360 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
361 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
362 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
363 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
364 { X86::CHS_Fp32 , X86::CHS_F },
365 { X86::CHS_Fp64 , X86::CHS_F },
366 { X86::CHS_Fp80 , X86::CHS_F },
367 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
368 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
369 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
370 { X86::CMOVB_Fp32 , X86::CMOVB_F },
371 { X86::CMOVB_Fp64 , X86::CMOVB_F },
372 { X86::CMOVB_Fp80 , X86::CMOVB_F },
373 { X86::CMOVE_Fp32 , X86::CMOVE_F },
374 { X86::CMOVE_Fp64 , X86::CMOVE_F },
375 { X86::CMOVE_Fp80 , X86::CMOVE_F },
376 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
377 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
378 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
379 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
380 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
381 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
382 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
383 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
384 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
385 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
386 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
387 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
388 { X86::CMOVP_Fp32 , X86::CMOVP_F },
389 { X86::CMOVP_Fp64 , X86::CMOVP_F },
390 { X86::CMOVP_Fp80 , X86::CMOVP_F },
391 { X86::COS_Fp32 , X86::COS_F },
392 { X86::COS_Fp64 , X86::COS_F },
393 { X86::COS_Fp80 , X86::COS_F },
394 { X86::DIVR_Fp32m , X86::DIVR_F32m },
395 { X86::DIVR_Fp64m , X86::DIVR_F64m },
396 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
397 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
398 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
399 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
400 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
401 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
402 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
403 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
404 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
405 { X86::DIV_Fp32m , X86::DIV_F32m },
406 { X86::DIV_Fp64m , X86::DIV_F64m },
407 { X86::DIV_Fp64m32 , X86::DIV_F32m },
408 { X86::DIV_Fp80m32 , X86::DIV_F32m },
409 { X86::DIV_Fp80m64 , X86::DIV_F64m },
410 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
411 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
412 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
413 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
414 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
415 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
416 { X86::ILD_Fp16m32 , X86::ILD_F16m },
417 { X86::ILD_Fp16m64 , X86::ILD_F16m },
418 { X86::ILD_Fp16m80 , X86::ILD_F16m },
419 { X86::ILD_Fp32m32 , X86::ILD_F32m },
420 { X86::ILD_Fp32m64 , X86::ILD_F32m },
421 { X86::ILD_Fp32m80 , X86::ILD_F32m },
422 { X86::ILD_Fp64m32 , X86::ILD_F64m },
423 { X86::ILD_Fp64m64 , X86::ILD_F64m },
424 { X86::ILD_Fp64m80 , X86::ILD_F64m },
425 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
426 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
427 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
428 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
429 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
430 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
431 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
432 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
433 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
434 { X86::IST_Fp16m32 , X86::IST_F16m },
435 { X86::IST_Fp16m64 , X86::IST_F16m },
436 { X86::IST_Fp16m80 , X86::IST_F16m },
437 { X86::IST_Fp32m32 , X86::IST_F32m },
438 { X86::IST_Fp32m64 , X86::IST_F32m },
439 { X86::IST_Fp32m80 , X86::IST_F32m },
440 { X86::IST_Fp64m32 , X86::IST_FP64m },
441 { X86::IST_Fp64m64 , X86::IST_FP64m },
442 { X86::IST_Fp64m80 , X86::IST_FP64m },
443 { X86::LD_Fp032 , X86::LD_F0 },
444 { X86::LD_Fp064 , X86::LD_F0 },
445 { X86::LD_Fp080 , X86::LD_F0 },
446 { X86::LD_Fp132 , X86::LD_F1 },
447 { X86::LD_Fp164 , X86::LD_F1 },
448 { X86::LD_Fp180 , X86::LD_F1 },
449 { X86::LD_Fp32m , X86::LD_F32m },
450 { X86::LD_Fp32m64 , X86::LD_F32m },
451 { X86::LD_Fp32m80 , X86::LD_F32m },
452 { X86::LD_Fp64m , X86::LD_F64m },
453 { X86::LD_Fp64m80 , X86::LD_F64m },
454 { X86::LD_Fp80m , X86::LD_F80m },
455 { X86::MUL_Fp32m , X86::MUL_F32m },
456 { X86::MUL_Fp64m , X86::MUL_F64m },
457 { X86::MUL_Fp64m32 , X86::MUL_F32m },
458 { X86::MUL_Fp80m32 , X86::MUL_F32m },
459 { X86::MUL_Fp80m64 , X86::MUL_F64m },
460 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
461 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
462 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
463 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
464 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
465 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
466 { X86::SIN_Fp32 , X86::SIN_F },
467 { X86::SIN_Fp64 , X86::SIN_F },
468 { X86::SIN_Fp80 , X86::SIN_F },
469 { X86::SQRT_Fp32 , X86::SQRT_F },
470 { X86::SQRT_Fp64 , X86::SQRT_F },
471 { X86::SQRT_Fp80 , X86::SQRT_F },
472 { X86::ST_Fp32m , X86::ST_F32m },
473 { X86::ST_Fp64m , X86::ST_F64m },
474 { X86::ST_Fp64m32 , X86::ST_F32m },
475 { X86::ST_Fp80m32 , X86::ST_F32m },
476 { X86::ST_Fp80m64 , X86::ST_F64m },
477 { X86::ST_FpP80m , X86::ST_FP80m },
478 { X86::SUBR_Fp32m , X86::SUBR_F32m },
479 { X86::SUBR_Fp64m , X86::SUBR_F64m },
480 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
481 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
482 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
483 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
484 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
485 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
486 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
487 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
488 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
489 { X86::SUB_Fp32m , X86::SUB_F32m },
490 { X86::SUB_Fp64m , X86::SUB_F64m },
491 { X86::SUB_Fp64m32 , X86::SUB_F32m },
492 { X86::SUB_Fp80m32 , X86::SUB_F32m },
493 { X86::SUB_Fp80m64 , X86::SUB_F64m },
494 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
495 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
496 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
497 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
498 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
499 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
500 { X86::TST_Fp32 , X86::TST_F },
501 { X86::TST_Fp64 , X86::TST_F },
502 { X86::TST_Fp80 , X86::TST_F },
503 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
504 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
505 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
506 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
507 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
508 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
511 static unsigned getConcreteOpcode(unsigned Opcode) {
512 ASSERT_SORTED(OpcodeTable);
513 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
514 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
515 return Opc;
518 //===----------------------------------------------------------------------===//
519 // Helper Methods
520 //===----------------------------------------------------------------------===//
522 // PopTable - Sorted map of instructions to their popping version. The first
523 // element is an instruction, the second is the version which pops.
525 static const TableEntry PopTable[] = {
526 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
528 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
529 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
531 { X86::IST_F16m , X86::IST_FP16m },
532 { X86::IST_F32m , X86::IST_FP32m },
534 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
536 { X86::ST_F32m , X86::ST_FP32m },
537 { X86::ST_F64m , X86::ST_FP64m },
538 { X86::ST_Frr , X86::ST_FPrr },
540 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
541 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
543 { X86::UCOM_FIr , X86::UCOM_FIPr },
545 { X86::UCOM_FPr , X86::UCOM_FPPr },
546 { X86::UCOM_Fr , X86::UCOM_FPr },
549 /// popStackAfter - Pop the current value off of the top of the FP stack after
550 /// the specified instruction. This attempts to be sneaky and combine the pop
551 /// into the instruction itself if possible. The iterator is left pointing to
552 /// the last instruction, be it a new pop instruction inserted, or the old
553 /// instruction if it was modified in place.
555 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
556 MachineInstr* MI = I;
557 DebugLoc dl = MI->getDebugLoc();
558 ASSERT_SORTED(PopTable);
559 assert(StackTop > 0 && "Cannot pop empty stack!");
560 RegMap[Stack[--StackTop]] = ~0; // Update state
562 // Check to see if there is a popping version of this instruction...
563 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
564 if (Opcode != -1) {
565 I->setDesc(TII->get(Opcode));
566 if (Opcode == X86::UCOM_FPPr)
567 I->RemoveOperand(0);
568 } else { // Insert an explicit pop
569 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
573 /// freeStackSlotAfter - Free the specified register from the register stack, so
574 /// that it is no longer in a register. If the register is currently at the top
575 /// of the stack, we just pop the current instruction, otherwise we store the
576 /// current top-of-stack into the specified slot, then pop the top of stack.
577 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
578 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
579 popStackAfter(I);
580 return;
583 // Otherwise, store the top of stack into the dead slot, killing the operand
584 // without having to add in an explicit xchg then pop.
586 unsigned STReg = getSTReg(FPRegNo);
587 unsigned OldSlot = getSlot(FPRegNo);
588 unsigned TopReg = Stack[StackTop-1];
589 Stack[OldSlot] = TopReg;
590 RegMap[TopReg] = OldSlot;
591 RegMap[FPRegNo] = ~0;
592 Stack[--StackTop] = ~0;
593 MachineInstr *MI = I;
594 DebugLoc dl = MI->getDebugLoc();
595 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
599 //===----------------------------------------------------------------------===//
600 // Instruction transformation implementation
601 //===----------------------------------------------------------------------===//
603 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
605 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
606 MachineInstr *MI = I;
607 unsigned DestReg = getFPReg(MI->getOperand(0));
609 // Change from the pseudo instruction to the concrete instruction.
610 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
611 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
613 // Result gets pushed on the stack.
614 pushReg(DestReg);
617 /// handleOneArgFP - fst <mem>, ST(0)
619 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
620 MachineInstr *MI = I;
621 unsigned NumOps = MI->getDesc().getNumOperands();
622 assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
623 "Can only handle fst* & ftst instructions!");
625 // Is this the last use of the source register?
626 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
627 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
629 // FISTP64m is strange because there isn't a non-popping versions.
630 // If we have one _and_ we don't want to pop the operand, duplicate the value
631 // on the stack instead of moving it. This ensure that popping the value is
632 // always ok.
633 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
635 if (!KillsSrc &&
636 (MI->getOpcode() == X86::IST_Fp64m32 ||
637 MI->getOpcode() == X86::ISTT_Fp16m32 ||
638 MI->getOpcode() == X86::ISTT_Fp32m32 ||
639 MI->getOpcode() == X86::ISTT_Fp64m32 ||
640 MI->getOpcode() == X86::IST_Fp64m64 ||
641 MI->getOpcode() == X86::ISTT_Fp16m64 ||
642 MI->getOpcode() == X86::ISTT_Fp32m64 ||
643 MI->getOpcode() == X86::ISTT_Fp64m64 ||
644 MI->getOpcode() == X86::IST_Fp64m80 ||
645 MI->getOpcode() == X86::ISTT_Fp16m80 ||
646 MI->getOpcode() == X86::ISTT_Fp32m80 ||
647 MI->getOpcode() == X86::ISTT_Fp64m80 ||
648 MI->getOpcode() == X86::ST_FpP80m)) {
649 duplicateToTop(Reg, 7 /*temp register*/, I);
650 } else {
651 moveToTop(Reg, I); // Move to the top of the stack...
654 // Convert from the pseudo instruction to the concrete instruction.
655 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
656 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
658 if (MI->getOpcode() == X86::IST_FP64m ||
659 MI->getOpcode() == X86::ISTT_FP16m ||
660 MI->getOpcode() == X86::ISTT_FP32m ||
661 MI->getOpcode() == X86::ISTT_FP64m ||
662 MI->getOpcode() == X86::ST_FP80m) {
663 assert(StackTop > 0 && "Stack empty??");
664 --StackTop;
665 } else if (KillsSrc) { // Last use of operand?
666 popStackAfter(I);
671 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
672 /// replace the value with a newly computed value. These instructions may have
673 /// non-fp operands after their FP operands.
675 /// Examples:
676 /// R1 = fchs R2
677 /// R1 = fadd R2, [mem]
679 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
680 MachineInstr *MI = I;
681 #ifndef NDEBUG
682 unsigned NumOps = MI->getDesc().getNumOperands();
683 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
684 #endif
686 // Is this the last use of the source register?
687 unsigned Reg = getFPReg(MI->getOperand(1));
688 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
690 if (KillsSrc) {
691 // If this is the last use of the source register, just make sure it's on
692 // the top of the stack.
693 moveToTop(Reg, I);
694 assert(StackTop > 0 && "Stack cannot be empty!");
695 --StackTop;
696 pushReg(getFPReg(MI->getOperand(0)));
697 } else {
698 // If this is not the last use of the source register, _copy_ it to the top
699 // of the stack.
700 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
703 // Change from the pseudo instruction to the concrete instruction.
704 MI->RemoveOperand(1); // Drop the source operand.
705 MI->RemoveOperand(0); // Drop the destination operand.
706 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
710 //===----------------------------------------------------------------------===//
711 // Define tables of various ways to map pseudo instructions
714 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
715 static const TableEntry ForwardST0Table[] = {
716 { X86::ADD_Fp32 , X86::ADD_FST0r },
717 { X86::ADD_Fp64 , X86::ADD_FST0r },
718 { X86::ADD_Fp80 , X86::ADD_FST0r },
719 { X86::DIV_Fp32 , X86::DIV_FST0r },
720 { X86::DIV_Fp64 , X86::DIV_FST0r },
721 { X86::DIV_Fp80 , X86::DIV_FST0r },
722 { X86::MUL_Fp32 , X86::MUL_FST0r },
723 { X86::MUL_Fp64 , X86::MUL_FST0r },
724 { X86::MUL_Fp80 , X86::MUL_FST0r },
725 { X86::SUB_Fp32 , X86::SUB_FST0r },
726 { X86::SUB_Fp64 , X86::SUB_FST0r },
727 { X86::SUB_Fp80 , X86::SUB_FST0r },
730 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
731 static const TableEntry ReverseST0Table[] = {
732 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
733 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
734 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
735 { X86::DIV_Fp32 , X86::DIVR_FST0r },
736 { X86::DIV_Fp64 , X86::DIVR_FST0r },
737 { X86::DIV_Fp80 , X86::DIVR_FST0r },
738 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
739 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
740 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
741 { X86::SUB_Fp32 , X86::SUBR_FST0r },
742 { X86::SUB_Fp64 , X86::SUBR_FST0r },
743 { X86::SUB_Fp80 , X86::SUBR_FST0r },
746 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
747 static const TableEntry ForwardSTiTable[] = {
748 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
749 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
750 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
751 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
752 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
753 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
754 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
755 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
756 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
757 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
758 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
759 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
762 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
763 static const TableEntry ReverseSTiTable[] = {
764 { X86::ADD_Fp32 , X86::ADD_FrST0 },
765 { X86::ADD_Fp64 , X86::ADD_FrST0 },
766 { X86::ADD_Fp80 , X86::ADD_FrST0 },
767 { X86::DIV_Fp32 , X86::DIV_FrST0 },
768 { X86::DIV_Fp64 , X86::DIV_FrST0 },
769 { X86::DIV_Fp80 , X86::DIV_FrST0 },
770 { X86::MUL_Fp32 , X86::MUL_FrST0 },
771 { X86::MUL_Fp64 , X86::MUL_FrST0 },
772 { X86::MUL_Fp80 , X86::MUL_FrST0 },
773 { X86::SUB_Fp32 , X86::SUB_FrST0 },
774 { X86::SUB_Fp64 , X86::SUB_FrST0 },
775 { X86::SUB_Fp80 , X86::SUB_FrST0 },
779 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
780 /// instructions which need to be simplified and possibly transformed.
782 /// Result: ST(0) = fsub ST(0), ST(i)
783 /// ST(i) = fsub ST(0), ST(i)
784 /// ST(0) = fsubr ST(0), ST(i)
785 /// ST(i) = fsubr ST(0), ST(i)
787 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
788 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
789 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
790 MachineInstr *MI = I;
792 unsigned NumOperands = MI->getDesc().getNumOperands();
793 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
794 unsigned Dest = getFPReg(MI->getOperand(0));
795 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
796 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
797 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
798 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
799 DebugLoc dl = MI->getDebugLoc();
801 unsigned TOS = getStackEntry(0);
803 // One of our operands must be on the top of the stack. If neither is yet, we
804 // need to move one.
805 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
806 // We can choose to move either operand to the top of the stack. If one of
807 // the operands is killed by this instruction, we want that one so that we
808 // can update right on top of the old version.
809 if (KillsOp0) {
810 moveToTop(Op0, I); // Move dead operand to TOS.
811 TOS = Op0;
812 } else if (KillsOp1) {
813 moveToTop(Op1, I);
814 TOS = Op1;
815 } else {
816 // All of the operands are live after this instruction executes, so we
817 // cannot update on top of any operand. Because of this, we must
818 // duplicate one of the stack elements to the top. It doesn't matter
819 // which one we pick.
821 duplicateToTop(Op0, Dest, I);
822 Op0 = TOS = Dest;
823 KillsOp0 = true;
825 } else if (!KillsOp0 && !KillsOp1) {
826 // If we DO have one of our operands at the top of the stack, but we don't
827 // have a dead operand, we must duplicate one of the operands to a new slot
828 // on the stack.
829 duplicateToTop(Op0, Dest, I);
830 Op0 = TOS = Dest;
831 KillsOp0 = true;
834 // Now we know that one of our operands is on the top of the stack, and at
835 // least one of our operands is killed by this instruction.
836 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
837 "Stack conditions not set up right!");
839 // We decide which form to use based on what is on the top of the stack, and
840 // which operand is killed by this instruction.
841 const TableEntry *InstTable;
842 bool isForward = TOS == Op0;
843 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
844 if (updateST0) {
845 if (isForward)
846 InstTable = ForwardST0Table;
847 else
848 InstTable = ReverseST0Table;
849 } else {
850 if (isForward)
851 InstTable = ForwardSTiTable;
852 else
853 InstTable = ReverseSTiTable;
856 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
857 MI->getOpcode());
858 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
860 // NotTOS - The register which is not on the top of stack...
861 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
863 // Replace the old instruction with a new instruction
864 MBB->remove(I++);
865 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
867 // If both operands are killed, pop one off of the stack in addition to
868 // overwriting the other one.
869 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
870 assert(!updateST0 && "Should have updated other operand!");
871 popStackAfter(I); // Pop the top of stack
874 // Update stack information so that we know the destination register is now on
875 // the stack.
876 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
877 assert(UpdatedSlot < StackTop && Dest < 7);
878 Stack[UpdatedSlot] = Dest;
879 RegMap[Dest] = UpdatedSlot;
880 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
883 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
884 /// register arguments and no explicit destinations.
886 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
887 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
888 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
889 MachineInstr *MI = I;
891 unsigned NumOperands = MI->getDesc().getNumOperands();
892 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
893 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
894 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
895 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
896 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
898 // Make sure the first operand is on the top of stack, the other one can be
899 // anywhere.
900 moveToTop(Op0, I);
902 // Change from the pseudo instruction to the concrete instruction.
903 MI->getOperand(0).setReg(getSTReg(Op1));
904 MI->RemoveOperand(1);
905 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
907 // If any of the operands are killed by this instruction, free them.
908 if (KillsOp0) freeStackSlotAfter(I, Op0);
909 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
912 /// handleCondMovFP - Handle two address conditional move instructions. These
913 /// instructions move a st(i) register to st(0) iff a condition is true. These
914 /// instructions require that the first operand is at the top of the stack, but
915 /// otherwise don't modify the stack at all.
916 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
917 MachineInstr *MI = I;
919 unsigned Op0 = getFPReg(MI->getOperand(0));
920 unsigned Op1 = getFPReg(MI->getOperand(2));
921 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
923 // The first operand *must* be on the top of the stack.
924 moveToTop(Op0, I);
926 // Change the second operand to the stack register that the operand is in.
927 // Change from the pseudo instruction to the concrete instruction.
928 MI->RemoveOperand(0);
929 MI->RemoveOperand(1);
930 MI->getOperand(0).setReg(getSTReg(Op1));
931 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
933 // If we kill the second operand, make sure to pop it from the stack.
934 if (Op0 != Op1 && KillsOp1) {
935 // Get this value off of the register stack.
936 freeStackSlotAfter(I, Op1);
941 /// handleSpecialFP - Handle special instructions which behave unlike other
942 /// floating point instructions. This is primarily intended for use by pseudo
943 /// instructions.
945 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
946 MachineInstr *MI = I;
947 DebugLoc dl = MI->getDebugLoc();
948 switch (MI->getOpcode()) {
949 default: llvm_unreachable("Unknown SpecialFP instruction!");
950 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
951 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
952 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
953 assert(StackTop == 0 && "Stack should be empty after a call!");
954 pushReg(getFPReg(MI->getOperand(0)));
955 break;
956 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
957 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
958 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
959 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
960 // The pattern we expect is:
961 // CALL
962 // FP1 = FpGET_ST0
963 // FP4 = FpGET_ST1
965 // At this point, we've pushed FP1 on the top of stack, so it should be
966 // present if it isn't dead. If it was dead, we already emitted a pop to
967 // remove it from the stack and StackTop = 0.
969 // Push FP4 as top of stack next.
970 pushReg(getFPReg(MI->getOperand(0)));
972 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
973 // dead. In this case, the ST(1) value is the only thing that is live, so
974 // it should be on the TOS (after the pop that was emitted) and is. Just
975 // continue in this case.
976 if (StackTop == 1)
977 break;
979 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
980 // elements so that our accounting is correct.
981 unsigned RegOnTop = getStackEntry(0);
982 unsigned RegNo = getStackEntry(1);
984 // Swap the slots the regs are in.
985 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
987 // Swap stack slot contents.
988 assert(RegMap[RegOnTop] < StackTop);
989 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
990 break;
992 case X86::FpSET_ST0_32:
993 case X86::FpSET_ST0_64:
994 case X86::FpSET_ST0_80: {
995 unsigned Op0 = getFPReg(MI->getOperand(0));
997 // FpSET_ST0_80 is generated by copyRegToReg for both function return
998 // and inline assembly with the "st" constrain. In the latter case,
999 // it is possible for ST(0) to be alive after this instruction.
1000 if (!MI->killsRegister(X86::FP0 + Op0)) {
1001 // Duplicate Op0
1002 duplicateToTop(0, 7 /*temp register*/, I);
1003 } else {
1004 moveToTop(Op0, I);
1006 --StackTop; // "Forget" we have something on the top of stack!
1007 break;
1009 case X86::FpSET_ST1_32:
1010 case X86::FpSET_ST1_64:
1011 case X86::FpSET_ST1_80:
1012 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1013 if (StackTop == 1) {
1014 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1015 NumFXCH++;
1016 StackTop = 0;
1017 break;
1019 assert(StackTop == 2 && "Stack should have two element on it to return!");
1020 --StackTop; // "Forget" we have something on the top of stack!
1021 break;
1022 case X86::MOV_Fp3232:
1023 case X86::MOV_Fp3264:
1024 case X86::MOV_Fp6432:
1025 case X86::MOV_Fp6464:
1026 case X86::MOV_Fp3280:
1027 case X86::MOV_Fp6480:
1028 case X86::MOV_Fp8032:
1029 case X86::MOV_Fp8064:
1030 case X86::MOV_Fp8080: {
1031 const MachineOperand &MO1 = MI->getOperand(1);
1032 unsigned SrcReg = getFPReg(MO1);
1034 const MachineOperand &MO0 = MI->getOperand(0);
1035 // These can be created due to inline asm. Two address pass can introduce
1036 // copies from RFP registers to virtual registers.
1037 if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1038 assert(MO1.isKill());
1039 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1040 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1041 assert((StackTop == 1 || StackTop == 2)
1042 && "Stack should have one or two element on it to return!");
1043 --StackTop; // "Forget" we have something on the top of stack!
1044 break;
1045 } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1046 assert(MO1.isKill());
1047 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1048 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1049 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1050 if (StackTop == 1) {
1051 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1052 NumFXCH++;
1053 StackTop = 0;
1054 break;
1056 assert(StackTop == 2 && "Stack should have two element on it to return!");
1057 --StackTop; // "Forget" we have something on the top of stack!
1058 break;
1061 unsigned DestReg = getFPReg(MO0);
1062 if (MI->killsRegister(X86::FP0+SrcReg)) {
1063 // If the input operand is killed, we can just change the owner of the
1064 // incoming stack slot into the result.
1065 unsigned Slot = getSlot(SrcReg);
1066 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1067 Stack[Slot] = DestReg;
1068 RegMap[DestReg] = Slot;
1070 } else {
1071 // For FMOV we just duplicate the specified value to a new stack slot.
1072 // This could be made better, but would require substantial changes.
1073 duplicateToTop(SrcReg, DestReg, I);
1076 break;
1077 case TargetInstrInfo::INLINEASM: {
1078 // The inline asm MachineInstr currently only *uses* FP registers for the
1079 // 'f' constraint. These should be turned into the current ST(x) register
1080 // in the machine instr. Also, any kills should be explicitly popped after
1081 // the inline asm.
1082 unsigned Kills[7];
1083 unsigned NumKills = 0;
1084 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1085 MachineOperand &Op = MI->getOperand(i);
1086 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1087 continue;
1088 assert(Op.isUse() && "Only handle inline asm uses right now");
1090 unsigned FPReg = getFPReg(Op);
1091 Op.setReg(getSTReg(FPReg));
1093 // If we kill this operand, make sure to pop it from the stack after the
1094 // asm. We just remember it for now, and pop them all off at the end in
1095 // a batch.
1096 if (Op.isKill())
1097 Kills[NumKills++] = FPReg;
1100 // If this asm kills any FP registers (is the last use of them) we must
1101 // explicitly emit pop instructions for them. Do this now after the asm has
1102 // executed so that the ST(x) numbers are not off (which would happen if we
1103 // did this inline with operand rewriting).
1105 // Note: this might be a non-optimal pop sequence. We might be able to do
1106 // better by trying to pop in stack order or something.
1107 MachineBasicBlock::iterator InsertPt = MI;
1108 while (NumKills)
1109 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1111 // Don't delete the inline asm!
1112 return;
1115 case X86::RET:
1116 case X86::RETI:
1117 // If RET has an FP register use operand, pass the first one in ST(0) and
1118 // the second one in ST(1).
1119 if (isStackEmpty()) return; // Quick check to see if any are possible.
1121 // Find the register operands.
1122 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1124 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1125 MachineOperand &Op = MI->getOperand(i);
1126 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1127 continue;
1128 // FP Register uses must be kills unless there are two uses of the same
1129 // register, in which case only one will be a kill.
1130 assert(Op.isUse() &&
1131 (Op.isKill() || // Marked kill.
1132 getFPReg(Op) == FirstFPRegOp || // Second instance.
1133 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1134 "Ret only defs operands, and values aren't live beyond it");
1136 if (FirstFPRegOp == ~0U)
1137 FirstFPRegOp = getFPReg(Op);
1138 else {
1139 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1140 SecondFPRegOp = getFPReg(Op);
1143 // Remove the operand so that later passes don't see it.
1144 MI->RemoveOperand(i);
1145 --i, --e;
1148 // There are only four possibilities here:
1149 // 1) we are returning a single FP value. In this case, it has to be in
1150 // ST(0) already, so just declare success by removing the value from the
1151 // FP Stack.
1152 if (SecondFPRegOp == ~0U) {
1153 // Assert that the top of stack contains the right FP register.
1154 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1155 "Top of stack not the right register for RET!");
1157 // Ok, everything is good, mark the value as not being on the stack
1158 // anymore so that our assertion about the stack being empty at end of
1159 // block doesn't fire.
1160 StackTop = 0;
1161 return;
1164 // Otherwise, we are returning two values:
1165 // 2) If returning the same value for both, we only have one thing in the FP
1166 // stack. Consider: RET FP1, FP1
1167 if (StackTop == 1) {
1168 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1169 "Stack misconfiguration for RET!");
1171 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1172 // register to hold it.
1173 unsigned NewReg = (FirstFPRegOp+1)%7;
1174 duplicateToTop(FirstFPRegOp, NewReg, MI);
1175 FirstFPRegOp = NewReg;
1178 /// Okay we know we have two different FPx operands now:
1179 assert(StackTop == 2 && "Must have two values live!");
1181 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1182 /// in ST(1). In this case, emit an fxch.
1183 if (getStackEntry(0) == SecondFPRegOp) {
1184 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1185 moveToTop(FirstFPRegOp, MI);
1188 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1189 /// ST(1). Just remove both from our understanding of the stack and return.
1190 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1191 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1192 StackTop = 0;
1193 return;
1196 I = MBB->erase(I); // Remove the pseudo instruction
1197 --I;