1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the pass which converts floating point instructions from
11 // virtual registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
15 // This pass is hampered by the lack of decent CFG manipulation routines for
16 // machine code. In particular, this wants to be able to split critical edges
17 // as necessary, traverse the machine basic block CFG in depth-first order, and
18 // allow there to be multiple machine basic blocks for each LLVM basicblock
19 // (needed for critical edge splitting).
21 // In particular, this pass currently barfs on critical edges. Because of this,
22 // it requires the instruction selector to insert FP_REG_KILL instructions on
23 // the exits of any basic block that has critical edges going from it, or which
24 // branch to a critical basic block.
26 // FIXME: this is not implemented yet. The stackifier pass only works on local
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "x86-codegen"
33 #include "X86InstrInfo.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
51 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
52 STATISTIC(NumFP
, "Number of floating point instructions");
55 struct VISIBILITY_HIDDEN FPS
: public MachineFunctionPass
{
57 FPS() : MachineFunctionPass(&ID
) {}
59 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
60 AU
.addPreservedID(MachineLoopInfoID
);
61 AU
.addPreservedID(MachineDominatorsID
);
62 MachineFunctionPass::getAnalysisUsage(AU
);
65 virtual bool runOnMachineFunction(MachineFunction
&MF
);
67 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70 const TargetInstrInfo
*TII
; // Machine instruction info.
71 MachineBasicBlock
*MBB
; // Current basic block
72 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
73 unsigned RegMap
[8]; // Track which stack slot contains each register
74 unsigned StackTop
; // The current top of the FP stack.
76 void dumpStack() const {
77 cerr
<< "Stack contents:";
78 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
79 cerr
<< " FP" << Stack
[i
];
80 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
85 /// isStackEmpty - Return true if the FP stack is empty.
86 bool isStackEmpty() const {
90 // getSlot - Return the stack slot number a particular register number is
92 unsigned getSlot(unsigned RegNo
) const {
93 assert(RegNo
< 8 && "Regno out of range!");
97 // getStackEntry - Return the X86::FP<n> register in register ST(i).
98 unsigned getStackEntry(unsigned STi
) const {
99 assert(STi
< StackTop
&& "Access past stack top!");
100 return Stack
[StackTop
-1-STi
];
103 // getSTReg - Return the X86::ST(i) register which contains the specified
104 // FP<RegNo> register.
105 unsigned getSTReg(unsigned RegNo
) const {
106 return StackTop
- 1 - getSlot(RegNo
) + llvm::X86::ST0
;
109 // pushReg - Push the specified FP<n> register onto the stack.
110 void pushReg(unsigned Reg
) {
111 assert(Reg
< 8 && "Register number out of range!");
112 assert(StackTop
< 8 && "Stack overflow!");
113 Stack
[StackTop
] = Reg
;
114 RegMap
[Reg
] = StackTop
++;
117 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
118 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator I
) {
119 MachineInstr
*MI
= I
;
120 DebugLoc dl
= MI
->getDebugLoc();
121 if (isAtTop(RegNo
)) return;
123 unsigned STReg
= getSTReg(RegNo
);
124 unsigned RegOnTop
= getStackEntry(0);
126 // Swap the slots the regs are in.
127 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
129 // Swap stack slot contents.
130 assert(RegMap
[RegOnTop
] < StackTop
);
131 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
133 // Emit an fxch to update the runtime processors version of the state.
134 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(STReg
);
138 void duplicateToTop(unsigned RegNo
, unsigned AsReg
, MachineInstr
*I
) {
139 DebugLoc dl
= I
->getDebugLoc();
140 unsigned STReg
= getSTReg(RegNo
);
141 pushReg(AsReg
); // New register on top of stack
143 BuildMI(*MBB
, I
, dl
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
146 // popStackAfter - Pop the current value off of the top of the FP stack
147 // after the specified instruction.
148 void popStackAfter(MachineBasicBlock::iterator
&I
);
150 // freeStackSlotAfter - Free the specified register from the register stack,
151 // so that it is no longer in a register. If the register is currently at
152 // the top of the stack, we just pop the current instruction, otherwise we
153 // store the current top-of-stack into the specified slot, then pop the top
155 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
157 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
159 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
160 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
161 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
162 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
163 void handleCompareFP(MachineBasicBlock::iterator
&I
);
164 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
165 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
170 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
172 /// getFPReg - Return the X86::FPx register number for the specified operand.
173 /// For example, this returns 3 for X86::FP3.
174 static unsigned getFPReg(const MachineOperand
&MO
) {
175 assert(MO
.isReg() && "Expected an FP register!");
176 unsigned Reg
= MO
.getReg();
177 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
178 return Reg
- X86::FP0
;
182 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
183 /// register references into FP stack references.
185 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
186 // We only need to run this pass if there are any FP registers used in this
187 // function. If it is all integer, there is nothing for us to do!
188 bool FPIsUsed
= false;
190 assert(X86::FP6
== X86::FP0
+6 && "Register enums aren't sorted right!");
191 for (unsigned i
= 0; i
<= 6; ++i
)
192 if (MF
.getRegInfo().isPhysRegUsed(X86::FP0
+i
)) {
198 if (!FPIsUsed
) return false;
200 TII
= MF
.getTarget().getInstrInfo();
203 // Process the function in depth first order so that we process at least one
204 // of the predecessors for every reachable block in the function.
205 SmallPtrSet
<MachineBasicBlock
*, 8> Processed
;
206 MachineBasicBlock
*Entry
= MF
.begin();
208 bool Changed
= false;
209 for (df_ext_iterator
<MachineBasicBlock
*, SmallPtrSet
<MachineBasicBlock
*, 8> >
210 I
= df_ext_begin(Entry
, Processed
), E
= df_ext_end(Entry
, Processed
);
212 Changed
|= processBasicBlock(MF
, **I
);
217 /// processBasicBlock - Loop over all of the instructions in the basic block,
218 /// transforming FP instructions into their stack form.
220 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
221 bool Changed
= false;
224 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
225 MachineInstr
*MI
= I
;
226 unsigned Flags
= MI
->getDesc().TSFlags
;
228 unsigned FPInstClass
= Flags
& X86II::FPTypeMask
;
229 if (MI
->getOpcode() == TargetInstrInfo::INLINEASM
)
230 FPInstClass
= X86II::SpecialFP
;
232 if (FPInstClass
== X86II::NotFP
)
233 continue; // Efficiently ignore non-fp insts!
235 MachineInstr
*PrevMI
= 0;
239 ++NumFP
; // Keep track of # of pseudo instrs
240 DOUT
<< "\nFPInst:\t" << *MI
;
242 // Get dead variables list now because the MI pointer may be deleted as part
244 SmallVector
<unsigned, 8> DeadRegs
;
245 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
246 const MachineOperand
&MO
= MI
->getOperand(i
);
247 if (MO
.isReg() && MO
.isDead())
248 DeadRegs
.push_back(MO
.getReg());
251 switch (FPInstClass
) {
252 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
253 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
254 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
255 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
256 case X86II::CompareFP
: handleCompareFP(I
); break;
257 case X86II::CondMovFP
: handleCondMovFP(I
); break;
258 case X86II::SpecialFP
: handleSpecialFP(I
); break;
259 default: llvm_unreachable("Unknown FP Type!");
262 // Check to see if any of the values defined by this instruction are dead
263 // after definition. If so, pop them.
264 for (unsigned i
= 0, e
= DeadRegs
.size(); i
!= e
; ++i
) {
265 unsigned Reg
= DeadRegs
[i
];
266 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
267 DOUT
<< "Register FP#" << Reg
-X86::FP0
<< " is dead!\n";
268 freeStackSlotAfter(I
, Reg
-X86::FP0
);
272 // Print out all of the instructions expanded to if -debug
274 MachineBasicBlock::iterator
PrevI(PrevMI
);
276 cerr
<< "Just deleted pseudo instruction\n";
278 MachineBasicBlock::iterator Start
= I
;
279 // Rewind to first instruction newly inserted.
280 while (Start
!= BB
.begin() && prior(Start
) != PrevI
) --Start
;
281 cerr
<< "Inserted instructions:\n\t";
282 Start
->print(*cerr
.stream(), &MF
.getTarget());
283 while (++Start
!= next(I
)) {}
291 assert(isStackEmpty() && "Stack not empty at end of basic block?");
295 //===----------------------------------------------------------------------===//
296 // Efficient Lookup Table Support
297 //===----------------------------------------------------------------------===//
303 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
304 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
307 friend bool operator<(unsigned V
, const TableEntry
&TE
) {
314 static bool TableIsSorted(const TableEntry
*Table
, unsigned NumEntries
) {
315 for (unsigned i
= 0; i
!= NumEntries
-1; ++i
)
316 if (!(Table
[i
] < Table
[i
+1])) return false;
321 static int Lookup(const TableEntry
*Table
, unsigned N
, unsigned Opcode
) {
322 const TableEntry
*I
= std::lower_bound(Table
, Table
+N
, Opcode
);
323 if (I
!= Table
+N
&& I
->from
== Opcode
)
329 #define ASSERT_SORTED(TABLE)
331 #define ASSERT_SORTED(TABLE) \
332 { static bool TABLE##Checked = false; \
333 if (!TABLE##Checked) { \
334 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
335 "All lookup tables must be sorted for efficient access!"); \
336 TABLE##Checked = true; \
341 //===----------------------------------------------------------------------===//
342 // Register File -> Register Stack Mapping Methods
343 //===----------------------------------------------------------------------===//
345 // OpcodeTable - Sorted map of register instructions to their stack version.
346 // The first element is an register file pseudo instruction, the second is the
347 // concrete X86 instruction which uses the register stack.
349 static const TableEntry OpcodeTable
[] = {
350 { X86::ABS_Fp32
, X86::ABS_F
},
351 { X86::ABS_Fp64
, X86::ABS_F
},
352 { X86::ABS_Fp80
, X86::ABS_F
},
353 { X86::ADD_Fp32m
, X86::ADD_F32m
},
354 { X86::ADD_Fp64m
, X86::ADD_F64m
},
355 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
356 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
357 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
358 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
359 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
360 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
361 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
362 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
363 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
364 { X86::CHS_Fp32
, X86::CHS_F
},
365 { X86::CHS_Fp64
, X86::CHS_F
},
366 { X86::CHS_Fp80
, X86::CHS_F
},
367 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
368 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
369 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
370 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
371 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
372 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
373 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
374 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
375 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
376 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
377 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
378 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
379 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
380 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
381 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
382 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
383 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
384 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
385 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
386 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
387 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
388 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
389 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
390 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
391 { X86::COS_Fp32
, X86::COS_F
},
392 { X86::COS_Fp64
, X86::COS_F
},
393 { X86::COS_Fp80
, X86::COS_F
},
394 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
395 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
396 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
397 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
398 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
399 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
400 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
401 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
402 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
403 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
404 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
405 { X86::DIV_Fp32m
, X86::DIV_F32m
},
406 { X86::DIV_Fp64m
, X86::DIV_F64m
},
407 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
408 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
409 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
410 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
411 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
412 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
413 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
414 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
415 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
416 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
417 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
418 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
419 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
420 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
421 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
422 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
423 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
424 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
425 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
426 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
427 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
428 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
429 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
430 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
431 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
432 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
433 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
434 { X86::IST_Fp16m32
, X86::IST_F16m
},
435 { X86::IST_Fp16m64
, X86::IST_F16m
},
436 { X86::IST_Fp16m80
, X86::IST_F16m
},
437 { X86::IST_Fp32m32
, X86::IST_F32m
},
438 { X86::IST_Fp32m64
, X86::IST_F32m
},
439 { X86::IST_Fp32m80
, X86::IST_F32m
},
440 { X86::IST_Fp64m32
, X86::IST_FP64m
},
441 { X86::IST_Fp64m64
, X86::IST_FP64m
},
442 { X86::IST_Fp64m80
, X86::IST_FP64m
},
443 { X86::LD_Fp032
, X86::LD_F0
},
444 { X86::LD_Fp064
, X86::LD_F0
},
445 { X86::LD_Fp080
, X86::LD_F0
},
446 { X86::LD_Fp132
, X86::LD_F1
},
447 { X86::LD_Fp164
, X86::LD_F1
},
448 { X86::LD_Fp180
, X86::LD_F1
},
449 { X86::LD_Fp32m
, X86::LD_F32m
},
450 { X86::LD_Fp32m64
, X86::LD_F32m
},
451 { X86::LD_Fp32m80
, X86::LD_F32m
},
452 { X86::LD_Fp64m
, X86::LD_F64m
},
453 { X86::LD_Fp64m80
, X86::LD_F64m
},
454 { X86::LD_Fp80m
, X86::LD_F80m
},
455 { X86::MUL_Fp32m
, X86::MUL_F32m
},
456 { X86::MUL_Fp64m
, X86::MUL_F64m
},
457 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
458 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
459 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
460 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
461 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
462 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
463 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
464 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
465 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
466 { X86::SIN_Fp32
, X86::SIN_F
},
467 { X86::SIN_Fp64
, X86::SIN_F
},
468 { X86::SIN_Fp80
, X86::SIN_F
},
469 { X86::SQRT_Fp32
, X86::SQRT_F
},
470 { X86::SQRT_Fp64
, X86::SQRT_F
},
471 { X86::SQRT_Fp80
, X86::SQRT_F
},
472 { X86::ST_Fp32m
, X86::ST_F32m
},
473 { X86::ST_Fp64m
, X86::ST_F64m
},
474 { X86::ST_Fp64m32
, X86::ST_F32m
},
475 { X86::ST_Fp80m32
, X86::ST_F32m
},
476 { X86::ST_Fp80m64
, X86::ST_F64m
},
477 { X86::ST_FpP80m
, X86::ST_FP80m
},
478 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
479 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
480 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
481 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
482 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
483 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
484 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
485 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
486 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
487 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
488 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
489 { X86::SUB_Fp32m
, X86::SUB_F32m
},
490 { X86::SUB_Fp64m
, X86::SUB_F64m
},
491 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
492 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
493 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
494 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
495 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
496 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
497 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
498 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
499 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
500 { X86::TST_Fp32
, X86::TST_F
},
501 { X86::TST_Fp64
, X86::TST_F
},
502 { X86::TST_Fp80
, X86::TST_F
},
503 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
504 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
505 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
506 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
507 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
508 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
511 static unsigned getConcreteOpcode(unsigned Opcode
) {
512 ASSERT_SORTED(OpcodeTable
);
513 int Opc
= Lookup(OpcodeTable
, array_lengthof(OpcodeTable
), Opcode
);
514 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
518 //===----------------------------------------------------------------------===//
520 //===----------------------------------------------------------------------===//
522 // PopTable - Sorted map of instructions to their popping version. The first
523 // element is an instruction, the second is the version which pops.
525 static const TableEntry PopTable
[] = {
526 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
528 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
529 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
531 { X86::IST_F16m
, X86::IST_FP16m
},
532 { X86::IST_F32m
, X86::IST_FP32m
},
534 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
536 { X86::ST_F32m
, X86::ST_FP32m
},
537 { X86::ST_F64m
, X86::ST_FP64m
},
538 { X86::ST_Frr
, X86::ST_FPrr
},
540 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
541 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
543 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
545 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
546 { X86::UCOM_Fr
, X86::UCOM_FPr
},
549 /// popStackAfter - Pop the current value off of the top of the FP stack after
550 /// the specified instruction. This attempts to be sneaky and combine the pop
551 /// into the instruction itself if possible. The iterator is left pointing to
552 /// the last instruction, be it a new pop instruction inserted, or the old
553 /// instruction if it was modified in place.
555 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
556 MachineInstr
* MI
= I
;
557 DebugLoc dl
= MI
->getDebugLoc();
558 ASSERT_SORTED(PopTable
);
559 assert(StackTop
> 0 && "Cannot pop empty stack!");
560 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
562 // Check to see if there is a popping version of this instruction...
563 int Opcode
= Lookup(PopTable
, array_lengthof(PopTable
), I
->getOpcode());
565 I
->setDesc(TII
->get(Opcode
));
566 if (Opcode
== X86::UCOM_FPPr
)
568 } else { // Insert an explicit pop
569 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
573 /// freeStackSlotAfter - Free the specified register from the register stack, so
574 /// that it is no longer in a register. If the register is currently at the top
575 /// of the stack, we just pop the current instruction, otherwise we store the
576 /// current top-of-stack into the specified slot, then pop the top of stack.
577 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
578 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
583 // Otherwise, store the top of stack into the dead slot, killing the operand
584 // without having to add in an explicit xchg then pop.
586 unsigned STReg
= getSTReg(FPRegNo
);
587 unsigned OldSlot
= getSlot(FPRegNo
);
588 unsigned TopReg
= Stack
[StackTop
-1];
589 Stack
[OldSlot
] = TopReg
;
590 RegMap
[TopReg
] = OldSlot
;
591 RegMap
[FPRegNo
] = ~0;
592 Stack
[--StackTop
] = ~0;
593 MachineInstr
*MI
= I
;
594 DebugLoc dl
= MI
->getDebugLoc();
595 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(STReg
);
599 //===----------------------------------------------------------------------===//
600 // Instruction transformation implementation
601 //===----------------------------------------------------------------------===//
603 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
605 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
606 MachineInstr
*MI
= I
;
607 unsigned DestReg
= getFPReg(MI
->getOperand(0));
609 // Change from the pseudo instruction to the concrete instruction.
610 MI
->RemoveOperand(0); // Remove the explicit ST(0) operand
611 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
613 // Result gets pushed on the stack.
617 /// handleOneArgFP - fst <mem>, ST(0)
619 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
620 MachineInstr
*MI
= I
;
621 unsigned NumOps
= MI
->getDesc().getNumOperands();
622 assert((NumOps
== X86AddrNumOperands
+ 1 || NumOps
== 1) &&
623 "Can only handle fst* & ftst instructions!");
625 // Is this the last use of the source register?
626 unsigned Reg
= getFPReg(MI
->getOperand(NumOps
-1));
627 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
629 // FISTP64m is strange because there isn't a non-popping versions.
630 // If we have one _and_ we don't want to pop the operand, duplicate the value
631 // on the stack instead of moving it. This ensure that popping the value is
633 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
636 (MI
->getOpcode() == X86::IST_Fp64m32
||
637 MI
->getOpcode() == X86::ISTT_Fp16m32
||
638 MI
->getOpcode() == X86::ISTT_Fp32m32
||
639 MI
->getOpcode() == X86::ISTT_Fp64m32
||
640 MI
->getOpcode() == X86::IST_Fp64m64
||
641 MI
->getOpcode() == X86::ISTT_Fp16m64
||
642 MI
->getOpcode() == X86::ISTT_Fp32m64
||
643 MI
->getOpcode() == X86::ISTT_Fp64m64
||
644 MI
->getOpcode() == X86::IST_Fp64m80
||
645 MI
->getOpcode() == X86::ISTT_Fp16m80
||
646 MI
->getOpcode() == X86::ISTT_Fp32m80
||
647 MI
->getOpcode() == X86::ISTT_Fp64m80
||
648 MI
->getOpcode() == X86::ST_FpP80m
)) {
649 duplicateToTop(Reg
, 7 /*temp register*/, I
);
651 moveToTop(Reg
, I
); // Move to the top of the stack...
654 // Convert from the pseudo instruction to the concrete instruction.
655 MI
->RemoveOperand(NumOps
-1); // Remove explicit ST(0) operand
656 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
658 if (MI
->getOpcode() == X86::IST_FP64m
||
659 MI
->getOpcode() == X86::ISTT_FP16m
||
660 MI
->getOpcode() == X86::ISTT_FP32m
||
661 MI
->getOpcode() == X86::ISTT_FP64m
||
662 MI
->getOpcode() == X86::ST_FP80m
) {
663 assert(StackTop
> 0 && "Stack empty??");
665 } else if (KillsSrc
) { // Last use of operand?
671 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
672 /// replace the value with a newly computed value. These instructions may have
673 /// non-fp operands after their FP operands.
677 /// R1 = fadd R2, [mem]
679 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
680 MachineInstr
*MI
= I
;
682 unsigned NumOps
= MI
->getDesc().getNumOperands();
683 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
686 // Is this the last use of the source register?
687 unsigned Reg
= getFPReg(MI
->getOperand(1));
688 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
691 // If this is the last use of the source register, just make sure it's on
692 // the top of the stack.
694 assert(StackTop
> 0 && "Stack cannot be empty!");
696 pushReg(getFPReg(MI
->getOperand(0)));
698 // If this is not the last use of the source register, _copy_ it to the top
700 duplicateToTop(Reg
, getFPReg(MI
->getOperand(0)), I
);
703 // Change from the pseudo instruction to the concrete instruction.
704 MI
->RemoveOperand(1); // Drop the source operand.
705 MI
->RemoveOperand(0); // Drop the destination operand.
706 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
710 //===----------------------------------------------------------------------===//
711 // Define tables of various ways to map pseudo instructions
714 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
715 static const TableEntry ForwardST0Table
[] = {
716 { X86::ADD_Fp32
, X86::ADD_FST0r
},
717 { X86::ADD_Fp64
, X86::ADD_FST0r
},
718 { X86::ADD_Fp80
, X86::ADD_FST0r
},
719 { X86::DIV_Fp32
, X86::DIV_FST0r
},
720 { X86::DIV_Fp64
, X86::DIV_FST0r
},
721 { X86::DIV_Fp80
, X86::DIV_FST0r
},
722 { X86::MUL_Fp32
, X86::MUL_FST0r
},
723 { X86::MUL_Fp64
, X86::MUL_FST0r
},
724 { X86::MUL_Fp80
, X86::MUL_FST0r
},
725 { X86::SUB_Fp32
, X86::SUB_FST0r
},
726 { X86::SUB_Fp64
, X86::SUB_FST0r
},
727 { X86::SUB_Fp80
, X86::SUB_FST0r
},
730 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
731 static const TableEntry ReverseST0Table
[] = {
732 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
733 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
734 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
735 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
736 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
737 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
738 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
739 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
740 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
741 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
742 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
743 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
746 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
747 static const TableEntry ForwardSTiTable
[] = {
748 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
749 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
750 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
751 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
752 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
753 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
754 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
755 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
756 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
757 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
758 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
759 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
762 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
763 static const TableEntry ReverseSTiTable
[] = {
764 { X86::ADD_Fp32
, X86::ADD_FrST0
},
765 { X86::ADD_Fp64
, X86::ADD_FrST0
},
766 { X86::ADD_Fp80
, X86::ADD_FrST0
},
767 { X86::DIV_Fp32
, X86::DIV_FrST0
},
768 { X86::DIV_Fp64
, X86::DIV_FrST0
},
769 { X86::DIV_Fp80
, X86::DIV_FrST0
},
770 { X86::MUL_Fp32
, X86::MUL_FrST0
},
771 { X86::MUL_Fp64
, X86::MUL_FrST0
},
772 { X86::MUL_Fp80
, X86::MUL_FrST0
},
773 { X86::SUB_Fp32
, X86::SUB_FrST0
},
774 { X86::SUB_Fp64
, X86::SUB_FrST0
},
775 { X86::SUB_Fp80
, X86::SUB_FrST0
},
779 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
780 /// instructions which need to be simplified and possibly transformed.
782 /// Result: ST(0) = fsub ST(0), ST(i)
783 /// ST(i) = fsub ST(0), ST(i)
784 /// ST(0) = fsubr ST(0), ST(i)
785 /// ST(i) = fsubr ST(0), ST(i)
787 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
788 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
789 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
790 MachineInstr
*MI
= I
;
792 unsigned NumOperands
= MI
->getDesc().getNumOperands();
793 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
794 unsigned Dest
= getFPReg(MI
->getOperand(0));
795 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
796 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
797 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
798 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
799 DebugLoc dl
= MI
->getDebugLoc();
801 unsigned TOS
= getStackEntry(0);
803 // One of our operands must be on the top of the stack. If neither is yet, we
805 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
806 // We can choose to move either operand to the top of the stack. If one of
807 // the operands is killed by this instruction, we want that one so that we
808 // can update right on top of the old version.
810 moveToTop(Op0
, I
); // Move dead operand to TOS.
812 } else if (KillsOp1
) {
816 // All of the operands are live after this instruction executes, so we
817 // cannot update on top of any operand. Because of this, we must
818 // duplicate one of the stack elements to the top. It doesn't matter
819 // which one we pick.
821 duplicateToTop(Op0
, Dest
, I
);
825 } else if (!KillsOp0
&& !KillsOp1
) {
826 // If we DO have one of our operands at the top of the stack, but we don't
827 // have a dead operand, we must duplicate one of the operands to a new slot
829 duplicateToTop(Op0
, Dest
, I
);
834 // Now we know that one of our operands is on the top of the stack, and at
835 // least one of our operands is killed by this instruction.
836 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
837 "Stack conditions not set up right!");
839 // We decide which form to use based on what is on the top of the stack, and
840 // which operand is killed by this instruction.
841 const TableEntry
*InstTable
;
842 bool isForward
= TOS
== Op0
;
843 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
846 InstTable
= ForwardST0Table
;
848 InstTable
= ReverseST0Table
;
851 InstTable
= ForwardSTiTable
;
853 InstTable
= ReverseSTiTable
;
856 int Opcode
= Lookup(InstTable
, array_lengthof(ForwardST0Table
),
858 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
860 // NotTOS - The register which is not on the top of stack...
861 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
863 // Replace the old instruction with a new instruction
865 I
= BuildMI(*MBB
, I
, dl
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
867 // If both operands are killed, pop one off of the stack in addition to
868 // overwriting the other one.
869 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
870 assert(!updateST0
&& "Should have updated other operand!");
871 popStackAfter(I
); // Pop the top of stack
874 // Update stack information so that we know the destination register is now on
876 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
877 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
878 Stack
[UpdatedSlot
] = Dest
;
879 RegMap
[Dest
] = UpdatedSlot
;
880 MBB
->getParent()->DeleteMachineInstr(MI
); // Remove the old instruction
883 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
884 /// register arguments and no explicit destinations.
886 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
887 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
888 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
889 MachineInstr
*MI
= I
;
891 unsigned NumOperands
= MI
->getDesc().getNumOperands();
892 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
893 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
894 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
895 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
896 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
898 // Make sure the first operand is on the top of stack, the other one can be
902 // Change from the pseudo instruction to the concrete instruction.
903 MI
->getOperand(0).setReg(getSTReg(Op1
));
904 MI
->RemoveOperand(1);
905 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
907 // If any of the operands are killed by this instruction, free them.
908 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
909 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
912 /// handleCondMovFP - Handle two address conditional move instructions. These
913 /// instructions move a st(i) register to st(0) iff a condition is true. These
914 /// instructions require that the first operand is at the top of the stack, but
915 /// otherwise don't modify the stack at all.
916 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
917 MachineInstr
*MI
= I
;
919 unsigned Op0
= getFPReg(MI
->getOperand(0));
920 unsigned Op1
= getFPReg(MI
->getOperand(2));
921 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
923 // The first operand *must* be on the top of the stack.
926 // Change the second operand to the stack register that the operand is in.
927 // Change from the pseudo instruction to the concrete instruction.
928 MI
->RemoveOperand(0);
929 MI
->RemoveOperand(1);
930 MI
->getOperand(0).setReg(getSTReg(Op1
));
931 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
933 // If we kill the second operand, make sure to pop it from the stack.
934 if (Op0
!= Op1
&& KillsOp1
) {
935 // Get this value off of the register stack.
936 freeStackSlotAfter(I
, Op1
);
941 /// handleSpecialFP - Handle special instructions which behave unlike other
942 /// floating point instructions. This is primarily intended for use by pseudo
945 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&I
) {
946 MachineInstr
*MI
= I
;
947 DebugLoc dl
= MI
->getDebugLoc();
948 switch (MI
->getOpcode()) {
949 default: llvm_unreachable("Unknown SpecialFP instruction!");
950 case X86::FpGET_ST0_32
:// Appears immediately after a call returning FP type!
951 case X86::FpGET_ST0_64
:// Appears immediately after a call returning FP type!
952 case X86::FpGET_ST0_80
:// Appears immediately after a call returning FP type!
953 assert(StackTop
== 0 && "Stack should be empty after a call!");
954 pushReg(getFPReg(MI
->getOperand(0)));
956 case X86::FpGET_ST1_32
:// Appears immediately after a call returning FP type!
957 case X86::FpGET_ST1_64
:// Appears immediately after a call returning FP type!
958 case X86::FpGET_ST1_80
:{// Appears immediately after a call returning FP type!
959 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
960 // The pattern we expect is:
965 // At this point, we've pushed FP1 on the top of stack, so it should be
966 // present if it isn't dead. If it was dead, we already emitted a pop to
967 // remove it from the stack and StackTop = 0.
969 // Push FP4 as top of stack next.
970 pushReg(getFPReg(MI
->getOperand(0)));
972 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
973 // dead. In this case, the ST(1) value is the only thing that is live, so
974 // it should be on the TOS (after the pop that was emitted) and is. Just
975 // continue in this case.
979 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
980 // elements so that our accounting is correct.
981 unsigned RegOnTop
= getStackEntry(0);
982 unsigned RegNo
= getStackEntry(1);
984 // Swap the slots the regs are in.
985 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
987 // Swap stack slot contents.
988 assert(RegMap
[RegOnTop
] < StackTop
);
989 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
992 case X86::FpSET_ST0_32
:
993 case X86::FpSET_ST0_64
:
994 case X86::FpSET_ST0_80
: {
995 unsigned Op0
= getFPReg(MI
->getOperand(0));
997 // FpSET_ST0_80 is generated by copyRegToReg for both function return
998 // and inline assembly with the "st" constrain. In the latter case,
999 // it is possible for ST(0) to be alive after this instruction.
1000 if (!MI
->killsRegister(X86::FP0
+ Op0
)) {
1002 duplicateToTop(0, 7 /*temp register*/, I
);
1006 --StackTop
; // "Forget" we have something on the top of stack!
1009 case X86::FpSET_ST1_32
:
1010 case X86::FpSET_ST1_64
:
1011 case X86::FpSET_ST1_80
:
1012 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1013 if (StackTop
== 1) {
1014 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(X86::ST1
);
1019 assert(StackTop
== 2 && "Stack should have two element on it to return!");
1020 --StackTop
; // "Forget" we have something on the top of stack!
1022 case X86::MOV_Fp3232
:
1023 case X86::MOV_Fp3264
:
1024 case X86::MOV_Fp6432
:
1025 case X86::MOV_Fp6464
:
1026 case X86::MOV_Fp3280
:
1027 case X86::MOV_Fp6480
:
1028 case X86::MOV_Fp8032
:
1029 case X86::MOV_Fp8064
:
1030 case X86::MOV_Fp8080
: {
1031 const MachineOperand
&MO1
= MI
->getOperand(1);
1032 unsigned SrcReg
= getFPReg(MO1
);
1034 const MachineOperand
&MO0
= MI
->getOperand(0);
1035 // These can be created due to inline asm. Two address pass can introduce
1036 // copies from RFP registers to virtual registers.
1037 if (MO0
.getReg() == X86::ST0
&& SrcReg
== 0) {
1038 assert(MO1
.isKill());
1039 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1040 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1041 assert((StackTop
== 1 || StackTop
== 2)
1042 && "Stack should have one or two element on it to return!");
1043 --StackTop
; // "Forget" we have something on the top of stack!
1045 } else if (MO0
.getReg() == X86::ST1
&& SrcReg
== 1) {
1046 assert(MO1
.isKill());
1047 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1048 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1049 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1050 if (StackTop
== 1) {
1051 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(X86::ST1
);
1056 assert(StackTop
== 2 && "Stack should have two element on it to return!");
1057 --StackTop
; // "Forget" we have something on the top of stack!
1061 unsigned DestReg
= getFPReg(MO0
);
1062 if (MI
->killsRegister(X86::FP0
+SrcReg
)) {
1063 // If the input operand is killed, we can just change the owner of the
1064 // incoming stack slot into the result.
1065 unsigned Slot
= getSlot(SrcReg
);
1066 assert(Slot
< 7 && DestReg
< 7 && "FpMOV operands invalid!");
1067 Stack
[Slot
] = DestReg
;
1068 RegMap
[DestReg
] = Slot
;
1071 // For FMOV we just duplicate the specified value to a new stack slot.
1072 // This could be made better, but would require substantial changes.
1073 duplicateToTop(SrcReg
, DestReg
, I
);
1077 case TargetInstrInfo::INLINEASM
: {
1078 // The inline asm MachineInstr currently only *uses* FP registers for the
1079 // 'f' constraint. These should be turned into the current ST(x) register
1080 // in the machine instr. Also, any kills should be explicitly popped after
1083 unsigned NumKills
= 0;
1084 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1085 MachineOperand
&Op
= MI
->getOperand(i
);
1086 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1088 assert(Op
.isUse() && "Only handle inline asm uses right now");
1090 unsigned FPReg
= getFPReg(Op
);
1091 Op
.setReg(getSTReg(FPReg
));
1093 // If we kill this operand, make sure to pop it from the stack after the
1094 // asm. We just remember it for now, and pop them all off at the end in
1097 Kills
[NumKills
++] = FPReg
;
1100 // If this asm kills any FP registers (is the last use of them) we must
1101 // explicitly emit pop instructions for them. Do this now after the asm has
1102 // executed so that the ST(x) numbers are not off (which would happen if we
1103 // did this inline with operand rewriting).
1105 // Note: this might be a non-optimal pop sequence. We might be able to do
1106 // better by trying to pop in stack order or something.
1107 MachineBasicBlock::iterator InsertPt
= MI
;
1109 freeStackSlotAfter(InsertPt
, Kills
[--NumKills
]);
1111 // Don't delete the inline asm!
1117 // If RET has an FP register use operand, pass the first one in ST(0) and
1118 // the second one in ST(1).
1119 if (isStackEmpty()) return; // Quick check to see if any are possible.
1121 // Find the register operands.
1122 unsigned FirstFPRegOp
= ~0U, SecondFPRegOp
= ~0U;
1124 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1125 MachineOperand
&Op
= MI
->getOperand(i
);
1126 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1128 // FP Register uses must be kills unless there are two uses of the same
1129 // register, in which case only one will be a kill.
1130 assert(Op
.isUse() &&
1131 (Op
.isKill() || // Marked kill.
1132 getFPReg(Op
) == FirstFPRegOp
|| // Second instance.
1133 MI
->killsRegister(Op
.getReg())) && // Later use is marked kill.
1134 "Ret only defs operands, and values aren't live beyond it");
1136 if (FirstFPRegOp
== ~0U)
1137 FirstFPRegOp
= getFPReg(Op
);
1139 assert(SecondFPRegOp
== ~0U && "More than two fp operands!");
1140 SecondFPRegOp
= getFPReg(Op
);
1143 // Remove the operand so that later passes don't see it.
1144 MI
->RemoveOperand(i
);
1148 // There are only four possibilities here:
1149 // 1) we are returning a single FP value. In this case, it has to be in
1150 // ST(0) already, so just declare success by removing the value from the
1152 if (SecondFPRegOp
== ~0U) {
1153 // Assert that the top of stack contains the right FP register.
1154 assert(StackTop
== 1 && FirstFPRegOp
== getStackEntry(0) &&
1155 "Top of stack not the right register for RET!");
1157 // Ok, everything is good, mark the value as not being on the stack
1158 // anymore so that our assertion about the stack being empty at end of
1159 // block doesn't fire.
1164 // Otherwise, we are returning two values:
1165 // 2) If returning the same value for both, we only have one thing in the FP
1166 // stack. Consider: RET FP1, FP1
1167 if (StackTop
== 1) {
1168 assert(FirstFPRegOp
== SecondFPRegOp
&& FirstFPRegOp
== getStackEntry(0)&&
1169 "Stack misconfiguration for RET!");
1171 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1172 // register to hold it.
1173 unsigned NewReg
= (FirstFPRegOp
+1)%7;
1174 duplicateToTop(FirstFPRegOp
, NewReg
, MI
);
1175 FirstFPRegOp
= NewReg
;
1178 /// Okay we know we have two different FPx operands now:
1179 assert(StackTop
== 2 && "Must have two values live!");
1181 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1182 /// in ST(1). In this case, emit an fxch.
1183 if (getStackEntry(0) == SecondFPRegOp
) {
1184 assert(getStackEntry(1) == FirstFPRegOp
&& "Unknown regs live");
1185 moveToTop(FirstFPRegOp
, MI
);
1188 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1189 /// ST(1). Just remove both from our understanding of the stack and return.
1190 assert(getStackEntry(0) == FirstFPRegOp
&& "Unknown regs live");
1191 assert(getStackEntry(1) == SecondFPRegOp
&& "Unknown regs live");
1196 I
= MBB
->erase(I
); // Remove the pseudo instruction