Merge branch 'master' into systemz
[llvm/systemz.git] / lib / Target / X86 / X86ISelLowering.cpp
blob097713f07801e3bd905f85a4592a09f3fda3f637
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/VectorExtras.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/raw_ostream.h"
43 using namespace llvm;
45 static cl::opt<bool>
46 DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
48 // Forward declarations.
49 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
50 SDValue V2);
52 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
53 : TargetLowering(TM) {
54 Subtarget = &TM.getSubtarget<X86Subtarget>();
55 X86ScalarSSEf64 = Subtarget->hasSSE2();
56 X86ScalarSSEf32 = Subtarget->hasSSE1();
57 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
59 RegInfo = TM.getRegisterInfo();
60 TD = getTargetData();
62 // Set up the TargetLowering object.
64 // X86 is weird, it always uses i8 for shift amounts and setcc results.
65 setShiftAmountType(MVT::i8);
66 setBooleanContents(ZeroOrOneBooleanContent);
67 setSchedulingPreference(SchedulingForRegPressure);
68 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
69 setStackPointerRegisterToSaveRestore(X86StackPtr);
71 if (Subtarget->isTargetDarwin()) {
72 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(false);
74 setUseUnderscoreLongJmp(false);
75 } else if (Subtarget->isTargetMingw()) {
76 // MS runtime is weird: it exports _setjmp, but longjmp!
77 setUseUnderscoreSetJmp(true);
78 setUseUnderscoreLongJmp(false);
79 } else {
80 setUseUnderscoreSetJmp(true);
81 setUseUnderscoreLongJmp(true);
84 // Set up the register classes.
85 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88 if (Subtarget->is64Bit())
89 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
91 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
93 // We don't accept any truncstore of integer registers.
94 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
101 // SETOEQ and SETUNE require checking two conditions.
102 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
109 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110 // operation.
111 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
112 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
113 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
115 if (Subtarget->is64Bit()) {
116 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
117 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
118 } else if (!UseSoftFloat) {
119 if (X86ScalarSSEf64) {
120 // We have an impenetrably clever algorithm for ui64->double only.
121 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
123 // We have an algorithm for SSE2, and we turn this into a 64-bit
124 // FILD for other targets.
125 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
128 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
129 // this operation.
130 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
131 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
133 if (!UseSoftFloat) {
134 // SSE has no i16 to fp conversion, only i32
135 if (X86ScalarSSEf32) {
136 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
137 // f32 and f64 cases are Legal, f80 case is not
138 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
139 } else {
140 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
141 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
143 } else {
144 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
145 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
148 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
149 // are Legal, f80 is custom lowered.
150 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
151 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
153 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
154 // this operation.
155 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
156 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
158 if (X86ScalarSSEf32) {
159 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
160 // f32 and f64 cases are Legal, f80 case is not
161 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
162 } else {
163 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
164 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
167 // Handle FP_TO_UINT by promoting the destination to a larger signed
168 // conversion.
169 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
170 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
171 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
173 if (Subtarget->is64Bit()) {
174 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
175 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
176 } else if (!UseSoftFloat) {
177 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
178 // Expand FP_TO_UINT into a select.
179 // FIXME: We would like to use a Custom expander here eventually to do
180 // the optimal thing for SSE vs. the default expansion in the legalizer.
181 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
182 else
183 // With SSE3 we can use fisttpll to convert to a signed i64; without
184 // SSE, we're stuck with a fistpll.
185 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
188 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
189 if (!X86ScalarSSEf64) {
190 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
191 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
194 // Scalar integer divide and remainder are lowered to use operations that
195 // produce two results, to match the available instructions. This exposes
196 // the two-result form to trivial CSE, which is able to combine x/y and x%y
197 // into a single instruction.
199 // Scalar integer multiply-high is also lowered to use two-result
200 // operations, to match the available instructions. However, plain multiply
201 // (low) operations are left as Legal, as there are single-result
202 // instructions for this in x86. Using the two-result multiply instructions
203 // when both high and low results are needed must be arranged by dagcombine.
204 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
205 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
206 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
207 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
208 setOperationAction(ISD::SREM , MVT::i8 , Expand);
209 setOperationAction(ISD::UREM , MVT::i8 , Expand);
210 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
211 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
212 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
213 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
214 setOperationAction(ISD::SREM , MVT::i16 , Expand);
215 setOperationAction(ISD::UREM , MVT::i16 , Expand);
216 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
217 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
218 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
219 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
220 setOperationAction(ISD::SREM , MVT::i32 , Expand);
221 setOperationAction(ISD::UREM , MVT::i32 , Expand);
222 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
223 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
224 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
225 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
226 setOperationAction(ISD::SREM , MVT::i64 , Expand);
227 setOperationAction(ISD::UREM , MVT::i64 , Expand);
229 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
230 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
231 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
232 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
233 if (Subtarget->is64Bit())
234 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
235 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
236 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
237 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
238 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
239 setOperationAction(ISD::FREM , MVT::f32 , Expand);
240 setOperationAction(ISD::FREM , MVT::f64 , Expand);
241 setOperationAction(ISD::FREM , MVT::f80 , Expand);
242 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
244 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
245 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
246 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
247 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
248 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
249 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
250 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
251 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
252 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
253 if (Subtarget->is64Bit()) {
254 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
255 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
256 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
259 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
260 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
262 // These should be promoted to a larger select which is supported.
263 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
264 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
265 // X86 wants to expand cmov itself.
266 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
267 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
268 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
269 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
270 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
271 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
272 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
273 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
274 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
275 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
276 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
277 if (Subtarget->is64Bit()) {
278 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
279 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
281 // X86 ret instruction may pop stack.
282 setOperationAction(ISD::RET , MVT::Other, Custom);
283 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
285 // Darwin ABI issue.
286 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
287 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
288 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
289 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
290 if (Subtarget->is64Bit())
291 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
292 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
293 if (Subtarget->is64Bit()) {
294 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
295 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
296 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
297 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
299 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
300 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
301 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
302 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
303 if (Subtarget->is64Bit()) {
304 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
305 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
306 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
309 if (Subtarget->hasSSE1())
310 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
312 if (!Subtarget->hasSSE2())
313 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
315 // Expand certain atomics
316 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
317 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
318 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
319 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
321 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
322 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
323 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
324 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
326 if (!Subtarget->is64Bit()) {
327 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
328 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
329 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
330 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
331 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
332 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
333 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
336 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
337 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
338 // FIXME - use subtarget debug flags
339 if (!Subtarget->isTargetDarwin() &&
340 !Subtarget->isTargetELF() &&
341 !Subtarget->isTargetCygMing()) {
342 setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
343 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
346 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
347 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
348 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
349 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
350 if (Subtarget->is64Bit()) {
351 setExceptionPointerRegister(X86::RAX);
352 setExceptionSelectorRegister(X86::RDX);
353 } else {
354 setExceptionPointerRegister(X86::EAX);
355 setExceptionSelectorRegister(X86::EDX);
357 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
358 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
360 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
362 setOperationAction(ISD::TRAP, MVT::Other, Legal);
364 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
365 setOperationAction(ISD::VASTART , MVT::Other, Custom);
366 setOperationAction(ISD::VAEND , MVT::Other, Expand);
367 if (Subtarget->is64Bit()) {
368 setOperationAction(ISD::VAARG , MVT::Other, Custom);
369 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
370 } else {
371 setOperationAction(ISD::VAARG , MVT::Other, Expand);
372 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
375 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
376 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
377 if (Subtarget->is64Bit())
378 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
379 if (Subtarget->isTargetCygMing())
380 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
381 else
382 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
384 if (!UseSoftFloat && X86ScalarSSEf64) {
385 // f32 and f64 use SSE.
386 // Set up the FP register classes.
387 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
388 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
390 // Use ANDPD to simulate FABS.
391 setOperationAction(ISD::FABS , MVT::f64, Custom);
392 setOperationAction(ISD::FABS , MVT::f32, Custom);
394 // Use XORP to simulate FNEG.
395 setOperationAction(ISD::FNEG , MVT::f64, Custom);
396 setOperationAction(ISD::FNEG , MVT::f32, Custom);
398 // Use ANDPD and ORPD to simulate FCOPYSIGN.
399 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
400 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
402 // We don't support sin/cos/fmod
403 setOperationAction(ISD::FSIN , MVT::f64, Expand);
404 setOperationAction(ISD::FCOS , MVT::f64, Expand);
405 setOperationAction(ISD::FSIN , MVT::f32, Expand);
406 setOperationAction(ISD::FCOS , MVT::f32, Expand);
408 // Expand FP immediates into loads from the stack, except for the special
409 // cases we handle.
410 addLegalFPImmediate(APFloat(+0.0)); // xorpd
411 addLegalFPImmediate(APFloat(+0.0f)); // xorps
412 } else if (!UseSoftFloat && X86ScalarSSEf32) {
413 // Use SSE for f32, x87 for f64.
414 // Set up the FP register classes.
415 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
416 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
418 // Use ANDPS to simulate FABS.
419 setOperationAction(ISD::FABS , MVT::f32, Custom);
421 // Use XORP to simulate FNEG.
422 setOperationAction(ISD::FNEG , MVT::f32, Custom);
424 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
426 // Use ANDPS and ORPS to simulate FCOPYSIGN.
427 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
428 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
430 // We don't support sin/cos/fmod
431 setOperationAction(ISD::FSIN , MVT::f32, Expand);
432 setOperationAction(ISD::FCOS , MVT::f32, Expand);
434 // Special cases we handle for FP constants.
435 addLegalFPImmediate(APFloat(+0.0f)); // xorps
436 addLegalFPImmediate(APFloat(+0.0)); // FLD0
437 addLegalFPImmediate(APFloat(+1.0)); // FLD1
438 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
439 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
441 if (!UnsafeFPMath) {
442 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
443 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
445 } else if (!UseSoftFloat) {
446 // f32 and f64 in x87.
447 // Set up the FP register classes.
448 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
449 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
451 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
452 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
453 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
454 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
456 if (!UnsafeFPMath) {
457 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
458 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
460 addLegalFPImmediate(APFloat(+0.0)); // FLD0
461 addLegalFPImmediate(APFloat(+1.0)); // FLD1
462 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
463 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
464 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
465 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
466 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
467 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
470 // Long double always uses X87.
471 if (!UseSoftFloat) {
472 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
473 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
474 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
476 bool ignored;
477 APFloat TmpFlt(+0.0);
478 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
479 &ignored);
480 addLegalFPImmediate(TmpFlt); // FLD0
481 TmpFlt.changeSign();
482 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
483 APFloat TmpFlt2(+1.0);
484 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
485 &ignored);
486 addLegalFPImmediate(TmpFlt2); // FLD1
487 TmpFlt2.changeSign();
488 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
491 if (!UnsafeFPMath) {
492 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
493 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
497 // Always use a library call for pow.
498 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
499 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
500 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
502 setOperationAction(ISD::FLOG, MVT::f80, Expand);
503 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
504 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
505 setOperationAction(ISD::FEXP, MVT::f80, Expand);
506 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
508 // First set operation action for all vector types to either promote
509 // (for widening) or expand (for scalarization). Then we will selectively
510 // turn on ones that can be effectively codegen'd.
511 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
512 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
513 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
514 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
515 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
516 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
517 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
518 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
519 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
520 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
521 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
522 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
523 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
524 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
525 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
526 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
527 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
528 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
529 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
530 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
531 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
532 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
533 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
534 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
535 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
536 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
537 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
538 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
539 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
540 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
541 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
542 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
543 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
544 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
545 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
546 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
547 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
548 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
549 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
550 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
551 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
552 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
553 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
554 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
555 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
556 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
557 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
558 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
559 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
560 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
563 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
564 // with -msoft-float, disable use of MMX as well.
565 if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
566 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
567 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
568 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
569 addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
570 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
572 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
573 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
574 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
575 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
577 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
578 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
579 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
580 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
582 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
583 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
585 setOperationAction(ISD::AND, MVT::v8i8, Promote);
586 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
587 setOperationAction(ISD::AND, MVT::v4i16, Promote);
588 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
589 setOperationAction(ISD::AND, MVT::v2i32, Promote);
590 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
591 setOperationAction(ISD::AND, MVT::v1i64, Legal);
593 setOperationAction(ISD::OR, MVT::v8i8, Promote);
594 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
595 setOperationAction(ISD::OR, MVT::v4i16, Promote);
596 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
597 setOperationAction(ISD::OR, MVT::v2i32, Promote);
598 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
599 setOperationAction(ISD::OR, MVT::v1i64, Legal);
601 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
602 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
603 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
604 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
605 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
606 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
607 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
609 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
610 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
611 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
612 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
613 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
614 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
615 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
616 AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64);
617 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
619 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
620 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
621 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
622 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
623 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
625 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
626 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
627 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
628 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
630 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom);
631 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
632 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
633 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
635 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
637 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
638 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Expand);
639 setOperationAction(ISD::SELECT, MVT::v8i8, Promote);
640 setOperationAction(ISD::SELECT, MVT::v4i16, Promote);
641 setOperationAction(ISD::SELECT, MVT::v2i32, Promote);
642 setOperationAction(ISD::SELECT, MVT::v1i64, Custom);
645 if (!UseSoftFloat && Subtarget->hasSSE1()) {
646 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
648 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
649 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
650 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
651 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
652 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
653 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
654 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
655 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
656 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
657 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
658 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
659 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
662 if (!UseSoftFloat && Subtarget->hasSSE2()) {
663 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
665 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
666 // registers cannot be used even for integer operations.
667 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
668 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
669 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
670 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
672 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
673 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
674 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
675 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
676 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
677 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
678 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
679 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
680 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
681 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
682 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
683 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
684 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
685 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
686 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
687 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
689 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
690 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
691 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
692 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
694 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
695 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
696 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
697 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
698 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
700 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
701 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
702 MVT VT = (MVT::SimpleValueType)i;
703 // Do not attempt to custom lower non-power-of-2 vectors
704 if (!isPowerOf2_32(VT.getVectorNumElements()))
705 continue;
706 // Do not attempt to custom lower non-128-bit vectors
707 if (!VT.is128BitVector())
708 continue;
709 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
710 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
711 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
714 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
715 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
716 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
717 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
718 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
719 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
721 if (Subtarget->is64Bit()) {
722 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
726 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
727 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
728 MVT VT = (MVT::SimpleValueType)i;
730 // Do not attempt to promote non-128-bit vectors
731 if (!VT.is128BitVector()) {
732 continue;
734 setOperationAction(ISD::AND, VT, Promote);
735 AddPromotedToType (ISD::AND, VT, MVT::v2i64);
736 setOperationAction(ISD::OR, VT, Promote);
737 AddPromotedToType (ISD::OR, VT, MVT::v2i64);
738 setOperationAction(ISD::XOR, VT, Promote);
739 AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
740 setOperationAction(ISD::LOAD, VT, Promote);
741 AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
742 setOperationAction(ISD::SELECT, VT, Promote);
743 AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
746 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
748 // Custom lower v2i64 and v2f64 selects.
749 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
750 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
751 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
752 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
754 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
755 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
756 if (!DisableMMX && Subtarget->hasMMX()) {
757 setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
758 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
762 if (Subtarget->hasSSE41()) {
763 // FIXME: Do we need to handle scalar-to-vector here?
764 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
766 // i8 and i16 vectors are custom , because the source register and source
767 // source memory operand types are not the same width. f32 vectors are
768 // custom since the immediate controlling the insert encodes additional
769 // information.
770 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
771 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
772 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
773 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
775 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
776 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
777 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
778 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
780 if (Subtarget->is64Bit()) {
781 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
782 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
786 if (Subtarget->hasSSE42()) {
787 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
790 if (!UseSoftFloat && Subtarget->hasAVX()) {
791 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
792 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
793 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
794 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
796 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
797 setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
798 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
799 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
800 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
801 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
802 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
803 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
804 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
805 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
806 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
807 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
808 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
809 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
810 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
812 // Operations to consider commented out -v16i16 v32i8
813 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
814 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
815 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
816 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
817 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
818 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
819 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
820 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
821 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
822 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
823 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
824 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
825 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
826 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
828 setOperationAction(ISD::VSETCC, MVT::v4f64, Custom);
829 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
830 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
831 setOperationAction(ISD::VSETCC, MVT::v8i32, Custom);
833 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
834 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
835 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
836 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom);
837 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom);
839 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
840 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom);
841 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom);
842 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom);
843 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom);
844 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
846 #if 0
847 // Not sure we want to do this since there are no 256-bit integer
848 // operations in AVX
850 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851 // This includes 256-bit vectors
852 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
853 MVT VT = (MVT::SimpleValueType)i;
855 // Do not attempt to custom lower non-power-of-2 vectors
856 if (!isPowerOf2_32(VT.getVectorNumElements()))
857 continue;
859 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
860 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
861 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
864 if (Subtarget->is64Bit()) {
865 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
866 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
868 #endif
870 #if 0
871 // Not sure we want to do this since there are no 256-bit integer
872 // operations in AVX
874 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
875 // Including 256-bit vectors
876 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
877 MVT VT = (MVT::SimpleValueType)i;
879 if (!VT.is256BitVector()) {
880 continue;
882 setOperationAction(ISD::AND, VT, Promote);
883 AddPromotedToType (ISD::AND, VT, MVT::v4i64);
884 setOperationAction(ISD::OR, VT, Promote);
885 AddPromotedToType (ISD::OR, VT, MVT::v4i64);
886 setOperationAction(ISD::XOR, VT, Promote);
887 AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
888 setOperationAction(ISD::LOAD, VT, Promote);
889 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
890 setOperationAction(ISD::SELECT, VT, Promote);
891 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
894 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
895 #endif
898 // We want to custom lower some of our intrinsics.
899 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
901 // Add/Sub/Mul with overflow operations are custom lowered.
902 setOperationAction(ISD::SADDO, MVT::i32, Custom);
903 setOperationAction(ISD::SADDO, MVT::i64, Custom);
904 setOperationAction(ISD::UADDO, MVT::i32, Custom);
905 setOperationAction(ISD::UADDO, MVT::i64, Custom);
906 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
907 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
908 setOperationAction(ISD::USUBO, MVT::i32, Custom);
909 setOperationAction(ISD::USUBO, MVT::i64, Custom);
910 setOperationAction(ISD::SMULO, MVT::i32, Custom);
911 setOperationAction(ISD::SMULO, MVT::i64, Custom);
913 if (!Subtarget->is64Bit()) {
914 // These libcalls are not available in 32-bit.
915 setLibcallName(RTLIB::SHL_I128, 0);
916 setLibcallName(RTLIB::SRL_I128, 0);
917 setLibcallName(RTLIB::SRA_I128, 0);
920 // We have target-specific dag combine patterns for the following nodes:
921 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
922 setTargetDAGCombine(ISD::BUILD_VECTOR);
923 setTargetDAGCombine(ISD::SELECT);
924 setTargetDAGCombine(ISD::SHL);
925 setTargetDAGCombine(ISD::SRA);
926 setTargetDAGCombine(ISD::SRL);
927 setTargetDAGCombine(ISD::STORE);
928 setTargetDAGCombine(ISD::MEMBARRIER);
929 if (Subtarget->is64Bit())
930 setTargetDAGCombine(ISD::MUL);
932 computeRegisterProperties();
934 // FIXME: These should be based on subtarget info. Plus, the values should
935 // be smaller when we are in optimizing for size mode.
936 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
937 maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
938 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
939 allowUnalignedMemoryAccesses = true; // x86 supports it!
940 setPrefLoopAlignment(16);
941 benefitFromCodePlacementOpt = true;
945 MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
946 return MVT::i8;
950 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
951 /// the desired ByVal argument alignment.
952 static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
953 if (MaxAlign == 16)
954 return;
955 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
956 if (VTy->getBitWidth() == 128)
957 MaxAlign = 16;
958 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
959 unsigned EltAlign = 0;
960 getMaxByValAlign(ATy->getElementType(), EltAlign);
961 if (EltAlign > MaxAlign)
962 MaxAlign = EltAlign;
963 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
964 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
965 unsigned EltAlign = 0;
966 getMaxByValAlign(STy->getElementType(i), EltAlign);
967 if (EltAlign > MaxAlign)
968 MaxAlign = EltAlign;
969 if (MaxAlign == 16)
970 break;
973 return;
976 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
977 /// function arguments in the caller parameter area. For X86, aggregates
978 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
979 /// are at 4-byte boundaries.
980 unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
981 if (Subtarget->is64Bit()) {
982 // Max of 8 and alignment of type.
983 unsigned TyAlign = TD->getABITypeAlignment(Ty);
984 if (TyAlign > 8)
985 return TyAlign;
986 return 8;
989 unsigned Align = 4;
990 if (Subtarget->hasSSE1())
991 getMaxByValAlign(Ty, Align);
992 return Align;
995 /// getOptimalMemOpType - Returns the target specific optimal type for load
996 /// and store operations as a result of memset, memcpy, and memmove
997 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
998 /// determining it.
1000 X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1001 bool isSrcConst, bool isSrcStr,
1002 SelectionDAG &DAG) const {
1003 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1004 // linux. This is because the stack realignment code can't handle certain
1005 // cases like PR2962. This should be removed when PR2962 is fixed.
1006 const Function *F = DAG.getMachineFunction().getFunction();
1007 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1008 if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1009 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1010 return MVT::v4i32;
1011 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1012 return MVT::v4f32;
1014 if (Subtarget->is64Bit() && Size >= 8)
1015 return MVT::i64;
1016 return MVT::i32;
1019 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1020 /// jumptable.
1021 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1022 SelectionDAG &DAG) const {
1023 if (usesGlobalOffsetTable())
1024 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1025 if (!Subtarget->is64Bit())
1026 // This doesn't have DebugLoc associated with it, but is not really the
1027 // same as a Register.
1028 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1029 getPointerTy());
1030 return Table;
1033 /// getFunctionAlignment - Return the Log2 alignment of this function.
1034 unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1035 return F->hasFnAttr(Attribute::OptimizeForSize) ? 1 : 4;
1038 //===----------------------------------------------------------------------===//
1039 // Return Value Calling Convention Implementation
1040 //===----------------------------------------------------------------------===//
1042 #include "X86GenCallingConv.inc"
1044 /// LowerRET - Lower an ISD::RET node.
1045 SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
1046 DebugLoc dl = Op.getDebugLoc();
1047 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
1049 SmallVector<CCValAssign, 16> RVLocs;
1050 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1051 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1052 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
1053 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
1055 // If this is the first return lowered for this function, add the regs to the
1056 // liveout set for the function.
1057 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1058 for (unsigned i = 0; i != RVLocs.size(); ++i)
1059 if (RVLocs[i].isRegLoc())
1060 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1062 SDValue Chain = Op.getOperand(0);
1064 // Handle tail call return.
1065 Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
1066 if (Chain.getOpcode() == X86ISD::TAILCALL) {
1067 SDValue TailCall = Chain;
1068 SDValue TargetAddress = TailCall.getOperand(1);
1069 SDValue StackAdjustment = TailCall.getOperand(2);
1070 assert(((TargetAddress.getOpcode() == ISD::Register &&
1071 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
1072 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) ||
1073 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
1074 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
1075 "Expecting an global address, external symbol, or register");
1076 assert(StackAdjustment.getOpcode() == ISD::Constant &&
1077 "Expecting a const value");
1079 SmallVector<SDValue,8> Operands;
1080 Operands.push_back(Chain.getOperand(0));
1081 Operands.push_back(TargetAddress);
1082 Operands.push_back(StackAdjustment);
1083 // Copy registers used by the call. Last operand is a flag so it is not
1084 // copied.
1085 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
1086 Operands.push_back(Chain.getOperand(i));
1088 return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
1089 Operands.size());
1092 // Regular return.
1093 SDValue Flag;
1095 SmallVector<SDValue, 6> RetOps;
1096 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1097 // Operand #1 = Bytes To Pop
1098 RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
1100 // Copy the result values into the output registers.
1101 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1102 CCValAssign &VA = RVLocs[i];
1103 assert(VA.isRegLoc() && "Can only return in registers!");
1104 SDValue ValToCopy = Op.getOperand(i*2+1);
1106 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1107 // the RET instruction and handled by the FP Stackifier.
1108 if (VA.getLocReg() == X86::ST0 ||
1109 VA.getLocReg() == X86::ST1) {
1110 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1111 // change the value to the FP stack register class.
1112 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1113 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1114 RetOps.push_back(ValToCopy);
1115 // Don't emit a copytoreg.
1116 continue;
1119 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1120 // which is returned in RAX / RDX.
1121 if (Subtarget->is64Bit()) {
1122 MVT ValVT = ValToCopy.getValueType();
1123 if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1124 ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1125 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1126 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1130 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1131 Flag = Chain.getValue(1);
1134 // The x86-64 ABI for returning structs by value requires that we copy
1135 // the sret argument into %rax for the return. We saved the argument into
1136 // a virtual register in the entry block, so now we copy the value out
1137 // and into %rax.
1138 if (Subtarget->is64Bit() &&
1139 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1140 MachineFunction &MF = DAG.getMachineFunction();
1141 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1142 unsigned Reg = FuncInfo->getSRetReturnReg();
1143 if (!Reg) {
1144 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1145 FuncInfo->setSRetReturnReg(Reg);
1147 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1149 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1150 Flag = Chain.getValue(1);
1153 RetOps[0] = Chain; // Update chain.
1155 // Add the flag if we have it.
1156 if (Flag.getNode())
1157 RetOps.push_back(Flag);
1159 return DAG.getNode(X86ISD::RET_FLAG, dl,
1160 MVT::Other, &RetOps[0], RetOps.size());
1164 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1165 /// appropriate copies out of appropriate physical registers. This assumes that
1166 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1167 /// being lowered. The returns a SDNode with the same number of values as the
1168 /// ISD::CALL.
1169 SDNode *X86TargetLowering::
1170 LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1171 unsigned CallingConv, SelectionDAG &DAG) {
1173 DebugLoc dl = TheCall->getDebugLoc();
1174 // Assign locations to each value returned by this call.
1175 SmallVector<CCValAssign, 16> RVLocs;
1176 bool isVarArg = TheCall->isVarArg();
1177 bool Is64Bit = Subtarget->is64Bit();
1178 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
1179 RVLocs, DAG.getContext());
1180 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1182 SmallVector<SDValue, 8> ResultVals;
1184 // Copy all of the result registers out of their specified physreg.
1185 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1186 CCValAssign &VA = RVLocs[i];
1187 MVT CopyVT = VA.getValVT();
1189 // If this is x86-64, and we disabled SSE, we can't return FP values
1190 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1191 ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1192 llvm_report_error("SSE register return with SSE disabled");
1195 // If this is a call to a function that returns an fp value on the floating
1196 // point stack, but where we prefer to use the value in xmm registers, copy
1197 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1198 if ((VA.getLocReg() == X86::ST0 ||
1199 VA.getLocReg() == X86::ST1) &&
1200 isScalarFPTypeInSSEReg(VA.getValVT())) {
1201 CopyVT = MVT::f80;
1204 SDValue Val;
1205 if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1206 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1207 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1208 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1209 MVT::v2i64, InFlag).getValue(1);
1210 Val = Chain.getValue(0);
1211 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1212 Val, DAG.getConstant(0, MVT::i64));
1213 } else {
1214 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1215 MVT::i64, InFlag).getValue(1);
1216 Val = Chain.getValue(0);
1218 Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1219 } else {
1220 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1221 CopyVT, InFlag).getValue(1);
1222 Val = Chain.getValue(0);
1224 InFlag = Chain.getValue(2);
1226 if (CopyVT != VA.getValVT()) {
1227 // Round the F80 the right size, which also moves to the appropriate xmm
1228 // register.
1229 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1230 // This truncation won't change the value.
1231 DAG.getIntPtrConstant(1));
1234 ResultVals.push_back(Val);
1237 // Merge everything together with a MERGE_VALUES node.
1238 ResultVals.push_back(Chain);
1239 return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1240 &ResultVals[0], ResultVals.size()).getNode();
1244 //===----------------------------------------------------------------------===//
1245 // C & StdCall & Fast Calling Convention implementation
1246 //===----------------------------------------------------------------------===//
1247 // StdCall calling convention seems to be standard for many Windows' API
1248 // routines and around. It differs from C calling convention just a little:
1249 // callee should clean up the stack, not caller. Symbols should be also
1250 // decorated in some fancy way :) It doesn't support any vector arguments.
1251 // For info on fast calling convention see Fast Calling Convention (tail call)
1252 // implementation LowerX86_32FastCCCallTo.
1254 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1255 /// semantics.
1256 static bool CallIsStructReturn(CallSDNode *TheCall) {
1257 unsigned NumOps = TheCall->getNumArgs();
1258 if (!NumOps)
1259 return false;
1261 return TheCall->getArgFlags(0).isSRet();
1264 /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1265 /// return semantics.
1266 static bool ArgsAreStructReturn(SDValue Op) {
1267 unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1268 if (!NumArgs)
1269 return false;
1271 return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1274 /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1275 /// the callee to pop its own arguments. Callee pop is necessary to support tail
1276 /// calls.
1277 bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1278 if (IsVarArg)
1279 return false;
1281 switch (CallingConv) {
1282 default:
1283 return false;
1284 case CallingConv::X86_StdCall:
1285 return !Subtarget->is64Bit();
1286 case CallingConv::X86_FastCall:
1287 return !Subtarget->is64Bit();
1288 case CallingConv::Fast:
1289 return PerformTailCallOpt;
1293 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1294 /// given CallingConvention value.
1295 CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1296 if (Subtarget->is64Bit()) {
1297 if (Subtarget->isTargetWin64())
1298 return CC_X86_Win64_C;
1299 else
1300 return CC_X86_64_C;
1303 if (CC == CallingConv::X86_FastCall)
1304 return CC_X86_32_FastCall;
1305 else if (CC == CallingConv::Fast)
1306 return CC_X86_32_FastCC;
1307 else
1308 return CC_X86_32_C;
1311 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1312 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1313 NameDecorationStyle
1314 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1315 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1316 if (CC == CallingConv::X86_FastCall)
1317 return FastCall;
1318 else if (CC == CallingConv::X86_StdCall)
1319 return StdCall;
1320 return None;
1324 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1325 /// by "Src" to address "Dst" with size and alignment information specified by
1326 /// the specific parameter attribute. The copy will be passed as a byval
1327 /// function parameter.
1328 static SDValue
1329 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1330 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1331 DebugLoc dl) {
1332 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1333 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1334 /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1337 SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1338 const CCValAssign &VA,
1339 MachineFrameInfo *MFI,
1340 unsigned CC,
1341 SDValue Root, unsigned i) {
1342 // Create the nodes corresponding to a load from this parameter slot.
1343 ISD::ArgFlagsTy Flags =
1344 cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1345 bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1346 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1348 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1349 // changed with more analysis.
1350 // In case of tail call optimization mark all arguments mutable. Since they
1351 // could be overwritten by lowering of arguments in case of a tail call.
1352 int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1353 VA.getLocMemOffset(), isImmutable);
1354 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1355 if (Flags.isByVal())
1356 return FIN;
1357 return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1358 PseudoSourceValue::getFixedStack(FI), 0);
1361 SDValue
1362 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1363 MachineFunction &MF = DAG.getMachineFunction();
1364 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1365 DebugLoc dl = Op.getDebugLoc();
1367 const Function* Fn = MF.getFunction();
1368 if (Fn->hasExternalLinkage() &&
1369 Subtarget->isTargetCygMing() &&
1370 Fn->getName() == "main")
1371 FuncInfo->setForceFramePointer(true);
1373 // Decorate the function name.
1374 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1376 MachineFrameInfo *MFI = MF.getFrameInfo();
1377 SDValue Root = Op.getOperand(0);
1378 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1379 unsigned CC = MF.getFunction()->getCallingConv();
1380 bool Is64Bit = Subtarget->is64Bit();
1381 bool IsWin64 = Subtarget->isTargetWin64();
1383 assert(!(isVarArg && CC == CallingConv::Fast) &&
1384 "Var args not supported with calling convention fastcc");
1386 // Assign locations to all of the incoming arguments.
1387 SmallVector<CCValAssign, 16> ArgLocs;
1388 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
1389 CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1391 SmallVector<SDValue, 8> ArgValues;
1392 unsigned LastVal = ~0U;
1393 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1394 CCValAssign &VA = ArgLocs[i];
1395 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1396 // places.
1397 assert(VA.getValNo() != LastVal &&
1398 "Don't support value assigned to multiple locs yet");
1399 LastVal = VA.getValNo();
1401 if (VA.isRegLoc()) {
1402 MVT RegVT = VA.getLocVT();
1403 TargetRegisterClass *RC = NULL;
1404 if (RegVT == MVT::i32)
1405 RC = X86::GR32RegisterClass;
1406 else if (Is64Bit && RegVT == MVT::i64)
1407 RC = X86::GR64RegisterClass;
1408 else if (RegVT == MVT::f32)
1409 RC = X86::FR32RegisterClass;
1410 else if (RegVT == MVT::f64)
1411 RC = X86::FR64RegisterClass;
1412 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1413 RC = X86::VR128RegisterClass;
1414 else if (RegVT.isVector()) {
1415 assert(RegVT.getSizeInBits() == 64);
1416 if (!Is64Bit)
1417 RC = X86::VR64RegisterClass; // MMX values are passed in MMXs.
1418 else {
1419 // Darwin calling convention passes MMX values in either GPRs or
1420 // XMMs in x86-64. Other targets pass them in memory.
1421 if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1422 RC = X86::VR128RegisterClass; // MMX values are passed in XMMs.
1423 RegVT = MVT::v2i64;
1424 } else {
1425 RC = X86::GR64RegisterClass; // v1i64 values are passed in GPRs.
1426 RegVT = MVT::i64;
1429 } else {
1430 llvm_unreachable("Unknown argument type!");
1433 unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC);
1434 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1436 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1437 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1438 // right size.
1439 if (VA.getLocInfo() == CCValAssign::SExt)
1440 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1441 DAG.getValueType(VA.getValVT()));
1442 else if (VA.getLocInfo() == CCValAssign::ZExt)
1443 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1444 DAG.getValueType(VA.getValVT()));
1446 if (VA.getLocInfo() != CCValAssign::Full)
1447 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1449 // Handle MMX values passed in GPRs.
1450 if (Is64Bit && RegVT != VA.getLocVT()) {
1451 if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1452 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1453 else if (RC == X86::VR128RegisterClass) {
1454 ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1455 ArgValue, DAG.getConstant(0, MVT::i64));
1456 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1460 ArgValues.push_back(ArgValue);
1461 } else {
1462 assert(VA.isMemLoc());
1463 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1467 // The x86-64 ABI for returning structs by value requires that we copy
1468 // the sret argument into %rax for the return. Save the argument into
1469 // a virtual register so that we can access it from the return points.
1470 if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1471 MachineFunction &MF = DAG.getMachineFunction();
1472 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1473 unsigned Reg = FuncInfo->getSRetReturnReg();
1474 if (!Reg) {
1475 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1476 FuncInfo->setSRetReturnReg(Reg);
1478 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1479 Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1482 unsigned StackSize = CCInfo.getNextStackOffset();
1483 // align stack specially for tail calls
1484 if (PerformTailCallOpt && CC == CallingConv::Fast)
1485 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1487 // If the function takes variable number of arguments, make a frame index for
1488 // the start of the first vararg value... for expansion of llvm.va_start.
1489 if (isVarArg) {
1490 if (Is64Bit || CC != CallingConv::X86_FastCall) {
1491 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1493 if (Is64Bit) {
1494 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1496 // FIXME: We should really autogenerate these arrays
1497 static const unsigned GPR64ArgRegsWin64[] = {
1498 X86::RCX, X86::RDX, X86::R8, X86::R9
1500 static const unsigned XMMArgRegsWin64[] = {
1501 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1503 static const unsigned GPR64ArgRegs64Bit[] = {
1504 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1506 static const unsigned XMMArgRegs64Bit[] = {
1507 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1508 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1510 const unsigned *GPR64ArgRegs, *XMMArgRegs;
1512 if (IsWin64) {
1513 TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1514 GPR64ArgRegs = GPR64ArgRegsWin64;
1515 XMMArgRegs = XMMArgRegsWin64;
1516 } else {
1517 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1518 GPR64ArgRegs = GPR64ArgRegs64Bit;
1519 XMMArgRegs = XMMArgRegs64Bit;
1521 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1522 TotalNumIntRegs);
1523 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1524 TotalNumXMMRegs);
1526 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1527 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1528 "SSE register cannot be used when SSE is disabled!");
1529 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1530 "SSE register cannot be used when SSE is disabled!");
1531 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1532 // Kernel mode asks for SSE to be disabled, so don't push them
1533 // on the stack.
1534 TotalNumXMMRegs = 0;
1536 // For X86-64, if there are vararg parameters that are passed via
1537 // registers, then we must store them to their spots on the stack so they
1538 // may be loaded by deferencing the result of va_next.
1539 VarArgsGPOffset = NumIntRegs * 8;
1540 VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1541 RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1542 TotalNumXMMRegs * 16, 16);
1544 // Store the integer parameter registers.
1545 SmallVector<SDValue, 8> MemOps;
1546 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1547 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1548 DAG.getIntPtrConstant(VarArgsGPOffset));
1549 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1550 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1551 X86::GR64RegisterClass);
1552 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1553 SDValue Store =
1554 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1555 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1556 MemOps.push_back(Store);
1557 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1558 DAG.getIntPtrConstant(8));
1561 // Now store the XMM (fp + vector) parameter registers.
1562 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1563 DAG.getIntPtrConstant(VarArgsFPOffset));
1564 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1565 unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1566 X86::VR128RegisterClass);
1567 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1568 SDValue Store =
1569 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1570 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1571 MemOps.push_back(Store);
1572 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1573 DAG.getIntPtrConstant(16));
1575 if (!MemOps.empty())
1576 Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1577 &MemOps[0], MemOps.size());
1581 ArgValues.push_back(Root);
1583 // Some CCs need callee pop.
1584 if (IsCalleePop(isVarArg, CC)) {
1585 BytesToPopOnReturn = StackSize; // Callee pops everything.
1586 BytesCallerReserves = 0;
1587 } else {
1588 BytesToPopOnReturn = 0; // Callee pops nothing.
1589 // If this is an sret function, the return should pop the hidden pointer.
1590 if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1591 BytesToPopOnReturn = 4;
1592 BytesCallerReserves = StackSize;
1595 if (!Is64Bit) {
1596 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1597 if (CC == CallingConv::X86_FastCall)
1598 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1601 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1603 // Return the new list of results.
1604 return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1605 &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1608 SDValue
1609 X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1610 const SDValue &StackPtr,
1611 const CCValAssign &VA,
1612 SDValue Chain,
1613 SDValue Arg, ISD::ArgFlagsTy Flags) {
1614 DebugLoc dl = TheCall->getDebugLoc();
1615 unsigned LocMemOffset = VA.getLocMemOffset();
1616 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1617 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1618 if (Flags.isByVal()) {
1619 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1621 return DAG.getStore(Chain, dl, Arg, PtrOff,
1622 PseudoSourceValue::getStack(), LocMemOffset);
1625 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1626 /// optimization is performed and it is required.
1627 SDValue
1628 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1629 SDValue &OutRetAddr,
1630 SDValue Chain,
1631 bool IsTailCall,
1632 bool Is64Bit,
1633 int FPDiff,
1634 DebugLoc dl) {
1635 if (!IsTailCall || FPDiff==0) return Chain;
1637 // Adjust the Return address stack slot.
1638 MVT VT = getPointerTy();
1639 OutRetAddr = getReturnAddressFrameIndex(DAG);
1641 // Load the "old" Return address.
1642 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1643 return SDValue(OutRetAddr.getNode(), 1);
1646 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1647 /// optimization is performed and it is required (FPDiff!=0).
1648 static SDValue
1649 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1650 SDValue Chain, SDValue RetAddrFrIdx,
1651 bool Is64Bit, int FPDiff, DebugLoc dl) {
1652 // Store the return address to the appropriate stack slot.
1653 if (!FPDiff) return Chain;
1654 // Calculate the new stack slot for the return address.
1655 int SlotSize = Is64Bit ? 8 : 4;
1656 int NewReturnAddrFI =
1657 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1658 MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1659 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1660 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1661 PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1662 return Chain;
1665 SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1666 MachineFunction &MF = DAG.getMachineFunction();
1667 CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1668 SDValue Chain = TheCall->getChain();
1669 unsigned CC = TheCall->getCallingConv();
1670 bool isVarArg = TheCall->isVarArg();
1671 bool IsTailCall = TheCall->isTailCall() &&
1672 CC == CallingConv::Fast && PerformTailCallOpt;
1673 SDValue Callee = TheCall->getCallee();
1674 bool Is64Bit = Subtarget->is64Bit();
1675 bool IsStructRet = CallIsStructReturn(TheCall);
1676 DebugLoc dl = TheCall->getDebugLoc();
1678 assert(!(isVarArg && CC == CallingConv::Fast) &&
1679 "Var args not supported with calling convention fastcc");
1681 // Analyze operands of the call, assigning locations to each operand.
1682 SmallVector<CCValAssign, 16> ArgLocs;
1683 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
1684 CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1686 // Get a count of how many bytes are to be pushed on the stack.
1687 unsigned NumBytes = CCInfo.getNextStackOffset();
1688 if (PerformTailCallOpt && CC == CallingConv::Fast)
1689 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1691 int FPDiff = 0;
1692 if (IsTailCall) {
1693 // Lower arguments at fp - stackoffset + fpdiff.
1694 unsigned NumBytesCallerPushed =
1695 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1696 FPDiff = NumBytesCallerPushed - NumBytes;
1698 // Set the delta of movement of the returnaddr stackslot.
1699 // But only set if delta is greater than previous delta.
1700 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1701 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1704 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1706 SDValue RetAddrFrIdx;
1707 // Load return adress for tail calls.
1708 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1709 FPDiff, dl);
1711 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1712 SmallVector<SDValue, 8> MemOpChains;
1713 SDValue StackPtr;
1715 // Walk the register/memloc assignments, inserting copies/loads. In the case
1716 // of tail call optimization arguments are handle later.
1717 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1718 CCValAssign &VA = ArgLocs[i];
1719 SDValue Arg = TheCall->getArg(i);
1720 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1721 bool isByVal = Flags.isByVal();
1723 // Promote the value if needed.
1724 switch (VA.getLocInfo()) {
1725 default: llvm_unreachable("Unknown loc info!");
1726 case CCValAssign::Full: break;
1727 case CCValAssign::SExt:
1728 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1729 break;
1730 case CCValAssign::ZExt:
1731 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1732 break;
1733 case CCValAssign::AExt:
1734 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1735 break;
1738 if (VA.isRegLoc()) {
1739 if (Is64Bit) {
1740 MVT RegVT = VA.getLocVT();
1741 if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1742 switch (VA.getLocReg()) {
1743 default:
1744 break;
1745 case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1746 case X86::R8: {
1747 // Special case: passing MMX values in GPR registers.
1748 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1749 break;
1751 case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1752 case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1753 // Special case: passing MMX values in XMM registers.
1754 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1755 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1756 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1757 break;
1761 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1762 } else {
1763 if (!IsTailCall || (IsTailCall && isByVal)) {
1764 assert(VA.isMemLoc());
1765 if (StackPtr.getNode() == 0)
1766 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1768 MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1769 Chain, Arg, Flags));
1774 if (!MemOpChains.empty())
1775 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1776 &MemOpChains[0], MemOpChains.size());
1778 // Build a sequence of copy-to-reg nodes chained together with token chain
1779 // and flag operands which copy the outgoing args into registers.
1780 SDValue InFlag;
1781 // Tail call byval lowering might overwrite argument registers so in case of
1782 // tail call optimization the copies to registers are lowered later.
1783 if (!IsTailCall)
1784 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1785 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1786 RegsToPass[i].second, InFlag);
1787 InFlag = Chain.getValue(1);
1791 if (Subtarget->isPICStyleGOT()) {
1792 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1793 // GOT pointer.
1794 if (!IsTailCall) {
1795 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1796 DAG.getNode(X86ISD::GlobalBaseReg,
1797 DebugLoc::getUnknownLoc(),
1798 getPointerTy()),
1799 InFlag);
1800 InFlag = Chain.getValue(1);
1801 } else {
1802 // If we are tail calling and generating PIC/GOT style code load the
1803 // address of the callee into ECX. The value in ecx is used as target of
1804 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1805 // for tail calls on PIC/GOT architectures. Normally we would just put the
1806 // address of GOT into ebx and then call target@PLT. But for tail calls
1807 // ebx would be restored (since ebx is callee saved) before jumping to the
1808 // target@PLT.
1810 // Note: The actual moving to ECX is done further down.
1811 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1812 if (G && !G->getGlobal()->hasHiddenVisibility() &&
1813 !G->getGlobal()->hasProtectedVisibility())
1814 Callee = LowerGlobalAddress(Callee, DAG);
1815 else if (isa<ExternalSymbolSDNode>(Callee))
1816 Callee = LowerExternalSymbol(Callee, DAG);
1820 if (Is64Bit && isVarArg) {
1821 // From AMD64 ABI document:
1822 // For calls that may call functions that use varargs or stdargs
1823 // (prototype-less calls or calls to functions containing ellipsis (...) in
1824 // the declaration) %al is used as hidden argument to specify the number
1825 // of SSE registers used. The contents of %al do not need to match exactly
1826 // the number of registers, but must be an ubound on the number of SSE
1827 // registers used and is in the range 0 - 8 inclusive.
1829 // FIXME: Verify this on Win64
1830 // Count the number of XMM registers allocated.
1831 static const unsigned XMMArgRegs[] = {
1832 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1833 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1835 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1836 assert((Subtarget->hasSSE1() || !NumXMMRegs)
1837 && "SSE registers cannot be used when SSE is disabled");
1839 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1840 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1841 InFlag = Chain.getValue(1);
1845 // For tail calls lower the arguments to the 'real' stack slot.
1846 if (IsTailCall) {
1847 SmallVector<SDValue, 8> MemOpChains2;
1848 SDValue FIN;
1849 int FI = 0;
1850 // Do not flag preceeding copytoreg stuff together with the following stuff.
1851 InFlag = SDValue();
1852 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1853 CCValAssign &VA = ArgLocs[i];
1854 if (!VA.isRegLoc()) {
1855 assert(VA.isMemLoc());
1856 SDValue Arg = TheCall->getArg(i);
1857 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1858 // Create frame index.
1859 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1860 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1861 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1862 FIN = DAG.getFrameIndex(FI, getPointerTy());
1864 if (Flags.isByVal()) {
1865 // Copy relative to framepointer.
1866 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1867 if (StackPtr.getNode() == 0)
1868 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1869 getPointerTy());
1870 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1872 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1873 Flags, DAG, dl));
1874 } else {
1875 // Store relative to framepointer.
1876 MemOpChains2.push_back(
1877 DAG.getStore(Chain, dl, Arg, FIN,
1878 PseudoSourceValue::getFixedStack(FI), 0));
1883 if (!MemOpChains2.empty())
1884 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1885 &MemOpChains2[0], MemOpChains2.size());
1887 // Copy arguments to their registers.
1888 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1889 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1890 RegsToPass[i].second, InFlag);
1891 InFlag = Chain.getValue(1);
1893 InFlag =SDValue();
1895 // Store the return address to the appropriate stack slot.
1896 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1897 FPDiff, dl);
1900 // If the callee is a GlobalAddress node (quite common, every direct call is)
1901 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1902 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1903 // We should use extra load for direct calls to dllimported functions in
1904 // non-JIT mode.
1905 GlobalValue *GV = G->getGlobal();
1906 if (!GV->hasDLLImportLinkage()) {
1907 unsigned char OpFlags = 0;
1909 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1910 // external symbols most go through the PLT in PIC mode. If the symbol
1911 // has hidden or protected visibility, or if it is static or local, then
1912 // we don't need to use the PLT - we can directly call it.
1913 if (Subtarget->isTargetELF() &&
1914 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1915 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1916 OpFlags = X86II::MO_PLT;
1917 } else if (Subtarget->isPICStyleStubAny() &&
1918 (GV->isDeclaration() || GV->isWeakForLinker()) &&
1919 Subtarget->getDarwinVers() < 9) {
1920 // PC-relative references to external symbols should go through $stub,
1921 // unless we're building with the leopard linker or later, which
1922 // automatically synthesizes these stubs.
1923 OpFlags = X86II::MO_DARWIN_STUB;
1926 Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1927 G->getOffset(), OpFlags);
1929 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1930 unsigned char OpFlags = 0;
1932 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1933 // symbols should go through the PLT.
1934 if (Subtarget->isTargetELF() &&
1935 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1936 OpFlags = X86II::MO_PLT;
1937 } else if (Subtarget->isPICStyleStubAny() &&
1938 Subtarget->getDarwinVers() < 9) {
1939 // PC-relative references to external symbols should go through $stub,
1940 // unless we're building with the leopard linker or later, which
1941 // automatically synthesizes these stubs.
1942 OpFlags = X86II::MO_DARWIN_STUB;
1945 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1946 OpFlags);
1947 } else if (IsTailCall) {
1948 unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1950 Chain = DAG.getCopyToReg(Chain, dl,
1951 DAG.getRegister(Opc, getPointerTy()),
1952 Callee,InFlag);
1953 Callee = DAG.getRegister(Opc, getPointerTy());
1954 // Add register as live out.
1955 DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1958 // Returns a chain & a flag for retval copy to use.
1959 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1960 SmallVector<SDValue, 8> Ops;
1962 if (IsTailCall) {
1963 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1964 DAG.getIntPtrConstant(0, true), InFlag);
1965 InFlag = Chain.getValue(1);
1967 // Returns a chain & a flag for retval copy to use.
1968 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1969 Ops.clear();
1972 Ops.push_back(Chain);
1973 Ops.push_back(Callee);
1975 if (IsTailCall)
1976 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1978 // Add argument registers to the end of the list so that they are known live
1979 // into the call.
1980 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1981 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1982 RegsToPass[i].second.getValueType()));
1984 // Add an implicit use GOT pointer in EBX.
1985 if (!IsTailCall && Subtarget->isPICStyleGOT())
1986 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1988 // Add an implicit use of AL for x86 vararg functions.
1989 if (Is64Bit && isVarArg)
1990 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1992 if (InFlag.getNode())
1993 Ops.push_back(InFlag);
1995 if (IsTailCall) {
1996 assert(InFlag.getNode() &&
1997 "Flag must be set. Depend on flag being set in LowerRET");
1998 Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1999 TheCall->getVTList(), &Ops[0], Ops.size());
2001 return SDValue(Chain.getNode(), Op.getResNo());
2004 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2005 InFlag = Chain.getValue(1);
2007 // Create the CALLSEQ_END node.
2008 unsigned NumBytesForCalleeToPush;
2009 if (IsCalleePop(isVarArg, CC))
2010 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2011 else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
2012 // If this is is a call to a struct-return function, the callee
2013 // pops the hidden struct pointer, so we have to push it back.
2014 // This is common for Darwin/X86, Linux & Mingw32 targets.
2015 NumBytesForCalleeToPush = 4;
2016 else
2017 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2019 // Returns a flag for retval copy to use.
2020 Chain = DAG.getCALLSEQ_END(Chain,
2021 DAG.getIntPtrConstant(NumBytes, true),
2022 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2023 true),
2024 InFlag);
2025 InFlag = Chain.getValue(1);
2027 // Handle result values, copying them out of physregs into vregs that we
2028 // return.
2029 return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
2030 Op.getResNo());
2034 //===----------------------------------------------------------------------===//
2035 // Fast Calling Convention (tail call) implementation
2036 //===----------------------------------------------------------------------===//
2038 // Like std call, callee cleans arguments, convention except that ECX is
2039 // reserved for storing the tail called function address. Only 2 registers are
2040 // free for argument passing (inreg). Tail call optimization is performed
2041 // provided:
2042 // * tailcallopt is enabled
2043 // * caller/callee are fastcc
2044 // On X86_64 architecture with GOT-style position independent code only local
2045 // (within module) calls are supported at the moment.
2046 // To keep the stack aligned according to platform abi the function
2047 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2048 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2049 // If a tail called function callee has more arguments than the caller the
2050 // caller needs to make sure that there is room to move the RETADDR to. This is
2051 // achieved by reserving an area the size of the argument delta right after the
2052 // original REtADDR, but before the saved framepointer or the spilled registers
2053 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2054 // stack layout:
2055 // arg1
2056 // arg2
2057 // RETADDR
2058 // [ new RETADDR
2059 // move area ]
2060 // (possible EBP)
2061 // ESI
2062 // EDI
2063 // local1 ..
2065 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2066 /// for a 16 byte align requirement.
2067 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2068 SelectionDAG& DAG) {
2069 MachineFunction &MF = DAG.getMachineFunction();
2070 const TargetMachine &TM = MF.getTarget();
2071 const TargetFrameInfo &TFI = *TM.getFrameInfo();
2072 unsigned StackAlignment = TFI.getStackAlignment();
2073 uint64_t AlignMask = StackAlignment - 1;
2074 int64_t Offset = StackSize;
2075 uint64_t SlotSize = TD->getPointerSize();
2076 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2077 // Number smaller than 12 so just add the difference.
2078 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2079 } else {
2080 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2081 Offset = ((~AlignMask) & Offset) + StackAlignment +
2082 (StackAlignment-SlotSize);
2084 return Offset;
2087 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
2088 /// following the call is a return. A function is eligible if caller/callee
2089 /// calling conventions match, currently only fastcc supports tail calls, and
2090 /// the function CALL is immediatly followed by a RET.
2091 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
2092 SDValue Ret,
2093 SelectionDAG& DAG) const {
2094 if (!PerformTailCallOpt)
2095 return false;
2097 if (CheckTailCallReturnConstraints(TheCall, Ret)) {
2098 unsigned CallerCC =
2099 DAG.getMachineFunction().getFunction()->getCallingConv();
2100 unsigned CalleeCC = TheCall->getCallingConv();
2101 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC)
2102 return true;
2105 return false;
2108 FastISel *
2109 X86TargetLowering::createFastISel(MachineFunction &mf,
2110 MachineModuleInfo *mmo,
2111 DwarfWriter *dw,
2112 DenseMap<const Value *, unsigned> &vm,
2113 DenseMap<const BasicBlock *,
2114 MachineBasicBlock *> &bm,
2115 DenseMap<const AllocaInst *, int> &am
2116 #ifndef NDEBUG
2117 , SmallSet<Instruction*, 8> &cil
2118 #endif
2120 return X86::createFastISel(mf, mmo, dw, vm, bm, am
2121 #ifndef NDEBUG
2122 , cil
2123 #endif
2128 //===----------------------------------------------------------------------===//
2129 // Other Lowering Hooks
2130 //===----------------------------------------------------------------------===//
2133 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2134 MachineFunction &MF = DAG.getMachineFunction();
2135 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2136 int ReturnAddrIndex = FuncInfo->getRAIndex();
2138 if (ReturnAddrIndex == 0) {
2139 // Set up a frame object for the return address.
2140 uint64_t SlotSize = TD->getPointerSize();
2141 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2142 FuncInfo->setRAIndex(ReturnAddrIndex);
2145 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2149 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2150 /// specific condition code, returning the condition code and the LHS/RHS of the
2151 /// comparison to make.
2152 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2153 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2154 if (!isFP) {
2155 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2156 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2157 // X > -1 -> X == 0, jump !sign.
2158 RHS = DAG.getConstant(0, RHS.getValueType());
2159 return X86::COND_NS;
2160 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2161 // X < 0 -> X == 0, jump on sign.
2162 return X86::COND_S;
2163 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2164 // X < 1 -> X <= 0
2165 RHS = DAG.getConstant(0, RHS.getValueType());
2166 return X86::COND_LE;
2170 switch (SetCCOpcode) {
2171 default: llvm_unreachable("Invalid integer condition!");
2172 case ISD::SETEQ: return X86::COND_E;
2173 case ISD::SETGT: return X86::COND_G;
2174 case ISD::SETGE: return X86::COND_GE;
2175 case ISD::SETLT: return X86::COND_L;
2176 case ISD::SETLE: return X86::COND_LE;
2177 case ISD::SETNE: return X86::COND_NE;
2178 case ISD::SETULT: return X86::COND_B;
2179 case ISD::SETUGT: return X86::COND_A;
2180 case ISD::SETULE: return X86::COND_BE;
2181 case ISD::SETUGE: return X86::COND_AE;
2185 // First determine if it is required or is profitable to flip the operands.
2187 // If LHS is a foldable load, but RHS is not, flip the condition.
2188 if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2189 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2190 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2191 std::swap(LHS, RHS);
2194 switch (SetCCOpcode) {
2195 default: break;
2196 case ISD::SETOLT:
2197 case ISD::SETOLE:
2198 case ISD::SETUGT:
2199 case ISD::SETUGE:
2200 std::swap(LHS, RHS);
2201 break;
2204 // On a floating point condition, the flags are set as follows:
2205 // ZF PF CF op
2206 // 0 | 0 | 0 | X > Y
2207 // 0 | 0 | 1 | X < Y
2208 // 1 | 0 | 0 | X == Y
2209 // 1 | 1 | 1 | unordered
2210 switch (SetCCOpcode) {
2211 default: llvm_unreachable("Condcode should be pre-legalized away");
2212 case ISD::SETUEQ:
2213 case ISD::SETEQ: return X86::COND_E;
2214 case ISD::SETOLT: // flipped
2215 case ISD::SETOGT:
2216 case ISD::SETGT: return X86::COND_A;
2217 case ISD::SETOLE: // flipped
2218 case ISD::SETOGE:
2219 case ISD::SETGE: return X86::COND_AE;
2220 case ISD::SETUGT: // flipped
2221 case ISD::SETULT:
2222 case ISD::SETLT: return X86::COND_B;
2223 case ISD::SETUGE: // flipped
2224 case ISD::SETULE:
2225 case ISD::SETLE: return X86::COND_BE;
2226 case ISD::SETONE:
2227 case ISD::SETNE: return X86::COND_NE;
2228 case ISD::SETUO: return X86::COND_P;
2229 case ISD::SETO: return X86::COND_NP;
2233 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2234 /// code. Current x86 isa includes the following FP cmov instructions:
2235 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2236 static bool hasFPCMov(unsigned X86CC) {
2237 switch (X86CC) {
2238 default:
2239 return false;
2240 case X86::COND_B:
2241 case X86::COND_BE:
2242 case X86::COND_E:
2243 case X86::COND_P:
2244 case X86::COND_A:
2245 case X86::COND_AE:
2246 case X86::COND_NE:
2247 case X86::COND_NP:
2248 return true;
2252 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2253 /// the specified range (L, H].
2254 static bool isUndefOrInRange(int Val, int Low, int Hi) {
2255 return (Val < 0) || (Val >= Low && Val < Hi);
2258 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2259 /// specified value.
2260 static bool isUndefOrEqual(int Val, int CmpVal) {
2261 if (Val < 0 || Val == CmpVal)
2262 return true;
2263 return false;
2266 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2267 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2268 /// the second operand.
2269 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2270 if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2271 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2272 if (VT == MVT::v2f64 || VT == MVT::v2i64)
2273 return (Mask[0] < 2 && Mask[1] < 2);
2274 return false;
2277 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2278 SmallVector<int, 8> M;
2279 N->getMask(M);
2280 return ::isPSHUFDMask(M, N->getValueType(0));
2283 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2284 /// is suitable for input to PSHUFHW.
2285 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2286 if (VT != MVT::v8i16)
2287 return false;
2289 // Lower quadword copied in order or undef.
2290 for (int i = 0; i != 4; ++i)
2291 if (Mask[i] >= 0 && Mask[i] != i)
2292 return false;
2294 // Upper quadword shuffled.
2295 for (int i = 4; i != 8; ++i)
2296 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2297 return false;
2299 return true;
2302 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2303 SmallVector<int, 8> M;
2304 N->getMask(M);
2305 return ::isPSHUFHWMask(M, N->getValueType(0));
2308 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2309 /// is suitable for input to PSHUFLW.
2310 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2311 if (VT != MVT::v8i16)
2312 return false;
2314 // Upper quadword copied in order.
2315 for (int i = 4; i != 8; ++i)
2316 if (Mask[i] >= 0 && Mask[i] != i)
2317 return false;
2319 // Lower quadword shuffled.
2320 for (int i = 0; i != 4; ++i)
2321 if (Mask[i] >= 4)
2322 return false;
2324 return true;
2327 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2328 SmallVector<int, 8> M;
2329 N->getMask(M);
2330 return ::isPSHUFLWMask(M, N->getValueType(0));
2333 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2334 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2335 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2336 int NumElems = VT.getVectorNumElements();
2337 if (NumElems != 2 && NumElems != 4)
2338 return false;
2340 int Half = NumElems / 2;
2341 for (int i = 0; i < Half; ++i)
2342 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2343 return false;
2344 for (int i = Half; i < NumElems; ++i)
2345 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2346 return false;
2348 return true;
2351 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2352 SmallVector<int, 8> M;
2353 N->getMask(M);
2354 return ::isSHUFPMask(M, N->getValueType(0));
2357 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2358 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2359 /// half elements to come from vector 1 (which would equal the dest.) and
2360 /// the upper half to come from vector 2.
2361 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2362 int NumElems = VT.getVectorNumElements();
2364 if (NumElems != 2 && NumElems != 4)
2365 return false;
2367 int Half = NumElems / 2;
2368 for (int i = 0; i < Half; ++i)
2369 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2370 return false;
2371 for (int i = Half; i < NumElems; ++i)
2372 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2373 return false;
2374 return true;
2377 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2378 SmallVector<int, 8> M;
2379 N->getMask(M);
2380 return isCommutedSHUFPMask(M, N->getValueType(0));
2383 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2384 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2385 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2386 if (N->getValueType(0).getVectorNumElements() != 4)
2387 return false;
2389 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2390 return isUndefOrEqual(N->getMaskElt(0), 6) &&
2391 isUndefOrEqual(N->getMaskElt(1), 7) &&
2392 isUndefOrEqual(N->getMaskElt(2), 2) &&
2393 isUndefOrEqual(N->getMaskElt(3), 3);
2396 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2397 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2398 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2399 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2401 if (NumElems != 2 && NumElems != 4)
2402 return false;
2404 for (unsigned i = 0; i < NumElems/2; ++i)
2405 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2406 return false;
2408 for (unsigned i = NumElems/2; i < NumElems; ++i)
2409 if (!isUndefOrEqual(N->getMaskElt(i), i))
2410 return false;
2412 return true;
2415 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2416 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2417 /// and MOVLHPS.
2418 bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2419 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2421 if (NumElems != 2 && NumElems != 4)
2422 return false;
2424 for (unsigned i = 0; i < NumElems/2; ++i)
2425 if (!isUndefOrEqual(N->getMaskElt(i), i))
2426 return false;
2428 for (unsigned i = 0; i < NumElems/2; ++i)
2429 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2430 return false;
2432 return true;
2435 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2436 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2437 /// <2, 3, 2, 3>
2438 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2439 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2441 if (NumElems != 4)
2442 return false;
2444 return isUndefOrEqual(N->getMaskElt(0), 2) &&
2445 isUndefOrEqual(N->getMaskElt(1), 3) &&
2446 isUndefOrEqual(N->getMaskElt(2), 2) &&
2447 isUndefOrEqual(N->getMaskElt(3), 3);
2450 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2451 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2452 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2453 bool V2IsSplat = false) {
2454 int NumElts = VT.getVectorNumElements();
2455 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2456 return false;
2458 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2459 int BitI = Mask[i];
2460 int BitI1 = Mask[i+1];
2461 if (!isUndefOrEqual(BitI, j))
2462 return false;
2463 if (V2IsSplat) {
2464 if (!isUndefOrEqual(BitI1, NumElts))
2465 return false;
2466 } else {
2467 if (!isUndefOrEqual(BitI1, j + NumElts))
2468 return false;
2471 return true;
2474 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2475 SmallVector<int, 8> M;
2476 N->getMask(M);
2477 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2480 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2481 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2482 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
2483 bool V2IsSplat = false) {
2484 int NumElts = VT.getVectorNumElements();
2485 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2486 return false;
2488 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2489 int BitI = Mask[i];
2490 int BitI1 = Mask[i+1];
2491 if (!isUndefOrEqual(BitI, j + NumElts/2))
2492 return false;
2493 if (V2IsSplat) {
2494 if (isUndefOrEqual(BitI1, NumElts))
2495 return false;
2496 } else {
2497 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2498 return false;
2501 return true;
2504 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2505 SmallVector<int, 8> M;
2506 N->getMask(M);
2507 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2510 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2511 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2512 /// <0, 0, 1, 1>
2513 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2514 int NumElems = VT.getVectorNumElements();
2515 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2516 return false;
2518 for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2519 int BitI = Mask[i];
2520 int BitI1 = Mask[i+1];
2521 if (!isUndefOrEqual(BitI, j))
2522 return false;
2523 if (!isUndefOrEqual(BitI1, j))
2524 return false;
2526 return true;
2529 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2530 SmallVector<int, 8> M;
2531 N->getMask(M);
2532 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2535 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2536 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2537 /// <2, 2, 3, 3>
2538 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2539 int NumElems = VT.getVectorNumElements();
2540 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2541 return false;
2543 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2544 int BitI = Mask[i];
2545 int BitI1 = Mask[i+1];
2546 if (!isUndefOrEqual(BitI, j))
2547 return false;
2548 if (!isUndefOrEqual(BitI1, j))
2549 return false;
2551 return true;
2554 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2555 SmallVector<int, 8> M;
2556 N->getMask(M);
2557 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2560 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2561 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2562 /// MOVSD, and MOVD, i.e. setting the lowest element.
2563 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2564 if (VT.getVectorElementType().getSizeInBits() < 32)
2565 return false;
2567 int NumElts = VT.getVectorNumElements();
2569 if (!isUndefOrEqual(Mask[0], NumElts))
2570 return false;
2572 for (int i = 1; i < NumElts; ++i)
2573 if (!isUndefOrEqual(Mask[i], i))
2574 return false;
2576 return true;
2579 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2580 SmallVector<int, 8> M;
2581 N->getMask(M);
2582 return ::isMOVLMask(M, N->getValueType(0));
2585 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2586 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2587 /// element of vector 2 and the other elements to come from vector 1 in order.
2588 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2589 bool V2IsSplat = false, bool V2IsUndef = false) {
2590 int NumOps = VT.getVectorNumElements();
2591 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2592 return false;
2594 if (!isUndefOrEqual(Mask[0], 0))
2595 return false;
2597 for (int i = 1; i < NumOps; ++i)
2598 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2599 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2600 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2601 return false;
2603 return true;
2606 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2607 bool V2IsUndef = false) {
2608 SmallVector<int, 8> M;
2609 N->getMask(M);
2610 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2613 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2614 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2615 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2616 if (N->getValueType(0).getVectorNumElements() != 4)
2617 return false;
2619 // Expect 1, 1, 3, 3
2620 for (unsigned i = 0; i < 2; ++i) {
2621 int Elt = N->getMaskElt(i);
2622 if (Elt >= 0 && Elt != 1)
2623 return false;
2626 bool HasHi = false;
2627 for (unsigned i = 2; i < 4; ++i) {
2628 int Elt = N->getMaskElt(i);
2629 if (Elt >= 0 && Elt != 3)
2630 return false;
2631 if (Elt == 3)
2632 HasHi = true;
2634 // Don't use movshdup if it can be done with a shufps.
2635 // FIXME: verify that matching u, u, 3, 3 is what we want.
2636 return HasHi;
2639 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2640 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2641 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2642 if (N->getValueType(0).getVectorNumElements() != 4)
2643 return false;
2645 // Expect 0, 0, 2, 2
2646 for (unsigned i = 0; i < 2; ++i)
2647 if (N->getMaskElt(i) > 0)
2648 return false;
2650 bool HasHi = false;
2651 for (unsigned i = 2; i < 4; ++i) {
2652 int Elt = N->getMaskElt(i);
2653 if (Elt >= 0 && Elt != 2)
2654 return false;
2655 if (Elt == 2)
2656 HasHi = true;
2658 // Don't use movsldup if it can be done with a shufps.
2659 return HasHi;
2662 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2663 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2664 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2665 int e = N->getValueType(0).getVectorNumElements() / 2;
2667 for (int i = 0; i < e; ++i)
2668 if (!isUndefOrEqual(N->getMaskElt(i), i))
2669 return false;
2670 for (int i = 0; i < e; ++i)
2671 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2672 return false;
2673 return true;
2676 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2677 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2678 /// instructions.
2679 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2680 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2681 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2683 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2684 unsigned Mask = 0;
2685 for (int i = 0; i < NumOperands; ++i) {
2686 int Val = SVOp->getMaskElt(NumOperands-i-1);
2687 if (Val < 0) Val = 0;
2688 if (Val >= NumOperands) Val -= NumOperands;
2689 Mask |= Val;
2690 if (i != NumOperands - 1)
2691 Mask <<= Shift;
2693 return Mask;
2696 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2697 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2698 /// instructions.
2699 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2700 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2701 unsigned Mask = 0;
2702 // 8 nodes, but we only care about the last 4.
2703 for (unsigned i = 7; i >= 4; --i) {
2704 int Val = SVOp->getMaskElt(i);
2705 if (Val >= 0)
2706 Mask |= (Val - 4);
2707 if (i != 4)
2708 Mask <<= 2;
2710 return Mask;
2713 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2714 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2715 /// instructions.
2716 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2717 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2718 unsigned Mask = 0;
2719 // 8 nodes, but we only care about the first 4.
2720 for (int i = 3; i >= 0; --i) {
2721 int Val = SVOp->getMaskElt(i);
2722 if (Val >= 0)
2723 Mask |= Val;
2724 if (i != 0)
2725 Mask <<= 2;
2727 return Mask;
2730 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2731 /// their permute mask.
2732 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2733 SelectionDAG &DAG) {
2734 MVT VT = SVOp->getValueType(0);
2735 unsigned NumElems = VT.getVectorNumElements();
2736 SmallVector<int, 8> MaskVec;
2738 for (unsigned i = 0; i != NumElems; ++i) {
2739 int idx = SVOp->getMaskElt(i);
2740 if (idx < 0)
2741 MaskVec.push_back(idx);
2742 else if (idx < (int)NumElems)
2743 MaskVec.push_back(idx + NumElems);
2744 else
2745 MaskVec.push_back(idx - NumElems);
2747 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2748 SVOp->getOperand(0), &MaskVec[0]);
2751 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2752 /// the two vector operands have swapped position.
2753 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
2754 unsigned NumElems = VT.getVectorNumElements();
2755 for (unsigned i = 0; i != NumElems; ++i) {
2756 int idx = Mask[i];
2757 if (idx < 0)
2758 continue;
2759 else if (idx < (int)NumElems)
2760 Mask[i] = idx + NumElems;
2761 else
2762 Mask[i] = idx - NumElems;
2766 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2767 /// match movhlps. The lower half elements should come from upper half of
2768 /// V1 (and in order), and the upper half elements should come from the upper
2769 /// half of V2 (and in order).
2770 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2771 if (Op->getValueType(0).getVectorNumElements() != 4)
2772 return false;
2773 for (unsigned i = 0, e = 2; i != e; ++i)
2774 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2775 return false;
2776 for (unsigned i = 2; i != 4; ++i)
2777 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2778 return false;
2779 return true;
2782 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2783 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2784 /// required.
2785 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2786 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2787 return false;
2788 N = N->getOperand(0).getNode();
2789 if (!ISD::isNON_EXTLoad(N))
2790 return false;
2791 if (LD)
2792 *LD = cast<LoadSDNode>(N);
2793 return true;
2796 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2797 /// match movlp{s|d}. The lower half elements should come from lower half of
2798 /// V1 (and in order), and the upper half elements should come from the upper
2799 /// half of V2 (and in order). And since V1 will become the source of the
2800 /// MOVLP, it must be either a vector load or a scalar load to vector.
2801 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2802 ShuffleVectorSDNode *Op) {
2803 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2804 return false;
2805 // Is V2 is a vector load, don't do this transformation. We will try to use
2806 // load folding shufps op.
2807 if (ISD::isNON_EXTLoad(V2))
2808 return false;
2810 unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2812 if (NumElems != 2 && NumElems != 4)
2813 return false;
2814 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2815 if (!isUndefOrEqual(Op->getMaskElt(i), i))
2816 return false;
2817 for (unsigned i = NumElems/2; i != NumElems; ++i)
2818 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2819 return false;
2820 return true;
2823 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2824 /// all the same.
2825 static bool isSplatVector(SDNode *N) {
2826 if (N->getOpcode() != ISD::BUILD_VECTOR)
2827 return false;
2829 SDValue SplatValue = N->getOperand(0);
2830 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2831 if (N->getOperand(i) != SplatValue)
2832 return false;
2833 return true;
2836 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2837 /// constant +0.0.
2838 static inline bool isZeroNode(SDValue Elt) {
2839 return ((isa<ConstantSDNode>(Elt) &&
2840 cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2841 (isa<ConstantFPSDNode>(Elt) &&
2842 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2845 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2846 /// to an zero vector.
2847 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2848 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2849 SDValue V1 = N->getOperand(0);
2850 SDValue V2 = N->getOperand(1);
2851 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2852 for (unsigned i = 0; i != NumElems; ++i) {
2853 int Idx = N->getMaskElt(i);
2854 if (Idx >= (int)NumElems) {
2855 unsigned Opc = V2.getOpcode();
2856 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2857 continue;
2858 if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems)))
2859 return false;
2860 } else if (Idx >= 0) {
2861 unsigned Opc = V1.getOpcode();
2862 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2863 continue;
2864 if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx)))
2865 return false;
2868 return true;
2871 /// getZeroVector - Returns a vector of specified type with all zero elements.
2873 static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2874 DebugLoc dl) {
2875 assert(VT.isVector() && "Expected a vector type");
2877 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2878 // type. This ensures they get CSE'd.
2879 SDValue Vec;
2880 if (VT.getSizeInBits() == 64) { // MMX
2881 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2882 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2883 } else if (HasSSE2) { // SSE2
2884 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2885 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2886 } else { // SSE1
2887 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2888 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2890 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2893 /// getOnesVector - Returns a vector of specified type with all bits set.
2895 static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2896 assert(VT.isVector() && "Expected a vector type");
2898 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2899 // type. This ensures they get CSE'd.
2900 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2901 SDValue Vec;
2902 if (VT.getSizeInBits() == 64) // MMX
2903 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2904 else // SSE
2905 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2906 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2910 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2911 /// that point to V2 points to its first element.
2912 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2913 MVT VT = SVOp->getValueType(0);
2914 unsigned NumElems = VT.getVectorNumElements();
2916 bool Changed = false;
2917 SmallVector<int, 8> MaskVec;
2918 SVOp->getMask(MaskVec);
2920 for (unsigned i = 0; i != NumElems; ++i) {
2921 if (MaskVec[i] > (int)NumElems) {
2922 MaskVec[i] = NumElems;
2923 Changed = true;
2926 if (Changed)
2927 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2928 SVOp->getOperand(1), &MaskVec[0]);
2929 return SDValue(SVOp, 0);
2932 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2933 /// operation of specified width.
2934 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2935 SDValue V2) {
2936 unsigned NumElems = VT.getVectorNumElements();
2937 SmallVector<int, 8> Mask;
2938 Mask.push_back(NumElems);
2939 for (unsigned i = 1; i != NumElems; ++i)
2940 Mask.push_back(i);
2941 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2944 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2945 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2946 SDValue V2) {
2947 unsigned NumElems = VT.getVectorNumElements();
2948 SmallVector<int, 8> Mask;
2949 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2950 Mask.push_back(i);
2951 Mask.push_back(i + NumElems);
2953 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2956 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2957 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2958 SDValue V2) {
2959 unsigned NumElems = VT.getVectorNumElements();
2960 unsigned Half = NumElems/2;
2961 SmallVector<int, 8> Mask;
2962 for (unsigned i = 0; i != Half; ++i) {
2963 Mask.push_back(i + Half);
2964 Mask.push_back(i + NumElems + Half);
2966 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2969 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2970 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
2971 bool HasSSE2) {
2972 if (SV->getValueType(0).getVectorNumElements() <= 4)
2973 return SDValue(SV, 0);
2975 MVT PVT = MVT::v4f32;
2976 MVT VT = SV->getValueType(0);
2977 DebugLoc dl = SV->getDebugLoc();
2978 SDValue V1 = SV->getOperand(0);
2979 int NumElems = VT.getVectorNumElements();
2980 int EltNo = SV->getSplatIndex();
2982 // unpack elements to the correct location
2983 while (NumElems > 4) {
2984 if (EltNo < NumElems/2) {
2985 V1 = getUnpackl(DAG, dl, VT, V1, V1);
2986 } else {
2987 V1 = getUnpackh(DAG, dl, VT, V1, V1);
2988 EltNo -= NumElems/2;
2990 NumElems >>= 1;
2993 // Perform the splat.
2994 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
2995 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
2996 V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
2997 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3000 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3001 /// vector of zero or undef vector. This produces a shuffle where the low
3002 /// element of V2 is swizzled into the zero/undef vector, landing at element
3003 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3004 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3005 bool isZero, bool HasSSE2,
3006 SelectionDAG &DAG) {
3007 MVT VT = V2.getValueType();
3008 SDValue V1 = isZero
3009 ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3010 unsigned NumElems = VT.getVectorNumElements();
3011 SmallVector<int, 16> MaskVec;
3012 for (unsigned i = 0; i != NumElems; ++i)
3013 // If this is the insertion idx, put the low elt of V2 here.
3014 MaskVec.push_back(i == Idx ? NumElems : i);
3015 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3018 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3019 /// a shuffle that is zero.
3020 static
3021 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3022 bool Low, SelectionDAG &DAG) {
3023 unsigned NumZeros = 0;
3024 for (int i = 0; i < NumElems; ++i) {
3025 unsigned Index = Low ? i : NumElems-i-1;
3026 int Idx = SVOp->getMaskElt(Index);
3027 if (Idx < 0) {
3028 ++NumZeros;
3029 continue;
3031 SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3032 if (Elt.getNode() && isZeroNode(Elt))
3033 ++NumZeros;
3034 else
3035 break;
3037 return NumZeros;
3040 /// isVectorShift - Returns true if the shuffle can be implemented as a
3041 /// logical left or right shift of a vector.
3042 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3043 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3044 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3045 int NumElems = SVOp->getValueType(0).getVectorNumElements();
3047 isLeft = true;
3048 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3049 if (!NumZeros) {
3050 isLeft = false;
3051 NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3052 if (!NumZeros)
3053 return false;
3055 bool SeenV1 = false;
3056 bool SeenV2 = false;
3057 for (int i = NumZeros; i < NumElems; ++i) {
3058 int Val = isLeft ? (i - NumZeros) : i;
3059 int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3060 if (Idx < 0)
3061 continue;
3062 if (Idx < NumElems)
3063 SeenV1 = true;
3064 else {
3065 Idx -= NumElems;
3066 SeenV2 = true;
3068 if (Idx != Val)
3069 return false;
3071 if (SeenV1 && SeenV2)
3072 return false;
3074 ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3075 ShAmt = NumZeros;
3076 return true;
3080 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3082 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3083 unsigned NumNonZero, unsigned NumZero,
3084 SelectionDAG &DAG, TargetLowering &TLI) {
3085 if (NumNonZero > 8)
3086 return SDValue();
3088 DebugLoc dl = Op.getDebugLoc();
3089 SDValue V(0, 0);
3090 bool First = true;
3091 for (unsigned i = 0; i < 16; ++i) {
3092 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3093 if (ThisIsNonZero && First) {
3094 if (NumZero)
3095 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3096 else
3097 V = DAG.getUNDEF(MVT::v8i16);
3098 First = false;
3101 if ((i & 1) != 0) {
3102 SDValue ThisElt(0, 0), LastElt(0, 0);
3103 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3104 if (LastIsNonZero) {
3105 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3106 MVT::i16, Op.getOperand(i-1));
3108 if (ThisIsNonZero) {
3109 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3110 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3111 ThisElt, DAG.getConstant(8, MVT::i8));
3112 if (LastIsNonZero)
3113 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3114 } else
3115 ThisElt = LastElt;
3117 if (ThisElt.getNode())
3118 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3119 DAG.getIntPtrConstant(i/2));
3123 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3126 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3128 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3129 unsigned NumNonZero, unsigned NumZero,
3130 SelectionDAG &DAG, TargetLowering &TLI) {
3131 if (NumNonZero > 4)
3132 return SDValue();
3134 DebugLoc dl = Op.getDebugLoc();
3135 SDValue V(0, 0);
3136 bool First = true;
3137 for (unsigned i = 0; i < 8; ++i) {
3138 bool isNonZero = (NonZeros & (1 << i)) != 0;
3139 if (isNonZero) {
3140 if (First) {
3141 if (NumZero)
3142 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3143 else
3144 V = DAG.getUNDEF(MVT::v8i16);
3145 First = false;
3147 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3148 MVT::v8i16, V, Op.getOperand(i),
3149 DAG.getIntPtrConstant(i));
3153 return V;
3156 /// getVShift - Return a vector logical shift node.
3158 static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3159 unsigned NumBits, SelectionDAG &DAG,
3160 const TargetLowering &TLI, DebugLoc dl) {
3161 bool isMMX = VT.getSizeInBits() == 64;
3162 MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3163 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3164 SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3165 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3166 DAG.getNode(Opc, dl, ShVT, SrcOp,
3167 DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3170 SDValue
3171 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3172 DebugLoc dl = Op.getDebugLoc();
3173 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3174 if (ISD::isBuildVectorAllZeros(Op.getNode())
3175 || ISD::isBuildVectorAllOnes(Op.getNode())) {
3176 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3177 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3178 // eliminated on x86-32 hosts.
3179 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3180 return Op;
3182 if (ISD::isBuildVectorAllOnes(Op.getNode()))
3183 return getOnesVector(Op.getValueType(), DAG, dl);
3184 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3187 MVT VT = Op.getValueType();
3188 MVT EVT = VT.getVectorElementType();
3189 unsigned EVTBits = EVT.getSizeInBits();
3191 unsigned NumElems = Op.getNumOperands();
3192 unsigned NumZero = 0;
3193 unsigned NumNonZero = 0;
3194 unsigned NonZeros = 0;
3195 bool IsAllConstants = true;
3196 SmallSet<SDValue, 8> Values;
3197 for (unsigned i = 0; i < NumElems; ++i) {
3198 SDValue Elt = Op.getOperand(i);
3199 if (Elt.getOpcode() == ISD::UNDEF)
3200 continue;
3201 Values.insert(Elt);
3202 if (Elt.getOpcode() != ISD::Constant &&
3203 Elt.getOpcode() != ISD::ConstantFP)
3204 IsAllConstants = false;
3205 if (isZeroNode(Elt))
3206 NumZero++;
3207 else {
3208 NonZeros |= (1 << i);
3209 NumNonZero++;
3213 if (NumNonZero == 0) {
3214 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3215 return DAG.getUNDEF(VT);
3218 // Special case for single non-zero, non-undef, element.
3219 if (NumNonZero == 1) {
3220 unsigned Idx = CountTrailingZeros_32(NonZeros);
3221 SDValue Item = Op.getOperand(Idx);
3223 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3224 // the value are obviously zero, truncate the value to i32 and do the
3225 // insertion that way. Only do this if the value is non-constant or if the
3226 // value is a constant being inserted into element 0. It is cheaper to do
3227 // a constant pool load than it is to do a movd + shuffle.
3228 if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3229 (!IsAllConstants || Idx == 0)) {
3230 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3231 // Handle MMX and SSE both.
3232 MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3233 unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3235 // Truncate the value (which may itself be a constant) to i32, and
3236 // convert it to a vector with movd (S2V+shuffle to zero extend).
3237 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3238 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3239 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3240 Subtarget->hasSSE2(), DAG);
3242 // Now we have our 32-bit value zero extended in the low element of
3243 // a vector. If Idx != 0, swizzle it into place.
3244 if (Idx != 0) {
3245 SmallVector<int, 4> Mask;
3246 Mask.push_back(Idx);
3247 for (unsigned i = 1; i != VecElts; ++i)
3248 Mask.push_back(i);
3249 Item = DAG.getVectorShuffle(VecVT, dl, Item,
3250 DAG.getUNDEF(Item.getValueType()),
3251 &Mask[0]);
3253 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3257 // If we have a constant or non-constant insertion into the low element of
3258 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3259 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3260 // depending on what the source datatype is.
3261 if (Idx == 0) {
3262 if (NumZero == 0) {
3263 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3264 } else if (EVT == MVT::i32 || EVT == MVT::f32 || EVT == MVT::f64 ||
3265 (EVT == MVT::i64 && Subtarget->is64Bit())) {
3266 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3267 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3268 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3269 DAG);
3270 } else if (EVT == MVT::i16 || EVT == MVT::i8) {
3271 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3272 MVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3273 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3274 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3275 Subtarget->hasSSE2(), DAG);
3276 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3280 // Is it a vector logical left shift?
3281 if (NumElems == 2 && Idx == 1 &&
3282 isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3283 unsigned NumBits = VT.getSizeInBits();
3284 return getVShift(true, VT,
3285 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3286 VT, Op.getOperand(1)),
3287 NumBits/2, DAG, *this, dl);
3290 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3291 return SDValue();
3293 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3294 // is a non-constant being inserted into an element other than the low one,
3295 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3296 // movd/movss) to move this into the low element, then shuffle it into
3297 // place.
3298 if (EVTBits == 32) {
3299 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3301 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3302 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3303 Subtarget->hasSSE2(), DAG);
3304 SmallVector<int, 8> MaskVec;
3305 for (unsigned i = 0; i < NumElems; i++)
3306 MaskVec.push_back(i == Idx ? 0 : 1);
3307 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3311 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3312 if (Values.size() == 1)
3313 return SDValue();
3315 // A vector full of immediates; various special cases are already
3316 // handled, so this is best done with a single constant-pool load.
3317 if (IsAllConstants)
3318 return SDValue();
3320 // Let legalizer expand 2-wide build_vectors.
3321 if (EVTBits == 64) {
3322 if (NumNonZero == 1) {
3323 // One half is zero or undef.
3324 unsigned Idx = CountTrailingZeros_32(NonZeros);
3325 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3326 Op.getOperand(Idx));
3327 return getShuffleVectorZeroOrUndef(V2, Idx, true,
3328 Subtarget->hasSSE2(), DAG);
3330 return SDValue();
3333 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3334 if (EVTBits == 8 && NumElems == 16) {
3335 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3336 *this);
3337 if (V.getNode()) return V;
3340 if (EVTBits == 16 && NumElems == 8) {
3341 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3342 *this);
3343 if (V.getNode()) return V;
3346 // If element VT is == 32 bits, turn it into a number of shuffles.
3347 SmallVector<SDValue, 8> V;
3348 V.resize(NumElems);
3349 if (NumElems == 4 && NumZero > 0) {
3350 for (unsigned i = 0; i < 4; ++i) {
3351 bool isZero = !(NonZeros & (1 << i));
3352 if (isZero)
3353 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3354 else
3355 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3358 for (unsigned i = 0; i < 2; ++i) {
3359 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3360 default: break;
3361 case 0:
3362 V[i] = V[i*2]; // Must be a zero vector.
3363 break;
3364 case 1:
3365 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3366 break;
3367 case 2:
3368 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3369 break;
3370 case 3:
3371 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3372 break;
3376 SmallVector<int, 8> MaskVec;
3377 bool Reverse = (NonZeros & 0x3) == 2;
3378 for (unsigned i = 0; i < 2; ++i)
3379 MaskVec.push_back(Reverse ? 1-i : i);
3380 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3381 for (unsigned i = 0; i < 2; ++i)
3382 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3383 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3386 if (Values.size() > 2) {
3387 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3388 // values to be inserted is equal to the number of elements, in which case
3389 // use the unpack code below in the hopes of matching the consecutive elts
3390 // load merge pattern for shuffles.
3391 // FIXME: We could probably just check that here directly.
3392 if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3393 getSubtarget()->hasSSE41()) {
3394 V[0] = DAG.getUNDEF(VT);
3395 for (unsigned i = 0; i < NumElems; ++i)
3396 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3397 V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3398 Op.getOperand(i), DAG.getIntPtrConstant(i));
3399 return V[0];
3401 // Expand into a number of unpckl*.
3402 // e.g. for v4f32
3403 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3404 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3405 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3406 for (unsigned i = 0; i < NumElems; ++i)
3407 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3408 NumElems >>= 1;
3409 while (NumElems != 0) {
3410 for (unsigned i = 0; i < NumElems; ++i)
3411 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3412 NumElems >>= 1;
3414 return V[0];
3417 return SDValue();
3420 // v8i16 shuffles - Prefer shuffles in the following order:
3421 // 1. [all] pshuflw, pshufhw, optional move
3422 // 2. [ssse3] 1 x pshufb
3423 // 3. [ssse3] 2 x pshufb + 1 x por
3424 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3425 static
3426 SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3427 SelectionDAG &DAG, X86TargetLowering &TLI) {
3428 SDValue V1 = SVOp->getOperand(0);
3429 SDValue V2 = SVOp->getOperand(1);
3430 DebugLoc dl = SVOp->getDebugLoc();
3431 SmallVector<int, 8> MaskVals;
3433 // Determine if more than 1 of the words in each of the low and high quadwords
3434 // of the result come from the same quadword of one of the two inputs. Undef
3435 // mask values count as coming from any quadword, for better codegen.
3436 SmallVector<unsigned, 4> LoQuad(4);
3437 SmallVector<unsigned, 4> HiQuad(4);
3438 BitVector InputQuads(4);
3439 for (unsigned i = 0; i < 8; ++i) {
3440 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3441 int EltIdx = SVOp->getMaskElt(i);
3442 MaskVals.push_back(EltIdx);
3443 if (EltIdx < 0) {
3444 ++Quad[0];
3445 ++Quad[1];
3446 ++Quad[2];
3447 ++Quad[3];
3448 continue;
3450 ++Quad[EltIdx / 4];
3451 InputQuads.set(EltIdx / 4);
3454 int BestLoQuad = -1;
3455 unsigned MaxQuad = 1;
3456 for (unsigned i = 0; i < 4; ++i) {
3457 if (LoQuad[i] > MaxQuad) {
3458 BestLoQuad = i;
3459 MaxQuad = LoQuad[i];
3463 int BestHiQuad = -1;
3464 MaxQuad = 1;
3465 for (unsigned i = 0; i < 4; ++i) {
3466 if (HiQuad[i] > MaxQuad) {
3467 BestHiQuad = i;
3468 MaxQuad = HiQuad[i];
3472 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3473 // of the two input vectors, shuffle them into one input vector so only a
3474 // single pshufb instruction is necessary. If There are more than 2 input
3475 // quads, disable the next transformation since it does not help SSSE3.
3476 bool V1Used = InputQuads[0] || InputQuads[1];
3477 bool V2Used = InputQuads[2] || InputQuads[3];
3478 if (TLI.getSubtarget()->hasSSSE3()) {
3479 if (InputQuads.count() == 2 && V1Used && V2Used) {
3480 BestLoQuad = InputQuads.find_first();
3481 BestHiQuad = InputQuads.find_next(BestLoQuad);
3483 if (InputQuads.count() > 2) {
3484 BestLoQuad = -1;
3485 BestHiQuad = -1;
3489 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3490 // the shuffle mask. If a quad is scored as -1, that means that it contains
3491 // words from all 4 input quadwords.
3492 SDValue NewV;
3493 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3494 SmallVector<int, 8> MaskV;
3495 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3496 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3497 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3498 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3499 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3500 NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3502 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3503 // source words for the shuffle, to aid later transformations.
3504 bool AllWordsInNewV = true;
3505 bool InOrder[2] = { true, true };
3506 for (unsigned i = 0; i != 8; ++i) {
3507 int idx = MaskVals[i];
3508 if (idx != (int)i)
3509 InOrder[i/4] = false;
3510 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3511 continue;
3512 AllWordsInNewV = false;
3513 break;
3516 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3517 if (AllWordsInNewV) {
3518 for (int i = 0; i != 8; ++i) {
3519 int idx = MaskVals[i];
3520 if (idx < 0)
3521 continue;
3522 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3523 if ((idx != i) && idx < 4)
3524 pshufhw = false;
3525 if ((idx != i) && idx > 3)
3526 pshuflw = false;
3528 V1 = NewV;
3529 V2Used = false;
3530 BestLoQuad = 0;
3531 BestHiQuad = 1;
3534 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3535 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3536 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3537 return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3538 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3542 // If we have SSSE3, and all words of the result are from 1 input vector,
3543 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3544 // is present, fall back to case 4.
3545 if (TLI.getSubtarget()->hasSSSE3()) {
3546 SmallVector<SDValue,16> pshufbMask;
3548 // If we have elements from both input vectors, set the high bit of the
3549 // shuffle mask element to zero out elements that come from V2 in the V1
3550 // mask, and elements that come from V1 in the V2 mask, so that the two
3551 // results can be OR'd together.
3552 bool TwoInputs = V1Used && V2Used;
3553 for (unsigned i = 0; i != 8; ++i) {
3554 int EltIdx = MaskVals[i] * 2;
3555 if (TwoInputs && (EltIdx >= 16)) {
3556 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3557 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3558 continue;
3560 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3561 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3563 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3564 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3565 DAG.getNode(ISD::BUILD_VECTOR, dl,
3566 MVT::v16i8, &pshufbMask[0], 16));
3567 if (!TwoInputs)
3568 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3570 // Calculate the shuffle mask for the second input, shuffle it, and
3571 // OR it with the first shuffled input.
3572 pshufbMask.clear();
3573 for (unsigned i = 0; i != 8; ++i) {
3574 int EltIdx = MaskVals[i] * 2;
3575 if (EltIdx < 16) {
3576 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3577 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3578 continue;
3580 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3581 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3583 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3584 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3585 DAG.getNode(ISD::BUILD_VECTOR, dl,
3586 MVT::v16i8, &pshufbMask[0], 16));
3587 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3588 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3591 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3592 // and update MaskVals with new element order.
3593 BitVector InOrder(8);
3594 if (BestLoQuad >= 0) {
3595 SmallVector<int, 8> MaskV;
3596 for (int i = 0; i != 4; ++i) {
3597 int idx = MaskVals[i];
3598 if (idx < 0) {
3599 MaskV.push_back(-1);
3600 InOrder.set(i);
3601 } else if ((idx / 4) == BestLoQuad) {
3602 MaskV.push_back(idx & 3);
3603 InOrder.set(i);
3604 } else {
3605 MaskV.push_back(-1);
3608 for (unsigned i = 4; i != 8; ++i)
3609 MaskV.push_back(i);
3610 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3611 &MaskV[0]);
3614 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3615 // and update MaskVals with the new element order.
3616 if (BestHiQuad >= 0) {
3617 SmallVector<int, 8> MaskV;
3618 for (unsigned i = 0; i != 4; ++i)
3619 MaskV.push_back(i);
3620 for (unsigned i = 4; i != 8; ++i) {
3621 int idx = MaskVals[i];
3622 if (idx < 0) {
3623 MaskV.push_back(-1);
3624 InOrder.set(i);
3625 } else if ((idx / 4) == BestHiQuad) {
3626 MaskV.push_back((idx & 3) + 4);
3627 InOrder.set(i);
3628 } else {
3629 MaskV.push_back(-1);
3632 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3633 &MaskV[0]);
3636 // In case BestHi & BestLo were both -1, which means each quadword has a word
3637 // from each of the four input quadwords, calculate the InOrder bitvector now
3638 // before falling through to the insert/extract cleanup.
3639 if (BestLoQuad == -1 && BestHiQuad == -1) {
3640 NewV = V1;
3641 for (int i = 0; i != 8; ++i)
3642 if (MaskVals[i] < 0 || MaskVals[i] == i)
3643 InOrder.set(i);
3646 // The other elements are put in the right place using pextrw and pinsrw.
3647 for (unsigned i = 0; i != 8; ++i) {
3648 if (InOrder[i])
3649 continue;
3650 int EltIdx = MaskVals[i];
3651 if (EltIdx < 0)
3652 continue;
3653 SDValue ExtOp = (EltIdx < 8)
3654 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3655 DAG.getIntPtrConstant(EltIdx))
3656 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3657 DAG.getIntPtrConstant(EltIdx - 8));
3658 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3659 DAG.getIntPtrConstant(i));
3661 return NewV;
3664 // v16i8 shuffles - Prefer shuffles in the following order:
3665 // 1. [ssse3] 1 x pshufb
3666 // 2. [ssse3] 2 x pshufb + 1 x por
3667 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3668 static
3669 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3670 SelectionDAG &DAG, X86TargetLowering &TLI) {
3671 SDValue V1 = SVOp->getOperand(0);
3672 SDValue V2 = SVOp->getOperand(1);
3673 DebugLoc dl = SVOp->getDebugLoc();
3674 SmallVector<int, 16> MaskVals;
3675 SVOp->getMask(MaskVals);
3677 // If we have SSSE3, case 1 is generated when all result bytes come from
3678 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3679 // present, fall back to case 3.
3680 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3681 bool V1Only = true;
3682 bool V2Only = true;
3683 for (unsigned i = 0; i < 16; ++i) {
3684 int EltIdx = MaskVals[i];
3685 if (EltIdx < 0)
3686 continue;
3687 if (EltIdx < 16)
3688 V2Only = false;
3689 else
3690 V1Only = false;
3693 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3694 if (TLI.getSubtarget()->hasSSSE3()) {
3695 SmallVector<SDValue,16> pshufbMask;
3697 // If all result elements are from one input vector, then only translate
3698 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3700 // Otherwise, we have elements from both input vectors, and must zero out
3701 // elements that come from V2 in the first mask, and V1 in the second mask
3702 // so that we can OR them together.
3703 bool TwoInputs = !(V1Only || V2Only);
3704 for (unsigned i = 0; i != 16; ++i) {
3705 int EltIdx = MaskVals[i];
3706 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3707 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3708 continue;
3710 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3712 // If all the elements are from V2, assign it to V1 and return after
3713 // building the first pshufb.
3714 if (V2Only)
3715 V1 = V2;
3716 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3717 DAG.getNode(ISD::BUILD_VECTOR, dl,
3718 MVT::v16i8, &pshufbMask[0], 16));
3719 if (!TwoInputs)
3720 return V1;
3722 // Calculate the shuffle mask for the second input, shuffle it, and
3723 // OR it with the first shuffled input.
3724 pshufbMask.clear();
3725 for (unsigned i = 0; i != 16; ++i) {
3726 int EltIdx = MaskVals[i];
3727 if (EltIdx < 16) {
3728 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3729 continue;
3731 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3733 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3734 DAG.getNode(ISD::BUILD_VECTOR, dl,
3735 MVT::v16i8, &pshufbMask[0], 16));
3736 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3739 // No SSSE3 - Calculate in place words and then fix all out of place words
3740 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3741 // the 16 different words that comprise the two doublequadword input vectors.
3742 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3743 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3744 SDValue NewV = V2Only ? V2 : V1;
3745 for (int i = 0; i != 8; ++i) {
3746 int Elt0 = MaskVals[i*2];
3747 int Elt1 = MaskVals[i*2+1];
3749 // This word of the result is all undef, skip it.
3750 if (Elt0 < 0 && Elt1 < 0)
3751 continue;
3753 // This word of the result is already in the correct place, skip it.
3754 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3755 continue;
3756 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3757 continue;
3759 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3760 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3761 SDValue InsElt;
3763 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3764 // using a single extract together, load it and store it.
3765 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3766 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3767 DAG.getIntPtrConstant(Elt1 / 2));
3768 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3769 DAG.getIntPtrConstant(i));
3770 continue;
3773 // If Elt1 is defined, extract it from the appropriate source. If the
3774 // source byte is not also odd, shift the extracted word left 8 bits
3775 // otherwise clear the bottom 8 bits if we need to do an or.
3776 if (Elt1 >= 0) {
3777 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3778 DAG.getIntPtrConstant(Elt1 / 2));
3779 if ((Elt1 & 1) == 0)
3780 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3781 DAG.getConstant(8, TLI.getShiftAmountTy()));
3782 else if (Elt0 >= 0)
3783 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3784 DAG.getConstant(0xFF00, MVT::i16));
3786 // If Elt0 is defined, extract it from the appropriate source. If the
3787 // source byte is not also even, shift the extracted word right 8 bits. If
3788 // Elt1 was also defined, OR the extracted values together before
3789 // inserting them in the result.
3790 if (Elt0 >= 0) {
3791 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3792 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3793 if ((Elt0 & 1) != 0)
3794 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3795 DAG.getConstant(8, TLI.getShiftAmountTy()));
3796 else if (Elt1 >= 0)
3797 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3798 DAG.getConstant(0x00FF, MVT::i16));
3799 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3800 : InsElt0;
3802 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3803 DAG.getIntPtrConstant(i));
3805 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3808 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3809 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3810 /// done when every pair / quad of shuffle mask elements point to elements in
3811 /// the right sequence. e.g.
3812 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3813 static
3814 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3815 SelectionDAG &DAG,
3816 TargetLowering &TLI, DebugLoc dl) {
3817 MVT VT = SVOp->getValueType(0);
3818 SDValue V1 = SVOp->getOperand(0);
3819 SDValue V2 = SVOp->getOperand(1);
3820 unsigned NumElems = VT.getVectorNumElements();
3821 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3822 MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3823 MVT MaskEltVT = MaskVT.getVectorElementType();
3824 MVT NewVT = MaskVT;
3825 switch (VT.getSimpleVT()) {
3826 default: assert(false && "Unexpected!");
3827 case MVT::v4f32: NewVT = MVT::v2f64; break;
3828 case MVT::v4i32: NewVT = MVT::v2i64; break;
3829 case MVT::v8i16: NewVT = MVT::v4i32; break;
3830 case MVT::v16i8: NewVT = MVT::v4i32; break;
3833 if (NewWidth == 2) {
3834 if (VT.isInteger())
3835 NewVT = MVT::v2i64;
3836 else
3837 NewVT = MVT::v2f64;
3839 int Scale = NumElems / NewWidth;
3840 SmallVector<int, 8> MaskVec;
3841 for (unsigned i = 0; i < NumElems; i += Scale) {
3842 int StartIdx = -1;
3843 for (int j = 0; j < Scale; ++j) {
3844 int EltIdx = SVOp->getMaskElt(i+j);
3845 if (EltIdx < 0)
3846 continue;
3847 if (StartIdx == -1)
3848 StartIdx = EltIdx - (EltIdx % Scale);
3849 if (EltIdx != StartIdx + j)
3850 return SDValue();
3852 if (StartIdx == -1)
3853 MaskVec.push_back(-1);
3854 else
3855 MaskVec.push_back(StartIdx / Scale);
3858 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3859 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3860 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3863 /// getVZextMovL - Return a zero-extending vector move low node.
3865 static SDValue getVZextMovL(MVT VT, MVT OpVT,
3866 SDValue SrcOp, SelectionDAG &DAG,
3867 const X86Subtarget *Subtarget, DebugLoc dl) {
3868 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3869 LoadSDNode *LD = NULL;
3870 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3871 LD = dyn_cast<LoadSDNode>(SrcOp);
3872 if (!LD) {
3873 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3874 // instead.
3875 MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3876 if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3877 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3878 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3879 SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3880 // PR2108
3881 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3882 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3883 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3884 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3885 OpVT,
3886 SrcOp.getOperand(0)
3887 .getOperand(0))));
3892 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3893 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3894 DAG.getNode(ISD::BIT_CONVERT, dl,
3895 OpVT, SrcOp)));
3898 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3899 /// shuffles.
3900 static SDValue
3901 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3902 SDValue V1 = SVOp->getOperand(0);
3903 SDValue V2 = SVOp->getOperand(1);
3904 DebugLoc dl = SVOp->getDebugLoc();
3905 MVT VT = SVOp->getValueType(0);
3907 SmallVector<std::pair<int, int>, 8> Locs;
3908 Locs.resize(4);
3909 SmallVector<int, 8> Mask1(4U, -1);
3910 SmallVector<int, 8> PermMask;
3911 SVOp->getMask(PermMask);
3913 unsigned NumHi = 0;
3914 unsigned NumLo = 0;
3915 for (unsigned i = 0; i != 4; ++i) {
3916 int Idx = PermMask[i];
3917 if (Idx < 0) {
3918 Locs[i] = std::make_pair(-1, -1);
3919 } else {
3920 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3921 if (Idx < 4) {
3922 Locs[i] = std::make_pair(0, NumLo);
3923 Mask1[NumLo] = Idx;
3924 NumLo++;
3925 } else {
3926 Locs[i] = std::make_pair(1, NumHi);
3927 if (2+NumHi < 4)
3928 Mask1[2+NumHi] = Idx;
3929 NumHi++;
3934 if (NumLo <= 2 && NumHi <= 2) {
3935 // If no more than two elements come from either vector. This can be
3936 // implemented with two shuffles. First shuffle gather the elements.
3937 // The second shuffle, which takes the first shuffle as both of its
3938 // vector operands, put the elements into the right order.
3939 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3941 SmallVector<int, 8> Mask2(4U, -1);
3943 for (unsigned i = 0; i != 4; ++i) {
3944 if (Locs[i].first == -1)
3945 continue;
3946 else {
3947 unsigned Idx = (i < 2) ? 0 : 4;
3948 Idx += Locs[i].first * 2 + Locs[i].second;
3949 Mask2[i] = Idx;
3953 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3954 } else if (NumLo == 3 || NumHi == 3) {
3955 // Otherwise, we must have three elements from one vector, call it X, and
3956 // one element from the other, call it Y. First, use a shufps to build an
3957 // intermediate vector with the one element from Y and the element from X
3958 // that will be in the same half in the final destination (the indexes don't
3959 // matter). Then, use a shufps to build the final vector, taking the half
3960 // containing the element from Y from the intermediate, and the other half
3961 // from X.
3962 if (NumHi == 3) {
3963 // Normalize it so the 3 elements come from V1.
3964 CommuteVectorShuffleMask(PermMask, VT);
3965 std::swap(V1, V2);
3968 // Find the element from V2.
3969 unsigned HiIndex;
3970 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3971 int Val = PermMask[HiIndex];
3972 if (Val < 0)
3973 continue;
3974 if (Val >= 4)
3975 break;
3978 Mask1[0] = PermMask[HiIndex];
3979 Mask1[1] = -1;
3980 Mask1[2] = PermMask[HiIndex^1];
3981 Mask1[3] = -1;
3982 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3984 if (HiIndex >= 2) {
3985 Mask1[0] = PermMask[0];
3986 Mask1[1] = PermMask[1];
3987 Mask1[2] = HiIndex & 1 ? 6 : 4;
3988 Mask1[3] = HiIndex & 1 ? 4 : 6;
3989 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3990 } else {
3991 Mask1[0] = HiIndex & 1 ? 2 : 0;
3992 Mask1[1] = HiIndex & 1 ? 0 : 2;
3993 Mask1[2] = PermMask[2];
3994 Mask1[3] = PermMask[3];
3995 if (Mask1[2] >= 0)
3996 Mask1[2] += 4;
3997 if (Mask1[3] >= 0)
3998 Mask1[3] += 4;
3999 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4003 // Break it into (shuffle shuffle_hi, shuffle_lo).
4004 Locs.clear();
4005 SmallVector<int,8> LoMask(4U, -1);
4006 SmallVector<int,8> HiMask(4U, -1);
4008 SmallVector<int,8> *MaskPtr = &LoMask;
4009 unsigned MaskIdx = 0;
4010 unsigned LoIdx = 0;
4011 unsigned HiIdx = 2;
4012 for (unsigned i = 0; i != 4; ++i) {
4013 if (i == 2) {
4014 MaskPtr = &HiMask;
4015 MaskIdx = 1;
4016 LoIdx = 0;
4017 HiIdx = 2;
4019 int Idx = PermMask[i];
4020 if (Idx < 0) {
4021 Locs[i] = std::make_pair(-1, -1);
4022 } else if (Idx < 4) {
4023 Locs[i] = std::make_pair(MaskIdx, LoIdx);
4024 (*MaskPtr)[LoIdx] = Idx;
4025 LoIdx++;
4026 } else {
4027 Locs[i] = std::make_pair(MaskIdx, HiIdx);
4028 (*MaskPtr)[HiIdx] = Idx;
4029 HiIdx++;
4033 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4034 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4035 SmallVector<int, 8> MaskOps;
4036 for (unsigned i = 0; i != 4; ++i) {
4037 if (Locs[i].first == -1) {
4038 MaskOps.push_back(-1);
4039 } else {
4040 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4041 MaskOps.push_back(Idx);
4044 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4047 SDValue
4048 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4049 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4050 SDValue V1 = Op.getOperand(0);
4051 SDValue V2 = Op.getOperand(1);
4052 MVT VT = Op.getValueType();
4053 DebugLoc dl = Op.getDebugLoc();
4054 unsigned NumElems = VT.getVectorNumElements();
4055 bool isMMX = VT.getSizeInBits() == 64;
4056 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4057 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4058 bool V1IsSplat = false;
4059 bool V2IsSplat = false;
4061 if (isZeroShuffle(SVOp))
4062 return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4064 // Promote splats to v4f32.
4065 if (SVOp->isSplat()) {
4066 if (isMMX || NumElems < 4)
4067 return Op;
4068 return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4071 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4072 // do it!
4073 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4074 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4075 if (NewOp.getNode())
4076 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4077 LowerVECTOR_SHUFFLE(NewOp, DAG));
4078 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4079 // FIXME: Figure out a cleaner way to do this.
4080 // Try to make use of movq to zero out the top part.
4081 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4082 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4083 if (NewOp.getNode()) {
4084 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4085 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4086 DAG, Subtarget, dl);
4088 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4089 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4090 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4091 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4092 DAG, Subtarget, dl);
4096 if (X86::isPSHUFDMask(SVOp))
4097 return Op;
4099 // Check if this can be converted into a logical shift.
4100 bool isLeft = false;
4101 unsigned ShAmt = 0;
4102 SDValue ShVal;
4103 bool isShift = getSubtarget()->hasSSE2() &&
4104 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4105 if (isShift && ShVal.hasOneUse()) {
4106 // If the shifted value has multiple uses, it may be cheaper to use
4107 // v_set0 + movlhps or movhlps, etc.
4108 MVT EVT = VT.getVectorElementType();
4109 ShAmt *= EVT.getSizeInBits();
4110 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4113 if (X86::isMOVLMask(SVOp)) {
4114 if (V1IsUndef)
4115 return V2;
4116 if (ISD::isBuildVectorAllZeros(V1.getNode()))
4117 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4118 if (!isMMX)
4119 return Op;
4122 // FIXME: fold these into legal mask.
4123 if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4124 X86::isMOVSLDUPMask(SVOp) ||
4125 X86::isMOVHLPSMask(SVOp) ||
4126 X86::isMOVHPMask(SVOp) ||
4127 X86::isMOVLPMask(SVOp)))
4128 return Op;
4130 if (ShouldXformToMOVHLPS(SVOp) ||
4131 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4132 return CommuteVectorShuffle(SVOp, DAG);
4134 if (isShift) {
4135 // No better options. Use a vshl / vsrl.
4136 MVT EVT = VT.getVectorElementType();
4137 ShAmt *= EVT.getSizeInBits();
4138 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4141 bool Commuted = false;
4142 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4143 // 1,1,1,1 -> v8i16 though.
4144 V1IsSplat = isSplatVector(V1.getNode());
4145 V2IsSplat = isSplatVector(V2.getNode());
4147 // Canonicalize the splat or undef, if present, to be on the RHS.
4148 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4149 Op = CommuteVectorShuffle(SVOp, DAG);
4150 SVOp = cast<ShuffleVectorSDNode>(Op);
4151 V1 = SVOp->getOperand(0);
4152 V2 = SVOp->getOperand(1);
4153 std::swap(V1IsSplat, V2IsSplat);
4154 std::swap(V1IsUndef, V2IsUndef);
4155 Commuted = true;
4158 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4159 // Shuffling low element of v1 into undef, just return v1.
4160 if (V2IsUndef)
4161 return V1;
4162 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4163 // the instruction selector will not match, so get a canonical MOVL with
4164 // swapped operands to undo the commute.
4165 return getMOVL(DAG, dl, VT, V2, V1);
4168 if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4169 X86::isUNPCKH_v_undef_Mask(SVOp) ||
4170 X86::isUNPCKLMask(SVOp) ||
4171 X86::isUNPCKHMask(SVOp))
4172 return Op;
4174 if (V2IsSplat) {
4175 // Normalize mask so all entries that point to V2 points to its first
4176 // element then try to match unpck{h|l} again. If match, return a
4177 // new vector_shuffle with the corrected mask.
4178 SDValue NewMask = NormalizeMask(SVOp, DAG);
4179 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4180 if (NSVOp != SVOp) {
4181 if (X86::isUNPCKLMask(NSVOp, true)) {
4182 return NewMask;
4183 } else if (X86::isUNPCKHMask(NSVOp, true)) {
4184 return NewMask;
4189 if (Commuted) {
4190 // Commute is back and try unpck* again.
4191 // FIXME: this seems wrong.
4192 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4193 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4194 if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4195 X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4196 X86::isUNPCKLMask(NewSVOp) ||
4197 X86::isUNPCKHMask(NewSVOp))
4198 return NewOp;
4201 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4203 // Normalize the node to match x86 shuffle ops if needed
4204 if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4205 return CommuteVectorShuffle(SVOp, DAG);
4207 // Check for legal shuffle and return?
4208 SmallVector<int, 16> PermMask;
4209 SVOp->getMask(PermMask);
4210 if (isShuffleMaskLegal(PermMask, VT))
4211 return Op;
4213 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4214 if (VT == MVT::v8i16) {
4215 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4216 if (NewOp.getNode())
4217 return NewOp;
4220 if (VT == MVT::v16i8) {
4221 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4222 if (NewOp.getNode())
4223 return NewOp;
4226 // Handle all 4 wide cases with a number of shuffles except for MMX.
4227 if (NumElems == 4 && !isMMX)
4228 return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4230 return SDValue();
4233 SDValue
4234 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4235 SelectionDAG &DAG) {
4236 MVT VT = Op.getValueType();
4237 DebugLoc dl = Op.getDebugLoc();
4238 if (VT.getSizeInBits() == 8) {
4239 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4240 Op.getOperand(0), Op.getOperand(1));
4241 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4242 DAG.getValueType(VT));
4243 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4244 } else if (VT.getSizeInBits() == 16) {
4245 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4246 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4247 if (Idx == 0)
4248 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4249 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4250 DAG.getNode(ISD::BIT_CONVERT, dl,
4251 MVT::v4i32,
4252 Op.getOperand(0)),
4253 Op.getOperand(1)));
4254 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4255 Op.getOperand(0), Op.getOperand(1));
4256 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4257 DAG.getValueType(VT));
4258 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4259 } else if (VT == MVT::f32) {
4260 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4261 // the result back to FR32 register. It's only worth matching if the
4262 // result has a single use which is a store or a bitcast to i32. And in
4263 // the case of a store, it's not worth it if the index is a constant 0,
4264 // because a MOVSSmr can be used instead, which is smaller and faster.
4265 if (!Op.hasOneUse())
4266 return SDValue();
4267 SDNode *User = *Op.getNode()->use_begin();
4268 if ((User->getOpcode() != ISD::STORE ||
4269 (isa<ConstantSDNode>(Op.getOperand(1)) &&
4270 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4271 (User->getOpcode() != ISD::BIT_CONVERT ||
4272 User->getValueType(0) != MVT::i32))
4273 return SDValue();
4274 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4275 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4276 Op.getOperand(0)),
4277 Op.getOperand(1));
4278 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4279 } else if (VT == MVT::i32) {
4280 // ExtractPS works with constant index.
4281 if (isa<ConstantSDNode>(Op.getOperand(1)))
4282 return Op;
4284 return SDValue();
4288 SDValue
4289 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4290 if (!isa<ConstantSDNode>(Op.getOperand(1)))
4291 return SDValue();
4293 if (Subtarget->hasSSE41()) {
4294 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4295 if (Res.getNode())
4296 return Res;
4299 MVT VT = Op.getValueType();
4300 DebugLoc dl = Op.getDebugLoc();
4301 // TODO: handle v16i8.
4302 if (VT.getSizeInBits() == 16) {
4303 SDValue Vec = Op.getOperand(0);
4304 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4305 if (Idx == 0)
4306 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4307 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4308 DAG.getNode(ISD::BIT_CONVERT, dl,
4309 MVT::v4i32, Vec),
4310 Op.getOperand(1)));
4311 // Transform it so it match pextrw which produces a 32-bit result.
4312 MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4313 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4314 Op.getOperand(0), Op.getOperand(1));
4315 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4316 DAG.getValueType(VT));
4317 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4318 } else if (VT.getSizeInBits() == 32) {
4319 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4320 if (Idx == 0)
4321 return Op;
4323 // SHUFPS the element to the lowest double word, then movss.
4324 int Mask[4] = { Idx, -1, -1, -1 };
4325 MVT VVT = Op.getOperand(0).getValueType();
4326 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4327 DAG.getUNDEF(VVT), Mask);
4328 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4329 DAG.getIntPtrConstant(0));
4330 } else if (VT.getSizeInBits() == 64) {
4331 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4332 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4333 // to match extract_elt for f64.
4334 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4335 if (Idx == 0)
4336 return Op;
4338 // UNPCKHPD the element to the lowest double word, then movsd.
4339 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4340 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4341 int Mask[2] = { 1, -1 };
4342 MVT VVT = Op.getOperand(0).getValueType();
4343 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4344 DAG.getUNDEF(VVT), Mask);
4345 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4346 DAG.getIntPtrConstant(0));
4349 return SDValue();
4352 SDValue
4353 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4354 MVT VT = Op.getValueType();
4355 MVT EVT = VT.getVectorElementType();
4356 DebugLoc dl = Op.getDebugLoc();
4358 SDValue N0 = Op.getOperand(0);
4359 SDValue N1 = Op.getOperand(1);
4360 SDValue N2 = Op.getOperand(2);
4362 if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4363 isa<ConstantSDNode>(N2)) {
4364 unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4365 : X86ISD::PINSRW;
4366 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4367 // argument.
4368 if (N1.getValueType() != MVT::i32)
4369 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4370 if (N2.getValueType() != MVT::i32)
4371 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4372 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4373 } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4374 // Bits [7:6] of the constant are the source select. This will always be
4375 // zero here. The DAG Combiner may combine an extract_elt index into these
4376 // bits. For example (insert (extract, 3), 2) could be matched by putting
4377 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4378 // Bits [5:4] of the constant are the destination select. This is the
4379 // value of the incoming immediate.
4380 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4381 // combine either bitwise AND or insert of float 0.0 to set these bits.
4382 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4383 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4384 } else if (EVT == MVT::i32) {
4385 // InsertPS works with constant index.
4386 if (isa<ConstantSDNode>(N2))
4387 return Op;
4389 return SDValue();
4392 SDValue
4393 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4394 MVT VT = Op.getValueType();
4395 MVT EVT = VT.getVectorElementType();
4397 if (Subtarget->hasSSE41())
4398 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4400 if (EVT == MVT::i8)
4401 return SDValue();
4403 DebugLoc dl = Op.getDebugLoc();
4404 SDValue N0 = Op.getOperand(0);
4405 SDValue N1 = Op.getOperand(1);
4406 SDValue N2 = Op.getOperand(2);
4408 if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4409 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4410 // as its second argument.
4411 if (N1.getValueType() != MVT::i32)
4412 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4413 if (N2.getValueType() != MVT::i32)
4414 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4415 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4417 return SDValue();
4420 SDValue
4421 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4422 DebugLoc dl = Op.getDebugLoc();
4423 if (Op.getValueType() == MVT::v2f32)
4424 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4425 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4426 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4427 Op.getOperand(0))));
4429 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4430 MVT VT = MVT::v2i32;
4431 switch (Op.getValueType().getSimpleVT()) {
4432 default: break;
4433 case MVT::v16i8:
4434 case MVT::v8i16:
4435 VT = MVT::v4i32;
4436 break;
4438 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4439 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4442 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4443 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4444 // one of the above mentioned nodes. It has to be wrapped because otherwise
4445 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4446 // be used to form addressing mode. These wrapped nodes will be selected
4447 // into MOV32ri.
4448 SDValue
4449 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4450 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4452 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4453 // global base reg.
4454 unsigned char OpFlag = 0;
4455 unsigned WrapperKind = X86ISD::Wrapper;
4457 if (Subtarget->isPICStyleRIPRel() &&
4458 getTargetMachine().getCodeModel() == CodeModel::Small)
4459 WrapperKind = X86ISD::WrapperRIP;
4460 else if (Subtarget->isPICStyleGOT())
4461 OpFlag = X86II::MO_GOTOFF;
4462 else if (Subtarget->isPICStyleStubPIC())
4463 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4465 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4466 CP->getAlignment(),
4467 CP->getOffset(), OpFlag);
4468 DebugLoc DL = CP->getDebugLoc();
4469 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4470 // With PIC, the address is actually $g + Offset.
4471 if (OpFlag) {
4472 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4473 DAG.getNode(X86ISD::GlobalBaseReg,
4474 DebugLoc::getUnknownLoc(), getPointerTy()),
4475 Result);
4478 return Result;
4481 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4482 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4484 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4485 // global base reg.
4486 unsigned char OpFlag = 0;
4487 unsigned WrapperKind = X86ISD::Wrapper;
4489 if (Subtarget->isPICStyleRIPRel() &&
4490 getTargetMachine().getCodeModel() == CodeModel::Small)
4491 WrapperKind = X86ISD::WrapperRIP;
4492 else if (Subtarget->isPICStyleGOT())
4493 OpFlag = X86II::MO_GOTOFF;
4494 else if (Subtarget->isPICStyleStubPIC())
4495 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4497 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4498 OpFlag);
4499 DebugLoc DL = JT->getDebugLoc();
4500 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4502 // With PIC, the address is actually $g + Offset.
4503 if (OpFlag) {
4504 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4505 DAG.getNode(X86ISD::GlobalBaseReg,
4506 DebugLoc::getUnknownLoc(), getPointerTy()),
4507 Result);
4510 return Result;
4513 SDValue
4514 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4515 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4517 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4518 // global base reg.
4519 unsigned char OpFlag = 0;
4520 unsigned WrapperKind = X86ISD::Wrapper;
4521 if (Subtarget->isPICStyleRIPRel() &&
4522 getTargetMachine().getCodeModel() == CodeModel::Small)
4523 WrapperKind = X86ISD::WrapperRIP;
4524 else if (Subtarget->isPICStyleGOT())
4525 OpFlag = X86II::MO_GOTOFF;
4526 else if (Subtarget->isPICStyleStubPIC())
4527 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4529 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4531 DebugLoc DL = Op.getDebugLoc();
4532 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4535 // With PIC, the address is actually $g + Offset.
4536 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4537 !Subtarget->is64Bit()) {
4538 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4539 DAG.getNode(X86ISD::GlobalBaseReg,
4540 DebugLoc::getUnknownLoc(),
4541 getPointerTy()),
4542 Result);
4545 return Result;
4548 SDValue
4549 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4550 int64_t Offset,
4551 SelectionDAG &DAG) const {
4552 // Create the TargetGlobalAddress node, folding in the constant
4553 // offset if it is legal.
4554 unsigned char OpFlags =
4555 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4556 SDValue Result;
4557 if (OpFlags == X86II::MO_NO_FLAG && isInt32(Offset)) {
4558 // A direct static reference to a global.
4559 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4560 Offset = 0;
4561 } else {
4562 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4565 if (Subtarget->isPICStyleRIPRel() &&
4566 getTargetMachine().getCodeModel() == CodeModel::Small)
4567 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4568 else
4569 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4571 // With PIC, the address is actually $g + Offset.
4572 if (isGlobalRelativeToPICBase(OpFlags)) {
4573 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4574 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4575 Result);
4578 // For globals that require a load from a stub to get the address, emit the
4579 // load.
4580 if (isGlobalStubReference(OpFlags))
4581 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4582 PseudoSourceValue::getGOT(), 0);
4584 // If there was a non-zero offset that we didn't fold, create an explicit
4585 // addition for it.
4586 if (Offset != 0)
4587 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4588 DAG.getConstant(Offset, getPointerTy()));
4590 return Result;
4593 SDValue
4594 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4595 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4596 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4597 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4600 static SDValue
4601 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4602 SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg,
4603 unsigned char OperandFlags) {
4604 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4605 DebugLoc dl = GA->getDebugLoc();
4606 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4607 GA->getValueType(0),
4608 GA->getOffset(),
4609 OperandFlags);
4610 if (InFlag) {
4611 SDValue Ops[] = { Chain, TGA, *InFlag };
4612 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4613 } else {
4614 SDValue Ops[] = { Chain, TGA };
4615 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4617 SDValue Flag = Chain.getValue(1);
4618 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4621 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4622 static SDValue
4623 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4624 const MVT PtrVT) {
4625 SDValue InFlag;
4626 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
4627 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4628 DAG.getNode(X86ISD::GlobalBaseReg,
4629 DebugLoc::getUnknownLoc(),
4630 PtrVT), InFlag);
4631 InFlag = Chain.getValue(1);
4633 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4636 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4637 static SDValue
4638 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4639 const MVT PtrVT) {
4640 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4641 X86::RAX, X86II::MO_TLSGD);
4644 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4645 // "local exec" model.
4646 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4647 const MVT PtrVT, TLSModel::Model model,
4648 bool is64Bit) {
4649 DebugLoc dl = GA->getDebugLoc();
4650 // Get the Thread Pointer
4651 SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4652 DebugLoc::getUnknownLoc(), PtrVT,
4653 DAG.getRegister(is64Bit? X86::FS : X86::GS,
4654 MVT::i32));
4656 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4657 NULL, 0);
4659 unsigned char OperandFlags = 0;
4660 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4661 // initialexec.
4662 unsigned WrapperKind = X86ISD::Wrapper;
4663 if (model == TLSModel::LocalExec) {
4664 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4665 } else if (is64Bit) {
4666 assert(model == TLSModel::InitialExec);
4667 OperandFlags = X86II::MO_GOTTPOFF;
4668 WrapperKind = X86ISD::WrapperRIP;
4669 } else {
4670 assert(model == TLSModel::InitialExec);
4671 OperandFlags = X86II::MO_INDNTPOFF;
4674 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4675 // exec)
4676 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4677 GA->getOffset(), OperandFlags);
4678 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4680 if (model == TLSModel::InitialExec)
4681 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4682 PseudoSourceValue::getGOT(), 0);
4684 // The address of the thread local variable is the add of the thread
4685 // pointer with the offset of the variable.
4686 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4689 SDValue
4690 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4691 // TODO: implement the "local dynamic" model
4692 // TODO: implement the "initial exec"model for pic executables
4693 assert(Subtarget->isTargetELF() &&
4694 "TLS not implemented for non-ELF targets");
4695 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4696 const GlobalValue *GV = GA->getGlobal();
4698 // If GV is an alias then use the aliasee for determining
4699 // thread-localness.
4700 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4701 GV = GA->resolveAliasedGlobal(false);
4703 TLSModel::Model model = getTLSModel(GV,
4704 getTargetMachine().getRelocationModel());
4706 switch (model) {
4707 case TLSModel::GeneralDynamic:
4708 case TLSModel::LocalDynamic: // not implemented
4709 if (Subtarget->is64Bit())
4710 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4711 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4713 case TLSModel::InitialExec:
4714 case TLSModel::LocalExec:
4715 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4716 Subtarget->is64Bit());
4719 llvm_unreachable("Unreachable");
4720 return SDValue();
4724 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4725 /// take a 2 x i32 value to shift plus a shift amount.
4726 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4727 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4728 MVT VT = Op.getValueType();
4729 unsigned VTBits = VT.getSizeInBits();
4730 DebugLoc dl = Op.getDebugLoc();
4731 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4732 SDValue ShOpLo = Op.getOperand(0);
4733 SDValue ShOpHi = Op.getOperand(1);
4734 SDValue ShAmt = Op.getOperand(2);
4735 SDValue Tmp1 = isSRA ?
4736 DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4737 DAG.getConstant(VTBits - 1, MVT::i8)) :
4738 DAG.getConstant(0, VT);
4740 SDValue Tmp2, Tmp3;
4741 if (Op.getOpcode() == ISD::SHL_PARTS) {
4742 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4743 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4744 } else {
4745 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4746 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4749 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4750 DAG.getConstant(VTBits, MVT::i8));
4751 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4752 AndNode, DAG.getConstant(0, MVT::i8));
4754 SDValue Hi, Lo;
4755 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4756 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4757 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4759 if (Op.getOpcode() == ISD::SHL_PARTS) {
4760 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4761 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4762 } else {
4763 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4764 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4767 SDValue Ops[2] = { Lo, Hi };
4768 return DAG.getMergeValues(Ops, 2, dl);
4771 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4772 MVT SrcVT = Op.getOperand(0).getValueType();
4774 if (SrcVT.isVector()) {
4775 if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4776 return Op;
4778 return SDValue();
4781 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4782 "Unknown SINT_TO_FP to lower!");
4784 // These are really Legal; return the operand so the caller accepts it as
4785 // Legal.
4786 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4787 return Op;
4788 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4789 Subtarget->is64Bit()) {
4790 return Op;
4793 DebugLoc dl = Op.getDebugLoc();
4794 unsigned Size = SrcVT.getSizeInBits()/8;
4795 MachineFunction &MF = DAG.getMachineFunction();
4796 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4797 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4798 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4799 StackSlot,
4800 PseudoSourceValue::getFixedStack(SSFI), 0);
4801 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4804 SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
4805 SDValue StackSlot,
4806 SelectionDAG &DAG) {
4807 // Build the FILD
4808 DebugLoc dl = Op.getDebugLoc();
4809 SDVTList Tys;
4810 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4811 if (useSSE)
4812 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4813 else
4814 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4815 SmallVector<SDValue, 8> Ops;
4816 Ops.push_back(Chain);
4817 Ops.push_back(StackSlot);
4818 Ops.push_back(DAG.getValueType(SrcVT));
4819 SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4820 Tys, &Ops[0], Ops.size());
4822 if (useSSE) {
4823 Chain = Result.getValue(1);
4824 SDValue InFlag = Result.getValue(2);
4826 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4827 // shouldn't be necessary except that RFP cannot be live across
4828 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4829 MachineFunction &MF = DAG.getMachineFunction();
4830 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4831 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4832 Tys = DAG.getVTList(MVT::Other);
4833 SmallVector<SDValue, 8> Ops;
4834 Ops.push_back(Chain);
4835 Ops.push_back(Result);
4836 Ops.push_back(StackSlot);
4837 Ops.push_back(DAG.getValueType(Op.getValueType()));
4838 Ops.push_back(InFlag);
4839 Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4840 Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4841 PseudoSourceValue::getFixedStack(SSFI), 0);
4844 return Result;
4847 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4848 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4849 // This algorithm is not obvious. Here it is in C code, more or less:
4851 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4852 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4853 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4855 // Copy ints to xmm registers.
4856 __m128i xh = _mm_cvtsi32_si128( hi );
4857 __m128i xl = _mm_cvtsi32_si128( lo );
4859 // Combine into low half of a single xmm register.
4860 __m128i x = _mm_unpacklo_epi32( xh, xl );
4861 __m128d d;
4862 double sd;
4864 // Merge in appropriate exponents to give the integer bits the right
4865 // magnitude.
4866 x = _mm_unpacklo_epi32( x, exp );
4868 // Subtract away the biases to deal with the IEEE-754 double precision
4869 // implicit 1.
4870 d = _mm_sub_pd( (__m128d) x, bias );
4872 // All conversions up to here are exact. The correctly rounded result is
4873 // calculated using the current rounding mode using the following
4874 // horizontal add.
4875 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4876 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4877 // store doesn't really need to be here (except
4878 // maybe to zero the other double)
4879 return sd;
4883 DebugLoc dl = Op.getDebugLoc();
4884 LLVMContext *Context = DAG.getContext();
4886 // Build some magic constants.
4887 std::vector<Constant*> CV0;
4888 CV0.push_back(Context->getConstantInt(APInt(32, 0x45300000)));
4889 CV0.push_back(Context->getConstantInt(APInt(32, 0x43300000)));
4890 CV0.push_back(Context->getConstantInt(APInt(32, 0)));
4891 CV0.push_back(Context->getConstantInt(APInt(32, 0)));
4892 Constant *C0 = Context->getConstantVector(CV0);
4893 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4895 std::vector<Constant*> CV1;
4896 CV1.push_back(
4897 Context->getConstantFP(APFloat(APInt(64, 0x4530000000000000ULL))));
4898 CV1.push_back(
4899 Context->getConstantFP(APFloat(APInt(64, 0x4330000000000000ULL))));
4900 Constant *C1 = Context->getConstantVector(CV1);
4901 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4903 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4904 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4905 Op.getOperand(0),
4906 DAG.getIntPtrConstant(1)));
4907 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4908 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4909 Op.getOperand(0),
4910 DAG.getIntPtrConstant(0)));
4911 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4912 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4913 PseudoSourceValue::getConstantPool(), 0,
4914 false, 16);
4915 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4916 SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4917 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4918 PseudoSourceValue::getConstantPool(), 0,
4919 false, 16);
4920 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4922 // Add the halves; easiest way is to swap them into another reg first.
4923 int ShufMask[2] = { 1, -1 };
4924 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4925 DAG.getUNDEF(MVT::v2f64), ShufMask);
4926 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4927 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4928 DAG.getIntPtrConstant(0));
4931 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4932 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4933 DebugLoc dl = Op.getDebugLoc();
4934 // FP constant to bias correct the final result.
4935 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4936 MVT::f64);
4938 // Load the 32-bit value into an XMM register.
4939 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4940 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4941 Op.getOperand(0),
4942 DAG.getIntPtrConstant(0)));
4944 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4945 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4946 DAG.getIntPtrConstant(0));
4948 // Or the load with the bias.
4949 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4950 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4951 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4952 MVT::v2f64, Load)),
4953 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4954 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4955 MVT::v2f64, Bias)));
4956 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4957 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4958 DAG.getIntPtrConstant(0));
4960 // Subtract the bias.
4961 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
4963 // Handle final rounding.
4964 MVT DestVT = Op.getValueType();
4966 if (DestVT.bitsLT(MVT::f64)) {
4967 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
4968 DAG.getIntPtrConstant(0));
4969 } else if (DestVT.bitsGT(MVT::f64)) {
4970 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
4973 // Handle final rounding.
4974 return Sub;
4977 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4978 SDValue N0 = Op.getOperand(0);
4979 DebugLoc dl = Op.getDebugLoc();
4981 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4982 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4983 // the optimization here.
4984 if (DAG.SignBitIsZero(N0))
4985 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
4987 MVT SrcVT = N0.getValueType();
4988 if (SrcVT == MVT::i64) {
4989 // We only handle SSE2 f64 target here; caller can expand the rest.
4990 if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4991 return SDValue();
4993 return LowerUINT_TO_FP_i64(Op, DAG);
4994 } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
4995 return LowerUINT_TO_FP_i32(Op, DAG);
4998 assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5000 // Make a 64-bit buffer, and use it to build an FILD.
5001 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5002 SDValue WordOff = DAG.getConstant(4, getPointerTy());
5003 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5004 getPointerTy(), StackSlot, WordOff);
5005 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5006 StackSlot, NULL, 0);
5007 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5008 OffsetSlot, NULL, 0);
5009 return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5012 std::pair<SDValue,SDValue> X86TargetLowering::
5013 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5014 DebugLoc dl = Op.getDebugLoc();
5016 MVT DstTy = Op.getValueType();
5018 if (!IsSigned) {
5019 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5020 DstTy = MVT::i64;
5023 assert(DstTy.getSimpleVT() <= MVT::i64 &&
5024 DstTy.getSimpleVT() >= MVT::i16 &&
5025 "Unknown FP_TO_SINT to lower!");
5027 // These are really Legal.
5028 if (DstTy == MVT::i32 &&
5029 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5030 return std::make_pair(SDValue(), SDValue());
5031 if (Subtarget->is64Bit() &&
5032 DstTy == MVT::i64 &&
5033 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5034 return std::make_pair(SDValue(), SDValue());
5036 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5037 // stack slot.
5038 MachineFunction &MF = DAG.getMachineFunction();
5039 unsigned MemSize = DstTy.getSizeInBits()/8;
5040 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5041 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5043 unsigned Opc;
5044 switch (DstTy.getSimpleVT()) {
5045 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5046 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5047 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5048 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5051 SDValue Chain = DAG.getEntryNode();
5052 SDValue Value = Op.getOperand(0);
5053 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5054 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5055 Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5056 PseudoSourceValue::getFixedStack(SSFI), 0);
5057 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5058 SDValue Ops[] = {
5059 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5061 Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5062 Chain = Value.getValue(1);
5063 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5064 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5067 // Build the FP_TO_INT*_IN_MEM
5068 SDValue Ops[] = { Chain, Value, StackSlot };
5069 SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5071 return std::make_pair(FIST, StackSlot);
5074 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5075 if (Op.getValueType().isVector()) {
5076 if (Op.getValueType() == MVT::v2i32 &&
5077 Op.getOperand(0).getValueType() == MVT::v2f64) {
5078 return Op;
5080 return SDValue();
5083 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5084 SDValue FIST = Vals.first, StackSlot = Vals.second;
5085 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5086 if (FIST.getNode() == 0) return Op;
5088 // Load the result.
5089 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5090 FIST, StackSlot, NULL, 0);
5093 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5094 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5095 SDValue FIST = Vals.first, StackSlot = Vals.second;
5096 assert(FIST.getNode() && "Unexpected failure");
5098 // Load the result.
5099 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5100 FIST, StackSlot, NULL, 0);
5103 SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5104 LLVMContext *Context = DAG.getContext();
5105 DebugLoc dl = Op.getDebugLoc();
5106 MVT VT = Op.getValueType();
5107 MVT EltVT = VT;
5108 if (VT.isVector())
5109 EltVT = VT.getVectorElementType();
5110 std::vector<Constant*> CV;
5111 if (EltVT == MVT::f64) {
5112 Constant *C = Context->getConstantFP(APFloat(APInt(64, ~(1ULL << 63))));
5113 CV.push_back(C);
5114 CV.push_back(C);
5115 } else {
5116 Constant *C = Context->getConstantFP(APFloat(APInt(32, ~(1U << 31))));
5117 CV.push_back(C);
5118 CV.push_back(C);
5119 CV.push_back(C);
5120 CV.push_back(C);
5122 Constant *C = Context->getConstantVector(CV);
5123 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5124 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5125 PseudoSourceValue::getConstantPool(), 0,
5126 false, 16);
5127 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5130 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5131 LLVMContext *Context = DAG.getContext();
5132 DebugLoc dl = Op.getDebugLoc();
5133 MVT VT = Op.getValueType();
5134 MVT EltVT = VT;
5135 unsigned EltNum = 1;
5136 if (VT.isVector()) {
5137 EltVT = VT.getVectorElementType();
5138 EltNum = VT.getVectorNumElements();
5140 std::vector<Constant*> CV;
5141 if (EltVT == MVT::f64) {
5142 Constant *C = Context->getConstantFP(APFloat(APInt(64, 1ULL << 63)));
5143 CV.push_back(C);
5144 CV.push_back(C);
5145 } else {
5146 Constant *C = Context->getConstantFP(APFloat(APInt(32, 1U << 31)));
5147 CV.push_back(C);
5148 CV.push_back(C);
5149 CV.push_back(C);
5150 CV.push_back(C);
5152 Constant *C = Context->getConstantVector(CV);
5153 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5154 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5155 PseudoSourceValue::getConstantPool(), 0,
5156 false, 16);
5157 if (VT.isVector()) {
5158 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5159 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5160 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5161 Op.getOperand(0)),
5162 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5163 } else {
5164 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5168 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5169 LLVMContext *Context = DAG.getContext();
5170 SDValue Op0 = Op.getOperand(0);
5171 SDValue Op1 = Op.getOperand(1);
5172 DebugLoc dl = Op.getDebugLoc();
5173 MVT VT = Op.getValueType();
5174 MVT SrcVT = Op1.getValueType();
5176 // If second operand is smaller, extend it first.
5177 if (SrcVT.bitsLT(VT)) {
5178 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5179 SrcVT = VT;
5181 // And if it is bigger, shrink it first.
5182 if (SrcVT.bitsGT(VT)) {
5183 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5184 SrcVT = VT;
5187 // At this point the operands and the result should have the same
5188 // type, and that won't be f80 since that is not custom lowered.
5190 // First get the sign bit of second operand.
5191 std::vector<Constant*> CV;
5192 if (SrcVT == MVT::f64) {
5193 CV.push_back(Context->getConstantFP(APFloat(APInt(64, 1ULL << 63))));
5194 CV.push_back(Context->getConstantFP(APFloat(APInt(64, 0))));
5195 } else {
5196 CV.push_back(Context->getConstantFP(APFloat(APInt(32, 1U << 31))));
5197 CV.push_back(Context->getConstantFP(APFloat(APInt(32, 0))));
5198 CV.push_back(Context->getConstantFP(APFloat(APInt(32, 0))));
5199 CV.push_back(Context->getConstantFP(APFloat(APInt(32, 0))));
5201 Constant *C = Context->getConstantVector(CV);
5202 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5203 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5204 PseudoSourceValue::getConstantPool(), 0,
5205 false, 16);
5206 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5208 // Shift sign bit right or left if the two operands have different types.
5209 if (SrcVT.bitsGT(VT)) {
5210 // Op0 is MVT::f32, Op1 is MVT::f64.
5211 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5212 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5213 DAG.getConstant(32, MVT::i32));
5214 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5215 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5216 DAG.getIntPtrConstant(0));
5219 // Clear first operand sign bit.
5220 CV.clear();
5221 if (VT == MVT::f64) {
5222 CV.push_back(Context->getConstantFP(APFloat(APInt(64, ~(1ULL << 63)))));
5223 CV.push_back(Context->getConstantFP(APFloat(APInt(64, 0))));
5224 } else {
5225 CV.push_back(Context->getConstantFP(APFloat(APInt(32, ~(1U << 31)))));
5226 CV.push_back(Context->getConstantFP(APFloat(APInt(32, 0))));
5227 CV.push_back(Context->getConstantFP(APFloat(APInt(32, 0))));
5228 CV.push_back(Context->getConstantFP(APFloat(APInt(32, 0))));
5230 C = Context->getConstantVector(CV);
5231 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5232 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5233 PseudoSourceValue::getConstantPool(), 0,
5234 false, 16);
5235 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5237 // Or the value with the sign bit.
5238 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5241 /// Emit nodes that will be selected as "test Op0,Op0", or something
5242 /// equivalent.
5243 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5244 SelectionDAG &DAG) {
5245 DebugLoc dl = Op.getDebugLoc();
5247 // CF and OF aren't always set the way we want. Determine which
5248 // of these we need.
5249 bool NeedCF = false;
5250 bool NeedOF = false;
5251 switch (X86CC) {
5252 case X86::COND_A: case X86::COND_AE:
5253 case X86::COND_B: case X86::COND_BE:
5254 NeedCF = true;
5255 break;
5256 case X86::COND_G: case X86::COND_GE:
5257 case X86::COND_L: case X86::COND_LE:
5258 case X86::COND_O: case X86::COND_NO:
5259 NeedOF = true;
5260 break;
5261 default: break;
5264 // See if we can use the EFLAGS value from the operand instead of
5265 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5266 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5267 if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5268 unsigned Opcode = 0;
5269 unsigned NumOperands = 0;
5270 switch (Op.getNode()->getOpcode()) {
5271 case ISD::ADD:
5272 // Due to an isel shortcoming, be conservative if this add is likely to
5273 // be selected as part of a load-modify-store instruction. When the root
5274 // node in a match is a store, isel doesn't know how to remap non-chain
5275 // non-flag uses of other nodes in the match, such as the ADD in this
5276 // case. This leads to the ADD being left around and reselected, with
5277 // the result being two adds in the output.
5278 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5279 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5280 if (UI->getOpcode() == ISD::STORE)
5281 goto default_case;
5282 if (ConstantSDNode *C =
5283 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5284 // An add of one will be selected as an INC.
5285 if (C->getAPIntValue() == 1) {
5286 Opcode = X86ISD::INC;
5287 NumOperands = 1;
5288 break;
5290 // An add of negative one (subtract of one) will be selected as a DEC.
5291 if (C->getAPIntValue().isAllOnesValue()) {
5292 Opcode = X86ISD::DEC;
5293 NumOperands = 1;
5294 break;
5297 // Otherwise use a regular EFLAGS-setting add.
5298 Opcode = X86ISD::ADD;
5299 NumOperands = 2;
5300 break;
5301 case ISD::SUB:
5302 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5303 // likely to be selected as part of a load-modify-store instruction.
5304 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5305 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5306 if (UI->getOpcode() == ISD::STORE)
5307 goto default_case;
5308 // Otherwise use a regular EFLAGS-setting sub.
5309 Opcode = X86ISD::SUB;
5310 NumOperands = 2;
5311 break;
5312 case X86ISD::ADD:
5313 case X86ISD::SUB:
5314 case X86ISD::INC:
5315 case X86ISD::DEC:
5316 return SDValue(Op.getNode(), 1);
5317 default:
5318 default_case:
5319 break;
5321 if (Opcode != 0) {
5322 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5323 SmallVector<SDValue, 4> Ops;
5324 for (unsigned i = 0; i != NumOperands; ++i)
5325 Ops.push_back(Op.getOperand(i));
5326 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5327 DAG.ReplaceAllUsesWith(Op, New);
5328 return SDValue(New.getNode(), 1);
5332 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5333 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5334 DAG.getConstant(0, Op.getValueType()));
5337 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5338 /// equivalent.
5339 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5340 SelectionDAG &DAG) {
5341 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5342 if (C->getAPIntValue() == 0)
5343 return EmitTest(Op0, X86CC, DAG);
5345 DebugLoc dl = Op0.getDebugLoc();
5346 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5349 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5350 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5351 SDValue Op0 = Op.getOperand(0);
5352 SDValue Op1 = Op.getOperand(1);
5353 DebugLoc dl = Op.getDebugLoc();
5354 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5356 // Lower (X & (1 << N)) == 0 to BT(X, N).
5357 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5358 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5359 if (Op0.getOpcode() == ISD::AND &&
5360 Op0.hasOneUse() &&
5361 Op1.getOpcode() == ISD::Constant &&
5362 cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5363 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5364 SDValue LHS, RHS;
5365 if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5366 if (ConstantSDNode *Op010C =
5367 dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5368 if (Op010C->getZExtValue() == 1) {
5369 LHS = Op0.getOperand(0);
5370 RHS = Op0.getOperand(1).getOperand(1);
5372 } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5373 if (ConstantSDNode *Op000C =
5374 dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5375 if (Op000C->getZExtValue() == 1) {
5376 LHS = Op0.getOperand(1);
5377 RHS = Op0.getOperand(0).getOperand(1);
5379 } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5380 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5381 SDValue AndLHS = Op0.getOperand(0);
5382 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5383 LHS = AndLHS.getOperand(0);
5384 RHS = AndLHS.getOperand(1);
5388 if (LHS.getNode()) {
5389 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5390 // instruction. Since the shift amount is in-range-or-undefined, we know
5391 // that doing a bittest on the i16 value is ok. We extend to i32 because
5392 // the encoding for the i16 version is larger than the i32 version.
5393 if (LHS.getValueType() == MVT::i8)
5394 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5396 // If the operand types disagree, extend the shift amount to match. Since
5397 // BT ignores high bits (like shifts) we can use anyextend.
5398 if (LHS.getValueType() != RHS.getValueType())
5399 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5401 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5402 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5403 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5404 DAG.getConstant(Cond, MVT::i8), BT);
5408 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5409 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5411 SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5412 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5413 DAG.getConstant(X86CC, MVT::i8), Cond);
5416 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5417 SDValue Cond;
5418 SDValue Op0 = Op.getOperand(0);
5419 SDValue Op1 = Op.getOperand(1);
5420 SDValue CC = Op.getOperand(2);
5421 MVT VT = Op.getValueType();
5422 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5423 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5424 DebugLoc dl = Op.getDebugLoc();
5426 if (isFP) {
5427 unsigned SSECC = 8;
5428 MVT VT0 = Op0.getValueType();
5429 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5430 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5431 bool Swap = false;
5433 switch (SetCCOpcode) {
5434 default: break;
5435 case ISD::SETOEQ:
5436 case ISD::SETEQ: SSECC = 0; break;
5437 case ISD::SETOGT:
5438 case ISD::SETGT: Swap = true; // Fallthrough
5439 case ISD::SETLT:
5440 case ISD::SETOLT: SSECC = 1; break;
5441 case ISD::SETOGE:
5442 case ISD::SETGE: Swap = true; // Fallthrough
5443 case ISD::SETLE:
5444 case ISD::SETOLE: SSECC = 2; break;
5445 case ISD::SETUO: SSECC = 3; break;
5446 case ISD::SETUNE:
5447 case ISD::SETNE: SSECC = 4; break;
5448 case ISD::SETULE: Swap = true;
5449 case ISD::SETUGE: SSECC = 5; break;
5450 case ISD::SETULT: Swap = true;
5451 case ISD::SETUGT: SSECC = 6; break;
5452 case ISD::SETO: SSECC = 7; break;
5454 if (Swap)
5455 std::swap(Op0, Op1);
5457 // In the two special cases we can't handle, emit two comparisons.
5458 if (SSECC == 8) {
5459 if (SetCCOpcode == ISD::SETUEQ) {
5460 SDValue UNORD, EQ;
5461 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5462 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5463 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5465 else if (SetCCOpcode == ISD::SETONE) {
5466 SDValue ORD, NEQ;
5467 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5468 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5469 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5471 llvm_unreachable("Illegal FP comparison");
5473 // Handle all other FP comparisons here.
5474 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5477 // We are handling one of the integer comparisons here. Since SSE only has
5478 // GT and EQ comparisons for integer, swapping operands and multiple
5479 // operations may be required for some comparisons.
5480 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5481 bool Swap = false, Invert = false, FlipSigns = false;
5483 switch (VT.getSimpleVT()) {
5484 default: break;
5485 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5486 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5487 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5488 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5491 switch (SetCCOpcode) {
5492 default: break;
5493 case ISD::SETNE: Invert = true;
5494 case ISD::SETEQ: Opc = EQOpc; break;
5495 case ISD::SETLT: Swap = true;
5496 case ISD::SETGT: Opc = GTOpc; break;
5497 case ISD::SETGE: Swap = true;
5498 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
5499 case ISD::SETULT: Swap = true;
5500 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5501 case ISD::SETUGE: Swap = true;
5502 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5504 if (Swap)
5505 std::swap(Op0, Op1);
5507 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5508 // bits of the inputs before performing those operations.
5509 if (FlipSigns) {
5510 MVT EltVT = VT.getVectorElementType();
5511 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5512 EltVT);
5513 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5514 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5515 SignBits.size());
5516 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5517 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5520 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5522 // If the logical-not of the result is required, perform that now.
5523 if (Invert)
5524 Result = DAG.getNOT(dl, Result, VT);
5526 return Result;
5529 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5530 static bool isX86LogicalCmp(SDValue Op) {
5531 unsigned Opc = Op.getNode()->getOpcode();
5532 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5533 return true;
5534 if (Op.getResNo() == 1 &&
5535 (Opc == X86ISD::ADD ||
5536 Opc == X86ISD::SUB ||
5537 Opc == X86ISD::SMUL ||
5538 Opc == X86ISD::UMUL ||
5539 Opc == X86ISD::INC ||
5540 Opc == X86ISD::DEC))
5541 return true;
5543 return false;
5546 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5547 bool addTest = true;
5548 SDValue Cond = Op.getOperand(0);
5549 DebugLoc dl = Op.getDebugLoc();
5550 SDValue CC;
5552 if (Cond.getOpcode() == ISD::SETCC)
5553 Cond = LowerSETCC(Cond, DAG);
5555 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5556 // setting operand in place of the X86ISD::SETCC.
5557 if (Cond.getOpcode() == X86ISD::SETCC) {
5558 CC = Cond.getOperand(0);
5560 SDValue Cmp = Cond.getOperand(1);
5561 unsigned Opc = Cmp.getOpcode();
5562 MVT VT = Op.getValueType();
5564 bool IllegalFPCMov = false;
5565 if (VT.isFloatingPoint() && !VT.isVector() &&
5566 !isScalarFPTypeInSSEReg(VT)) // FPStack?
5567 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5569 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5570 Opc == X86ISD::BT) { // FIXME
5571 Cond = Cmp;
5572 addTest = false;
5576 if (addTest) {
5577 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5578 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5581 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5582 SmallVector<SDValue, 4> Ops;
5583 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5584 // condition is true.
5585 Ops.push_back(Op.getOperand(2));
5586 Ops.push_back(Op.getOperand(1));
5587 Ops.push_back(CC);
5588 Ops.push_back(Cond);
5589 return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5592 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5593 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5594 // from the AND / OR.
5595 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5596 Opc = Op.getOpcode();
5597 if (Opc != ISD::OR && Opc != ISD::AND)
5598 return false;
5599 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5600 Op.getOperand(0).hasOneUse() &&
5601 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5602 Op.getOperand(1).hasOneUse());
5605 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5606 // 1 and that the SETCC node has a single use.
5607 static bool isXor1OfSetCC(SDValue Op) {
5608 if (Op.getOpcode() != ISD::XOR)
5609 return false;
5610 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5611 if (N1C && N1C->getAPIntValue() == 1) {
5612 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5613 Op.getOperand(0).hasOneUse();
5615 return false;
5618 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5619 bool addTest = true;
5620 SDValue Chain = Op.getOperand(0);
5621 SDValue Cond = Op.getOperand(1);
5622 SDValue Dest = Op.getOperand(2);
5623 DebugLoc dl = Op.getDebugLoc();
5624 SDValue CC;
5626 if (Cond.getOpcode() == ISD::SETCC)
5627 Cond = LowerSETCC(Cond, DAG);
5628 #if 0
5629 // FIXME: LowerXALUO doesn't handle these!!
5630 else if (Cond.getOpcode() == X86ISD::ADD ||
5631 Cond.getOpcode() == X86ISD::SUB ||
5632 Cond.getOpcode() == X86ISD::SMUL ||
5633 Cond.getOpcode() == X86ISD::UMUL)
5634 Cond = LowerXALUO(Cond, DAG);
5635 #endif
5637 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5638 // setting operand in place of the X86ISD::SETCC.
5639 if (Cond.getOpcode() == X86ISD::SETCC) {
5640 CC = Cond.getOperand(0);
5642 SDValue Cmp = Cond.getOperand(1);
5643 unsigned Opc = Cmp.getOpcode();
5644 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5645 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5646 Cond = Cmp;
5647 addTest = false;
5648 } else {
5649 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5650 default: break;
5651 case X86::COND_O:
5652 case X86::COND_B:
5653 // These can only come from an arithmetic instruction with overflow,
5654 // e.g. SADDO, UADDO.
5655 Cond = Cond.getNode()->getOperand(1);
5656 addTest = false;
5657 break;
5660 } else {
5661 unsigned CondOpc;
5662 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5663 SDValue Cmp = Cond.getOperand(0).getOperand(1);
5664 if (CondOpc == ISD::OR) {
5665 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5666 // two branches instead of an explicit OR instruction with a
5667 // separate test.
5668 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5669 isX86LogicalCmp(Cmp)) {
5670 CC = Cond.getOperand(0).getOperand(0);
5671 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5672 Chain, Dest, CC, Cmp);
5673 CC = Cond.getOperand(1).getOperand(0);
5674 Cond = Cmp;
5675 addTest = false;
5677 } else { // ISD::AND
5678 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5679 // two branches instead of an explicit AND instruction with a
5680 // separate test. However, we only do this if this block doesn't
5681 // have a fall-through edge, because this requires an explicit
5682 // jmp when the condition is false.
5683 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5684 isX86LogicalCmp(Cmp) &&
5685 Op.getNode()->hasOneUse()) {
5686 X86::CondCode CCode =
5687 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5688 CCode = X86::GetOppositeBranchCondition(CCode);
5689 CC = DAG.getConstant(CCode, MVT::i8);
5690 SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5691 // Look for an unconditional branch following this conditional branch.
5692 // We need this because we need to reverse the successors in order
5693 // to implement FCMP_OEQ.
5694 if (User.getOpcode() == ISD::BR) {
5695 SDValue FalseBB = User.getOperand(1);
5696 SDValue NewBR =
5697 DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5698 assert(NewBR == User);
5699 Dest = FalseBB;
5701 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5702 Chain, Dest, CC, Cmp);
5703 X86::CondCode CCode =
5704 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5705 CCode = X86::GetOppositeBranchCondition(CCode);
5706 CC = DAG.getConstant(CCode, MVT::i8);
5707 Cond = Cmp;
5708 addTest = false;
5712 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5713 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5714 // It should be transformed during dag combiner except when the condition
5715 // is set by a arithmetics with overflow node.
5716 X86::CondCode CCode =
5717 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5718 CCode = X86::GetOppositeBranchCondition(CCode);
5719 CC = DAG.getConstant(CCode, MVT::i8);
5720 Cond = Cond.getOperand(0).getOperand(1);
5721 addTest = false;
5725 if (addTest) {
5726 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5727 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5729 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5730 Chain, Dest, CC, Cond);
5734 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5735 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5736 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5737 // that the guard pages used by the OS virtual memory manager are allocated in
5738 // correct sequence.
5739 SDValue
5740 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5741 SelectionDAG &DAG) {
5742 assert(Subtarget->isTargetCygMing() &&
5743 "This should be used only on Cygwin/Mingw targets");
5744 DebugLoc dl = Op.getDebugLoc();
5746 // Get the inputs.
5747 SDValue Chain = Op.getOperand(0);
5748 SDValue Size = Op.getOperand(1);
5749 // FIXME: Ensure alignment here
5751 SDValue Flag;
5753 MVT IntPtr = getPointerTy();
5754 MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5756 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5758 Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5759 Flag = Chain.getValue(1);
5761 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5762 SDValue Ops[] = { Chain,
5763 DAG.getTargetExternalSymbol("_alloca", IntPtr),
5764 DAG.getRegister(X86::EAX, IntPtr),
5765 DAG.getRegister(X86StackPtr, SPTy),
5766 Flag };
5767 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5768 Flag = Chain.getValue(1);
5770 Chain = DAG.getCALLSEQ_END(Chain,
5771 DAG.getIntPtrConstant(0, true),
5772 DAG.getIntPtrConstant(0, true),
5773 Flag);
5775 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5777 SDValue Ops1[2] = { Chain.getValue(0), Chain };
5778 return DAG.getMergeValues(Ops1, 2, dl);
5781 SDValue
5782 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5783 SDValue Chain,
5784 SDValue Dst, SDValue Src,
5785 SDValue Size, unsigned Align,
5786 const Value *DstSV,
5787 uint64_t DstSVOff) {
5788 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5790 // If not DWORD aligned or size is more than the threshold, call the library.
5791 // The libc version is likely to be faster for these cases. It can use the
5792 // address value and run time information about the CPU.
5793 if ((Align & 3) != 0 ||
5794 !ConstantSize ||
5795 ConstantSize->getZExtValue() >
5796 getSubtarget()->getMaxInlineSizeThreshold()) {
5797 SDValue InFlag(0, 0);
5799 // Check to see if there is a specialized entry-point for memory zeroing.
5800 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5802 if (const char *bzeroEntry = V &&
5803 V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5804 MVT IntPtr = getPointerTy();
5805 const Type *IntPtrTy = TD->getIntPtrType();
5806 TargetLowering::ArgListTy Args;
5807 TargetLowering::ArgListEntry Entry;
5808 Entry.Node = Dst;
5809 Entry.Ty = IntPtrTy;
5810 Args.push_back(Entry);
5811 Entry.Node = Size;
5812 Args.push_back(Entry);
5813 std::pair<SDValue,SDValue> CallResult =
5814 LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5815 0, CallingConv::C, false,
5816 DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5817 return CallResult.second;
5820 // Otherwise have the target-independent code call memset.
5821 return SDValue();
5824 uint64_t SizeVal = ConstantSize->getZExtValue();
5825 SDValue InFlag(0, 0);
5826 MVT AVT;
5827 SDValue Count;
5828 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5829 unsigned BytesLeft = 0;
5830 bool TwoRepStos = false;
5831 if (ValC) {
5832 unsigned ValReg;
5833 uint64_t Val = ValC->getZExtValue() & 255;
5835 // If the value is a constant, then we can potentially use larger sets.
5836 switch (Align & 3) {
5837 case 2: // WORD aligned
5838 AVT = MVT::i16;
5839 ValReg = X86::AX;
5840 Val = (Val << 8) | Val;
5841 break;
5842 case 0: // DWORD aligned
5843 AVT = MVT::i32;
5844 ValReg = X86::EAX;
5845 Val = (Val << 8) | Val;
5846 Val = (Val << 16) | Val;
5847 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
5848 AVT = MVT::i64;
5849 ValReg = X86::RAX;
5850 Val = (Val << 32) | Val;
5852 break;
5853 default: // Byte aligned
5854 AVT = MVT::i8;
5855 ValReg = X86::AL;
5856 Count = DAG.getIntPtrConstant(SizeVal);
5857 break;
5860 if (AVT.bitsGT(MVT::i8)) {
5861 unsigned UBytes = AVT.getSizeInBits() / 8;
5862 Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5863 BytesLeft = SizeVal % UBytes;
5866 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5867 InFlag);
5868 InFlag = Chain.getValue(1);
5869 } else {
5870 AVT = MVT::i8;
5871 Count = DAG.getIntPtrConstant(SizeVal);
5872 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5873 InFlag = Chain.getValue(1);
5876 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5877 X86::ECX,
5878 Count, InFlag);
5879 InFlag = Chain.getValue(1);
5880 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5881 X86::EDI,
5882 Dst, InFlag);
5883 InFlag = Chain.getValue(1);
5885 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5886 SmallVector<SDValue, 8> Ops;
5887 Ops.push_back(Chain);
5888 Ops.push_back(DAG.getValueType(AVT));
5889 Ops.push_back(InFlag);
5890 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5892 if (TwoRepStos) {
5893 InFlag = Chain.getValue(1);
5894 Count = Size;
5895 MVT CVT = Count.getValueType();
5896 SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5897 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5898 Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5899 X86::ECX,
5900 Left, InFlag);
5901 InFlag = Chain.getValue(1);
5902 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5903 Ops.clear();
5904 Ops.push_back(Chain);
5905 Ops.push_back(DAG.getValueType(MVT::i8));
5906 Ops.push_back(InFlag);
5907 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5908 } else if (BytesLeft) {
5909 // Handle the last 1 - 7 bytes.
5910 unsigned Offset = SizeVal - BytesLeft;
5911 MVT AddrVT = Dst.getValueType();
5912 MVT SizeVT = Size.getValueType();
5914 Chain = DAG.getMemset(Chain, dl,
5915 DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5916 DAG.getConstant(Offset, AddrVT)),
5917 Src,
5918 DAG.getConstant(BytesLeft, SizeVT),
5919 Align, DstSV, DstSVOff + Offset);
5922 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5923 return Chain;
5926 SDValue
5927 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5928 SDValue Chain, SDValue Dst, SDValue Src,
5929 SDValue Size, unsigned Align,
5930 bool AlwaysInline,
5931 const Value *DstSV, uint64_t DstSVOff,
5932 const Value *SrcSV, uint64_t SrcSVOff) {
5933 // This requires the copy size to be a constant, preferrably
5934 // within a subtarget-specific limit.
5935 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5936 if (!ConstantSize)
5937 return SDValue();
5938 uint64_t SizeVal = ConstantSize->getZExtValue();
5939 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5940 return SDValue();
5942 /// If not DWORD aligned, call the library.
5943 if ((Align & 3) != 0)
5944 return SDValue();
5946 // DWORD aligned
5947 MVT AVT = MVT::i32;
5948 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned
5949 AVT = MVT::i64;
5951 unsigned UBytes = AVT.getSizeInBits() / 8;
5952 unsigned CountVal = SizeVal / UBytes;
5953 SDValue Count = DAG.getIntPtrConstant(CountVal);
5954 unsigned BytesLeft = SizeVal % UBytes;
5956 SDValue InFlag(0, 0);
5957 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5958 X86::ECX,
5959 Count, InFlag);
5960 InFlag = Chain.getValue(1);
5961 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5962 X86::EDI,
5963 Dst, InFlag);
5964 InFlag = Chain.getValue(1);
5965 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5966 X86::ESI,
5967 Src, InFlag);
5968 InFlag = Chain.getValue(1);
5970 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5971 SmallVector<SDValue, 8> Ops;
5972 Ops.push_back(Chain);
5973 Ops.push_back(DAG.getValueType(AVT));
5974 Ops.push_back(InFlag);
5975 SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5977 SmallVector<SDValue, 4> Results;
5978 Results.push_back(RepMovs);
5979 if (BytesLeft) {
5980 // Handle the last 1 - 7 bytes.
5981 unsigned Offset = SizeVal - BytesLeft;
5982 MVT DstVT = Dst.getValueType();
5983 MVT SrcVT = Src.getValueType();
5984 MVT SizeVT = Size.getValueType();
5985 Results.push_back(DAG.getMemcpy(Chain, dl,
5986 DAG.getNode(ISD::ADD, dl, DstVT, Dst,
5987 DAG.getConstant(Offset, DstVT)),
5988 DAG.getNode(ISD::ADD, dl, SrcVT, Src,
5989 DAG.getConstant(Offset, SrcVT)),
5990 DAG.getConstant(BytesLeft, SizeVT),
5991 Align, AlwaysInline,
5992 DstSV, DstSVOff + Offset,
5993 SrcSV, SrcSVOff + Offset));
5996 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5997 &Results[0], Results.size());
6000 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6001 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6002 DebugLoc dl = Op.getDebugLoc();
6004 if (!Subtarget->is64Bit()) {
6005 // vastart just stores the address of the VarArgsFrameIndex slot into the
6006 // memory location argument.
6007 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6008 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6011 // __va_list_tag:
6012 // gp_offset (0 - 6 * 8)
6013 // fp_offset (48 - 48 + 8 * 16)
6014 // overflow_arg_area (point to parameters coming in memory).
6015 // reg_save_area
6016 SmallVector<SDValue, 8> MemOps;
6017 SDValue FIN = Op.getOperand(1);
6018 // Store gp_offset
6019 SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6020 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6021 FIN, SV, 0);
6022 MemOps.push_back(Store);
6024 // Store fp_offset
6025 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6026 FIN, DAG.getIntPtrConstant(4));
6027 Store = DAG.getStore(Op.getOperand(0), dl,
6028 DAG.getConstant(VarArgsFPOffset, MVT::i32),
6029 FIN, SV, 0);
6030 MemOps.push_back(Store);
6032 // Store ptr to overflow_arg_area
6033 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6034 FIN, DAG.getIntPtrConstant(4));
6035 SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6036 Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6037 MemOps.push_back(Store);
6039 // Store ptr to reg_save_area.
6040 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6041 FIN, DAG.getIntPtrConstant(8));
6042 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6043 Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6044 MemOps.push_back(Store);
6045 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6046 &MemOps[0], MemOps.size());
6049 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6050 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6051 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6052 SDValue Chain = Op.getOperand(0);
6053 SDValue SrcPtr = Op.getOperand(1);
6054 SDValue SrcSV = Op.getOperand(2);
6056 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6057 return SDValue();
6060 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6061 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6062 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6063 SDValue Chain = Op.getOperand(0);
6064 SDValue DstPtr = Op.getOperand(1);
6065 SDValue SrcPtr = Op.getOperand(2);
6066 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6067 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6068 DebugLoc dl = Op.getDebugLoc();
6070 return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6071 DAG.getIntPtrConstant(24), 8, false,
6072 DstSV, 0, SrcSV, 0);
6075 SDValue
6076 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6077 DebugLoc dl = Op.getDebugLoc();
6078 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6079 switch (IntNo) {
6080 default: return SDValue(); // Don't custom lower most intrinsics.
6081 // Comparison intrinsics.
6082 case Intrinsic::x86_sse_comieq_ss:
6083 case Intrinsic::x86_sse_comilt_ss:
6084 case Intrinsic::x86_sse_comile_ss:
6085 case Intrinsic::x86_sse_comigt_ss:
6086 case Intrinsic::x86_sse_comige_ss:
6087 case Intrinsic::x86_sse_comineq_ss:
6088 case Intrinsic::x86_sse_ucomieq_ss:
6089 case Intrinsic::x86_sse_ucomilt_ss:
6090 case Intrinsic::x86_sse_ucomile_ss:
6091 case Intrinsic::x86_sse_ucomigt_ss:
6092 case Intrinsic::x86_sse_ucomige_ss:
6093 case Intrinsic::x86_sse_ucomineq_ss:
6094 case Intrinsic::x86_sse2_comieq_sd:
6095 case Intrinsic::x86_sse2_comilt_sd:
6096 case Intrinsic::x86_sse2_comile_sd:
6097 case Intrinsic::x86_sse2_comigt_sd:
6098 case Intrinsic::x86_sse2_comige_sd:
6099 case Intrinsic::x86_sse2_comineq_sd:
6100 case Intrinsic::x86_sse2_ucomieq_sd:
6101 case Intrinsic::x86_sse2_ucomilt_sd:
6102 case Intrinsic::x86_sse2_ucomile_sd:
6103 case Intrinsic::x86_sse2_ucomigt_sd:
6104 case Intrinsic::x86_sse2_ucomige_sd:
6105 case Intrinsic::x86_sse2_ucomineq_sd: {
6106 unsigned Opc = 0;
6107 ISD::CondCode CC = ISD::SETCC_INVALID;
6108 switch (IntNo) {
6109 default: break;
6110 case Intrinsic::x86_sse_comieq_ss:
6111 case Intrinsic::x86_sse2_comieq_sd:
6112 Opc = X86ISD::COMI;
6113 CC = ISD::SETEQ;
6114 break;
6115 case Intrinsic::x86_sse_comilt_ss:
6116 case Intrinsic::x86_sse2_comilt_sd:
6117 Opc = X86ISD::COMI;
6118 CC = ISD::SETLT;
6119 break;
6120 case Intrinsic::x86_sse_comile_ss:
6121 case Intrinsic::x86_sse2_comile_sd:
6122 Opc = X86ISD::COMI;
6123 CC = ISD::SETLE;
6124 break;
6125 case Intrinsic::x86_sse_comigt_ss:
6126 case Intrinsic::x86_sse2_comigt_sd:
6127 Opc = X86ISD::COMI;
6128 CC = ISD::SETGT;
6129 break;
6130 case Intrinsic::x86_sse_comige_ss:
6131 case Intrinsic::x86_sse2_comige_sd:
6132 Opc = X86ISD::COMI;
6133 CC = ISD::SETGE;
6134 break;
6135 case Intrinsic::x86_sse_comineq_ss:
6136 case Intrinsic::x86_sse2_comineq_sd:
6137 Opc = X86ISD::COMI;
6138 CC = ISD::SETNE;
6139 break;
6140 case Intrinsic::x86_sse_ucomieq_ss:
6141 case Intrinsic::x86_sse2_ucomieq_sd:
6142 Opc = X86ISD::UCOMI;
6143 CC = ISD::SETEQ;
6144 break;
6145 case Intrinsic::x86_sse_ucomilt_ss:
6146 case Intrinsic::x86_sse2_ucomilt_sd:
6147 Opc = X86ISD::UCOMI;
6148 CC = ISD::SETLT;
6149 break;
6150 case Intrinsic::x86_sse_ucomile_ss:
6151 case Intrinsic::x86_sse2_ucomile_sd:
6152 Opc = X86ISD::UCOMI;
6153 CC = ISD::SETLE;
6154 break;
6155 case Intrinsic::x86_sse_ucomigt_ss:
6156 case Intrinsic::x86_sse2_ucomigt_sd:
6157 Opc = X86ISD::UCOMI;
6158 CC = ISD::SETGT;
6159 break;
6160 case Intrinsic::x86_sse_ucomige_ss:
6161 case Intrinsic::x86_sse2_ucomige_sd:
6162 Opc = X86ISD::UCOMI;
6163 CC = ISD::SETGE;
6164 break;
6165 case Intrinsic::x86_sse_ucomineq_ss:
6166 case Intrinsic::x86_sse2_ucomineq_sd:
6167 Opc = X86ISD::UCOMI;
6168 CC = ISD::SETNE;
6169 break;
6172 SDValue LHS = Op.getOperand(1);
6173 SDValue RHS = Op.getOperand(2);
6174 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6175 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6176 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6177 DAG.getConstant(X86CC, MVT::i8), Cond);
6178 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6181 // Fix vector shift instructions where the last operand is a non-immediate
6182 // i32 value.
6183 case Intrinsic::x86_sse2_pslli_w:
6184 case Intrinsic::x86_sse2_pslli_d:
6185 case Intrinsic::x86_sse2_pslli_q:
6186 case Intrinsic::x86_sse2_psrli_w:
6187 case Intrinsic::x86_sse2_psrli_d:
6188 case Intrinsic::x86_sse2_psrli_q:
6189 case Intrinsic::x86_sse2_psrai_w:
6190 case Intrinsic::x86_sse2_psrai_d:
6191 case Intrinsic::x86_mmx_pslli_w:
6192 case Intrinsic::x86_mmx_pslli_d:
6193 case Intrinsic::x86_mmx_pslli_q:
6194 case Intrinsic::x86_mmx_psrli_w:
6195 case Intrinsic::x86_mmx_psrli_d:
6196 case Intrinsic::x86_mmx_psrli_q:
6197 case Intrinsic::x86_mmx_psrai_w:
6198 case Intrinsic::x86_mmx_psrai_d: {
6199 SDValue ShAmt = Op.getOperand(2);
6200 if (isa<ConstantSDNode>(ShAmt))
6201 return SDValue();
6203 unsigned NewIntNo = 0;
6204 MVT ShAmtVT = MVT::v4i32;
6205 switch (IntNo) {
6206 case Intrinsic::x86_sse2_pslli_w:
6207 NewIntNo = Intrinsic::x86_sse2_psll_w;
6208 break;
6209 case Intrinsic::x86_sse2_pslli_d:
6210 NewIntNo = Intrinsic::x86_sse2_psll_d;
6211 break;
6212 case Intrinsic::x86_sse2_pslli_q:
6213 NewIntNo = Intrinsic::x86_sse2_psll_q;
6214 break;
6215 case Intrinsic::x86_sse2_psrli_w:
6216 NewIntNo = Intrinsic::x86_sse2_psrl_w;
6217 break;
6218 case Intrinsic::x86_sse2_psrli_d:
6219 NewIntNo = Intrinsic::x86_sse2_psrl_d;
6220 break;
6221 case Intrinsic::x86_sse2_psrli_q:
6222 NewIntNo = Intrinsic::x86_sse2_psrl_q;
6223 break;
6224 case Intrinsic::x86_sse2_psrai_w:
6225 NewIntNo = Intrinsic::x86_sse2_psra_w;
6226 break;
6227 case Intrinsic::x86_sse2_psrai_d:
6228 NewIntNo = Intrinsic::x86_sse2_psra_d;
6229 break;
6230 default: {
6231 ShAmtVT = MVT::v2i32;
6232 switch (IntNo) {
6233 case Intrinsic::x86_mmx_pslli_w:
6234 NewIntNo = Intrinsic::x86_mmx_psll_w;
6235 break;
6236 case Intrinsic::x86_mmx_pslli_d:
6237 NewIntNo = Intrinsic::x86_mmx_psll_d;
6238 break;
6239 case Intrinsic::x86_mmx_pslli_q:
6240 NewIntNo = Intrinsic::x86_mmx_psll_q;
6241 break;
6242 case Intrinsic::x86_mmx_psrli_w:
6243 NewIntNo = Intrinsic::x86_mmx_psrl_w;
6244 break;
6245 case Intrinsic::x86_mmx_psrli_d:
6246 NewIntNo = Intrinsic::x86_mmx_psrl_d;
6247 break;
6248 case Intrinsic::x86_mmx_psrli_q:
6249 NewIntNo = Intrinsic::x86_mmx_psrl_q;
6250 break;
6251 case Intrinsic::x86_mmx_psrai_w:
6252 NewIntNo = Intrinsic::x86_mmx_psra_w;
6253 break;
6254 case Intrinsic::x86_mmx_psrai_d:
6255 NewIntNo = Intrinsic::x86_mmx_psra_d;
6256 break;
6257 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6259 break;
6262 MVT VT = Op.getValueType();
6263 ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6264 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6265 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6266 DAG.getConstant(NewIntNo, MVT::i32),
6267 Op.getOperand(1), ShAmt);
6272 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6273 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6274 DebugLoc dl = Op.getDebugLoc();
6276 if (Depth > 0) {
6277 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6278 SDValue Offset =
6279 DAG.getConstant(TD->getPointerSize(),
6280 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6281 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6282 DAG.getNode(ISD::ADD, dl, getPointerTy(),
6283 FrameAddr, Offset),
6284 NULL, 0);
6287 // Just load the return address.
6288 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6289 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6290 RetAddrFI, NULL, 0);
6293 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6294 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6295 MFI->setFrameAddressIsTaken(true);
6296 MVT VT = Op.getValueType();
6297 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
6298 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6299 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6300 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6301 while (Depth--)
6302 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6303 return FrameAddr;
6306 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6307 SelectionDAG &DAG) {
6308 return DAG.getIntPtrConstant(2*TD->getPointerSize());
6311 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6313 MachineFunction &MF = DAG.getMachineFunction();
6314 SDValue Chain = Op.getOperand(0);
6315 SDValue Offset = Op.getOperand(1);
6316 SDValue Handler = Op.getOperand(2);
6317 DebugLoc dl = Op.getDebugLoc();
6319 SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6320 getPointerTy());
6321 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6323 SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6324 DAG.getIntPtrConstant(-TD->getPointerSize()));
6325 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6326 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6327 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6328 MF.getRegInfo().addLiveOut(StoreAddrReg);
6330 return DAG.getNode(X86ISD::EH_RETURN, dl,
6331 MVT::Other,
6332 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6335 SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6336 SelectionDAG &DAG) {
6337 SDValue Root = Op.getOperand(0);
6338 SDValue Trmp = Op.getOperand(1); // trampoline
6339 SDValue FPtr = Op.getOperand(2); // nested function
6340 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6341 DebugLoc dl = Op.getDebugLoc();
6343 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6345 const X86InstrInfo *TII =
6346 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6348 if (Subtarget->is64Bit()) {
6349 SDValue OutChains[6];
6351 // Large code-model.
6353 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r);
6354 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6356 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6357 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6359 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6361 // Load the pointer to the nested function into R11.
6362 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6363 SDValue Addr = Trmp;
6364 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6365 Addr, TrmpAddr, 0);
6367 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6368 DAG.getConstant(2, MVT::i64));
6369 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6371 // Load the 'nest' parameter value into R10.
6372 // R10 is specified in X86CallingConv.td
6373 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6374 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6375 DAG.getConstant(10, MVT::i64));
6376 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6377 Addr, TrmpAddr, 10);
6379 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6380 DAG.getConstant(12, MVT::i64));
6381 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6383 // Jump to the nested function.
6384 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6385 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6386 DAG.getConstant(20, MVT::i64));
6387 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6388 Addr, TrmpAddr, 20);
6390 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6391 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6392 DAG.getConstant(22, MVT::i64));
6393 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6394 TrmpAddr, 22);
6396 SDValue Ops[] =
6397 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6398 return DAG.getMergeValues(Ops, 2, dl);
6399 } else {
6400 const Function *Func =
6401 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6402 unsigned CC = Func->getCallingConv();
6403 unsigned NestReg;
6405 switch (CC) {
6406 default:
6407 llvm_unreachable("Unsupported calling convention");
6408 case CallingConv::C:
6409 case CallingConv::X86_StdCall: {
6410 // Pass 'nest' parameter in ECX.
6411 // Must be kept in sync with X86CallingConv.td
6412 NestReg = X86::ECX;
6414 // Check that ECX wasn't needed by an 'inreg' parameter.
6415 const FunctionType *FTy = Func->getFunctionType();
6416 const AttrListPtr &Attrs = Func->getAttributes();
6418 if (!Attrs.isEmpty() && !Func->isVarArg()) {
6419 unsigned InRegCount = 0;
6420 unsigned Idx = 1;
6422 for (FunctionType::param_iterator I = FTy->param_begin(),
6423 E = FTy->param_end(); I != E; ++I, ++Idx)
6424 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6425 // FIXME: should only count parameters that are lowered to integers.
6426 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6428 if (InRegCount > 2) {
6429 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6432 break;
6434 case CallingConv::X86_FastCall:
6435 case CallingConv::Fast:
6436 // Pass 'nest' parameter in EAX.
6437 // Must be kept in sync with X86CallingConv.td
6438 NestReg = X86::EAX;
6439 break;
6442 SDValue OutChains[4];
6443 SDValue Addr, Disp;
6445 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6446 DAG.getConstant(10, MVT::i32));
6447 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6449 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6450 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6451 OutChains[0] = DAG.getStore(Root, dl,
6452 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6453 Trmp, TrmpAddr, 0);
6455 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6456 DAG.getConstant(1, MVT::i32));
6457 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6459 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6460 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6461 DAG.getConstant(5, MVT::i32));
6462 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6463 TrmpAddr, 5, false, 1);
6465 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6466 DAG.getConstant(6, MVT::i32));
6467 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6469 SDValue Ops[] =
6470 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6471 return DAG.getMergeValues(Ops, 2, dl);
6475 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6477 The rounding mode is in bits 11:10 of FPSR, and has the following
6478 settings:
6479 00 Round to nearest
6480 01 Round to -inf
6481 10 Round to +inf
6482 11 Round to 0
6484 FLT_ROUNDS, on the other hand, expects the following:
6485 -1 Undefined
6486 0 Round to 0
6487 1 Round to nearest
6488 2 Round to +inf
6489 3 Round to -inf
6491 To perform the conversion, we do:
6492 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6495 MachineFunction &MF = DAG.getMachineFunction();
6496 const TargetMachine &TM = MF.getTarget();
6497 const TargetFrameInfo &TFI = *TM.getFrameInfo();
6498 unsigned StackAlignment = TFI.getStackAlignment();
6499 MVT VT = Op.getValueType();
6500 DebugLoc dl = Op.getDebugLoc();
6502 // Save FP Control Word to stack slot
6503 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6504 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6506 SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6507 DAG.getEntryNode(), StackSlot);
6509 // Load FP Control Word from stack slot
6510 SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6512 // Transform as necessary
6513 SDValue CWD1 =
6514 DAG.getNode(ISD::SRL, dl, MVT::i16,
6515 DAG.getNode(ISD::AND, dl, MVT::i16,
6516 CWD, DAG.getConstant(0x800, MVT::i16)),
6517 DAG.getConstant(11, MVT::i8));
6518 SDValue CWD2 =
6519 DAG.getNode(ISD::SRL, dl, MVT::i16,
6520 DAG.getNode(ISD::AND, dl, MVT::i16,
6521 CWD, DAG.getConstant(0x400, MVT::i16)),
6522 DAG.getConstant(9, MVT::i8));
6524 SDValue RetVal =
6525 DAG.getNode(ISD::AND, dl, MVT::i16,
6526 DAG.getNode(ISD::ADD, dl, MVT::i16,
6527 DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6528 DAG.getConstant(1, MVT::i16)),
6529 DAG.getConstant(3, MVT::i16));
6532 return DAG.getNode((VT.getSizeInBits() < 16 ?
6533 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6536 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6537 MVT VT = Op.getValueType();
6538 MVT OpVT = VT;
6539 unsigned NumBits = VT.getSizeInBits();
6540 DebugLoc dl = Op.getDebugLoc();
6542 Op = Op.getOperand(0);
6543 if (VT == MVT::i8) {
6544 // Zero extend to i32 since there is not an i8 bsr.
6545 OpVT = MVT::i32;
6546 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6549 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6550 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6551 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6553 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6554 SmallVector<SDValue, 4> Ops;
6555 Ops.push_back(Op);
6556 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6557 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6558 Ops.push_back(Op.getValue(1));
6559 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6561 // Finally xor with NumBits-1.
6562 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6564 if (VT == MVT::i8)
6565 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6566 return Op;
6569 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6570 MVT VT = Op.getValueType();
6571 MVT OpVT = VT;
6572 unsigned NumBits = VT.getSizeInBits();
6573 DebugLoc dl = Op.getDebugLoc();
6575 Op = Op.getOperand(0);
6576 if (VT == MVT::i8) {
6577 OpVT = MVT::i32;
6578 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6581 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6582 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6583 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6585 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6586 SmallVector<SDValue, 4> Ops;
6587 Ops.push_back(Op);
6588 Ops.push_back(DAG.getConstant(NumBits, OpVT));
6589 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6590 Ops.push_back(Op.getValue(1));
6591 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6593 if (VT == MVT::i8)
6594 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6595 return Op;
6598 SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6599 MVT VT = Op.getValueType();
6600 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6601 DebugLoc dl = Op.getDebugLoc();
6603 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6604 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6605 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6606 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6607 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6609 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6610 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6611 // return AloBlo + AloBhi + AhiBlo;
6613 SDValue A = Op.getOperand(0);
6614 SDValue B = Op.getOperand(1);
6616 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6617 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6618 A, DAG.getConstant(32, MVT::i32));
6619 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6620 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6621 B, DAG.getConstant(32, MVT::i32));
6622 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6623 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6624 A, B);
6625 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6626 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6627 A, Bhi);
6628 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6629 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6630 Ahi, B);
6631 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6632 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6633 AloBhi, DAG.getConstant(32, MVT::i32));
6634 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6635 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6636 AhiBlo, DAG.getConstant(32, MVT::i32));
6637 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6638 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6639 return Res;
6643 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6644 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6645 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6646 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6647 // has only one use.
6648 SDNode *N = Op.getNode();
6649 SDValue LHS = N->getOperand(0);
6650 SDValue RHS = N->getOperand(1);
6651 unsigned BaseOp = 0;
6652 unsigned Cond = 0;
6653 DebugLoc dl = Op.getDebugLoc();
6655 switch (Op.getOpcode()) {
6656 default: llvm_unreachable("Unknown ovf instruction!");
6657 case ISD::SADDO:
6658 // A subtract of one will be selected as a INC. Note that INC doesn't
6659 // set CF, so we can't do this for UADDO.
6660 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6661 if (C->getAPIntValue() == 1) {
6662 BaseOp = X86ISD::INC;
6663 Cond = X86::COND_O;
6664 break;
6666 BaseOp = X86ISD::ADD;
6667 Cond = X86::COND_O;
6668 break;
6669 case ISD::UADDO:
6670 BaseOp = X86ISD::ADD;
6671 Cond = X86::COND_B;
6672 break;
6673 case ISD::SSUBO:
6674 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6675 // set CF, so we can't do this for USUBO.
6676 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6677 if (C->getAPIntValue() == 1) {
6678 BaseOp = X86ISD::DEC;
6679 Cond = X86::COND_O;
6680 break;
6682 BaseOp = X86ISD::SUB;
6683 Cond = X86::COND_O;
6684 break;
6685 case ISD::USUBO:
6686 BaseOp = X86ISD::SUB;
6687 Cond = X86::COND_B;
6688 break;
6689 case ISD::SMULO:
6690 BaseOp = X86ISD::SMUL;
6691 Cond = X86::COND_O;
6692 break;
6693 case ISD::UMULO:
6694 BaseOp = X86ISD::UMUL;
6695 Cond = X86::COND_B;
6696 break;
6699 // Also sets EFLAGS.
6700 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6701 SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6703 SDValue SetCC =
6704 DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6705 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6707 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6708 return Sum;
6711 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6712 MVT T = Op.getValueType();
6713 DebugLoc dl = Op.getDebugLoc();
6714 unsigned Reg = 0;
6715 unsigned size = 0;
6716 switch(T.getSimpleVT()) {
6717 default:
6718 assert(false && "Invalid value type!");
6719 case MVT::i8: Reg = X86::AL; size = 1; break;
6720 case MVT::i16: Reg = X86::AX; size = 2; break;
6721 case MVT::i32: Reg = X86::EAX; size = 4; break;
6722 case MVT::i64:
6723 assert(Subtarget->is64Bit() && "Node not type legal!");
6724 Reg = X86::RAX; size = 8;
6725 break;
6727 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6728 Op.getOperand(2), SDValue());
6729 SDValue Ops[] = { cpIn.getValue(0),
6730 Op.getOperand(1),
6731 Op.getOperand(3),
6732 DAG.getTargetConstant(size, MVT::i8),
6733 cpIn.getValue(1) };
6734 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6735 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6736 SDValue cpOut =
6737 DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6738 return cpOut;
6741 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6742 SelectionDAG &DAG) {
6743 assert(Subtarget->is64Bit() && "Result not type legalized?");
6744 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6745 SDValue TheChain = Op.getOperand(0);
6746 DebugLoc dl = Op.getDebugLoc();
6747 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6748 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6749 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6750 rax.getValue(2));
6751 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6752 DAG.getConstant(32, MVT::i8));
6753 SDValue Ops[] = {
6754 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6755 rdx.getValue(1)
6757 return DAG.getMergeValues(Ops, 2, dl);
6760 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6761 SDNode *Node = Op.getNode();
6762 DebugLoc dl = Node->getDebugLoc();
6763 MVT T = Node->getValueType(0);
6764 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6765 DAG.getConstant(0, T), Node->getOperand(2));
6766 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6767 cast<AtomicSDNode>(Node)->getMemoryVT(),
6768 Node->getOperand(0),
6769 Node->getOperand(1), negOp,
6770 cast<AtomicSDNode>(Node)->getSrcValue(),
6771 cast<AtomicSDNode>(Node)->getAlignment());
6774 /// LowerOperation - Provide custom lowering hooks for some operations.
6776 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6777 switch (Op.getOpcode()) {
6778 default: llvm_unreachable("Should not custom lower this!");
6779 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
6780 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
6781 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
6782 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6783 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6784 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6785 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
6786 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
6787 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
6788 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6789 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
6790 case ISD::SHL_PARTS:
6791 case ISD::SRA_PARTS:
6792 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
6793 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
6794 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
6795 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
6796 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
6797 case ISD::FABS: return LowerFABS(Op, DAG);
6798 case ISD::FNEG: return LowerFNEG(Op, DAG);
6799 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
6800 case ISD::SETCC: return LowerSETCC(Op, DAG);
6801 case ISD::VSETCC: return LowerVSETCC(Op, DAG);
6802 case ISD::SELECT: return LowerSELECT(Op, DAG);
6803 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
6804 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
6805 case ISD::CALL: return LowerCALL(Op, DAG);
6806 case ISD::RET: return LowerRET(Op, DAG);
6807 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
6808 case ISD::VASTART: return LowerVASTART(Op, DAG);
6809 case ISD::VAARG: return LowerVAARG(Op, DAG);
6810 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
6811 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6812 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
6813 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
6814 case ISD::FRAME_TO_ARGS_OFFSET:
6815 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6816 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6817 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
6818 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
6819 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
6820 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
6821 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
6822 case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
6823 case ISD::SADDO:
6824 case ISD::UADDO:
6825 case ISD::SSUBO:
6826 case ISD::USUBO:
6827 case ISD::SMULO:
6828 case ISD::UMULO: return LowerXALUO(Op, DAG);
6829 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
6833 void X86TargetLowering::
6834 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6835 SelectionDAG &DAG, unsigned NewOp) {
6836 MVT T = Node->getValueType(0);
6837 DebugLoc dl = Node->getDebugLoc();
6838 assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6840 SDValue Chain = Node->getOperand(0);
6841 SDValue In1 = Node->getOperand(1);
6842 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6843 Node->getOperand(2), DAG.getIntPtrConstant(0));
6844 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6845 Node->getOperand(2), DAG.getIntPtrConstant(1));
6846 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6847 // have a MemOperand. Pass the info through as a normal operand.
6848 SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6849 SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6850 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6851 SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6852 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6853 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6854 Results.push_back(Result.getValue(2));
6857 /// ReplaceNodeResults - Replace a node with an illegal result type
6858 /// with a new node built out of custom code.
6859 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6860 SmallVectorImpl<SDValue>&Results,
6861 SelectionDAG &DAG) {
6862 DebugLoc dl = N->getDebugLoc();
6863 switch (N->getOpcode()) {
6864 default:
6865 assert(false && "Do not know how to custom type legalize this operation!");
6866 return;
6867 case ISD::FP_TO_SINT: {
6868 std::pair<SDValue,SDValue> Vals =
6869 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6870 SDValue FIST = Vals.first, StackSlot = Vals.second;
6871 if (FIST.getNode() != 0) {
6872 MVT VT = N->getValueType(0);
6873 // Return a load from the stack slot.
6874 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6876 return;
6878 case ISD::READCYCLECOUNTER: {
6879 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6880 SDValue TheChain = N->getOperand(0);
6881 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6882 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6883 rd.getValue(1));
6884 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6885 eax.getValue(2));
6886 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6887 SDValue Ops[] = { eax, edx };
6888 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6889 Results.push_back(edx.getValue(1));
6890 return;
6892 case ISD::ATOMIC_CMP_SWAP: {
6893 MVT T = N->getValueType(0);
6894 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6895 SDValue cpInL, cpInH;
6896 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6897 DAG.getConstant(0, MVT::i32));
6898 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6899 DAG.getConstant(1, MVT::i32));
6900 cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6901 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6902 cpInL.getValue(1));
6903 SDValue swapInL, swapInH;
6904 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6905 DAG.getConstant(0, MVT::i32));
6906 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6907 DAG.getConstant(1, MVT::i32));
6908 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6909 cpInH.getValue(1));
6910 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6911 swapInL.getValue(1));
6912 SDValue Ops[] = { swapInH.getValue(0),
6913 N->getOperand(1),
6914 swapInH.getValue(1) };
6915 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6916 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6917 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6918 MVT::i32, Result.getValue(1));
6919 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6920 MVT::i32, cpOutL.getValue(2));
6921 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6922 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6923 Results.push_back(cpOutH.getValue(1));
6924 return;
6926 case ISD::ATOMIC_LOAD_ADD:
6927 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6928 return;
6929 case ISD::ATOMIC_LOAD_AND:
6930 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6931 return;
6932 case ISD::ATOMIC_LOAD_NAND:
6933 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6934 return;
6935 case ISD::ATOMIC_LOAD_OR:
6936 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6937 return;
6938 case ISD::ATOMIC_LOAD_SUB:
6939 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6940 return;
6941 case ISD::ATOMIC_LOAD_XOR:
6942 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6943 return;
6944 case ISD::ATOMIC_SWAP:
6945 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6946 return;
6950 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6951 switch (Opcode) {
6952 default: return NULL;
6953 case X86ISD::BSF: return "X86ISD::BSF";
6954 case X86ISD::BSR: return "X86ISD::BSR";
6955 case X86ISD::SHLD: return "X86ISD::SHLD";
6956 case X86ISD::SHRD: return "X86ISD::SHRD";
6957 case X86ISD::FAND: return "X86ISD::FAND";
6958 case X86ISD::FOR: return "X86ISD::FOR";
6959 case X86ISD::FXOR: return "X86ISD::FXOR";
6960 case X86ISD::FSRL: return "X86ISD::FSRL";
6961 case X86ISD::FILD: return "X86ISD::FILD";
6962 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
6963 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6964 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6965 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6966 case X86ISD::FLD: return "X86ISD::FLD";
6967 case X86ISD::FST: return "X86ISD::FST";
6968 case X86ISD::CALL: return "X86ISD::CALL";
6969 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
6970 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
6971 case X86ISD::BT: return "X86ISD::BT";
6972 case X86ISD::CMP: return "X86ISD::CMP";
6973 case X86ISD::COMI: return "X86ISD::COMI";
6974 case X86ISD::UCOMI: return "X86ISD::UCOMI";
6975 case X86ISD::SETCC: return "X86ISD::SETCC";
6976 case X86ISD::CMOV: return "X86ISD::CMOV";
6977 case X86ISD::BRCOND: return "X86ISD::BRCOND";
6978 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
6979 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
6980 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
6981 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
6982 case X86ISD::Wrapper: return "X86ISD::Wrapper";
6983 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
6984 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
6985 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
6986 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
6987 case X86ISD::PINSRB: return "X86ISD::PINSRB";
6988 case X86ISD::PINSRW: return "X86ISD::PINSRW";
6989 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
6990 case X86ISD::FMAX: return "X86ISD::FMAX";
6991 case X86ISD::FMIN: return "X86ISD::FMIN";
6992 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
6993 case X86ISD::FRCP: return "X86ISD::FRCP";
6994 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
6995 case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
6996 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
6997 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
6998 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
6999 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
7000 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
7001 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
7002 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
7003 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
7004 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
7005 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
7006 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
7007 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
7008 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
7009 case X86ISD::VSHL: return "X86ISD::VSHL";
7010 case X86ISD::VSRL: return "X86ISD::VSRL";
7011 case X86ISD::CMPPD: return "X86ISD::CMPPD";
7012 case X86ISD::CMPPS: return "X86ISD::CMPPS";
7013 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
7014 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
7015 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
7016 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
7017 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
7018 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
7019 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
7020 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
7021 case X86ISD::ADD: return "X86ISD::ADD";
7022 case X86ISD::SUB: return "X86ISD::SUB";
7023 case X86ISD::SMUL: return "X86ISD::SMUL";
7024 case X86ISD::UMUL: return "X86ISD::UMUL";
7025 case X86ISD::INC: return "X86ISD::INC";
7026 case X86ISD::DEC: return "X86ISD::DEC";
7027 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
7031 // isLegalAddressingMode - Return true if the addressing mode represented
7032 // by AM is legal for this target, for a load/store of the specified type.
7033 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7034 const Type *Ty) const {
7035 // X86 supports extremely general addressing modes.
7037 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7038 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
7039 return false;
7041 if (AM.BaseGV) {
7042 unsigned GVFlags =
7043 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7045 // If a reference to this global requires an extra load, we can't fold it.
7046 if (isGlobalStubReference(GVFlags))
7047 return false;
7049 // If BaseGV requires a register for the PIC base, we cannot also have a
7050 // BaseReg specified.
7051 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7052 return false;
7054 // X86-64 only supports addr of globals in small code model.
7055 if (Subtarget->is64Bit()) {
7056 if (getTargetMachine().getCodeModel() != CodeModel::Small)
7057 return false;
7058 // If lower 4G is not available, then we must use rip-relative addressing.
7059 if (AM.BaseOffs || AM.Scale > 1)
7060 return false;
7064 switch (AM.Scale) {
7065 case 0:
7066 case 1:
7067 case 2:
7068 case 4:
7069 case 8:
7070 // These scales always work.
7071 break;
7072 case 3:
7073 case 5:
7074 case 9:
7075 // These scales are formed with basereg+scalereg. Only accept if there is
7076 // no basereg yet.
7077 if (AM.HasBaseReg)
7078 return false;
7079 break;
7080 default: // Other stuff never works.
7081 return false;
7084 return true;
7088 bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7089 if (!Ty1->isInteger() || !Ty2->isInteger())
7090 return false;
7091 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7092 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7093 if (NumBits1 <= NumBits2)
7094 return false;
7095 return Subtarget->is64Bit() || NumBits1 < 64;
7098 bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
7099 if (!VT1.isInteger() || !VT2.isInteger())
7100 return false;
7101 unsigned NumBits1 = VT1.getSizeInBits();
7102 unsigned NumBits2 = VT2.getSizeInBits();
7103 if (NumBits1 <= NumBits2)
7104 return false;
7105 return Subtarget->is64Bit() || NumBits1 < 64;
7108 bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7109 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7110 return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
7113 bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
7114 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7115 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7118 bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
7119 // i16 instructions are longer (0x66 prefix) and potentially slower.
7120 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7123 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7124 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7125 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7126 /// are assumed to be legal.
7127 bool
7128 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7129 MVT VT) const {
7130 // Only do shuffles on 128-bit vector types for now.
7131 if (VT.getSizeInBits() == 64)
7132 return false;
7134 // FIXME: pshufb, blends, palignr, shifts.
7135 return (VT.getVectorNumElements() == 2 ||
7136 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7137 isMOVLMask(M, VT) ||
7138 isSHUFPMask(M, VT) ||
7139 isPSHUFDMask(M, VT) ||
7140 isPSHUFHWMask(M, VT) ||
7141 isPSHUFLWMask(M, VT) ||
7142 isUNPCKLMask(M, VT) ||
7143 isUNPCKHMask(M, VT) ||
7144 isUNPCKL_v_undef_Mask(M, VT) ||
7145 isUNPCKH_v_undef_Mask(M, VT));
7148 bool
7149 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7150 MVT VT) const {
7151 unsigned NumElts = VT.getVectorNumElements();
7152 // FIXME: This collection of masks seems suspect.
7153 if (NumElts == 2)
7154 return true;
7155 if (NumElts == 4 && VT.getSizeInBits() == 128) {
7156 return (isMOVLMask(Mask, VT) ||
7157 isCommutedMOVLMask(Mask, VT, true) ||
7158 isSHUFPMask(Mask, VT) ||
7159 isCommutedSHUFPMask(Mask, VT));
7161 return false;
7164 //===----------------------------------------------------------------------===//
7165 // X86 Scheduler Hooks
7166 //===----------------------------------------------------------------------===//
7168 // private utility function
7169 MachineBasicBlock *
7170 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7171 MachineBasicBlock *MBB,
7172 unsigned regOpc,
7173 unsigned immOpc,
7174 unsigned LoadOpc,
7175 unsigned CXchgOpc,
7176 unsigned copyOpc,
7177 unsigned notOpc,
7178 unsigned EAXreg,
7179 TargetRegisterClass *RC,
7180 bool invSrc) const {
7181 // For the atomic bitwise operator, we generate
7182 // thisMBB:
7183 // newMBB:
7184 // ld t1 = [bitinstr.addr]
7185 // op t2 = t1, [bitinstr.val]
7186 // mov EAX = t1
7187 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7188 // bz newMBB
7189 // fallthrough -->nextMBB
7190 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7191 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7192 MachineFunction::iterator MBBIter = MBB;
7193 ++MBBIter;
7195 /// First build the CFG
7196 MachineFunction *F = MBB->getParent();
7197 MachineBasicBlock *thisMBB = MBB;
7198 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7199 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7200 F->insert(MBBIter, newMBB);
7201 F->insert(MBBIter, nextMBB);
7203 // Move all successors to thisMBB to nextMBB
7204 nextMBB->transferSuccessors(thisMBB);
7206 // Update thisMBB to fall through to newMBB
7207 thisMBB->addSuccessor(newMBB);
7209 // newMBB jumps to itself and fall through to nextMBB
7210 newMBB->addSuccessor(nextMBB);
7211 newMBB->addSuccessor(newMBB);
7213 // Insert instructions into newMBB based on incoming instruction
7214 assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7215 "unexpected number of operands");
7216 DebugLoc dl = bInstr->getDebugLoc();
7217 MachineOperand& destOper = bInstr->getOperand(0);
7218 MachineOperand* argOpers[2 + X86AddrNumOperands];
7219 int numArgs = bInstr->getNumOperands() - 1;
7220 for (int i=0; i < numArgs; ++i)
7221 argOpers[i] = &bInstr->getOperand(i+1);
7223 // x86 address has 4 operands: base, index, scale, and displacement
7224 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7225 int valArgIndx = lastAddrIndx + 1;
7227 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7228 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7229 for (int i=0; i <= lastAddrIndx; ++i)
7230 (*MIB).addOperand(*argOpers[i]);
7232 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7233 if (invSrc) {
7234 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7236 else
7237 tt = t1;
7239 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7240 assert((argOpers[valArgIndx]->isReg() ||
7241 argOpers[valArgIndx]->isImm()) &&
7242 "invalid operand");
7243 if (argOpers[valArgIndx]->isReg())
7244 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7245 else
7246 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7247 MIB.addReg(tt);
7248 (*MIB).addOperand(*argOpers[valArgIndx]);
7250 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7251 MIB.addReg(t1);
7253 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7254 for (int i=0; i <= lastAddrIndx; ++i)
7255 (*MIB).addOperand(*argOpers[i]);
7256 MIB.addReg(t2);
7257 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7258 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7260 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7261 MIB.addReg(EAXreg);
7263 // insert branch
7264 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7266 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7267 return nextMBB;
7270 // private utility function: 64 bit atomics on 32 bit host.
7271 MachineBasicBlock *
7272 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7273 MachineBasicBlock *MBB,
7274 unsigned regOpcL,
7275 unsigned regOpcH,
7276 unsigned immOpcL,
7277 unsigned immOpcH,
7278 bool invSrc) const {
7279 // For the atomic bitwise operator, we generate
7280 // thisMBB (instructions are in pairs, except cmpxchg8b)
7281 // ld t1,t2 = [bitinstr.addr]
7282 // newMBB:
7283 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7284 // op t5, t6 <- out1, out2, [bitinstr.val]
7285 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7286 // mov ECX, EBX <- t5, t6
7287 // mov EAX, EDX <- t1, t2
7288 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7289 // mov t3, t4 <- EAX, EDX
7290 // bz newMBB
7291 // result in out1, out2
7292 // fallthrough -->nextMBB
7294 const TargetRegisterClass *RC = X86::GR32RegisterClass;
7295 const unsigned LoadOpc = X86::MOV32rm;
7296 const unsigned copyOpc = X86::MOV32rr;
7297 const unsigned NotOpc = X86::NOT32r;
7298 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7299 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7300 MachineFunction::iterator MBBIter = MBB;
7301 ++MBBIter;
7303 /// First build the CFG
7304 MachineFunction *F = MBB->getParent();
7305 MachineBasicBlock *thisMBB = MBB;
7306 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7307 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7308 F->insert(MBBIter, newMBB);
7309 F->insert(MBBIter, nextMBB);
7311 // Move all successors to thisMBB to nextMBB
7312 nextMBB->transferSuccessors(thisMBB);
7314 // Update thisMBB to fall through to newMBB
7315 thisMBB->addSuccessor(newMBB);
7317 // newMBB jumps to itself and fall through to nextMBB
7318 newMBB->addSuccessor(nextMBB);
7319 newMBB->addSuccessor(newMBB);
7321 DebugLoc dl = bInstr->getDebugLoc();
7322 // Insert instructions into newMBB based on incoming instruction
7323 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7324 assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7325 "unexpected number of operands");
7326 MachineOperand& dest1Oper = bInstr->getOperand(0);
7327 MachineOperand& dest2Oper = bInstr->getOperand(1);
7328 MachineOperand* argOpers[2 + X86AddrNumOperands];
7329 for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7330 argOpers[i] = &bInstr->getOperand(i+2);
7332 // x86 address has 4 operands: base, index, scale, and displacement
7333 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7335 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7336 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7337 for (int i=0; i <= lastAddrIndx; ++i)
7338 (*MIB).addOperand(*argOpers[i]);
7339 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7340 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7341 // add 4 to displacement.
7342 for (int i=0; i <= lastAddrIndx-2; ++i)
7343 (*MIB).addOperand(*argOpers[i]);
7344 MachineOperand newOp3 = *(argOpers[3]);
7345 if (newOp3.isImm())
7346 newOp3.setImm(newOp3.getImm()+4);
7347 else
7348 newOp3.setOffset(newOp3.getOffset()+4);
7349 (*MIB).addOperand(newOp3);
7350 (*MIB).addOperand(*argOpers[lastAddrIndx]);
7352 // t3/4 are defined later, at the bottom of the loop
7353 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7354 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7355 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7356 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7357 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7358 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7360 unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7361 unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7362 if (invSrc) {
7363 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7364 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7365 } else {
7366 tt1 = t1;
7367 tt2 = t2;
7370 int valArgIndx = lastAddrIndx + 1;
7371 assert((argOpers[valArgIndx]->isReg() ||
7372 argOpers[valArgIndx]->isImm()) &&
7373 "invalid operand");
7374 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7375 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7376 if (argOpers[valArgIndx]->isReg())
7377 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7378 else
7379 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7380 if (regOpcL != X86::MOV32rr)
7381 MIB.addReg(tt1);
7382 (*MIB).addOperand(*argOpers[valArgIndx]);
7383 assert(argOpers[valArgIndx + 1]->isReg() ==
7384 argOpers[valArgIndx]->isReg());
7385 assert(argOpers[valArgIndx + 1]->isImm() ==
7386 argOpers[valArgIndx]->isImm());
7387 if (argOpers[valArgIndx + 1]->isReg())
7388 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7389 else
7390 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7391 if (regOpcH != X86::MOV32rr)
7392 MIB.addReg(tt2);
7393 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7395 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7396 MIB.addReg(t1);
7397 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7398 MIB.addReg(t2);
7400 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7401 MIB.addReg(t5);
7402 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7403 MIB.addReg(t6);
7405 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7406 for (int i=0; i <= lastAddrIndx; ++i)
7407 (*MIB).addOperand(*argOpers[i]);
7409 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7410 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7412 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7413 MIB.addReg(X86::EAX);
7414 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7415 MIB.addReg(X86::EDX);
7417 // insert branch
7418 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7420 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7421 return nextMBB;
7424 // private utility function
7425 MachineBasicBlock *
7426 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7427 MachineBasicBlock *MBB,
7428 unsigned cmovOpc) const {
7429 // For the atomic min/max operator, we generate
7430 // thisMBB:
7431 // newMBB:
7432 // ld t1 = [min/max.addr]
7433 // mov t2 = [min/max.val]
7434 // cmp t1, t2
7435 // cmov[cond] t2 = t1
7436 // mov EAX = t1
7437 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7438 // bz newMBB
7439 // fallthrough -->nextMBB
7441 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7442 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7443 MachineFunction::iterator MBBIter = MBB;
7444 ++MBBIter;
7446 /// First build the CFG
7447 MachineFunction *F = MBB->getParent();
7448 MachineBasicBlock *thisMBB = MBB;
7449 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7450 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7451 F->insert(MBBIter, newMBB);
7452 F->insert(MBBIter, nextMBB);
7454 // Move all successors to thisMBB to nextMBB
7455 nextMBB->transferSuccessors(thisMBB);
7457 // Update thisMBB to fall through to newMBB
7458 thisMBB->addSuccessor(newMBB);
7460 // newMBB jumps to newMBB and fall through to nextMBB
7461 newMBB->addSuccessor(nextMBB);
7462 newMBB->addSuccessor(newMBB);
7464 DebugLoc dl = mInstr->getDebugLoc();
7465 // Insert instructions into newMBB based on incoming instruction
7466 assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7467 "unexpected number of operands");
7468 MachineOperand& destOper = mInstr->getOperand(0);
7469 MachineOperand* argOpers[2 + X86AddrNumOperands];
7470 int numArgs = mInstr->getNumOperands() - 1;
7471 for (int i=0; i < numArgs; ++i)
7472 argOpers[i] = &mInstr->getOperand(i+1);
7474 // x86 address has 4 operands: base, index, scale, and displacement
7475 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7476 int valArgIndx = lastAddrIndx + 1;
7478 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7479 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7480 for (int i=0; i <= lastAddrIndx; ++i)
7481 (*MIB).addOperand(*argOpers[i]);
7483 // We only support register and immediate values
7484 assert((argOpers[valArgIndx]->isReg() ||
7485 argOpers[valArgIndx]->isImm()) &&
7486 "invalid operand");
7488 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7489 if (argOpers[valArgIndx]->isReg())
7490 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7491 else
7492 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7493 (*MIB).addOperand(*argOpers[valArgIndx]);
7495 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7496 MIB.addReg(t1);
7498 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7499 MIB.addReg(t1);
7500 MIB.addReg(t2);
7502 // Generate movc
7503 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7504 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7505 MIB.addReg(t2);
7506 MIB.addReg(t1);
7508 // Cmp and exchange if none has modified the memory location
7509 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7510 for (int i=0; i <= lastAddrIndx; ++i)
7511 (*MIB).addOperand(*argOpers[i]);
7512 MIB.addReg(t3);
7513 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7514 (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7516 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7517 MIB.addReg(X86::EAX);
7519 // insert branch
7520 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7522 F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now.
7523 return nextMBB;
7527 MachineBasicBlock *
7528 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7529 MachineBasicBlock *BB) const {
7530 DebugLoc dl = MI->getDebugLoc();
7531 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7532 switch (MI->getOpcode()) {
7533 default: assert(false && "Unexpected instr type to insert");
7534 case X86::CMOV_V1I64:
7535 case X86::CMOV_FR32:
7536 case X86::CMOV_FR64:
7537 case X86::CMOV_V4F32:
7538 case X86::CMOV_V2F64:
7539 case X86::CMOV_V2I64: {
7540 // To "insert" a SELECT_CC instruction, we actually have to insert the
7541 // diamond control-flow pattern. The incoming instruction knows the
7542 // destination vreg to set, the condition code register to branch on, the
7543 // true/false values to select between, and a branch opcode to use.
7544 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7545 MachineFunction::iterator It = BB;
7546 ++It;
7548 // thisMBB:
7549 // ...
7550 // TrueVal = ...
7551 // cmpTY ccX, r1, r2
7552 // bCC copy1MBB
7553 // fallthrough --> copy0MBB
7554 MachineBasicBlock *thisMBB = BB;
7555 MachineFunction *F = BB->getParent();
7556 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7557 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7558 unsigned Opc =
7559 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7560 BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7561 F->insert(It, copy0MBB);
7562 F->insert(It, sinkMBB);
7563 // Update machine-CFG edges by transferring all successors of the current
7564 // block to the new block which will contain the Phi node for the select.
7565 sinkMBB->transferSuccessors(BB);
7567 // Add the true and fallthrough blocks as its successors.
7568 BB->addSuccessor(copy0MBB);
7569 BB->addSuccessor(sinkMBB);
7571 // copy0MBB:
7572 // %FalseValue = ...
7573 // # fallthrough to sinkMBB
7574 BB = copy0MBB;
7576 // Update machine-CFG edges
7577 BB->addSuccessor(sinkMBB);
7579 // sinkMBB:
7580 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7581 // ...
7582 BB = sinkMBB;
7583 BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7584 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7585 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7587 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7588 return BB;
7591 case X86::FP32_TO_INT16_IN_MEM:
7592 case X86::FP32_TO_INT32_IN_MEM:
7593 case X86::FP32_TO_INT64_IN_MEM:
7594 case X86::FP64_TO_INT16_IN_MEM:
7595 case X86::FP64_TO_INT32_IN_MEM:
7596 case X86::FP64_TO_INT64_IN_MEM:
7597 case X86::FP80_TO_INT16_IN_MEM:
7598 case X86::FP80_TO_INT32_IN_MEM:
7599 case X86::FP80_TO_INT64_IN_MEM: {
7600 // Change the floating point control register to use "round towards zero"
7601 // mode when truncating to an integer value.
7602 MachineFunction *F = BB->getParent();
7603 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7604 addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7606 // Load the old value of the high byte of the control word...
7607 unsigned OldCW =
7608 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7609 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7610 CWFrameIdx);
7612 // Set the high part to be round to zero...
7613 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7614 .addImm(0xC7F);
7616 // Reload the modified control word now...
7617 addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7619 // Restore the memory image of control word to original value
7620 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7621 .addReg(OldCW);
7623 // Get the X86 opcode to use.
7624 unsigned Opc;
7625 switch (MI->getOpcode()) {
7626 default: llvm_unreachable("illegal opcode!");
7627 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7628 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7629 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7630 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7631 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7632 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7633 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7634 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7635 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7638 X86AddressMode AM;
7639 MachineOperand &Op = MI->getOperand(0);
7640 if (Op.isReg()) {
7641 AM.BaseType = X86AddressMode::RegBase;
7642 AM.Base.Reg = Op.getReg();
7643 } else {
7644 AM.BaseType = X86AddressMode::FrameIndexBase;
7645 AM.Base.FrameIndex = Op.getIndex();
7647 Op = MI->getOperand(1);
7648 if (Op.isImm())
7649 AM.Scale = Op.getImm();
7650 Op = MI->getOperand(2);
7651 if (Op.isImm())
7652 AM.IndexReg = Op.getImm();
7653 Op = MI->getOperand(3);
7654 if (Op.isGlobal()) {
7655 AM.GV = Op.getGlobal();
7656 } else {
7657 AM.Disp = Op.getImm();
7659 addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7660 .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7662 // Reload the original control word now.
7663 addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7665 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7666 return BB;
7668 case X86::ATOMAND32:
7669 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7670 X86::AND32ri, X86::MOV32rm,
7671 X86::LCMPXCHG32, X86::MOV32rr,
7672 X86::NOT32r, X86::EAX,
7673 X86::GR32RegisterClass);
7674 case X86::ATOMOR32:
7675 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7676 X86::OR32ri, X86::MOV32rm,
7677 X86::LCMPXCHG32, X86::MOV32rr,
7678 X86::NOT32r, X86::EAX,
7679 X86::GR32RegisterClass);
7680 case X86::ATOMXOR32:
7681 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7682 X86::XOR32ri, X86::MOV32rm,
7683 X86::LCMPXCHG32, X86::MOV32rr,
7684 X86::NOT32r, X86::EAX,
7685 X86::GR32RegisterClass);
7686 case X86::ATOMNAND32:
7687 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7688 X86::AND32ri, X86::MOV32rm,
7689 X86::LCMPXCHG32, X86::MOV32rr,
7690 X86::NOT32r, X86::EAX,
7691 X86::GR32RegisterClass, true);
7692 case X86::ATOMMIN32:
7693 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7694 case X86::ATOMMAX32:
7695 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7696 case X86::ATOMUMIN32:
7697 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7698 case X86::ATOMUMAX32:
7699 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7701 case X86::ATOMAND16:
7702 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7703 X86::AND16ri, X86::MOV16rm,
7704 X86::LCMPXCHG16, X86::MOV16rr,
7705 X86::NOT16r, X86::AX,
7706 X86::GR16RegisterClass);
7707 case X86::ATOMOR16:
7708 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7709 X86::OR16ri, X86::MOV16rm,
7710 X86::LCMPXCHG16, X86::MOV16rr,
7711 X86::NOT16r, X86::AX,
7712 X86::GR16RegisterClass);
7713 case X86::ATOMXOR16:
7714 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7715 X86::XOR16ri, X86::MOV16rm,
7716 X86::LCMPXCHG16, X86::MOV16rr,
7717 X86::NOT16r, X86::AX,
7718 X86::GR16RegisterClass);
7719 case X86::ATOMNAND16:
7720 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7721 X86::AND16ri, X86::MOV16rm,
7722 X86::LCMPXCHG16, X86::MOV16rr,
7723 X86::NOT16r, X86::AX,
7724 X86::GR16RegisterClass, true);
7725 case X86::ATOMMIN16:
7726 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7727 case X86::ATOMMAX16:
7728 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7729 case X86::ATOMUMIN16:
7730 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7731 case X86::ATOMUMAX16:
7732 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7734 case X86::ATOMAND8:
7735 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7736 X86::AND8ri, X86::MOV8rm,
7737 X86::LCMPXCHG8, X86::MOV8rr,
7738 X86::NOT8r, X86::AL,
7739 X86::GR8RegisterClass);
7740 case X86::ATOMOR8:
7741 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7742 X86::OR8ri, X86::MOV8rm,
7743 X86::LCMPXCHG8, X86::MOV8rr,
7744 X86::NOT8r, X86::AL,
7745 X86::GR8RegisterClass);
7746 case X86::ATOMXOR8:
7747 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7748 X86::XOR8ri, X86::MOV8rm,
7749 X86::LCMPXCHG8, X86::MOV8rr,
7750 X86::NOT8r, X86::AL,
7751 X86::GR8RegisterClass);
7752 case X86::ATOMNAND8:
7753 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7754 X86::AND8ri, X86::MOV8rm,
7755 X86::LCMPXCHG8, X86::MOV8rr,
7756 X86::NOT8r, X86::AL,
7757 X86::GR8RegisterClass, true);
7758 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7759 // This group is for 64-bit host.
7760 case X86::ATOMAND64:
7761 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7762 X86::AND64ri32, X86::MOV64rm,
7763 X86::LCMPXCHG64, X86::MOV64rr,
7764 X86::NOT64r, X86::RAX,
7765 X86::GR64RegisterClass);
7766 case X86::ATOMOR64:
7767 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7768 X86::OR64ri32, X86::MOV64rm,
7769 X86::LCMPXCHG64, X86::MOV64rr,
7770 X86::NOT64r, X86::RAX,
7771 X86::GR64RegisterClass);
7772 case X86::ATOMXOR64:
7773 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7774 X86::XOR64ri32, X86::MOV64rm,
7775 X86::LCMPXCHG64, X86::MOV64rr,
7776 X86::NOT64r, X86::RAX,
7777 X86::GR64RegisterClass);
7778 case X86::ATOMNAND64:
7779 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7780 X86::AND64ri32, X86::MOV64rm,
7781 X86::LCMPXCHG64, X86::MOV64rr,
7782 X86::NOT64r, X86::RAX,
7783 X86::GR64RegisterClass, true);
7784 case X86::ATOMMIN64:
7785 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7786 case X86::ATOMMAX64:
7787 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7788 case X86::ATOMUMIN64:
7789 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7790 case X86::ATOMUMAX64:
7791 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7793 // This group does 64-bit operations on a 32-bit host.
7794 case X86::ATOMAND6432:
7795 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7796 X86::AND32rr, X86::AND32rr,
7797 X86::AND32ri, X86::AND32ri,
7798 false);
7799 case X86::ATOMOR6432:
7800 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7801 X86::OR32rr, X86::OR32rr,
7802 X86::OR32ri, X86::OR32ri,
7803 false);
7804 case X86::ATOMXOR6432:
7805 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7806 X86::XOR32rr, X86::XOR32rr,
7807 X86::XOR32ri, X86::XOR32ri,
7808 false);
7809 case X86::ATOMNAND6432:
7810 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7811 X86::AND32rr, X86::AND32rr,
7812 X86::AND32ri, X86::AND32ri,
7813 true);
7814 case X86::ATOMADD6432:
7815 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7816 X86::ADD32rr, X86::ADC32rr,
7817 X86::ADD32ri, X86::ADC32ri,
7818 false);
7819 case X86::ATOMSUB6432:
7820 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7821 X86::SUB32rr, X86::SBB32rr,
7822 X86::SUB32ri, X86::SBB32ri,
7823 false);
7824 case X86::ATOMSWAP6432:
7825 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7826 X86::MOV32rr, X86::MOV32rr,
7827 X86::MOV32ri, X86::MOV32ri,
7828 false);
7832 //===----------------------------------------------------------------------===//
7833 // X86 Optimization Hooks
7834 //===----------------------------------------------------------------------===//
7836 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7837 const APInt &Mask,
7838 APInt &KnownZero,
7839 APInt &KnownOne,
7840 const SelectionDAG &DAG,
7841 unsigned Depth) const {
7842 unsigned Opc = Op.getOpcode();
7843 assert((Opc >= ISD::BUILTIN_OP_END ||
7844 Opc == ISD::INTRINSIC_WO_CHAIN ||
7845 Opc == ISD::INTRINSIC_W_CHAIN ||
7846 Opc == ISD::INTRINSIC_VOID) &&
7847 "Should use MaskedValueIsZero if you don't know whether Op"
7848 " is a target node!");
7850 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
7851 switch (Opc) {
7852 default: break;
7853 case X86ISD::ADD:
7854 case X86ISD::SUB:
7855 case X86ISD::SMUL:
7856 case X86ISD::UMUL:
7857 case X86ISD::INC:
7858 case X86ISD::DEC:
7859 // These nodes' second result is a boolean.
7860 if (Op.getResNo() == 0)
7861 break;
7862 // Fallthrough
7863 case X86ISD::SETCC:
7864 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7865 Mask.getBitWidth() - 1);
7866 break;
7870 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7871 /// node is a GlobalAddress + offset.
7872 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7873 GlobalValue* &GA, int64_t &Offset) const{
7874 if (N->getOpcode() == X86ISD::Wrapper) {
7875 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7876 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7877 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7878 return true;
7881 return TargetLowering::isGAPlusOffset(N, GA, Offset);
7884 static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7885 const TargetLowering &TLI) {
7886 GlobalValue *GV;
7887 int64_t Offset = 0;
7888 if (TLI.isGAPlusOffset(Base, GV, Offset))
7889 return (GV->getAlignment() >= N && (Offset % N) == 0);
7890 // DAG combine handles the stack object case.
7891 return false;
7894 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
7895 MVT EVT, LoadSDNode *&LDBase,
7896 unsigned &LastLoadedElt,
7897 SelectionDAG &DAG, MachineFrameInfo *MFI,
7898 const TargetLowering &TLI) {
7899 LDBase = NULL;
7900 LastLoadedElt = -1U;
7901 for (unsigned i = 0; i < NumElems; ++i) {
7902 if (N->getMaskElt(i) < 0) {
7903 if (!LDBase)
7904 return false;
7905 continue;
7908 SDValue Elt = DAG.getShuffleScalarElt(N, i);
7909 if (!Elt.getNode() ||
7910 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7911 return false;
7912 if (!LDBase) {
7913 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
7914 return false;
7915 LDBase = cast<LoadSDNode>(Elt.getNode());
7916 LastLoadedElt = i;
7917 continue;
7919 if (Elt.getOpcode() == ISD::UNDEF)
7920 continue;
7922 LoadSDNode *LD = cast<LoadSDNode>(Elt);
7923 if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
7924 return false;
7925 LastLoadedElt = i;
7927 return true;
7930 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7931 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7932 /// if the load addresses are consecutive, non-overlapping, and in the right
7933 /// order. In the case of v2i64, it will see if it can rewrite the
7934 /// shuffle to be an appropriate build vector so it can take advantage of
7935 // performBuildVectorCombine.
7936 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7937 const TargetLowering &TLI) {
7938 DebugLoc dl = N->getDebugLoc();
7939 MVT VT = N->getValueType(0);
7940 MVT EVT = VT.getVectorElementType();
7941 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7942 unsigned NumElems = VT.getVectorNumElements();
7944 if (VT.getSizeInBits() != 128)
7945 return SDValue();
7947 // Try to combine a vector_shuffle into a 128-bit load.
7948 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7949 LoadSDNode *LD = NULL;
7950 unsigned LastLoadedElt;
7951 if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
7952 MFI, TLI))
7953 return SDValue();
7955 if (LastLoadedElt == NumElems - 1) {
7956 if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
7957 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7958 LD->getSrcValue(), LD->getSrcValueOffset(),
7959 LD->isVolatile());
7960 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7961 LD->getSrcValue(), LD->getSrcValueOffset(),
7962 LD->isVolatile(), LD->getAlignment());
7963 } else if (NumElems == 4 && LastLoadedElt == 1) {
7964 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
7965 SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7966 SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
7967 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
7969 return SDValue();
7972 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7973 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7974 const X86Subtarget *Subtarget) {
7975 DebugLoc DL = N->getDebugLoc();
7976 SDValue Cond = N->getOperand(0);
7977 // Get the LHS/RHS of the select.
7978 SDValue LHS = N->getOperand(1);
7979 SDValue RHS = N->getOperand(2);
7981 // If we have SSE[12] support, try to form min/max nodes.
7982 if (Subtarget->hasSSE2() &&
7983 (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
7984 Cond.getOpcode() == ISD::SETCC) {
7985 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7987 unsigned Opcode = 0;
7988 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7989 switch (CC) {
7990 default: break;
7991 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7992 case ISD::SETULE:
7993 case ISD::SETLE:
7994 if (!UnsafeFPMath) break;
7995 // FALL THROUGH.
7996 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
7997 case ISD::SETLT:
7998 Opcode = X86ISD::FMIN;
7999 break;
8001 case ISD::SETOGT: // (X > Y) ? X : Y -> max
8002 case ISD::SETUGT:
8003 case ISD::SETGT:
8004 if (!UnsafeFPMath) break;
8005 // FALL THROUGH.
8006 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
8007 case ISD::SETGE:
8008 Opcode = X86ISD::FMAX;
8009 break;
8011 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8012 switch (CC) {
8013 default: break;
8014 case ISD::SETOGT: // (X > Y) ? Y : X -> min
8015 case ISD::SETUGT:
8016 case ISD::SETGT:
8017 if (!UnsafeFPMath) break;
8018 // FALL THROUGH.
8019 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
8020 case ISD::SETGE:
8021 Opcode = X86ISD::FMIN;
8022 break;
8024 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
8025 case ISD::SETULE:
8026 case ISD::SETLE:
8027 if (!UnsafeFPMath) break;
8028 // FALL THROUGH.
8029 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
8030 case ISD::SETLT:
8031 Opcode = X86ISD::FMAX;
8032 break;
8036 if (Opcode)
8037 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8040 // If this is a select between two integer constants, try to do some
8041 // optimizations.
8042 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8043 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8044 // Don't do this for crazy integer types.
8045 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8046 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8047 // so that TrueC (the true value) is larger than FalseC.
8048 bool NeedsCondInvert = false;
8050 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8051 // Efficiently invertible.
8052 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
8053 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
8054 isa<ConstantSDNode>(Cond.getOperand(1))))) {
8055 NeedsCondInvert = true;
8056 std::swap(TrueC, FalseC);
8059 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8060 if (FalseC->getAPIntValue() == 0 &&
8061 TrueC->getAPIntValue().isPowerOf2()) {
8062 if (NeedsCondInvert) // Invert the condition if needed.
8063 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8064 DAG.getConstant(1, Cond.getValueType()));
8066 // Zero extend the condition if needed.
8067 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8069 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8070 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8071 DAG.getConstant(ShAmt, MVT::i8));
8074 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8075 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8076 if (NeedsCondInvert) // Invert the condition if needed.
8077 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8078 DAG.getConstant(1, Cond.getValueType()));
8080 // Zero extend the condition if needed.
8081 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8082 FalseC->getValueType(0), Cond);
8083 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8084 SDValue(FalseC, 0));
8087 // Optimize cases that will turn into an LEA instruction. This requires
8088 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8089 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8090 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8091 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8093 bool isFastMultiplier = false;
8094 if (Diff < 10) {
8095 switch ((unsigned char)Diff) {
8096 default: break;
8097 case 1: // result = add base, cond
8098 case 2: // result = lea base( , cond*2)
8099 case 3: // result = lea base(cond, cond*2)
8100 case 4: // result = lea base( , cond*4)
8101 case 5: // result = lea base(cond, cond*4)
8102 case 8: // result = lea base( , cond*8)
8103 case 9: // result = lea base(cond, cond*8)
8104 isFastMultiplier = true;
8105 break;
8109 if (isFastMultiplier) {
8110 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8111 if (NeedsCondInvert) // Invert the condition if needed.
8112 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8113 DAG.getConstant(1, Cond.getValueType()));
8115 // Zero extend the condition if needed.
8116 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8117 Cond);
8118 // Scale the condition by the difference.
8119 if (Diff != 1)
8120 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8121 DAG.getConstant(Diff, Cond.getValueType()));
8123 // Add the base if non-zero.
8124 if (FalseC->getAPIntValue() != 0)
8125 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8126 SDValue(FalseC, 0));
8127 return Cond;
8133 return SDValue();
8136 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8137 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8138 TargetLowering::DAGCombinerInfo &DCI) {
8139 DebugLoc DL = N->getDebugLoc();
8141 // If the flag operand isn't dead, don't touch this CMOV.
8142 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8143 return SDValue();
8145 // If this is a select between two integer constants, try to do some
8146 // optimizations. Note that the operands are ordered the opposite of SELECT
8147 // operands.
8148 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8149 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8150 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8151 // larger than FalseC (the false value).
8152 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8154 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8155 CC = X86::GetOppositeBranchCondition(CC);
8156 std::swap(TrueC, FalseC);
8159 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8160 // This is efficient for any integer data type (including i8/i16) and
8161 // shift amount.
8162 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8163 SDValue Cond = N->getOperand(3);
8164 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8165 DAG.getConstant(CC, MVT::i8), Cond);
8167 // Zero extend the condition if needed.
8168 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8170 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8171 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8172 DAG.getConstant(ShAmt, MVT::i8));
8173 if (N->getNumValues() == 2) // Dead flag value?
8174 return DCI.CombineTo(N, Cond, SDValue());
8175 return Cond;
8178 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8179 // for any integer data type, including i8/i16.
8180 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8181 SDValue Cond = N->getOperand(3);
8182 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8183 DAG.getConstant(CC, MVT::i8), Cond);
8185 // Zero extend the condition if needed.
8186 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8187 FalseC->getValueType(0), Cond);
8188 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8189 SDValue(FalseC, 0));
8191 if (N->getNumValues() == 2) // Dead flag value?
8192 return DCI.CombineTo(N, Cond, SDValue());
8193 return Cond;
8196 // Optimize cases that will turn into an LEA instruction. This requires
8197 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8198 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8199 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8200 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8202 bool isFastMultiplier = false;
8203 if (Diff < 10) {
8204 switch ((unsigned char)Diff) {
8205 default: break;
8206 case 1: // result = add base, cond
8207 case 2: // result = lea base( , cond*2)
8208 case 3: // result = lea base(cond, cond*2)
8209 case 4: // result = lea base( , cond*4)
8210 case 5: // result = lea base(cond, cond*4)
8211 case 8: // result = lea base( , cond*8)
8212 case 9: // result = lea base(cond, cond*8)
8213 isFastMultiplier = true;
8214 break;
8218 if (isFastMultiplier) {
8219 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8220 SDValue Cond = N->getOperand(3);
8221 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8222 DAG.getConstant(CC, MVT::i8), Cond);
8223 // Zero extend the condition if needed.
8224 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8225 Cond);
8226 // Scale the condition by the difference.
8227 if (Diff != 1)
8228 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8229 DAG.getConstant(Diff, Cond.getValueType()));
8231 // Add the base if non-zero.
8232 if (FalseC->getAPIntValue() != 0)
8233 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8234 SDValue(FalseC, 0));
8235 if (N->getNumValues() == 2) // Dead flag value?
8236 return DCI.CombineTo(N, Cond, SDValue());
8237 return Cond;
8242 return SDValue();
8246 /// PerformMulCombine - Optimize a single multiply with constant into two
8247 /// in order to implement it with two cheaper instructions, e.g.
8248 /// LEA + SHL, LEA + LEA.
8249 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8250 TargetLowering::DAGCombinerInfo &DCI) {
8251 if (DAG.getMachineFunction().
8252 getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8253 return SDValue();
8255 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8256 return SDValue();
8258 MVT VT = N->getValueType(0);
8259 if (VT != MVT::i64)
8260 return SDValue();
8262 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8263 if (!C)
8264 return SDValue();
8265 uint64_t MulAmt = C->getZExtValue();
8266 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8267 return SDValue();
8269 uint64_t MulAmt1 = 0;
8270 uint64_t MulAmt2 = 0;
8271 if ((MulAmt % 9) == 0) {
8272 MulAmt1 = 9;
8273 MulAmt2 = MulAmt / 9;
8274 } else if ((MulAmt % 5) == 0) {
8275 MulAmt1 = 5;
8276 MulAmt2 = MulAmt / 5;
8277 } else if ((MulAmt % 3) == 0) {
8278 MulAmt1 = 3;
8279 MulAmt2 = MulAmt / 3;
8281 if (MulAmt2 &&
8282 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8283 DebugLoc DL = N->getDebugLoc();
8285 if (isPowerOf2_64(MulAmt2) &&
8286 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8287 // If second multiplifer is pow2, issue it first. We want the multiply by
8288 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8289 // is an add.
8290 std::swap(MulAmt1, MulAmt2);
8292 SDValue NewMul;
8293 if (isPowerOf2_64(MulAmt1))
8294 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8295 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8296 else
8297 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8298 DAG.getConstant(MulAmt1, VT));
8300 if (isPowerOf2_64(MulAmt2))
8301 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8302 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8303 else
8304 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8305 DAG.getConstant(MulAmt2, VT));
8307 // Do not add new nodes to DAG combiner worklist.
8308 DCI.CombineTo(N, NewMul, false);
8310 return SDValue();
8314 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8315 /// when possible.
8316 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8317 const X86Subtarget *Subtarget) {
8318 // On X86 with SSE2 support, we can transform this to a vector shift if
8319 // all elements are shifted by the same amount. We can't do this in legalize
8320 // because the a constant vector is typically transformed to a constant pool
8321 // so we have no knowledge of the shift amount.
8322 if (!Subtarget->hasSSE2())
8323 return SDValue();
8325 MVT VT = N->getValueType(0);
8326 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8327 return SDValue();
8329 SDValue ShAmtOp = N->getOperand(1);
8330 MVT EltVT = VT.getVectorElementType();
8331 DebugLoc DL = N->getDebugLoc();
8332 SDValue BaseShAmt;
8333 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8334 unsigned NumElts = VT.getVectorNumElements();
8335 unsigned i = 0;
8336 for (; i != NumElts; ++i) {
8337 SDValue Arg = ShAmtOp.getOperand(i);
8338 if (Arg.getOpcode() == ISD::UNDEF) continue;
8339 BaseShAmt = Arg;
8340 break;
8342 for (; i != NumElts; ++i) {
8343 SDValue Arg = ShAmtOp.getOperand(i);
8344 if (Arg.getOpcode() == ISD::UNDEF) continue;
8345 if (Arg != BaseShAmt) {
8346 return SDValue();
8349 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8350 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8351 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8352 DAG.getIntPtrConstant(0));
8353 } else
8354 return SDValue();
8356 if (EltVT.bitsGT(MVT::i32))
8357 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8358 else if (EltVT.bitsLT(MVT::i32))
8359 BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8361 // The shift amount is identical so we can do a vector shift.
8362 SDValue ValOp = N->getOperand(0);
8363 switch (N->getOpcode()) {
8364 default:
8365 llvm_unreachable("Unknown shift opcode!");
8366 break;
8367 case ISD::SHL:
8368 if (VT == MVT::v2i64)
8369 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8370 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8371 ValOp, BaseShAmt);
8372 if (VT == MVT::v4i32)
8373 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8374 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8375 ValOp, BaseShAmt);
8376 if (VT == MVT::v8i16)
8377 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8378 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8379 ValOp, BaseShAmt);
8380 break;
8381 case ISD::SRA:
8382 if (VT == MVT::v4i32)
8383 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8384 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8385 ValOp, BaseShAmt);
8386 if (VT == MVT::v8i16)
8387 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8388 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8389 ValOp, BaseShAmt);
8390 break;
8391 case ISD::SRL:
8392 if (VT == MVT::v2i64)
8393 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8394 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8395 ValOp, BaseShAmt);
8396 if (VT == MVT::v4i32)
8397 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8398 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8399 ValOp, BaseShAmt);
8400 if (VT == MVT::v8i16)
8401 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8402 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8403 ValOp, BaseShAmt);
8404 break;
8406 return SDValue();
8409 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8410 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8411 const X86Subtarget *Subtarget) {
8412 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8413 // the FP state in cases where an emms may be missing.
8414 // A preferable solution to the general problem is to figure out the right
8415 // places to insert EMMS. This qualifies as a quick hack.
8417 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8418 StoreSDNode *St = cast<StoreSDNode>(N);
8419 MVT VT = St->getValue().getValueType();
8420 if (VT.getSizeInBits() != 64)
8421 return SDValue();
8423 const Function *F = DAG.getMachineFunction().getFunction();
8424 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8425 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8426 && Subtarget->hasSSE2();
8427 if ((VT.isVector() ||
8428 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8429 isa<LoadSDNode>(St->getValue()) &&
8430 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8431 St->getChain().hasOneUse() && !St->isVolatile()) {
8432 SDNode* LdVal = St->getValue().getNode();
8433 LoadSDNode *Ld = 0;
8434 int TokenFactorIndex = -1;
8435 SmallVector<SDValue, 8> Ops;
8436 SDNode* ChainVal = St->getChain().getNode();
8437 // Must be a store of a load. We currently handle two cases: the load
8438 // is a direct child, and it's under an intervening TokenFactor. It is
8439 // possible to dig deeper under nested TokenFactors.
8440 if (ChainVal == LdVal)
8441 Ld = cast<LoadSDNode>(St->getChain());
8442 else if (St->getValue().hasOneUse() &&
8443 ChainVal->getOpcode() == ISD::TokenFactor) {
8444 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8445 if (ChainVal->getOperand(i).getNode() == LdVal) {
8446 TokenFactorIndex = i;
8447 Ld = cast<LoadSDNode>(St->getValue());
8448 } else
8449 Ops.push_back(ChainVal->getOperand(i));
8453 if (!Ld || !ISD::isNormalLoad(Ld))
8454 return SDValue();
8456 // If this is not the MMX case, i.e. we are just turning i64 load/store
8457 // into f64 load/store, avoid the transformation if there are multiple
8458 // uses of the loaded value.
8459 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8460 return SDValue();
8462 DebugLoc LdDL = Ld->getDebugLoc();
8463 DebugLoc StDL = N->getDebugLoc();
8464 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8465 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8466 // pair instead.
8467 if (Subtarget->is64Bit() || F64IsLegal) {
8468 MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8469 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8470 Ld->getBasePtr(), Ld->getSrcValue(),
8471 Ld->getSrcValueOffset(), Ld->isVolatile(),
8472 Ld->getAlignment());
8473 SDValue NewChain = NewLd.getValue(1);
8474 if (TokenFactorIndex != -1) {
8475 Ops.push_back(NewChain);
8476 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8477 Ops.size());
8479 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8480 St->getSrcValue(), St->getSrcValueOffset(),
8481 St->isVolatile(), St->getAlignment());
8484 // Otherwise, lower to two pairs of 32-bit loads / stores.
8485 SDValue LoAddr = Ld->getBasePtr();
8486 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8487 DAG.getConstant(4, MVT::i32));
8489 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8490 Ld->getSrcValue(), Ld->getSrcValueOffset(),
8491 Ld->isVolatile(), Ld->getAlignment());
8492 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8493 Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8494 Ld->isVolatile(),
8495 MinAlign(Ld->getAlignment(), 4));
8497 SDValue NewChain = LoLd.getValue(1);
8498 if (TokenFactorIndex != -1) {
8499 Ops.push_back(LoLd);
8500 Ops.push_back(HiLd);
8501 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8502 Ops.size());
8505 LoAddr = St->getBasePtr();
8506 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8507 DAG.getConstant(4, MVT::i32));
8509 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8510 St->getSrcValue(), St->getSrcValueOffset(),
8511 St->isVolatile(), St->getAlignment());
8512 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8513 St->getSrcValue(),
8514 St->getSrcValueOffset() + 4,
8515 St->isVolatile(),
8516 MinAlign(St->getAlignment(), 4));
8517 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8519 return SDValue();
8522 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8523 /// X86ISD::FXOR nodes.
8524 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8525 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8526 // F[X]OR(0.0, x) -> x
8527 // F[X]OR(x, 0.0) -> x
8528 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8529 if (C->getValueAPF().isPosZero())
8530 return N->getOperand(1);
8531 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8532 if (C->getValueAPF().isPosZero())
8533 return N->getOperand(0);
8534 return SDValue();
8537 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8538 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8539 // FAND(0.0, x) -> 0.0
8540 // FAND(x, 0.0) -> 0.0
8541 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8542 if (C->getValueAPF().isPosZero())
8543 return N->getOperand(0);
8544 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8545 if (C->getValueAPF().isPosZero())
8546 return N->getOperand(1);
8547 return SDValue();
8550 static SDValue PerformBTCombine(SDNode *N,
8551 SelectionDAG &DAG,
8552 TargetLowering::DAGCombinerInfo &DCI) {
8553 // BT ignores high bits in the bit index operand.
8554 SDValue Op1 = N->getOperand(1);
8555 if (Op1.hasOneUse()) {
8556 unsigned BitWidth = Op1.getValueSizeInBits();
8557 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8558 APInt KnownZero, KnownOne;
8559 TargetLowering::TargetLoweringOpt TLO(DAG);
8560 TargetLowering &TLI = DAG.getTargetLoweringInfo();
8561 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8562 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8563 DCI.CommitTargetLoweringOpt(TLO);
8565 return SDValue();
8568 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8569 SDValue Op = N->getOperand(0);
8570 if (Op.getOpcode() == ISD::BIT_CONVERT)
8571 Op = Op.getOperand(0);
8572 MVT VT = N->getValueType(0), OpVT = Op.getValueType();
8573 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8574 VT.getVectorElementType().getSizeInBits() ==
8575 OpVT.getVectorElementType().getSizeInBits()) {
8576 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8578 return SDValue();
8581 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8582 // Locked instructions, in turn, have implicit fence semantics (all memory
8583 // operations are flushed before issuing the locked instruction, and the
8584 // are not buffered), so we can fold away the common pattern of
8585 // fence-atomic-fence.
8586 static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8587 SDValue atomic = N->getOperand(0);
8588 switch (atomic.getOpcode()) {
8589 case ISD::ATOMIC_CMP_SWAP:
8590 case ISD::ATOMIC_SWAP:
8591 case ISD::ATOMIC_LOAD_ADD:
8592 case ISD::ATOMIC_LOAD_SUB:
8593 case ISD::ATOMIC_LOAD_AND:
8594 case ISD::ATOMIC_LOAD_OR:
8595 case ISD::ATOMIC_LOAD_XOR:
8596 case ISD::ATOMIC_LOAD_NAND:
8597 case ISD::ATOMIC_LOAD_MIN:
8598 case ISD::ATOMIC_LOAD_MAX:
8599 case ISD::ATOMIC_LOAD_UMIN:
8600 case ISD::ATOMIC_LOAD_UMAX:
8601 break;
8602 default:
8603 return SDValue();
8606 SDValue fence = atomic.getOperand(0);
8607 if (fence.getOpcode() != ISD::MEMBARRIER)
8608 return SDValue();
8610 switch (atomic.getOpcode()) {
8611 case ISD::ATOMIC_CMP_SWAP:
8612 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8613 atomic.getOperand(1), atomic.getOperand(2),
8614 atomic.getOperand(3));
8615 case ISD::ATOMIC_SWAP:
8616 case ISD::ATOMIC_LOAD_ADD:
8617 case ISD::ATOMIC_LOAD_SUB:
8618 case ISD::ATOMIC_LOAD_AND:
8619 case ISD::ATOMIC_LOAD_OR:
8620 case ISD::ATOMIC_LOAD_XOR:
8621 case ISD::ATOMIC_LOAD_NAND:
8622 case ISD::ATOMIC_LOAD_MIN:
8623 case ISD::ATOMIC_LOAD_MAX:
8624 case ISD::ATOMIC_LOAD_UMIN:
8625 case ISD::ATOMIC_LOAD_UMAX:
8626 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8627 atomic.getOperand(1), atomic.getOperand(2));
8628 default:
8629 return SDValue();
8633 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8634 DAGCombinerInfo &DCI) const {
8635 SelectionDAG &DAG = DCI.DAG;
8636 switch (N->getOpcode()) {
8637 default: break;
8638 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8639 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
8640 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
8641 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
8642 case ISD::SHL:
8643 case ISD::SRA:
8644 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
8645 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
8646 case X86ISD::FXOR:
8647 case X86ISD::FOR: return PerformFORCombine(N, DAG);
8648 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
8649 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
8650 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
8651 case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG);
8654 return SDValue();
8657 //===----------------------------------------------------------------------===//
8658 // X86 Inline Assembly Support
8659 //===----------------------------------------------------------------------===//
8661 /// getConstraintType - Given a constraint letter, return the type of
8662 /// constraint it is for this target.
8663 X86TargetLowering::ConstraintType
8664 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8665 if (Constraint.size() == 1) {
8666 switch (Constraint[0]) {
8667 case 'A':
8668 return C_Register;
8669 case 'f':
8670 case 'r':
8671 case 'R':
8672 case 'l':
8673 case 'q':
8674 case 'Q':
8675 case 'x':
8676 case 'y':
8677 case 'Y':
8678 return C_RegisterClass;
8679 case 'e':
8680 case 'Z':
8681 return C_Other;
8682 default:
8683 break;
8686 return TargetLowering::getConstraintType(Constraint);
8689 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8690 /// with another that has more specific requirements based on the type of the
8691 /// corresponding operand.
8692 const char *X86TargetLowering::
8693 LowerXConstraint(MVT ConstraintVT) const {
8694 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8695 // 'f' like normal targets.
8696 if (ConstraintVT.isFloatingPoint()) {
8697 if (Subtarget->hasSSE2())
8698 return "Y";
8699 if (Subtarget->hasSSE1())
8700 return "x";
8703 return TargetLowering::LowerXConstraint(ConstraintVT);
8706 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8707 /// vector. If it is invalid, don't add anything to Ops.
8708 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8709 char Constraint,
8710 bool hasMemory,
8711 std::vector<SDValue>&Ops,
8712 SelectionDAG &DAG) const {
8713 SDValue Result(0, 0);
8715 switch (Constraint) {
8716 default: break;
8717 case 'I':
8718 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8719 if (C->getZExtValue() <= 31) {
8720 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8721 break;
8724 return;
8725 case 'J':
8726 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8727 if (C->getZExtValue() <= 63) {
8728 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8729 break;
8732 return;
8733 case 'K':
8734 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8735 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
8736 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8737 break;
8740 return;
8741 case 'N':
8742 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8743 if (C->getZExtValue() <= 255) {
8744 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8745 break;
8748 return;
8749 case 'e': {
8750 // 32-bit signed value
8751 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8752 const ConstantInt *CI = C->getConstantIntValue();
8753 if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8754 // Widen to 64 bits here to get it sign extended.
8755 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8756 break;
8758 // FIXME gcc accepts some relocatable values here too, but only in certain
8759 // memory models; it's complicated.
8761 return;
8763 case 'Z': {
8764 // 32-bit unsigned value
8765 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8766 const ConstantInt *CI = C->getConstantIntValue();
8767 if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8768 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8769 break;
8772 // FIXME gcc accepts some relocatable values here too, but only in certain
8773 // memory models; it's complicated.
8774 return;
8776 case 'i': {
8777 // Literal immediates are always ok.
8778 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8779 // Widen to 64 bits here to get it sign extended.
8780 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8781 break;
8784 // If we are in non-pic codegen mode, we allow the address of a global (with
8785 // an optional displacement) to be used with 'i'.
8786 GlobalAddressSDNode *GA = 0;
8787 int64_t Offset = 0;
8789 // Match either (GA), (GA+C), (GA+C1+C2), etc.
8790 while (1) {
8791 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
8792 Offset += GA->getOffset();
8793 break;
8794 } else if (Op.getOpcode() == ISD::ADD) {
8795 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8796 Offset += C->getZExtValue();
8797 Op = Op.getOperand(0);
8798 continue;
8800 } else if (Op.getOpcode() == ISD::SUB) {
8801 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8802 Offset += -C->getZExtValue();
8803 Op = Op.getOperand(0);
8804 continue;
8808 // Otherwise, this isn't something we can handle, reject it.
8809 return;
8812 GlobalValue *GV = GA->getGlobal();
8813 // If we require an extra load to get this address, as in PIC mode, we
8814 // can't accept it.
8815 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
8816 getTargetMachine())))
8817 return;
8819 if (hasMemory)
8820 Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
8821 else
8822 Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
8823 Result = Op;
8824 break;
8828 if (Result.getNode()) {
8829 Ops.push_back(Result);
8830 return;
8832 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8833 Ops, DAG);
8836 std::vector<unsigned> X86TargetLowering::
8837 getRegClassForInlineAsmConstraint(const std::string &Constraint,
8838 MVT VT) const {
8839 if (Constraint.size() == 1) {
8840 // FIXME: not handling fp-stack yet!
8841 switch (Constraint[0]) { // GCC X86 Constraint Letters
8842 default: break; // Unknown constraint letter
8843 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
8844 case 'Q': // Q_REGS
8845 if (VT == MVT::i32)
8846 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8847 else if (VT == MVT::i16)
8848 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8849 else if (VT == MVT::i8)
8850 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8851 else if (VT == MVT::i64)
8852 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8853 break;
8857 return std::vector<unsigned>();
8860 std::pair<unsigned, const TargetRegisterClass*>
8861 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8862 MVT VT) const {
8863 // First, see if this is a constraint that directly corresponds to an LLVM
8864 // register class.
8865 if (Constraint.size() == 1) {
8866 // GCC Constraint Letters
8867 switch (Constraint[0]) {
8868 default: break;
8869 case 'r': // GENERAL_REGS
8870 case 'R': // LEGACY_REGS
8871 case 'l': // INDEX_REGS
8872 if (VT == MVT::i8)
8873 return std::make_pair(0U, X86::GR8RegisterClass);
8874 if (VT == MVT::i16)
8875 return std::make_pair(0U, X86::GR16RegisterClass);
8876 if (VT == MVT::i32 || !Subtarget->is64Bit())
8877 return std::make_pair(0U, X86::GR32RegisterClass);
8878 return std::make_pair(0U, X86::GR64RegisterClass);
8879 case 'f': // FP Stack registers.
8880 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8881 // value to the correct fpstack register class.
8882 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8883 return std::make_pair(0U, X86::RFP32RegisterClass);
8884 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8885 return std::make_pair(0U, X86::RFP64RegisterClass);
8886 return std::make_pair(0U, X86::RFP80RegisterClass);
8887 case 'y': // MMX_REGS if MMX allowed.
8888 if (!Subtarget->hasMMX()) break;
8889 return std::make_pair(0U, X86::VR64RegisterClass);
8890 case 'Y': // SSE_REGS if SSE2 allowed
8891 if (!Subtarget->hasSSE2()) break;
8892 // FALL THROUGH.
8893 case 'x': // SSE_REGS if SSE1 allowed
8894 if (!Subtarget->hasSSE1()) break;
8896 switch (VT.getSimpleVT()) {
8897 default: break;
8898 // Scalar SSE types.
8899 case MVT::f32:
8900 case MVT::i32:
8901 return std::make_pair(0U, X86::FR32RegisterClass);
8902 case MVT::f64:
8903 case MVT::i64:
8904 return std::make_pair(0U, X86::FR64RegisterClass);
8905 // Vector types.
8906 case MVT::v16i8:
8907 case MVT::v8i16:
8908 case MVT::v4i32:
8909 case MVT::v2i64:
8910 case MVT::v4f32:
8911 case MVT::v2f64:
8912 return std::make_pair(0U, X86::VR128RegisterClass);
8914 break;
8918 // Use the default implementation in TargetLowering to convert the register
8919 // constraint into a member of a register class.
8920 std::pair<unsigned, const TargetRegisterClass*> Res;
8921 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8923 // Not found as a standard register?
8924 if (Res.second == 0) {
8925 // GCC calls "st(0)" just plain "st".
8926 if (StringsEqualNoCase("{st}", Constraint)) {
8927 Res.first = X86::ST0;
8928 Res.second = X86::RFP80RegisterClass;
8930 // 'A' means EAX + EDX.
8931 if (Constraint == "A") {
8932 Res.first = X86::EAX;
8933 Res.second = X86::GRADRegisterClass;
8935 return Res;
8938 // Otherwise, check to see if this is a register class of the wrong value
8939 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8940 // turn into {ax},{dx}.
8941 if (Res.second->hasType(VT))
8942 return Res; // Correct type already, nothing to do.
8944 // All of the single-register GCC register classes map their values onto
8945 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
8946 // really want an 8-bit or 32-bit register, map to the appropriate register
8947 // class and return the appropriate register.
8948 if (Res.second == X86::GR16RegisterClass) {
8949 if (VT == MVT::i8) {
8950 unsigned DestReg = 0;
8951 switch (Res.first) {
8952 default: break;
8953 case X86::AX: DestReg = X86::AL; break;
8954 case X86::DX: DestReg = X86::DL; break;
8955 case X86::CX: DestReg = X86::CL; break;
8956 case X86::BX: DestReg = X86::BL; break;
8958 if (DestReg) {
8959 Res.first = DestReg;
8960 Res.second = X86::GR8RegisterClass;
8962 } else if (VT == MVT::i32) {
8963 unsigned DestReg = 0;
8964 switch (Res.first) {
8965 default: break;
8966 case X86::AX: DestReg = X86::EAX; break;
8967 case X86::DX: DestReg = X86::EDX; break;
8968 case X86::CX: DestReg = X86::ECX; break;
8969 case X86::BX: DestReg = X86::EBX; break;
8970 case X86::SI: DestReg = X86::ESI; break;
8971 case X86::DI: DestReg = X86::EDI; break;
8972 case X86::BP: DestReg = X86::EBP; break;
8973 case X86::SP: DestReg = X86::ESP; break;
8975 if (DestReg) {
8976 Res.first = DestReg;
8977 Res.second = X86::GR32RegisterClass;
8979 } else if (VT == MVT::i64) {
8980 unsigned DestReg = 0;
8981 switch (Res.first) {
8982 default: break;
8983 case X86::AX: DestReg = X86::RAX; break;
8984 case X86::DX: DestReg = X86::RDX; break;
8985 case X86::CX: DestReg = X86::RCX; break;
8986 case X86::BX: DestReg = X86::RBX; break;
8987 case X86::SI: DestReg = X86::RSI; break;
8988 case X86::DI: DestReg = X86::RDI; break;
8989 case X86::BP: DestReg = X86::RBP; break;
8990 case X86::SP: DestReg = X86::RSP; break;
8992 if (DestReg) {
8993 Res.first = DestReg;
8994 Res.second = X86::GR64RegisterClass;
8997 } else if (Res.second == X86::FR32RegisterClass ||
8998 Res.second == X86::FR64RegisterClass ||
8999 Res.second == X86::VR128RegisterClass) {
9000 // Handle references to XMM physical registers that got mapped into the
9001 // wrong class. This can happen with constraints like {xmm0} where the
9002 // target independent register mapper will just pick the first match it can
9003 // find, ignoring the required type.
9004 if (VT == MVT::f32)
9005 Res.second = X86::FR32RegisterClass;
9006 else if (VT == MVT::f64)
9007 Res.second = X86::FR64RegisterClass;
9008 else if (X86::VR128RegisterClass->hasType(VT))
9009 Res.second = X86::VR128RegisterClass;
9012 return Res;
9015 //===----------------------------------------------------------------------===//
9016 // X86 Widen vector type
9017 //===----------------------------------------------------------------------===//
9019 /// getWidenVectorType: given a vector type, returns the type to widen
9020 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9021 /// If there is no vector type that we want to widen to, returns MVT::Other
9022 /// When and where to widen is target dependent based on the cost of
9023 /// scalarizing vs using the wider vector type.
9025 MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
9026 assert(VT.isVector());
9027 if (isTypeLegal(VT))
9028 return VT;
9030 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9031 // type based on element type. This would speed up our search (though
9032 // it may not be worth it since the size of the list is relatively
9033 // small).
9034 MVT EltVT = VT.getVectorElementType();
9035 unsigned NElts = VT.getVectorNumElements();
9037 // On X86, it make sense to widen any vector wider than 1
9038 if (NElts <= 1)
9039 return MVT::Other;
9041 for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9042 nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9043 MVT SVT = (MVT::SimpleValueType)nVT;
9045 if (isTypeLegal(SVT) &&
9046 SVT.getVectorElementType() == EltVT &&
9047 SVT.getVectorNumElements() > NElts)
9048 return SVT;
9050 return MVT::Other;