1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/VectorExtras.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/raw_ostream.h"
46 DisableMMX("disable-mmx", cl::Hidden
, cl::desc("Disable use of MMX"));
48 // Forward declarations.
49 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
52 X86TargetLowering::X86TargetLowering(X86TargetMachine
&TM
)
53 : TargetLowering(TM
) {
54 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
55 X86ScalarSSEf64
= Subtarget
->hasSSE2();
56 X86ScalarSSEf32
= Subtarget
->hasSSE1();
57 X86StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
59 RegInfo
= TM
.getRegisterInfo();
62 // Set up the TargetLowering object.
64 // X86 is weird, it always uses i8 for shift amounts and setcc results.
65 setShiftAmountType(MVT::i8
);
66 setBooleanContents(ZeroOrOneBooleanContent
);
67 setSchedulingPreference(SchedulingForRegPressure
);
68 setShiftAmountFlavor(Mask
); // shl X, 32 == shl X, 0
69 setStackPointerRegisterToSaveRestore(X86StackPtr
);
71 if (Subtarget
->isTargetDarwin()) {
72 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(false);
74 setUseUnderscoreLongJmp(false);
75 } else if (Subtarget
->isTargetMingw()) {
76 // MS runtime is weird: it exports _setjmp, but longjmp!
77 setUseUnderscoreSetJmp(true);
78 setUseUnderscoreLongJmp(false);
80 setUseUnderscoreSetJmp(true);
81 setUseUnderscoreLongJmp(true);
84 // Set up the register classes.
85 addRegisterClass(MVT::i8
, X86::GR8RegisterClass
);
86 addRegisterClass(MVT::i16
, X86::GR16RegisterClass
);
87 addRegisterClass(MVT::i32
, X86::GR32RegisterClass
);
88 if (Subtarget
->is64Bit())
89 addRegisterClass(MVT::i64
, X86::GR64RegisterClass
);
91 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
93 // We don't accept any truncstore of integer registers.
94 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
95 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
96 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
97 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
98 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
99 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
101 // SETOEQ and SETUNE require checking two conditions.
102 setCondCodeAction(ISD::SETOEQ
, MVT::f32
, Expand
);
103 setCondCodeAction(ISD::SETOEQ
, MVT::f64
, Expand
);
104 setCondCodeAction(ISD::SETOEQ
, MVT::f80
, Expand
);
105 setCondCodeAction(ISD::SETUNE
, MVT::f32
, Expand
);
106 setCondCodeAction(ISD::SETUNE
, MVT::f64
, Expand
);
107 setCondCodeAction(ISD::SETUNE
, MVT::f80
, Expand
);
109 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
111 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
112 setOperationAction(ISD::UINT_TO_FP
, MVT::i8
, Promote
);
113 setOperationAction(ISD::UINT_TO_FP
, MVT::i16
, Promote
);
115 if (Subtarget
->is64Bit()) {
116 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
117 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
118 } else if (!UseSoftFloat
) {
119 if (X86ScalarSSEf64
) {
120 // We have an impenetrably clever algorithm for ui64->double only.
121 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
123 // We have an algorithm for SSE2, and we turn this into a 64-bit
124 // FILD for other targets.
125 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
128 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
130 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
131 setOperationAction(ISD::SINT_TO_FP
, MVT::i8
, Promote
);
134 // SSE has no i16 to fp conversion, only i32
135 if (X86ScalarSSEf32
) {
136 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
137 // f32 and f64 cases are Legal, f80 case is not
138 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
140 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Custom
);
141 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
144 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
145 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Promote
);
148 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
149 // are Legal, f80 is custom lowered.
150 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
151 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
153 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
155 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
156 setOperationAction(ISD::FP_TO_SINT
, MVT::i8
, Promote
);
158 if (X86ScalarSSEf32
) {
159 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Promote
);
160 // f32 and f64 cases are Legal, f80 case is not
161 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
163 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Custom
);
164 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
167 // Handle FP_TO_UINT by promoting the destination to a larger signed
169 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
170 setOperationAction(ISD::FP_TO_UINT
, MVT::i8
, Promote
);
171 setOperationAction(ISD::FP_TO_UINT
, MVT::i16
, Promote
);
173 if (Subtarget
->is64Bit()) {
174 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
175 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
176 } else if (!UseSoftFloat
) {
177 if (X86ScalarSSEf32
&& !Subtarget
->hasSSE3())
178 // Expand FP_TO_UINT into a select.
179 // FIXME: We would like to use a Custom expander here eventually to do
180 // the optimal thing for SSE vs. the default expansion in the legalizer.
181 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
183 // With SSE3 we can use fisttpll to convert to a signed i64; without
184 // SSE, we're stuck with a fistpll.
185 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
188 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
189 if (!X86ScalarSSEf64
) {
190 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
191 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
194 // Scalar integer divide and remainder are lowered to use operations that
195 // produce two results, to match the available instructions. This exposes
196 // the two-result form to trivial CSE, which is able to combine x/y and x%y
197 // into a single instruction.
199 // Scalar integer multiply-high is also lowered to use two-result
200 // operations, to match the available instructions. However, plain multiply
201 // (low) operations are left as Legal, as there are single-result
202 // instructions for this in x86. Using the two-result multiply instructions
203 // when both high and low results are needed must be arranged by dagcombine.
204 setOperationAction(ISD::MULHS
, MVT::i8
, Expand
);
205 setOperationAction(ISD::MULHU
, MVT::i8
, Expand
);
206 setOperationAction(ISD::SDIV
, MVT::i8
, Expand
);
207 setOperationAction(ISD::UDIV
, MVT::i8
, Expand
);
208 setOperationAction(ISD::SREM
, MVT::i8
, Expand
);
209 setOperationAction(ISD::UREM
, MVT::i8
, Expand
);
210 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
211 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
212 setOperationAction(ISD::SDIV
, MVT::i16
, Expand
);
213 setOperationAction(ISD::UDIV
, MVT::i16
, Expand
);
214 setOperationAction(ISD::SREM
, MVT::i16
, Expand
);
215 setOperationAction(ISD::UREM
, MVT::i16
, Expand
);
216 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
217 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
218 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
219 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
220 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
221 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
222 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
223 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
224 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
225 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
226 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
227 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
229 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
230 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
231 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
232 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
233 if (Subtarget
->is64Bit())
234 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
235 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Legal
);
236 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Legal
);
237 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
238 setOperationAction(ISD::FP_ROUND_INREG
, MVT::f32
, Expand
);
239 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
240 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
241 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
242 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
244 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
245 setOperationAction(ISD::CTTZ
, MVT::i8
, Custom
);
246 setOperationAction(ISD::CTLZ
, MVT::i8
, Custom
);
247 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
248 setOperationAction(ISD::CTTZ
, MVT::i16
, Custom
);
249 setOperationAction(ISD::CTLZ
, MVT::i16
, Custom
);
250 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
251 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
252 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
253 if (Subtarget
->is64Bit()) {
254 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
255 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
256 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
259 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
260 setOperationAction(ISD::BSWAP
, MVT::i16
, Expand
);
262 // These should be promoted to a larger select which is supported.
263 setOperationAction(ISD::SELECT
, MVT::i1
, Promote
);
264 setOperationAction(ISD::SELECT
, MVT::i8
, Promote
);
265 // X86 wants to expand cmov itself.
266 setOperationAction(ISD::SELECT
, MVT::i16
, Custom
);
267 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
268 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
269 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
270 setOperationAction(ISD::SELECT
, MVT::f80
, Custom
);
271 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
272 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
273 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
274 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
275 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
276 setOperationAction(ISD::SETCC
, MVT::f80
, Custom
);
277 if (Subtarget
->is64Bit()) {
278 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
279 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
281 // X86 ret instruction may pop stack.
282 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
283 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
286 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
287 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
288 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
289 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
290 if (Subtarget
->is64Bit())
291 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
292 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
293 if (Subtarget
->is64Bit()) {
294 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
295 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
296 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
297 setOperationAction(ISD::ExternalSymbol
, MVT::i64
, Custom
);
299 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
300 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
301 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
302 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
303 if (Subtarget
->is64Bit()) {
304 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
305 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
306 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
309 if (Subtarget
->hasSSE1())
310 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
312 if (!Subtarget
->hasSSE2())
313 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Expand
);
315 // Expand certain atomics
316 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i8
, Custom
);
317 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i16
, Custom
);
318 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
319 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
321 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i8
, Custom
);
322 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i16
, Custom
);
323 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
324 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
326 if (!Subtarget
->is64Bit()) {
327 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i64
, Custom
);
328 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
329 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
330 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i64
, Custom
);
331 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i64
, Custom
);
332 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i64
, Custom
);
333 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i64
, Custom
);
336 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
337 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
338 // FIXME - use subtarget debug flags
339 if (!Subtarget
->isTargetDarwin() &&
340 !Subtarget
->isTargetELF() &&
341 !Subtarget
->isTargetCygMing()) {
342 setOperationAction(ISD::DBG_LABEL
, MVT::Other
, Expand
);
343 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
346 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
347 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
348 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
349 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
350 if (Subtarget
->is64Bit()) {
351 setExceptionPointerRegister(X86::RAX
);
352 setExceptionSelectorRegister(X86::RDX
);
354 setExceptionPointerRegister(X86::EAX
);
355 setExceptionSelectorRegister(X86::EDX
);
357 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
358 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i64
, Custom
);
360 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
362 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
364 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
365 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
366 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
367 if (Subtarget
->is64Bit()) {
368 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
369 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
371 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
372 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
375 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
376 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
377 if (Subtarget
->is64Bit())
378 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
379 if (Subtarget
->isTargetCygMing())
380 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
382 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
384 if (!UseSoftFloat
&& X86ScalarSSEf64
) {
385 // f32 and f64 use SSE.
386 // Set up the FP register classes.
387 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
388 addRegisterClass(MVT::f64
, X86::FR64RegisterClass
);
390 // Use ANDPD to simulate FABS.
391 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
392 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
394 // Use XORP to simulate FNEG.
395 setOperationAction(ISD::FNEG
, MVT::f64
, Custom
);
396 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
398 // Use ANDPD and ORPD to simulate FCOPYSIGN.
399 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
400 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
402 // We don't support sin/cos/fmod
403 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
404 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
405 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
406 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
408 // Expand FP immediates into loads from the stack, except for the special
410 addLegalFPImmediate(APFloat(+0.0)); // xorpd
411 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
412 } else if (!UseSoftFloat
&& X86ScalarSSEf32
) {
413 // Use SSE for f32, x87 for f64.
414 // Set up the FP register classes.
415 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
416 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
418 // Use ANDPS to simulate FABS.
419 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
421 // Use XORP to simulate FNEG.
422 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
424 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
426 // Use ANDPS and ORPS to simulate FCOPYSIGN.
427 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
428 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
430 // We don't support sin/cos/fmod
431 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
432 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
434 // Special cases we handle for FP constants.
435 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
436 addLegalFPImmediate(APFloat(+0.0)); // FLD0
437 addLegalFPImmediate(APFloat(+1.0)); // FLD1
438 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
439 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
442 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
443 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
445 } else if (!UseSoftFloat
) {
446 // f32 and f64 in x87.
447 // Set up the FP register classes.
448 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
449 addRegisterClass(MVT::f32
, X86::RFP32RegisterClass
);
451 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
452 setOperationAction(ISD::UNDEF
, MVT::f32
, Expand
);
453 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
454 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
457 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
458 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
460 addLegalFPImmediate(APFloat(+0.0)); // FLD0
461 addLegalFPImmediate(APFloat(+1.0)); // FLD1
462 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
463 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
464 addLegalFPImmediate(APFloat(+0.0f
)); // FLD0
465 addLegalFPImmediate(APFloat(+1.0f
)); // FLD1
466 addLegalFPImmediate(APFloat(-0.0f
)); // FLD0/FCHS
467 addLegalFPImmediate(APFloat(-1.0f
)); // FLD1/FCHS
470 // Long double always uses X87.
472 addRegisterClass(MVT::f80
, X86::RFP80RegisterClass
);
473 setOperationAction(ISD::UNDEF
, MVT::f80
, Expand
);
474 setOperationAction(ISD::FCOPYSIGN
, MVT::f80
, Expand
);
477 APFloat
TmpFlt(+0.0);
478 TmpFlt
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
480 addLegalFPImmediate(TmpFlt
); // FLD0
482 addLegalFPImmediate(TmpFlt
); // FLD0/FCHS
483 APFloat
TmpFlt2(+1.0);
484 TmpFlt2
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
486 addLegalFPImmediate(TmpFlt2
); // FLD1
487 TmpFlt2
.changeSign();
488 addLegalFPImmediate(TmpFlt2
); // FLD1/FCHS
492 setOperationAction(ISD::FSIN
, MVT::f80
, Expand
);
493 setOperationAction(ISD::FCOS
, MVT::f80
, Expand
);
497 // Always use a library call for pow.
498 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
499 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
500 setOperationAction(ISD::FPOW
, MVT::f80
, Expand
);
502 setOperationAction(ISD::FLOG
, MVT::f80
, Expand
);
503 setOperationAction(ISD::FLOG2
, MVT::f80
, Expand
);
504 setOperationAction(ISD::FLOG10
, MVT::f80
, Expand
);
505 setOperationAction(ISD::FEXP
, MVT::f80
, Expand
);
506 setOperationAction(ISD::FEXP2
, MVT::f80
, Expand
);
508 // First set operation action for all vector types to either promote
509 // (for widening) or expand (for scalarization). Then we will selectively
510 // turn on ones that can be effectively codegen'd.
511 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
512 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
513 setOperationAction(ISD::ADD
, (MVT::SimpleValueType
)VT
, Expand
);
514 setOperationAction(ISD::SUB
, (MVT::SimpleValueType
)VT
, Expand
);
515 setOperationAction(ISD::FADD
, (MVT::SimpleValueType
)VT
, Expand
);
516 setOperationAction(ISD::FNEG
, (MVT::SimpleValueType
)VT
, Expand
);
517 setOperationAction(ISD::FSUB
, (MVT::SimpleValueType
)VT
, Expand
);
518 setOperationAction(ISD::MUL
, (MVT::SimpleValueType
)VT
, Expand
);
519 setOperationAction(ISD::FMUL
, (MVT::SimpleValueType
)VT
, Expand
);
520 setOperationAction(ISD::SDIV
, (MVT::SimpleValueType
)VT
, Expand
);
521 setOperationAction(ISD::UDIV
, (MVT::SimpleValueType
)VT
, Expand
);
522 setOperationAction(ISD::FDIV
, (MVT::SimpleValueType
)VT
, Expand
);
523 setOperationAction(ISD::SREM
, (MVT::SimpleValueType
)VT
, Expand
);
524 setOperationAction(ISD::UREM
, (MVT::SimpleValueType
)VT
, Expand
);
525 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Expand
);
526 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::SimpleValueType
)VT
, Expand
);
527 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
,Expand
);
528 setOperationAction(ISD::EXTRACT_SUBVECTOR
,(MVT::SimpleValueType
)VT
,Expand
);
529 setOperationAction(ISD::INSERT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
, Expand
);
530 setOperationAction(ISD::FABS
, (MVT::SimpleValueType
)VT
, Expand
);
531 setOperationAction(ISD::FSIN
, (MVT::SimpleValueType
)VT
, Expand
);
532 setOperationAction(ISD::FCOS
, (MVT::SimpleValueType
)VT
, Expand
);
533 setOperationAction(ISD::FREM
, (MVT::SimpleValueType
)VT
, Expand
);
534 setOperationAction(ISD::FPOWI
, (MVT::SimpleValueType
)VT
, Expand
);
535 setOperationAction(ISD::FSQRT
, (MVT::SimpleValueType
)VT
, Expand
);
536 setOperationAction(ISD::FCOPYSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
537 setOperationAction(ISD::SMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
538 setOperationAction(ISD::UMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
539 setOperationAction(ISD::SDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
540 setOperationAction(ISD::UDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
541 setOperationAction(ISD::FPOW
, (MVT::SimpleValueType
)VT
, Expand
);
542 setOperationAction(ISD::CTPOP
, (MVT::SimpleValueType
)VT
, Expand
);
543 setOperationAction(ISD::CTTZ
, (MVT::SimpleValueType
)VT
, Expand
);
544 setOperationAction(ISD::CTLZ
, (MVT::SimpleValueType
)VT
, Expand
);
545 setOperationAction(ISD::SHL
, (MVT::SimpleValueType
)VT
, Expand
);
546 setOperationAction(ISD::SRA
, (MVT::SimpleValueType
)VT
, Expand
);
547 setOperationAction(ISD::SRL
, (MVT::SimpleValueType
)VT
, Expand
);
548 setOperationAction(ISD::ROTL
, (MVT::SimpleValueType
)VT
, Expand
);
549 setOperationAction(ISD::ROTR
, (MVT::SimpleValueType
)VT
, Expand
);
550 setOperationAction(ISD::BSWAP
, (MVT::SimpleValueType
)VT
, Expand
);
551 setOperationAction(ISD::VSETCC
, (MVT::SimpleValueType
)VT
, Expand
);
552 setOperationAction(ISD::FLOG
, (MVT::SimpleValueType
)VT
, Expand
);
553 setOperationAction(ISD::FLOG2
, (MVT::SimpleValueType
)VT
, Expand
);
554 setOperationAction(ISD::FLOG10
, (MVT::SimpleValueType
)VT
, Expand
);
555 setOperationAction(ISD::FEXP
, (MVT::SimpleValueType
)VT
, Expand
);
556 setOperationAction(ISD::FEXP2
, (MVT::SimpleValueType
)VT
, Expand
);
557 setOperationAction(ISD::FP_TO_UINT
, (MVT::SimpleValueType
)VT
, Expand
);
558 setOperationAction(ISD::FP_TO_SINT
, (MVT::SimpleValueType
)VT
, Expand
);
559 setOperationAction(ISD::UINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
560 setOperationAction(ISD::SINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
563 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
564 // with -msoft-float, disable use of MMX as well.
565 if (!UseSoftFloat
&& !DisableMMX
&& Subtarget
->hasMMX()) {
566 addRegisterClass(MVT::v8i8
, X86::VR64RegisterClass
);
567 addRegisterClass(MVT::v4i16
, X86::VR64RegisterClass
);
568 addRegisterClass(MVT::v2i32
, X86::VR64RegisterClass
);
569 addRegisterClass(MVT::v2f32
, X86::VR64RegisterClass
);
570 addRegisterClass(MVT::v1i64
, X86::VR64RegisterClass
);
572 setOperationAction(ISD::ADD
, MVT::v8i8
, Legal
);
573 setOperationAction(ISD::ADD
, MVT::v4i16
, Legal
);
574 setOperationAction(ISD::ADD
, MVT::v2i32
, Legal
);
575 setOperationAction(ISD::ADD
, MVT::v1i64
, Legal
);
577 setOperationAction(ISD::SUB
, MVT::v8i8
, Legal
);
578 setOperationAction(ISD::SUB
, MVT::v4i16
, Legal
);
579 setOperationAction(ISD::SUB
, MVT::v2i32
, Legal
);
580 setOperationAction(ISD::SUB
, MVT::v1i64
, Legal
);
582 setOperationAction(ISD::MULHS
, MVT::v4i16
, Legal
);
583 setOperationAction(ISD::MUL
, MVT::v4i16
, Legal
);
585 setOperationAction(ISD::AND
, MVT::v8i8
, Promote
);
586 AddPromotedToType (ISD::AND
, MVT::v8i8
, MVT::v1i64
);
587 setOperationAction(ISD::AND
, MVT::v4i16
, Promote
);
588 AddPromotedToType (ISD::AND
, MVT::v4i16
, MVT::v1i64
);
589 setOperationAction(ISD::AND
, MVT::v2i32
, Promote
);
590 AddPromotedToType (ISD::AND
, MVT::v2i32
, MVT::v1i64
);
591 setOperationAction(ISD::AND
, MVT::v1i64
, Legal
);
593 setOperationAction(ISD::OR
, MVT::v8i8
, Promote
);
594 AddPromotedToType (ISD::OR
, MVT::v8i8
, MVT::v1i64
);
595 setOperationAction(ISD::OR
, MVT::v4i16
, Promote
);
596 AddPromotedToType (ISD::OR
, MVT::v4i16
, MVT::v1i64
);
597 setOperationAction(ISD::OR
, MVT::v2i32
, Promote
);
598 AddPromotedToType (ISD::OR
, MVT::v2i32
, MVT::v1i64
);
599 setOperationAction(ISD::OR
, MVT::v1i64
, Legal
);
601 setOperationAction(ISD::XOR
, MVT::v8i8
, Promote
);
602 AddPromotedToType (ISD::XOR
, MVT::v8i8
, MVT::v1i64
);
603 setOperationAction(ISD::XOR
, MVT::v4i16
, Promote
);
604 AddPromotedToType (ISD::XOR
, MVT::v4i16
, MVT::v1i64
);
605 setOperationAction(ISD::XOR
, MVT::v2i32
, Promote
);
606 AddPromotedToType (ISD::XOR
, MVT::v2i32
, MVT::v1i64
);
607 setOperationAction(ISD::XOR
, MVT::v1i64
, Legal
);
609 setOperationAction(ISD::LOAD
, MVT::v8i8
, Promote
);
610 AddPromotedToType (ISD::LOAD
, MVT::v8i8
, MVT::v1i64
);
611 setOperationAction(ISD::LOAD
, MVT::v4i16
, Promote
);
612 AddPromotedToType (ISD::LOAD
, MVT::v4i16
, MVT::v1i64
);
613 setOperationAction(ISD::LOAD
, MVT::v2i32
, Promote
);
614 AddPromotedToType (ISD::LOAD
, MVT::v2i32
, MVT::v1i64
);
615 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
616 AddPromotedToType (ISD::LOAD
, MVT::v2f32
, MVT::v1i64
);
617 setOperationAction(ISD::LOAD
, MVT::v1i64
, Legal
);
619 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i8
, Custom
);
620 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i16
, Custom
);
621 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i32
, Custom
);
622 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f32
, Custom
);
623 setOperationAction(ISD::BUILD_VECTOR
, MVT::v1i64
, Custom
);
625 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v8i8
, Custom
);
626 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i16
, Custom
);
627 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i32
, Custom
);
628 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v1i64
, Custom
);
630 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f32
, Custom
);
631 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i8
, Custom
);
632 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i16
, Custom
);
633 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v1i64
, Custom
);
635 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i16
, Custom
);
637 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Expand
);
638 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Expand
);
639 setOperationAction(ISD::SELECT
, MVT::v8i8
, Promote
);
640 setOperationAction(ISD::SELECT
, MVT::v4i16
, Promote
);
641 setOperationAction(ISD::SELECT
, MVT::v2i32
, Promote
);
642 setOperationAction(ISD::SELECT
, MVT::v1i64
, Custom
);
645 if (!UseSoftFloat
&& Subtarget
->hasSSE1()) {
646 addRegisterClass(MVT::v4f32
, X86::VR128RegisterClass
);
648 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
649 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
650 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
651 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
652 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
653 setOperationAction(ISD::FNEG
, MVT::v4f32
, Custom
);
654 setOperationAction(ISD::LOAD
, MVT::v4f32
, Legal
);
655 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
656 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
657 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
658 setOperationAction(ISD::SELECT
, MVT::v4f32
, Custom
);
659 setOperationAction(ISD::VSETCC
, MVT::v4f32
, Custom
);
662 if (!UseSoftFloat
&& Subtarget
->hasSSE2()) {
663 addRegisterClass(MVT::v2f64
, X86::VR128RegisterClass
);
665 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
666 // registers cannot be used even for integer operations.
667 addRegisterClass(MVT::v16i8
, X86::VR128RegisterClass
);
668 addRegisterClass(MVT::v8i16
, X86::VR128RegisterClass
);
669 addRegisterClass(MVT::v4i32
, X86::VR128RegisterClass
);
670 addRegisterClass(MVT::v2i64
, X86::VR128RegisterClass
);
672 setOperationAction(ISD::ADD
, MVT::v16i8
, Legal
);
673 setOperationAction(ISD::ADD
, MVT::v8i16
, Legal
);
674 setOperationAction(ISD::ADD
, MVT::v4i32
, Legal
);
675 setOperationAction(ISD::ADD
, MVT::v2i64
, Legal
);
676 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
677 setOperationAction(ISD::SUB
, MVT::v16i8
, Legal
);
678 setOperationAction(ISD::SUB
, MVT::v8i16
, Legal
);
679 setOperationAction(ISD::SUB
, MVT::v4i32
, Legal
);
680 setOperationAction(ISD::SUB
, MVT::v2i64
, Legal
);
681 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
682 setOperationAction(ISD::FADD
, MVT::v2f64
, Legal
);
683 setOperationAction(ISD::FSUB
, MVT::v2f64
, Legal
);
684 setOperationAction(ISD::FMUL
, MVT::v2f64
, Legal
);
685 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
686 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
687 setOperationAction(ISD::FNEG
, MVT::v2f64
, Custom
);
689 setOperationAction(ISD::VSETCC
, MVT::v2f64
, Custom
);
690 setOperationAction(ISD::VSETCC
, MVT::v16i8
, Custom
);
691 setOperationAction(ISD::VSETCC
, MVT::v8i16
, Custom
);
692 setOperationAction(ISD::VSETCC
, MVT::v4i32
, Custom
);
694 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Custom
);
695 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Custom
);
696 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
697 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
698 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
700 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
701 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; ++i
) {
702 MVT VT
= (MVT::SimpleValueType
)i
;
703 // Do not attempt to custom lower non-power-of-2 vectors
704 if (!isPowerOf2_32(VT
.getVectorNumElements()))
706 // Do not attempt to custom lower non-128-bit vectors
707 if (!VT
.is128BitVector())
709 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
710 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
711 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
714 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
715 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
716 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Custom
);
717 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Custom
);
718 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
719 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Custom
);
721 if (Subtarget
->is64Bit()) {
722 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
723 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Custom
);
726 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
727 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; i
++) {
728 MVT VT
= (MVT::SimpleValueType
)i
;
730 // Do not attempt to promote non-128-bit vectors
731 if (!VT
.is128BitVector()) {
734 setOperationAction(ISD::AND
, VT
, Promote
);
735 AddPromotedToType (ISD::AND
, VT
, MVT::v2i64
);
736 setOperationAction(ISD::OR
, VT
, Promote
);
737 AddPromotedToType (ISD::OR
, VT
, MVT::v2i64
);
738 setOperationAction(ISD::XOR
, VT
, Promote
);
739 AddPromotedToType (ISD::XOR
, VT
, MVT::v2i64
);
740 setOperationAction(ISD::LOAD
, VT
, Promote
);
741 AddPromotedToType (ISD::LOAD
, VT
, MVT::v2i64
);
742 setOperationAction(ISD::SELECT
, VT
, Promote
);
743 AddPromotedToType (ISD::SELECT
, VT
, MVT::v2i64
);
746 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
748 // Custom lower v2i64 and v2f64 selects.
749 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
750 setOperationAction(ISD::LOAD
, MVT::v2i64
, Legal
);
751 setOperationAction(ISD::SELECT
, MVT::v2f64
, Custom
);
752 setOperationAction(ISD::SELECT
, MVT::v2i64
, Custom
);
754 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i32
, Legal
);
755 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Legal
);
756 if (!DisableMMX
&& Subtarget
->hasMMX()) {
757 setOperationAction(ISD::FP_TO_SINT
, MVT::v2i32
, Custom
);
758 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i32
, Custom
);
762 if (Subtarget
->hasSSE41()) {
763 // FIXME: Do we need to handle scalar-to-vector here?
764 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
766 // i8 and i16 vectors are custom , because the source register and source
767 // source memory operand types are not the same width. f32 vectors are
768 // custom since the immediate controlling the insert encodes additional
770 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
771 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
772 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
773 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
775 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Custom
);
776 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Custom
);
777 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
778 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
780 if (Subtarget
->is64Bit()) {
781 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Legal
);
782 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
786 if (Subtarget
->hasSSE42()) {
787 setOperationAction(ISD::VSETCC
, MVT::v2i64
, Custom
);
790 if (!UseSoftFloat
&& Subtarget
->hasAVX()) {
791 addRegisterClass(MVT::v8f32
, X86::VR256RegisterClass
);
792 addRegisterClass(MVT::v4f64
, X86::VR256RegisterClass
);
793 addRegisterClass(MVT::v8i32
, X86::VR256RegisterClass
);
794 addRegisterClass(MVT::v4i64
, X86::VR256RegisterClass
);
796 setOperationAction(ISD::LOAD
, MVT::v8f32
, Legal
);
797 setOperationAction(ISD::LOAD
, MVT::v8i32
, Legal
);
798 setOperationAction(ISD::LOAD
, MVT::v4f64
, Legal
);
799 setOperationAction(ISD::LOAD
, MVT::v4i64
, Legal
);
800 setOperationAction(ISD::FADD
, MVT::v8f32
, Legal
);
801 setOperationAction(ISD::FSUB
, MVT::v8f32
, Legal
);
802 setOperationAction(ISD::FMUL
, MVT::v8f32
, Legal
);
803 setOperationAction(ISD::FDIV
, MVT::v8f32
, Legal
);
804 setOperationAction(ISD::FSQRT
, MVT::v8f32
, Legal
);
805 setOperationAction(ISD::FNEG
, MVT::v8f32
, Custom
);
806 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
807 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
808 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
809 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
810 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
812 // Operations to consider commented out -v16i16 v32i8
813 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
814 setOperationAction(ISD::ADD
, MVT::v8i32
, Custom
);
815 setOperationAction(ISD::ADD
, MVT::v4i64
, Custom
);
816 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
817 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
818 setOperationAction(ISD::SUB
, MVT::v8i32
, Custom
);
819 setOperationAction(ISD::SUB
, MVT::v4i64
, Custom
);
820 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
821 setOperationAction(ISD::FADD
, MVT::v4f64
, Legal
);
822 setOperationAction(ISD::FSUB
, MVT::v4f64
, Legal
);
823 setOperationAction(ISD::FMUL
, MVT::v4f64
, Legal
);
824 setOperationAction(ISD::FDIV
, MVT::v4f64
, Legal
);
825 setOperationAction(ISD::FSQRT
, MVT::v4f64
, Legal
);
826 setOperationAction(ISD::FNEG
, MVT::v4f64
, Custom
);
828 setOperationAction(ISD::VSETCC
, MVT::v4f64
, Custom
);
829 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
830 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
831 setOperationAction(ISD::VSETCC
, MVT::v8i32
, Custom
);
833 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
834 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
835 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
836 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i32
, Custom
);
837 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8f32
, Custom
);
839 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f64
, Custom
);
840 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i64
, Custom
);
841 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f64
, Custom
);
842 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i64
, Custom
);
843 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f64
, Custom
);
844 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f64
, Custom
);
847 // Not sure we want to do this since there are no 256-bit integer
850 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851 // This includes 256-bit vectors
852 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; ++i
) {
853 MVT VT
= (MVT::SimpleValueType
)i
;
855 // Do not attempt to custom lower non-power-of-2 vectors
856 if (!isPowerOf2_32(VT
.getVectorNumElements()))
859 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
860 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
861 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
864 if (Subtarget
->is64Bit()) {
865 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i64
, Custom
);
866 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i64
, Custom
);
871 // Not sure we want to do this since there are no 256-bit integer
874 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
875 // Including 256-bit vectors
876 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; i
++) {
877 MVT VT
= (MVT::SimpleValueType
)i
;
879 if (!VT
.is256BitVector()) {
882 setOperationAction(ISD::AND
, VT
, Promote
);
883 AddPromotedToType (ISD::AND
, VT
, MVT::v4i64
);
884 setOperationAction(ISD::OR
, VT
, Promote
);
885 AddPromotedToType (ISD::OR
, VT
, MVT::v4i64
);
886 setOperationAction(ISD::XOR
, VT
, Promote
);
887 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i64
);
888 setOperationAction(ISD::LOAD
, VT
, Promote
);
889 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i64
);
890 setOperationAction(ISD::SELECT
, VT
, Promote
);
891 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i64
);
894 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
898 // We want to custom lower some of our intrinsics.
899 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
901 // Add/Sub/Mul with overflow operations are custom lowered.
902 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
903 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
904 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
905 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
906 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
907 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
908 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
909 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
910 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
911 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
913 if (!Subtarget
->is64Bit()) {
914 // These libcalls are not available in 32-bit.
915 setLibcallName(RTLIB::SHL_I128
, 0);
916 setLibcallName(RTLIB::SRL_I128
, 0);
917 setLibcallName(RTLIB::SRA_I128
, 0);
920 // We have target-specific dag combine patterns for the following nodes:
921 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
922 setTargetDAGCombine(ISD::BUILD_VECTOR
);
923 setTargetDAGCombine(ISD::SELECT
);
924 setTargetDAGCombine(ISD::SHL
);
925 setTargetDAGCombine(ISD::SRA
);
926 setTargetDAGCombine(ISD::SRL
);
927 setTargetDAGCombine(ISD::STORE
);
928 setTargetDAGCombine(ISD::MEMBARRIER
);
929 if (Subtarget
->is64Bit())
930 setTargetDAGCombine(ISD::MUL
);
932 computeRegisterProperties();
934 // FIXME: These should be based on subtarget info. Plus, the values should
935 // be smaller when we are in optimizing for size mode.
936 maxStoresPerMemset
= 16; // For @llvm.memset -> sequence of stores
937 maxStoresPerMemcpy
= 16; // For @llvm.memcpy -> sequence of stores
938 maxStoresPerMemmove
= 3; // For @llvm.memmove -> sequence of stores
939 allowUnalignedMemoryAccesses
= true; // x86 supports it!
940 setPrefLoopAlignment(16);
941 benefitFromCodePlacementOpt
= true;
945 MVT
X86TargetLowering::getSetCCResultType(MVT VT
) const {
950 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
951 /// the desired ByVal argument alignment.
952 static void getMaxByValAlign(const Type
*Ty
, unsigned &MaxAlign
) {
955 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
956 if (VTy
->getBitWidth() == 128)
958 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
959 unsigned EltAlign
= 0;
960 getMaxByValAlign(ATy
->getElementType(), EltAlign
);
961 if (EltAlign
> MaxAlign
)
963 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
964 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
965 unsigned EltAlign
= 0;
966 getMaxByValAlign(STy
->getElementType(i
), EltAlign
);
967 if (EltAlign
> MaxAlign
)
976 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
977 /// function arguments in the caller parameter area. For X86, aggregates
978 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
979 /// are at 4-byte boundaries.
980 unsigned X86TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
981 if (Subtarget
->is64Bit()) {
982 // Max of 8 and alignment of type.
983 unsigned TyAlign
= TD
->getABITypeAlignment(Ty
);
990 if (Subtarget
->hasSSE1())
991 getMaxByValAlign(Ty
, Align
);
995 /// getOptimalMemOpType - Returns the target specific optimal type for load
996 /// and store operations as a result of memset, memcpy, and memmove
997 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1000 X86TargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned Align
,
1001 bool isSrcConst
, bool isSrcStr
,
1002 SelectionDAG
&DAG
) const {
1003 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1004 // linux. This is because the stack realignment code can't handle certain
1005 // cases like PR2962. This should be removed when PR2962 is fixed.
1006 const Function
*F
= DAG
.getMachineFunction().getFunction();
1007 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
1008 if (!NoImplicitFloatOps
&& Subtarget
->getStackAlignment() >= 16) {
1009 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE2() && Size
>= 16)
1011 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE1() && Size
>= 16)
1014 if (Subtarget
->is64Bit() && Size
>= 8)
1019 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1021 SDValue
X86TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1022 SelectionDAG
&DAG
) const {
1023 if (usesGlobalOffsetTable())
1024 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
1025 if (!Subtarget
->is64Bit())
1026 // This doesn't have DebugLoc associated with it, but is not really the
1027 // same as a Register.
1028 return DAG
.getNode(X86ISD::GlobalBaseReg
, DebugLoc::getUnknownLoc(),
1033 /// getFunctionAlignment - Return the Log2 alignment of this function.
1034 unsigned X86TargetLowering::getFunctionAlignment(const Function
*F
) const {
1035 return F
->hasFnAttr(Attribute::OptimizeForSize
) ? 1 : 4;
1038 //===----------------------------------------------------------------------===//
1039 // Return Value Calling Convention Implementation
1040 //===----------------------------------------------------------------------===//
1042 #include "X86GenCallingConv.inc"
1044 /// LowerRET - Lower an ISD::RET node.
1045 SDValue
X86TargetLowering::LowerRET(SDValue Op
, SelectionDAG
&DAG
) {
1046 DebugLoc dl
= Op
.getDebugLoc();
1047 assert((Op
.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
1049 SmallVector
<CCValAssign
, 16> RVLocs
;
1050 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
1051 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
1052 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), RVLocs
, DAG
.getContext());
1053 CCInfo
.AnalyzeReturn(Op
.getNode(), RetCC_X86
);
1055 // If this is the first return lowered for this function, add the regs to the
1056 // liveout set for the function.
1057 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
1058 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
1059 if (RVLocs
[i
].isRegLoc())
1060 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
1062 SDValue Chain
= Op
.getOperand(0);
1064 // Handle tail call return.
1065 Chain
= GetPossiblePreceedingTailCall(Chain
, X86ISD::TAILCALL
);
1066 if (Chain
.getOpcode() == X86ISD::TAILCALL
) {
1067 SDValue TailCall
= Chain
;
1068 SDValue TargetAddress
= TailCall
.getOperand(1);
1069 SDValue StackAdjustment
= TailCall
.getOperand(2);
1070 assert(((TargetAddress
.getOpcode() == ISD::Register
&&
1071 (cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::EAX
||
1072 cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::R11
)) ||
1073 TargetAddress
.getOpcode() == ISD::TargetExternalSymbol
||
1074 TargetAddress
.getOpcode() == ISD::TargetGlobalAddress
) &&
1075 "Expecting an global address, external symbol, or register");
1076 assert(StackAdjustment
.getOpcode() == ISD::Constant
&&
1077 "Expecting a const value");
1079 SmallVector
<SDValue
,8> Operands
;
1080 Operands
.push_back(Chain
.getOperand(0));
1081 Operands
.push_back(TargetAddress
);
1082 Operands
.push_back(StackAdjustment
);
1083 // Copy registers used by the call. Last operand is a flag so it is not
1085 for (unsigned i
=3; i
< TailCall
.getNumOperands()-1; i
++) {
1086 Operands
.push_back(Chain
.getOperand(i
));
1088 return DAG
.getNode(X86ISD::TC_RETURN
, dl
, MVT::Other
, &Operands
[0],
1095 SmallVector
<SDValue
, 6> RetOps
;
1096 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
1097 // Operand #1 = Bytes To Pop
1098 RetOps
.push_back(DAG
.getConstant(getBytesToPopOnReturn(), MVT::i16
));
1100 // Copy the result values into the output registers.
1101 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1102 CCValAssign
&VA
= RVLocs
[i
];
1103 assert(VA
.isRegLoc() && "Can only return in registers!");
1104 SDValue ValToCopy
= Op
.getOperand(i
*2+1);
1106 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1107 // the RET instruction and handled by the FP Stackifier.
1108 if (VA
.getLocReg() == X86::ST0
||
1109 VA
.getLocReg() == X86::ST1
) {
1110 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1111 // change the value to the FP stack register class.
1112 if (isScalarFPTypeInSSEReg(VA
.getValVT()))
1113 ValToCopy
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f80
, ValToCopy
);
1114 RetOps
.push_back(ValToCopy
);
1115 // Don't emit a copytoreg.
1119 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1120 // which is returned in RAX / RDX.
1121 if (Subtarget
->is64Bit()) {
1122 MVT ValVT
= ValToCopy
.getValueType();
1123 if (ValVT
.isVector() && ValVT
.getSizeInBits() == 64) {
1124 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, ValToCopy
);
1125 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
)
1126 ValToCopy
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, ValToCopy
);
1130 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), ValToCopy
, Flag
);
1131 Flag
= Chain
.getValue(1);
1134 // The x86-64 ABI for returning structs by value requires that we copy
1135 // the sret argument into %rax for the return. We saved the argument into
1136 // a virtual register in the entry block, so now we copy the value out
1138 if (Subtarget
->is64Bit() &&
1139 DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1140 MachineFunction
&MF
= DAG
.getMachineFunction();
1141 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1142 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1144 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1145 FuncInfo
->setSRetReturnReg(Reg
);
1147 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1149 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::RAX
, Val
, Flag
);
1150 Flag
= Chain
.getValue(1);
1153 RetOps
[0] = Chain
; // Update chain.
1155 // Add the flag if we have it.
1157 RetOps
.push_back(Flag
);
1159 return DAG
.getNode(X86ISD::RET_FLAG
, dl
,
1160 MVT::Other
, &RetOps
[0], RetOps
.size());
1164 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1165 /// appropriate copies out of appropriate physical registers. This assumes that
1166 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1167 /// being lowered. The returns a SDNode with the same number of values as the
1169 SDNode
*X86TargetLowering::
1170 LowerCallResult(SDValue Chain
, SDValue InFlag
, CallSDNode
*TheCall
,
1171 unsigned CallingConv
, SelectionDAG
&DAG
) {
1173 DebugLoc dl
= TheCall
->getDebugLoc();
1174 // Assign locations to each value returned by this call.
1175 SmallVector
<CCValAssign
, 16> RVLocs
;
1176 bool isVarArg
= TheCall
->isVarArg();
1177 bool Is64Bit
= Subtarget
->is64Bit();
1178 CCState
CCInfo(CallingConv
, isVarArg
, getTargetMachine(),
1179 RVLocs
, DAG
.getContext());
1180 CCInfo
.AnalyzeCallResult(TheCall
, RetCC_X86
);
1182 SmallVector
<SDValue
, 8> ResultVals
;
1184 // Copy all of the result registers out of their specified physreg.
1185 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1186 CCValAssign
&VA
= RVLocs
[i
];
1187 MVT CopyVT
= VA
.getValVT();
1189 // If this is x86-64, and we disabled SSE, we can't return FP values
1190 if ((CopyVT
== MVT::f32
|| CopyVT
== MVT::f64
) &&
1191 ((Is64Bit
|| TheCall
->isInreg()) && !Subtarget
->hasSSE1())) {
1192 llvm_report_error("SSE register return with SSE disabled");
1195 // If this is a call to a function that returns an fp value on the floating
1196 // point stack, but where we prefer to use the value in xmm registers, copy
1197 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1198 if ((VA
.getLocReg() == X86::ST0
||
1199 VA
.getLocReg() == X86::ST1
) &&
1200 isScalarFPTypeInSSEReg(VA
.getValVT())) {
1205 if (Is64Bit
&& CopyVT
.isVector() && CopyVT
.getSizeInBits() == 64) {
1206 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1207 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1208 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1209 MVT::v2i64
, InFlag
).getValue(1);
1210 Val
= Chain
.getValue(0);
1211 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1212 Val
, DAG
.getConstant(0, MVT::i64
));
1214 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1215 MVT::i64
, InFlag
).getValue(1);
1216 Val
= Chain
.getValue(0);
1218 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, CopyVT
, Val
);
1220 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1221 CopyVT
, InFlag
).getValue(1);
1222 Val
= Chain
.getValue(0);
1224 InFlag
= Chain
.getValue(2);
1226 if (CopyVT
!= VA
.getValVT()) {
1227 // Round the F80 the right size, which also moves to the appropriate xmm
1229 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, VA
.getValVT(), Val
,
1230 // This truncation won't change the value.
1231 DAG
.getIntPtrConstant(1));
1234 ResultVals
.push_back(Val
);
1237 // Merge everything together with a MERGE_VALUES node.
1238 ResultVals
.push_back(Chain
);
1239 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, TheCall
->getVTList(),
1240 &ResultVals
[0], ResultVals
.size()).getNode();
1244 //===----------------------------------------------------------------------===//
1245 // C & StdCall & Fast Calling Convention implementation
1246 //===----------------------------------------------------------------------===//
1247 // StdCall calling convention seems to be standard for many Windows' API
1248 // routines and around. It differs from C calling convention just a little:
1249 // callee should clean up the stack, not caller. Symbols should be also
1250 // decorated in some fancy way :) It doesn't support any vector arguments.
1251 // For info on fast calling convention see Fast Calling Convention (tail call)
1252 // implementation LowerX86_32FastCCCallTo.
1254 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1256 static bool CallIsStructReturn(CallSDNode
*TheCall
) {
1257 unsigned NumOps
= TheCall
->getNumArgs();
1261 return TheCall
->getArgFlags(0).isSRet();
1264 /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1265 /// return semantics.
1266 static bool ArgsAreStructReturn(SDValue Op
) {
1267 unsigned NumArgs
= Op
.getNode()->getNumValues() - 1;
1271 return cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3))->getArgFlags().isSRet();
1274 /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1275 /// the callee to pop its own arguments. Callee pop is necessary to support tail
1277 bool X86TargetLowering::IsCalleePop(bool IsVarArg
, unsigned CallingConv
) {
1281 switch (CallingConv
) {
1284 case CallingConv::X86_StdCall
:
1285 return !Subtarget
->is64Bit();
1286 case CallingConv::X86_FastCall
:
1287 return !Subtarget
->is64Bit();
1288 case CallingConv::Fast
:
1289 return PerformTailCallOpt
;
1293 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1294 /// given CallingConvention value.
1295 CCAssignFn
*X86TargetLowering::CCAssignFnForNode(unsigned CC
) const {
1296 if (Subtarget
->is64Bit()) {
1297 if (Subtarget
->isTargetWin64())
1298 return CC_X86_Win64_C
;
1303 if (CC
== CallingConv::X86_FastCall
)
1304 return CC_X86_32_FastCall
;
1305 else if (CC
== CallingConv::Fast
)
1306 return CC_X86_32_FastCC
;
1311 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1312 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1314 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op
) {
1315 unsigned CC
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1316 if (CC
== CallingConv::X86_FastCall
)
1318 else if (CC
== CallingConv::X86_StdCall
)
1324 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1325 /// by "Src" to address "Dst" with size and alignment information specified by
1326 /// the specific parameter attribute. The copy will be passed as a byval
1327 /// function parameter.
1329 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
1330 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1332 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
1333 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
1334 /*AlwaysInline=*/true, NULL
, 0, NULL
, 0);
1337 SDValue
X86TargetLowering::LowerMemArgument(SDValue Op
, SelectionDAG
&DAG
,
1338 const CCValAssign
&VA
,
1339 MachineFrameInfo
*MFI
,
1341 SDValue Root
, unsigned i
) {
1342 // Create the nodes corresponding to a load from this parameter slot.
1343 ISD::ArgFlagsTy Flags
=
1344 cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3 + i
))->getArgFlags();
1345 bool AlwaysUseMutable
= (CC
==CallingConv::Fast
) && PerformTailCallOpt
;
1346 bool isImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
1348 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1349 // changed with more analysis.
1350 // In case of tail call optimization mark all arguments mutable. Since they
1351 // could be overwritten by lowering of arguments in case of a tail call.
1352 int FI
= MFI
->CreateFixedObject(VA
.getValVT().getSizeInBits()/8,
1353 VA
.getLocMemOffset(), isImmutable
);
1354 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1355 if (Flags
.isByVal())
1357 return DAG
.getLoad(VA
.getValVT(), Op
.getDebugLoc(), Root
, FIN
,
1358 PseudoSourceValue::getFixedStack(FI
), 0);
1362 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op
, SelectionDAG
&DAG
) {
1363 MachineFunction
&MF
= DAG
.getMachineFunction();
1364 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1365 DebugLoc dl
= Op
.getDebugLoc();
1367 const Function
* Fn
= MF
.getFunction();
1368 if (Fn
->hasExternalLinkage() &&
1369 Subtarget
->isTargetCygMing() &&
1370 Fn
->getName() == "main")
1371 FuncInfo
->setForceFramePointer(true);
1373 // Decorate the function name.
1374 FuncInfo
->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op
));
1376 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1377 SDValue Root
= Op
.getOperand(0);
1378 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() != 0;
1379 unsigned CC
= MF
.getFunction()->getCallingConv();
1380 bool Is64Bit
= Subtarget
->is64Bit();
1381 bool IsWin64
= Subtarget
->isTargetWin64();
1383 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1384 "Var args not supported with calling convention fastcc");
1386 // Assign locations to all of the incoming arguments.
1387 SmallVector
<CCValAssign
, 16> ArgLocs
;
1388 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
, DAG
.getContext());
1389 CCInfo
.AnalyzeFormalArguments(Op
.getNode(), CCAssignFnForNode(CC
));
1391 SmallVector
<SDValue
, 8> ArgValues
;
1392 unsigned LastVal
= ~0U;
1393 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1394 CCValAssign
&VA
= ArgLocs
[i
];
1395 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1397 assert(VA
.getValNo() != LastVal
&&
1398 "Don't support value assigned to multiple locs yet");
1399 LastVal
= VA
.getValNo();
1401 if (VA
.isRegLoc()) {
1402 MVT RegVT
= VA
.getLocVT();
1403 TargetRegisterClass
*RC
= NULL
;
1404 if (RegVT
== MVT::i32
)
1405 RC
= X86::GR32RegisterClass
;
1406 else if (Is64Bit
&& RegVT
== MVT::i64
)
1407 RC
= X86::GR64RegisterClass
;
1408 else if (RegVT
== MVT::f32
)
1409 RC
= X86::FR32RegisterClass
;
1410 else if (RegVT
== MVT::f64
)
1411 RC
= X86::FR64RegisterClass
;
1412 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128)
1413 RC
= X86::VR128RegisterClass
;
1414 else if (RegVT
.isVector()) {
1415 assert(RegVT
.getSizeInBits() == 64);
1417 RC
= X86::VR64RegisterClass
; // MMX values are passed in MMXs.
1419 // Darwin calling convention passes MMX values in either GPRs or
1420 // XMMs in x86-64. Other targets pass them in memory.
1421 if (RegVT
!= MVT::v1i64
&& Subtarget
->hasSSE2()) {
1422 RC
= X86::VR128RegisterClass
; // MMX values are passed in XMMs.
1425 RC
= X86::GR64RegisterClass
; // v1i64 values are passed in GPRs.
1430 llvm_unreachable("Unknown argument type!");
1433 unsigned Reg
= DAG
.getMachineFunction().addLiveIn(VA
.getLocReg(), RC
);
1434 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, RegVT
);
1436 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1437 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1439 if (VA
.getLocInfo() == CCValAssign::SExt
)
1440 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
1441 DAG
.getValueType(VA
.getValVT()));
1442 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1443 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
1444 DAG
.getValueType(VA
.getValVT()));
1446 if (VA
.getLocInfo() != CCValAssign::Full
)
1447 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
1449 // Handle MMX values passed in GPRs.
1450 if (Is64Bit
&& RegVT
!= VA
.getLocVT()) {
1451 if (RegVT
.getSizeInBits() == 64 && RC
== X86::GR64RegisterClass
)
1452 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1453 else if (RC
== X86::VR128RegisterClass
) {
1454 ArgValue
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1455 ArgValue
, DAG
.getConstant(0, MVT::i64
));
1456 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1460 ArgValues
.push_back(ArgValue
);
1462 assert(VA
.isMemLoc());
1463 ArgValues
.push_back(LowerMemArgument(Op
, DAG
, VA
, MFI
, CC
, Root
, i
));
1467 // The x86-64 ABI for returning structs by value requires that we copy
1468 // the sret argument into %rax for the return. Save the argument into
1469 // a virtual register so that we can access it from the return points.
1470 if (Is64Bit
&& DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1471 MachineFunction
&MF
= DAG
.getMachineFunction();
1472 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1473 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1475 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1476 FuncInfo
->setSRetReturnReg(Reg
);
1478 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, ArgValues
[0]);
1479 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Root
);
1482 unsigned StackSize
= CCInfo
.getNextStackOffset();
1483 // align stack specially for tail calls
1484 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1485 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
1487 // If the function takes variable number of arguments, make a frame index for
1488 // the start of the first vararg value... for expansion of llvm.va_start.
1490 if (Is64Bit
|| CC
!= CallingConv::X86_FastCall
) {
1491 VarArgsFrameIndex
= MFI
->CreateFixedObject(1, StackSize
);
1494 unsigned TotalNumIntRegs
= 0, TotalNumXMMRegs
= 0;
1496 // FIXME: We should really autogenerate these arrays
1497 static const unsigned GPR64ArgRegsWin64
[] = {
1498 X86::RCX
, X86::RDX
, X86::R8
, X86::R9
1500 static const unsigned XMMArgRegsWin64
[] = {
1501 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
1503 static const unsigned GPR64ArgRegs64Bit
[] = {
1504 X86::RDI
, X86::RSI
, X86::RDX
, X86::RCX
, X86::R8
, X86::R9
1506 static const unsigned XMMArgRegs64Bit
[] = {
1507 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1508 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1510 const unsigned *GPR64ArgRegs
, *XMMArgRegs
;
1513 TotalNumIntRegs
= 4; TotalNumXMMRegs
= 4;
1514 GPR64ArgRegs
= GPR64ArgRegsWin64
;
1515 XMMArgRegs
= XMMArgRegsWin64
;
1517 TotalNumIntRegs
= 6; TotalNumXMMRegs
= 8;
1518 GPR64ArgRegs
= GPR64ArgRegs64Bit
;
1519 XMMArgRegs
= XMMArgRegs64Bit
;
1521 unsigned NumIntRegs
= CCInfo
.getFirstUnallocated(GPR64ArgRegs
,
1523 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
,
1526 bool NoImplicitFloatOps
= Fn
->hasFnAttr(Attribute::NoImplicitFloat
);
1527 assert(!(NumXMMRegs
&& !Subtarget
->hasSSE1()) &&
1528 "SSE register cannot be used when SSE is disabled!");
1529 assert(!(NumXMMRegs
&& UseSoftFloat
&& NoImplicitFloatOps
) &&
1530 "SSE register cannot be used when SSE is disabled!");
1531 if (UseSoftFloat
|| NoImplicitFloatOps
|| !Subtarget
->hasSSE1())
1532 // Kernel mode asks for SSE to be disabled, so don't push them
1534 TotalNumXMMRegs
= 0;
1536 // For X86-64, if there are vararg parameters that are passed via
1537 // registers, then we must store them to their spots on the stack so they
1538 // may be loaded by deferencing the result of va_next.
1539 VarArgsGPOffset
= NumIntRegs
* 8;
1540 VarArgsFPOffset
= TotalNumIntRegs
* 8 + NumXMMRegs
* 16;
1541 RegSaveFrameIndex
= MFI
->CreateStackObject(TotalNumIntRegs
* 8 +
1542 TotalNumXMMRegs
* 16, 16);
1544 // Store the integer parameter registers.
1545 SmallVector
<SDValue
, 8> MemOps
;
1546 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
1547 SDValue FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1548 DAG
.getIntPtrConstant(VarArgsGPOffset
));
1549 for (; NumIntRegs
!= TotalNumIntRegs
; ++NumIntRegs
) {
1550 unsigned VReg
= MF
.addLiveIn(GPR64ArgRegs
[NumIntRegs
],
1551 X86::GR64RegisterClass
);
1552 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::i64
);
1554 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1555 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1556 MemOps
.push_back(Store
);
1557 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1558 DAG
.getIntPtrConstant(8));
1561 // Now store the XMM (fp + vector) parameter registers.
1562 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1563 DAG
.getIntPtrConstant(VarArgsFPOffset
));
1564 for (; NumXMMRegs
!= TotalNumXMMRegs
; ++NumXMMRegs
) {
1565 unsigned VReg
= MF
.addLiveIn(XMMArgRegs
[NumXMMRegs
],
1566 X86::VR128RegisterClass
);
1567 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::v4f32
);
1569 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1570 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1571 MemOps
.push_back(Store
);
1572 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1573 DAG
.getIntPtrConstant(16));
1575 if (!MemOps
.empty())
1576 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1577 &MemOps
[0], MemOps
.size());
1581 ArgValues
.push_back(Root
);
1583 // Some CCs need callee pop.
1584 if (IsCalleePop(isVarArg
, CC
)) {
1585 BytesToPopOnReturn
= StackSize
; // Callee pops everything.
1586 BytesCallerReserves
= 0;
1588 BytesToPopOnReturn
= 0; // Callee pops nothing.
1589 // If this is an sret function, the return should pop the hidden pointer.
1590 if (!Is64Bit
&& CC
!= CallingConv::Fast
&& ArgsAreStructReturn(Op
))
1591 BytesToPopOnReturn
= 4;
1592 BytesCallerReserves
= StackSize
;
1596 RegSaveFrameIndex
= 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1597 if (CC
== CallingConv::X86_FastCall
)
1598 VarArgsFrameIndex
= 0xAAAAAAA; // fastcc functions can't have varargs.
1601 FuncInfo
->setBytesToPopOnReturn(BytesToPopOnReturn
);
1603 // Return the new list of results.
1604 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Op
.getNode()->getVTList(),
1605 &ArgValues
[0], ArgValues
.size()).getValue(Op
.getResNo());
1609 X86TargetLowering::LowerMemOpCallTo(CallSDNode
*TheCall
, SelectionDAG
&DAG
,
1610 const SDValue
&StackPtr
,
1611 const CCValAssign
&VA
,
1613 SDValue Arg
, ISD::ArgFlagsTy Flags
) {
1614 DebugLoc dl
= TheCall
->getDebugLoc();
1615 unsigned LocMemOffset
= VA
.getLocMemOffset();
1616 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
1617 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
1618 if (Flags
.isByVal()) {
1619 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, dl
);
1621 return DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
1622 PseudoSourceValue::getStack(), LocMemOffset
);
1625 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1626 /// optimization is performed and it is required.
1628 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
1629 SDValue
&OutRetAddr
,
1635 if (!IsTailCall
|| FPDiff
==0) return Chain
;
1637 // Adjust the Return address stack slot.
1638 MVT VT
= getPointerTy();
1639 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
1641 // Load the "old" Return address.
1642 OutRetAddr
= DAG
.getLoad(VT
, dl
, Chain
, OutRetAddr
, NULL
, 0);
1643 return SDValue(OutRetAddr
.getNode(), 1);
1646 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1647 /// optimization is performed and it is required (FPDiff!=0).
1649 EmitTailCallStoreRetAddr(SelectionDAG
& DAG
, MachineFunction
&MF
,
1650 SDValue Chain
, SDValue RetAddrFrIdx
,
1651 bool Is64Bit
, int FPDiff
, DebugLoc dl
) {
1652 // Store the return address to the appropriate stack slot.
1653 if (!FPDiff
) return Chain
;
1654 // Calculate the new stack slot for the return address.
1655 int SlotSize
= Is64Bit
? 8 : 4;
1656 int NewReturnAddrFI
=
1657 MF
.getFrameInfo()->CreateFixedObject(SlotSize
, FPDiff
-SlotSize
);
1658 MVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
1659 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewReturnAddrFI
, VT
);
1660 Chain
= DAG
.getStore(Chain
, dl
, RetAddrFrIdx
, NewRetAddrFrIdx
,
1661 PseudoSourceValue::getFixedStack(NewReturnAddrFI
), 0);
1665 SDValue
X86TargetLowering::LowerCALL(SDValue Op
, SelectionDAG
&DAG
) {
1666 MachineFunction
&MF
= DAG
.getMachineFunction();
1667 CallSDNode
*TheCall
= cast
<CallSDNode
>(Op
.getNode());
1668 SDValue Chain
= TheCall
->getChain();
1669 unsigned CC
= TheCall
->getCallingConv();
1670 bool isVarArg
= TheCall
->isVarArg();
1671 bool IsTailCall
= TheCall
->isTailCall() &&
1672 CC
== CallingConv::Fast
&& PerformTailCallOpt
;
1673 SDValue Callee
= TheCall
->getCallee();
1674 bool Is64Bit
= Subtarget
->is64Bit();
1675 bool IsStructRet
= CallIsStructReturn(TheCall
);
1676 DebugLoc dl
= TheCall
->getDebugLoc();
1678 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1679 "Var args not supported with calling convention fastcc");
1681 // Analyze operands of the call, assigning locations to each operand.
1682 SmallVector
<CCValAssign
, 16> ArgLocs
;
1683 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
, DAG
.getContext());
1684 CCInfo
.AnalyzeCallOperands(TheCall
, CCAssignFnForNode(CC
));
1686 // Get a count of how many bytes are to be pushed on the stack.
1687 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1688 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1689 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
1693 // Lower arguments at fp - stackoffset + fpdiff.
1694 unsigned NumBytesCallerPushed
=
1695 MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn();
1696 FPDiff
= NumBytesCallerPushed
- NumBytes
;
1698 // Set the delta of movement of the returnaddr stackslot.
1699 // But only set if delta is greater than previous delta.
1700 if (FPDiff
< (MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta()))
1701 MF
.getInfo
<X86MachineFunctionInfo
>()->setTCReturnAddrDelta(FPDiff
);
1704 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
1706 SDValue RetAddrFrIdx
;
1707 // Load return adress for tail calls.
1708 Chain
= EmitTailCallLoadRetAddr(DAG
, RetAddrFrIdx
, Chain
, IsTailCall
, Is64Bit
,
1711 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
1712 SmallVector
<SDValue
, 8> MemOpChains
;
1715 // Walk the register/memloc assignments, inserting copies/loads. In the case
1716 // of tail call optimization arguments are handle later.
1717 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1718 CCValAssign
&VA
= ArgLocs
[i
];
1719 SDValue Arg
= TheCall
->getArg(i
);
1720 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1721 bool isByVal
= Flags
.isByVal();
1723 // Promote the value if needed.
1724 switch (VA
.getLocInfo()) {
1725 default: llvm_unreachable("Unknown loc info!");
1726 case CCValAssign::Full
: break;
1727 case CCValAssign::SExt
:
1728 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1730 case CCValAssign::ZExt
:
1731 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1733 case CCValAssign::AExt
:
1734 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1738 if (VA
.isRegLoc()) {
1740 MVT RegVT
= VA
.getLocVT();
1741 if (RegVT
.isVector() && RegVT
.getSizeInBits() == 64)
1742 switch (VA
.getLocReg()) {
1745 case X86::RDI
: case X86::RSI
: case X86::RDX
: case X86::RCX
:
1747 // Special case: passing MMX values in GPR registers.
1748 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1751 case X86::XMM0
: case X86::XMM1
: case X86::XMM2
: case X86::XMM3
:
1752 case X86::XMM4
: case X86::XMM5
: case X86::XMM6
: case X86::XMM7
: {
1753 // Special case: passing MMX values in XMM registers.
1754 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1755 Arg
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, Arg
);
1756 Arg
= getMOVL(DAG
, dl
, MVT::v2i64
, DAG
.getUNDEF(MVT::v2i64
), Arg
);
1761 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1763 if (!IsTailCall
|| (IsTailCall
&& isByVal
)) {
1764 assert(VA
.isMemLoc());
1765 if (StackPtr
.getNode() == 0)
1766 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, getPointerTy());
1768 MemOpChains
.push_back(LowerMemOpCallTo(TheCall
, DAG
, StackPtr
, VA
,
1769 Chain
, Arg
, Flags
));
1774 if (!MemOpChains
.empty())
1775 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1776 &MemOpChains
[0], MemOpChains
.size());
1778 // Build a sequence of copy-to-reg nodes chained together with token chain
1779 // and flag operands which copy the outgoing args into registers.
1781 // Tail call byval lowering might overwrite argument registers so in case of
1782 // tail call optimization the copies to registers are lowered later.
1784 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1785 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1786 RegsToPass
[i
].second
, InFlag
);
1787 InFlag
= Chain
.getValue(1);
1791 if (Subtarget
->isPICStyleGOT()) {
1792 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1795 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EBX
,
1796 DAG
.getNode(X86ISD::GlobalBaseReg
,
1797 DebugLoc::getUnknownLoc(),
1800 InFlag
= Chain
.getValue(1);
1802 // If we are tail calling and generating PIC/GOT style code load the
1803 // address of the callee into ECX. The value in ecx is used as target of
1804 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1805 // for tail calls on PIC/GOT architectures. Normally we would just put the
1806 // address of GOT into ebx and then call target@PLT. But for tail calls
1807 // ebx would be restored (since ebx is callee saved) before jumping to the
1810 // Note: The actual moving to ECX is done further down.
1811 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
1812 if (G
&& !G
->getGlobal()->hasHiddenVisibility() &&
1813 !G
->getGlobal()->hasProtectedVisibility())
1814 Callee
= LowerGlobalAddress(Callee
, DAG
);
1815 else if (isa
<ExternalSymbolSDNode
>(Callee
))
1816 Callee
= LowerExternalSymbol(Callee
, DAG
);
1820 if (Is64Bit
&& isVarArg
) {
1821 // From AMD64 ABI document:
1822 // For calls that may call functions that use varargs or stdargs
1823 // (prototype-less calls or calls to functions containing ellipsis (...) in
1824 // the declaration) %al is used as hidden argument to specify the number
1825 // of SSE registers used. The contents of %al do not need to match exactly
1826 // the number of registers, but must be an ubound on the number of SSE
1827 // registers used and is in the range 0 - 8 inclusive.
1829 // FIXME: Verify this on Win64
1830 // Count the number of XMM registers allocated.
1831 static const unsigned XMMArgRegs
[] = {
1832 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1833 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1835 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
, 8);
1836 assert((Subtarget
->hasSSE1() || !NumXMMRegs
)
1837 && "SSE registers cannot be used when SSE is disabled");
1839 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
,
1840 DAG
.getConstant(NumXMMRegs
, MVT::i8
), InFlag
);
1841 InFlag
= Chain
.getValue(1);
1845 // For tail calls lower the arguments to the 'real' stack slot.
1847 SmallVector
<SDValue
, 8> MemOpChains2
;
1850 // Do not flag preceeding copytoreg stuff together with the following stuff.
1852 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1853 CCValAssign
&VA
= ArgLocs
[i
];
1854 if (!VA
.isRegLoc()) {
1855 assert(VA
.isMemLoc());
1856 SDValue Arg
= TheCall
->getArg(i
);
1857 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1858 // Create frame index.
1859 int32_t Offset
= VA
.getLocMemOffset()+FPDiff
;
1860 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits()+7)/8;
1861 FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
);
1862 FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1864 if (Flags
.isByVal()) {
1865 // Copy relative to framepointer.
1866 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset());
1867 if (StackPtr
.getNode() == 0)
1868 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
,
1870 Source
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, Source
);
1872 MemOpChains2
.push_back(CreateCopyOfByValArgument(Source
, FIN
, Chain
,
1875 // Store relative to framepointer.
1876 MemOpChains2
.push_back(
1877 DAG
.getStore(Chain
, dl
, Arg
, FIN
,
1878 PseudoSourceValue::getFixedStack(FI
), 0));
1883 if (!MemOpChains2
.empty())
1884 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1885 &MemOpChains2
[0], MemOpChains2
.size());
1887 // Copy arguments to their registers.
1888 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1889 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1890 RegsToPass
[i
].second
, InFlag
);
1891 InFlag
= Chain
.getValue(1);
1895 // Store the return address to the appropriate stack slot.
1896 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetAddrFrIdx
, Is64Bit
,
1900 // If the callee is a GlobalAddress node (quite common, every direct call is)
1901 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1902 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
1903 // We should use extra load for direct calls to dllimported functions in
1905 GlobalValue
*GV
= G
->getGlobal();
1906 if (!GV
->hasDLLImportLinkage()) {
1907 unsigned char OpFlags
= 0;
1909 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1910 // external symbols most go through the PLT in PIC mode. If the symbol
1911 // has hidden or protected visibility, or if it is static or local, then
1912 // we don't need to use the PLT - we can directly call it.
1913 if (Subtarget
->isTargetELF() &&
1914 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1915 GV
->hasDefaultVisibility() && !GV
->hasLocalLinkage()) {
1916 OpFlags
= X86II::MO_PLT
;
1917 } else if (Subtarget
->isPICStyleStubAny() &&
1918 (GV
->isDeclaration() || GV
->isWeakForLinker()) &&
1919 Subtarget
->getDarwinVers() < 9) {
1920 // PC-relative references to external symbols should go through $stub,
1921 // unless we're building with the leopard linker or later, which
1922 // automatically synthesizes these stubs.
1923 OpFlags
= X86II::MO_DARWIN_STUB
;
1926 Callee
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(),
1927 G
->getOffset(), OpFlags
);
1929 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
1930 unsigned char OpFlags
= 0;
1932 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1933 // symbols should go through the PLT.
1934 if (Subtarget
->isTargetELF() &&
1935 getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
1936 OpFlags
= X86II::MO_PLT
;
1937 } else if (Subtarget
->isPICStyleStubAny() &&
1938 Subtarget
->getDarwinVers() < 9) {
1939 // PC-relative references to external symbols should go through $stub,
1940 // unless we're building with the leopard linker or later, which
1941 // automatically synthesizes these stubs.
1942 OpFlags
= X86II::MO_DARWIN_STUB
;
1945 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy(),
1947 } else if (IsTailCall
) {
1948 unsigned Opc
= Is64Bit
? X86::R11
: X86::EAX
;
1950 Chain
= DAG
.getCopyToReg(Chain
, dl
,
1951 DAG
.getRegister(Opc
, getPointerTy()),
1953 Callee
= DAG
.getRegister(Opc
, getPointerTy());
1954 // Add register as live out.
1955 DAG
.getMachineFunction().getRegInfo().addLiveOut(Opc
);
1958 // Returns a chain & a flag for retval copy to use.
1959 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1960 SmallVector
<SDValue
, 8> Ops
;
1963 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
1964 DAG
.getIntPtrConstant(0, true), InFlag
);
1965 InFlag
= Chain
.getValue(1);
1967 // Returns a chain & a flag for retval copy to use.
1968 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1972 Ops
.push_back(Chain
);
1973 Ops
.push_back(Callee
);
1976 Ops
.push_back(DAG
.getConstant(FPDiff
, MVT::i32
));
1978 // Add argument registers to the end of the list so that they are known live
1980 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1981 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1982 RegsToPass
[i
].second
.getValueType()));
1984 // Add an implicit use GOT pointer in EBX.
1985 if (!IsTailCall
&& Subtarget
->isPICStyleGOT())
1986 Ops
.push_back(DAG
.getRegister(X86::EBX
, getPointerTy()));
1988 // Add an implicit use of AL for x86 vararg functions.
1989 if (Is64Bit
&& isVarArg
)
1990 Ops
.push_back(DAG
.getRegister(X86::AL
, MVT::i8
));
1992 if (InFlag
.getNode())
1993 Ops
.push_back(InFlag
);
1996 assert(InFlag
.getNode() &&
1997 "Flag must be set. Depend on flag being set in LowerRET");
1998 Chain
= DAG
.getNode(X86ISD::TAILCALL
, dl
,
1999 TheCall
->getVTList(), &Ops
[0], Ops
.size());
2001 return SDValue(Chain
.getNode(), Op
.getResNo());
2004 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2005 InFlag
= Chain
.getValue(1);
2007 // Create the CALLSEQ_END node.
2008 unsigned NumBytesForCalleeToPush
;
2009 if (IsCalleePop(isVarArg
, CC
))
2010 NumBytesForCalleeToPush
= NumBytes
; // Callee pops everything
2011 else if (!Is64Bit
&& CC
!= CallingConv::Fast
&& IsStructRet
)
2012 // If this is is a call to a struct-return function, the callee
2013 // pops the hidden struct pointer, so we have to push it back.
2014 // This is common for Darwin/X86, Linux & Mingw32 targets.
2015 NumBytesForCalleeToPush
= 4;
2017 NumBytesForCalleeToPush
= 0; // Callee pops nothing.
2019 // Returns a flag for retval copy to use.
2020 Chain
= DAG
.getCALLSEQ_END(Chain
,
2021 DAG
.getIntPtrConstant(NumBytes
, true),
2022 DAG
.getIntPtrConstant(NumBytesForCalleeToPush
,
2025 InFlag
= Chain
.getValue(1);
2027 // Handle result values, copying them out of physregs into vregs that we
2029 return SDValue(LowerCallResult(Chain
, InFlag
, TheCall
, CC
, DAG
),
2034 //===----------------------------------------------------------------------===//
2035 // Fast Calling Convention (tail call) implementation
2036 //===----------------------------------------------------------------------===//
2038 // Like std call, callee cleans arguments, convention except that ECX is
2039 // reserved for storing the tail called function address. Only 2 registers are
2040 // free for argument passing (inreg). Tail call optimization is performed
2042 // * tailcallopt is enabled
2043 // * caller/callee are fastcc
2044 // On X86_64 architecture with GOT-style position independent code only local
2045 // (within module) calls are supported at the moment.
2046 // To keep the stack aligned according to platform abi the function
2047 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2048 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2049 // If a tail called function callee has more arguments than the caller the
2050 // caller needs to make sure that there is room to move the RETADDR to. This is
2051 // achieved by reserving an area the size of the argument delta right after the
2052 // original REtADDR, but before the saved framepointer or the spilled registers
2053 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2065 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2066 /// for a 16 byte align requirement.
2067 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
2068 SelectionDAG
& DAG
) {
2069 MachineFunction
&MF
= DAG
.getMachineFunction();
2070 const TargetMachine
&TM
= MF
.getTarget();
2071 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
2072 unsigned StackAlignment
= TFI
.getStackAlignment();
2073 uint64_t AlignMask
= StackAlignment
- 1;
2074 int64_t Offset
= StackSize
;
2075 uint64_t SlotSize
= TD
->getPointerSize();
2076 if ( (Offset
& AlignMask
) <= (StackAlignment
- SlotSize
) ) {
2077 // Number smaller than 12 so just add the difference.
2078 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
2080 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2081 Offset
= ((~AlignMask
) & Offset
) + StackAlignment
+
2082 (StackAlignment
-SlotSize
);
2087 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
2088 /// following the call is a return. A function is eligible if caller/callee
2089 /// calling conventions match, currently only fastcc supports tail calls, and
2090 /// the function CALL is immediatly followed by a RET.
2091 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode
*TheCall
,
2093 SelectionDAG
& DAG
) const {
2094 if (!PerformTailCallOpt
)
2097 if (CheckTailCallReturnConstraints(TheCall
, Ret
)) {
2099 DAG
.getMachineFunction().getFunction()->getCallingConv();
2100 unsigned CalleeCC
= TheCall
->getCallingConv();
2101 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
)
2109 X86TargetLowering::createFastISel(MachineFunction
&mf
,
2110 MachineModuleInfo
*mmo
,
2112 DenseMap
<const Value
*, unsigned> &vm
,
2113 DenseMap
<const BasicBlock
*,
2114 MachineBasicBlock
*> &bm
,
2115 DenseMap
<const AllocaInst
*, int> &am
2117 , SmallSet
<Instruction
*, 8> &cil
2120 return X86::createFastISel(mf
, mmo
, dw
, vm
, bm
, am
2128 //===----------------------------------------------------------------------===//
2129 // Other Lowering Hooks
2130 //===----------------------------------------------------------------------===//
2133 SDValue
X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) {
2134 MachineFunction
&MF
= DAG
.getMachineFunction();
2135 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
2136 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
2138 if (ReturnAddrIndex
== 0) {
2139 // Set up a frame object for the return address.
2140 uint64_t SlotSize
= TD
->getPointerSize();
2141 ReturnAddrIndex
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, -SlotSize
);
2142 FuncInfo
->setRAIndex(ReturnAddrIndex
);
2145 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy());
2149 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2150 /// specific condition code, returning the condition code and the LHS/RHS of the
2151 /// comparison to make.
2152 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode
, bool isFP
,
2153 SDValue
&LHS
, SDValue
&RHS
, SelectionDAG
&DAG
) {
2155 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
2156 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
2157 // X > -1 -> X == 0, jump !sign.
2158 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2159 return X86::COND_NS
;
2160 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
2161 // X < 0 -> X == 0, jump on sign.
2163 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
2165 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2166 return X86::COND_LE
;
2170 switch (SetCCOpcode
) {
2171 default: llvm_unreachable("Invalid integer condition!");
2172 case ISD::SETEQ
: return X86::COND_E
;
2173 case ISD::SETGT
: return X86::COND_G
;
2174 case ISD::SETGE
: return X86::COND_GE
;
2175 case ISD::SETLT
: return X86::COND_L
;
2176 case ISD::SETLE
: return X86::COND_LE
;
2177 case ISD::SETNE
: return X86::COND_NE
;
2178 case ISD::SETULT
: return X86::COND_B
;
2179 case ISD::SETUGT
: return X86::COND_A
;
2180 case ISD::SETULE
: return X86::COND_BE
;
2181 case ISD::SETUGE
: return X86::COND_AE
;
2185 // First determine if it is required or is profitable to flip the operands.
2187 // If LHS is a foldable load, but RHS is not, flip the condition.
2188 if ((ISD::isNON_EXTLoad(LHS
.getNode()) && LHS
.hasOneUse()) &&
2189 !(ISD::isNON_EXTLoad(RHS
.getNode()) && RHS
.hasOneUse())) {
2190 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
2191 std::swap(LHS
, RHS
);
2194 switch (SetCCOpcode
) {
2200 std::swap(LHS
, RHS
);
2204 // On a floating point condition, the flags are set as follows:
2206 // 0 | 0 | 0 | X > Y
2207 // 0 | 0 | 1 | X < Y
2208 // 1 | 0 | 0 | X == Y
2209 // 1 | 1 | 1 | unordered
2210 switch (SetCCOpcode
) {
2211 default: llvm_unreachable("Condcode should be pre-legalized away");
2213 case ISD::SETEQ
: return X86::COND_E
;
2214 case ISD::SETOLT
: // flipped
2216 case ISD::SETGT
: return X86::COND_A
;
2217 case ISD::SETOLE
: // flipped
2219 case ISD::SETGE
: return X86::COND_AE
;
2220 case ISD::SETUGT
: // flipped
2222 case ISD::SETLT
: return X86::COND_B
;
2223 case ISD::SETUGE
: // flipped
2225 case ISD::SETLE
: return X86::COND_BE
;
2227 case ISD::SETNE
: return X86::COND_NE
;
2228 case ISD::SETUO
: return X86::COND_P
;
2229 case ISD::SETO
: return X86::COND_NP
;
2233 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2234 /// code. Current x86 isa includes the following FP cmov instructions:
2235 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2236 static bool hasFPCMov(unsigned X86CC
) {
2252 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2253 /// the specified range (L, H].
2254 static bool isUndefOrInRange(int Val
, int Low
, int Hi
) {
2255 return (Val
< 0) || (Val
>= Low
&& Val
< Hi
);
2258 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2259 /// specified value.
2260 static bool isUndefOrEqual(int Val
, int CmpVal
) {
2261 if (Val
< 0 || Val
== CmpVal
)
2266 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2267 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2268 /// the second operand.
2269 static bool isPSHUFDMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2270 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
|| VT
== MVT::v4i16
)
2271 return (Mask
[0] < 4 && Mask
[1] < 4 && Mask
[2] < 4 && Mask
[3] < 4);
2272 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
2273 return (Mask
[0] < 2 && Mask
[1] < 2);
2277 bool X86::isPSHUFDMask(ShuffleVectorSDNode
*N
) {
2278 SmallVector
<int, 8> M
;
2280 return ::isPSHUFDMask(M
, N
->getValueType(0));
2283 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2284 /// is suitable for input to PSHUFHW.
2285 static bool isPSHUFHWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2286 if (VT
!= MVT::v8i16
)
2289 // Lower quadword copied in order or undef.
2290 for (int i
= 0; i
!= 4; ++i
)
2291 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2294 // Upper quadword shuffled.
2295 for (int i
= 4; i
!= 8; ++i
)
2296 if (Mask
[i
] >= 0 && (Mask
[i
] < 4 || Mask
[i
] > 7))
2302 bool X86::isPSHUFHWMask(ShuffleVectorSDNode
*N
) {
2303 SmallVector
<int, 8> M
;
2305 return ::isPSHUFHWMask(M
, N
->getValueType(0));
2308 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2309 /// is suitable for input to PSHUFLW.
2310 static bool isPSHUFLWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2311 if (VT
!= MVT::v8i16
)
2314 // Upper quadword copied in order.
2315 for (int i
= 4; i
!= 8; ++i
)
2316 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2319 // Lower quadword shuffled.
2320 for (int i
= 0; i
!= 4; ++i
)
2327 bool X86::isPSHUFLWMask(ShuffleVectorSDNode
*N
) {
2328 SmallVector
<int, 8> M
;
2330 return ::isPSHUFLWMask(M
, N
->getValueType(0));
2333 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2334 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2335 static bool isSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2336 int NumElems
= VT
.getVectorNumElements();
2337 if (NumElems
!= 2 && NumElems
!= 4)
2340 int Half
= NumElems
/ 2;
2341 for (int i
= 0; i
< Half
; ++i
)
2342 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2344 for (int i
= Half
; i
< NumElems
; ++i
)
2345 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2351 bool X86::isSHUFPMask(ShuffleVectorSDNode
*N
) {
2352 SmallVector
<int, 8> M
;
2354 return ::isSHUFPMask(M
, N
->getValueType(0));
2357 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2358 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2359 /// half elements to come from vector 1 (which would equal the dest.) and
2360 /// the upper half to come from vector 2.
2361 static bool isCommutedSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2362 int NumElems
= VT
.getVectorNumElements();
2364 if (NumElems
!= 2 && NumElems
!= 4)
2367 int Half
= NumElems
/ 2;
2368 for (int i
= 0; i
< Half
; ++i
)
2369 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2371 for (int i
= Half
; i
< NumElems
; ++i
)
2372 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2377 static bool isCommutedSHUFP(ShuffleVectorSDNode
*N
) {
2378 SmallVector
<int, 8> M
;
2380 return isCommutedSHUFPMask(M
, N
->getValueType(0));
2383 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2384 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2385 bool X86::isMOVHLPSMask(ShuffleVectorSDNode
*N
) {
2386 if (N
->getValueType(0).getVectorNumElements() != 4)
2389 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2390 return isUndefOrEqual(N
->getMaskElt(0), 6) &&
2391 isUndefOrEqual(N
->getMaskElt(1), 7) &&
2392 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2393 isUndefOrEqual(N
->getMaskElt(3), 3);
2396 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2397 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2398 bool X86::isMOVLPMask(ShuffleVectorSDNode
*N
) {
2399 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2401 if (NumElems
!= 2 && NumElems
!= 4)
2404 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2405 if (!isUndefOrEqual(N
->getMaskElt(i
), i
+ NumElems
))
2408 for (unsigned i
= NumElems
/2; i
< NumElems
; ++i
)
2409 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2415 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2416 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2418 bool X86::isMOVHPMask(ShuffleVectorSDNode
*N
) {
2419 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2421 if (NumElems
!= 2 && NumElems
!= 4)
2424 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2425 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2428 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2429 if (!isUndefOrEqual(N
->getMaskElt(i
+ NumElems
/2), i
+ NumElems
))
2435 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2436 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2438 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2439 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2444 return isUndefOrEqual(N
->getMaskElt(0), 2) &&
2445 isUndefOrEqual(N
->getMaskElt(1), 3) &&
2446 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2447 isUndefOrEqual(N
->getMaskElt(3), 3);
2450 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2451 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2452 static bool isUNPCKLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2453 bool V2IsSplat
= false) {
2454 int NumElts
= VT
.getVectorNumElements();
2455 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2458 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2460 int BitI1
= Mask
[i
+1];
2461 if (!isUndefOrEqual(BitI
, j
))
2464 if (!isUndefOrEqual(BitI1
, NumElts
))
2467 if (!isUndefOrEqual(BitI1
, j
+ NumElts
))
2474 bool X86::isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2475 SmallVector
<int, 8> M
;
2477 return ::isUNPCKLMask(M
, N
->getValueType(0), V2IsSplat
);
2480 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2481 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2482 static bool isUNPCKHMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2483 bool V2IsSplat
= false) {
2484 int NumElts
= VT
.getVectorNumElements();
2485 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2488 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2490 int BitI1
= Mask
[i
+1];
2491 if (!isUndefOrEqual(BitI
, j
+ NumElts
/2))
2494 if (isUndefOrEqual(BitI1
, NumElts
))
2497 if (!isUndefOrEqual(BitI1
, j
+ NumElts
/2 + NumElts
))
2504 bool X86::isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2505 SmallVector
<int, 8> M
;
2507 return ::isUNPCKHMask(M
, N
->getValueType(0), V2IsSplat
);
2510 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2511 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2513 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2514 int NumElems
= VT
.getVectorNumElements();
2515 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2518 for (int i
= 0, j
= 0; i
!= NumElems
; i
+= 2, ++j
) {
2520 int BitI1
= Mask
[i
+1];
2521 if (!isUndefOrEqual(BitI
, j
))
2523 if (!isUndefOrEqual(BitI1
, j
))
2529 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2530 SmallVector
<int, 8> M
;
2532 return ::isUNPCKL_v_undef_Mask(M
, N
->getValueType(0));
2535 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2536 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2538 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2539 int NumElems
= VT
.getVectorNumElements();
2540 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2543 for (int i
= 0, j
= NumElems
/ 2; i
!= NumElems
; i
+= 2, ++j
) {
2545 int BitI1
= Mask
[i
+1];
2546 if (!isUndefOrEqual(BitI
, j
))
2548 if (!isUndefOrEqual(BitI1
, j
))
2554 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2555 SmallVector
<int, 8> M
;
2557 return ::isUNPCKH_v_undef_Mask(M
, N
->getValueType(0));
2560 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2561 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2562 /// MOVSD, and MOVD, i.e. setting the lowest element.
2563 static bool isMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2564 if (VT
.getVectorElementType().getSizeInBits() < 32)
2567 int NumElts
= VT
.getVectorNumElements();
2569 if (!isUndefOrEqual(Mask
[0], NumElts
))
2572 for (int i
= 1; i
< NumElts
; ++i
)
2573 if (!isUndefOrEqual(Mask
[i
], i
))
2579 bool X86::isMOVLMask(ShuffleVectorSDNode
*N
) {
2580 SmallVector
<int, 8> M
;
2582 return ::isMOVLMask(M
, N
->getValueType(0));
2585 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2586 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2587 /// element of vector 2 and the other elements to come from vector 1 in order.
2588 static bool isCommutedMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2589 bool V2IsSplat
= false, bool V2IsUndef
= false) {
2590 int NumOps
= VT
.getVectorNumElements();
2591 if (NumOps
!= 2 && NumOps
!= 4 && NumOps
!= 8 && NumOps
!= 16)
2594 if (!isUndefOrEqual(Mask
[0], 0))
2597 for (int i
= 1; i
< NumOps
; ++i
)
2598 if (!(isUndefOrEqual(Mask
[i
], i
+NumOps
) ||
2599 (V2IsUndef
&& isUndefOrInRange(Mask
[i
], NumOps
, NumOps
*2)) ||
2600 (V2IsSplat
&& isUndefOrEqual(Mask
[i
], NumOps
))))
2606 static bool isCommutedMOVL(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false,
2607 bool V2IsUndef
= false) {
2608 SmallVector
<int, 8> M
;
2610 return isCommutedMOVLMask(M
, N
->getValueType(0), V2IsSplat
, V2IsUndef
);
2613 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2614 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2615 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode
*N
) {
2616 if (N
->getValueType(0).getVectorNumElements() != 4)
2619 // Expect 1, 1, 3, 3
2620 for (unsigned i
= 0; i
< 2; ++i
) {
2621 int Elt
= N
->getMaskElt(i
);
2622 if (Elt
>= 0 && Elt
!= 1)
2627 for (unsigned i
= 2; i
< 4; ++i
) {
2628 int Elt
= N
->getMaskElt(i
);
2629 if (Elt
>= 0 && Elt
!= 3)
2634 // Don't use movshdup if it can be done with a shufps.
2635 // FIXME: verify that matching u, u, 3, 3 is what we want.
2639 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2640 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2641 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode
*N
) {
2642 if (N
->getValueType(0).getVectorNumElements() != 4)
2645 // Expect 0, 0, 2, 2
2646 for (unsigned i
= 0; i
< 2; ++i
)
2647 if (N
->getMaskElt(i
) > 0)
2651 for (unsigned i
= 2; i
< 4; ++i
) {
2652 int Elt
= N
->getMaskElt(i
);
2653 if (Elt
>= 0 && Elt
!= 2)
2658 // Don't use movsldup if it can be done with a shufps.
2662 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2663 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2664 bool X86::isMOVDDUPMask(ShuffleVectorSDNode
*N
) {
2665 int e
= N
->getValueType(0).getVectorNumElements() / 2;
2667 for (int i
= 0; i
< e
; ++i
)
2668 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2670 for (int i
= 0; i
< e
; ++i
)
2671 if (!isUndefOrEqual(N
->getMaskElt(e
+i
), i
))
2676 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2677 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2679 unsigned X86::getShuffleSHUFImmediate(SDNode
*N
) {
2680 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2681 int NumOperands
= SVOp
->getValueType(0).getVectorNumElements();
2683 unsigned Shift
= (NumOperands
== 4) ? 2 : 1;
2685 for (int i
= 0; i
< NumOperands
; ++i
) {
2686 int Val
= SVOp
->getMaskElt(NumOperands
-i
-1);
2687 if (Val
< 0) Val
= 0;
2688 if (Val
>= NumOperands
) Val
-= NumOperands
;
2690 if (i
!= NumOperands
- 1)
2696 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2697 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2699 unsigned X86::getShufflePSHUFHWImmediate(SDNode
*N
) {
2700 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2702 // 8 nodes, but we only care about the last 4.
2703 for (unsigned i
= 7; i
>= 4; --i
) {
2704 int Val
= SVOp
->getMaskElt(i
);
2713 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2714 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2716 unsigned X86::getShufflePSHUFLWImmediate(SDNode
*N
) {
2717 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2719 // 8 nodes, but we only care about the first 4.
2720 for (int i
= 3; i
>= 0; --i
) {
2721 int Val
= SVOp
->getMaskElt(i
);
2730 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2731 /// their permute mask.
2732 static SDValue
CommuteVectorShuffle(ShuffleVectorSDNode
*SVOp
,
2733 SelectionDAG
&DAG
) {
2734 MVT VT
= SVOp
->getValueType(0);
2735 unsigned NumElems
= VT
.getVectorNumElements();
2736 SmallVector
<int, 8> MaskVec
;
2738 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2739 int idx
= SVOp
->getMaskElt(i
);
2741 MaskVec
.push_back(idx
);
2742 else if (idx
< (int)NumElems
)
2743 MaskVec
.push_back(idx
+ NumElems
);
2745 MaskVec
.push_back(idx
- NumElems
);
2747 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(1),
2748 SVOp
->getOperand(0), &MaskVec
[0]);
2751 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2752 /// the two vector operands have swapped position.
2753 static void CommuteVectorShuffleMask(SmallVectorImpl
<int> &Mask
, MVT VT
) {
2754 unsigned NumElems
= VT
.getVectorNumElements();
2755 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2759 else if (idx
< (int)NumElems
)
2760 Mask
[i
] = idx
+ NumElems
;
2762 Mask
[i
] = idx
- NumElems
;
2766 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2767 /// match movhlps. The lower half elements should come from upper half of
2768 /// V1 (and in order), and the upper half elements should come from the upper
2769 /// half of V2 (and in order).
2770 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode
*Op
) {
2771 if (Op
->getValueType(0).getVectorNumElements() != 4)
2773 for (unsigned i
= 0, e
= 2; i
!= e
; ++i
)
2774 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+2))
2776 for (unsigned i
= 2; i
!= 4; ++i
)
2777 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+4))
2782 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2783 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2785 static bool isScalarLoadToVector(SDNode
*N
, LoadSDNode
**LD
= NULL
) {
2786 if (N
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
2788 N
= N
->getOperand(0).getNode();
2789 if (!ISD::isNON_EXTLoad(N
))
2792 *LD
= cast
<LoadSDNode
>(N
);
2796 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2797 /// match movlp{s|d}. The lower half elements should come from lower half of
2798 /// V1 (and in order), and the upper half elements should come from the upper
2799 /// half of V2 (and in order). And since V1 will become the source of the
2800 /// MOVLP, it must be either a vector load or a scalar load to vector.
2801 static bool ShouldXformToMOVLP(SDNode
*V1
, SDNode
*V2
,
2802 ShuffleVectorSDNode
*Op
) {
2803 if (!ISD::isNON_EXTLoad(V1
) && !isScalarLoadToVector(V1
))
2805 // Is V2 is a vector load, don't do this transformation. We will try to use
2806 // load folding shufps op.
2807 if (ISD::isNON_EXTLoad(V2
))
2810 unsigned NumElems
= Op
->getValueType(0).getVectorNumElements();
2812 if (NumElems
!= 2 && NumElems
!= 4)
2814 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
)
2815 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
))
2817 for (unsigned i
= NumElems
/2; i
!= NumElems
; ++i
)
2818 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+NumElems
))
2823 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2825 static bool isSplatVector(SDNode
*N
) {
2826 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2829 SDValue SplatValue
= N
->getOperand(0);
2830 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
2831 if (N
->getOperand(i
) != SplatValue
)
2836 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2838 static inline bool isZeroNode(SDValue Elt
) {
2839 return ((isa
<ConstantSDNode
>(Elt
) &&
2840 cast
<ConstantSDNode
>(Elt
)->getZExtValue() == 0) ||
2841 (isa
<ConstantFPSDNode
>(Elt
) &&
2842 cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().isPosZero()));
2845 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2846 /// to an zero vector.
2847 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2848 static bool isZeroShuffle(ShuffleVectorSDNode
*N
) {
2849 SDValue V1
= N
->getOperand(0);
2850 SDValue V2
= N
->getOperand(1);
2851 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2852 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2853 int Idx
= N
->getMaskElt(i
);
2854 if (Idx
>= (int)NumElems
) {
2855 unsigned Opc
= V2
.getOpcode();
2856 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V2
.getNode()))
2858 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V2
.getOperand(Idx
-NumElems
)))
2860 } else if (Idx
>= 0) {
2861 unsigned Opc
= V1
.getOpcode();
2862 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V1
.getNode()))
2864 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V1
.getOperand(Idx
)))
2871 /// getZeroVector - Returns a vector of specified type with all zero elements.
2873 static SDValue
getZeroVector(MVT VT
, bool HasSSE2
, SelectionDAG
&DAG
,
2875 assert(VT
.isVector() && "Expected a vector type");
2877 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2878 // type. This ensures they get CSE'd.
2880 if (VT
.getSizeInBits() == 64) { // MMX
2881 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2882 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2883 } else if (HasSSE2
) { // SSE2
2884 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2885 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2887 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
2888 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Cst
, Cst
, Cst
, Cst
);
2890 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2893 /// getOnesVector - Returns a vector of specified type with all bits set.
2895 static SDValue
getOnesVector(MVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
2896 assert(VT
.isVector() && "Expected a vector type");
2898 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2899 // type. This ensures they get CSE'd.
2900 SDValue Cst
= DAG
.getTargetConstant(~0U, MVT::i32
);
2902 if (VT
.getSizeInBits() == 64) // MMX
2903 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2905 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2906 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2910 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2911 /// that point to V2 points to its first element.
2912 static SDValue
NormalizeMask(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
2913 MVT VT
= SVOp
->getValueType(0);
2914 unsigned NumElems
= VT
.getVectorNumElements();
2916 bool Changed
= false;
2917 SmallVector
<int, 8> MaskVec
;
2918 SVOp
->getMask(MaskVec
);
2920 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2921 if (MaskVec
[i
] > (int)NumElems
) {
2922 MaskVec
[i
] = NumElems
;
2927 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(0),
2928 SVOp
->getOperand(1), &MaskVec
[0]);
2929 return SDValue(SVOp
, 0);
2932 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2933 /// operation of specified width.
2934 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2936 unsigned NumElems
= VT
.getVectorNumElements();
2937 SmallVector
<int, 8> Mask
;
2938 Mask
.push_back(NumElems
);
2939 for (unsigned i
= 1; i
!= NumElems
; ++i
)
2941 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2944 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2945 static SDValue
getUnpackl(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2947 unsigned NumElems
= VT
.getVectorNumElements();
2948 SmallVector
<int, 8> Mask
;
2949 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
) {
2951 Mask
.push_back(i
+ NumElems
);
2953 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2956 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2957 static SDValue
getUnpackh(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2959 unsigned NumElems
= VT
.getVectorNumElements();
2960 unsigned Half
= NumElems
/2;
2961 SmallVector
<int, 8> Mask
;
2962 for (unsigned i
= 0; i
!= Half
; ++i
) {
2963 Mask
.push_back(i
+ Half
);
2964 Mask
.push_back(i
+ NumElems
+ Half
);
2966 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2969 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2970 static SDValue
PromoteSplat(ShuffleVectorSDNode
*SV
, SelectionDAG
&DAG
,
2972 if (SV
->getValueType(0).getVectorNumElements() <= 4)
2973 return SDValue(SV
, 0);
2975 MVT PVT
= MVT::v4f32
;
2976 MVT VT
= SV
->getValueType(0);
2977 DebugLoc dl
= SV
->getDebugLoc();
2978 SDValue V1
= SV
->getOperand(0);
2979 int NumElems
= VT
.getVectorNumElements();
2980 int EltNo
= SV
->getSplatIndex();
2982 // unpack elements to the correct location
2983 while (NumElems
> 4) {
2984 if (EltNo
< NumElems
/2) {
2985 V1
= getUnpackl(DAG
, dl
, VT
, V1
, V1
);
2987 V1
= getUnpackh(DAG
, dl
, VT
, V1
, V1
);
2988 EltNo
-= NumElems
/2;
2993 // Perform the splat.
2994 int SplatMask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
2995 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PVT
, V1
);
2996 V1
= DAG
.getVectorShuffle(PVT
, dl
, V1
, DAG
.getUNDEF(PVT
), &SplatMask
[0]);
2997 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, V1
);
3000 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3001 /// vector of zero or undef vector. This produces a shuffle where the low
3002 /// element of V2 is swizzled into the zero/undef vector, landing at element
3003 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3004 static SDValue
getShuffleVectorZeroOrUndef(SDValue V2
, unsigned Idx
,
3005 bool isZero
, bool HasSSE2
,
3006 SelectionDAG
&DAG
) {
3007 MVT VT
= V2
.getValueType();
3009 ? getZeroVector(VT
, HasSSE2
, DAG
, V2
.getDebugLoc()) : DAG
.getUNDEF(VT
);
3010 unsigned NumElems
= VT
.getVectorNumElements();
3011 SmallVector
<int, 16> MaskVec
;
3012 for (unsigned i
= 0; i
!= NumElems
; ++i
)
3013 // If this is the insertion idx, put the low elt of V2 here.
3014 MaskVec
.push_back(i
== Idx
? NumElems
: i
);
3015 return DAG
.getVectorShuffle(VT
, V2
.getDebugLoc(), V1
, V2
, &MaskVec
[0]);
3018 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3019 /// a shuffle that is zero.
3021 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode
*SVOp
, int NumElems
,
3022 bool Low
, SelectionDAG
&DAG
) {
3023 unsigned NumZeros
= 0;
3024 for (int i
= 0; i
< NumElems
; ++i
) {
3025 unsigned Index
= Low
? i
: NumElems
-i
-1;
3026 int Idx
= SVOp
->getMaskElt(Index
);
3031 SDValue Elt
= DAG
.getShuffleScalarElt(SVOp
, Index
);
3032 if (Elt
.getNode() && isZeroNode(Elt
))
3040 /// isVectorShift - Returns true if the shuffle can be implemented as a
3041 /// logical left or right shift of a vector.
3042 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3043 static bool isVectorShift(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
3044 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
3045 int NumElems
= SVOp
->getValueType(0).getVectorNumElements();
3048 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, true, DAG
);
3051 NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, false, DAG
);
3055 bool SeenV1
= false;
3056 bool SeenV2
= false;
3057 for (int i
= NumZeros
; i
< NumElems
; ++i
) {
3058 int Val
= isLeft
? (i
- NumZeros
) : i
;
3059 int Idx
= SVOp
->getMaskElt(isLeft
? i
: (i
- NumZeros
));
3071 if (SeenV1
&& SeenV2
)
3074 ShVal
= SeenV1
? SVOp
->getOperand(0) : SVOp
->getOperand(1);
3080 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3082 static SDValue
LowerBuildVectorv16i8(SDValue Op
, unsigned NonZeros
,
3083 unsigned NumNonZero
, unsigned NumZero
,
3084 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3088 DebugLoc dl
= Op
.getDebugLoc();
3091 for (unsigned i
= 0; i
< 16; ++i
) {
3092 bool ThisIsNonZero
= (NonZeros
& (1 << i
)) != 0;
3093 if (ThisIsNonZero
&& First
) {
3095 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3097 V
= DAG
.getUNDEF(MVT::v8i16
);
3102 SDValue
ThisElt(0, 0), LastElt(0, 0);
3103 bool LastIsNonZero
= (NonZeros
& (1 << (i
-1))) != 0;
3104 if (LastIsNonZero
) {
3105 LastElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
3106 MVT::i16
, Op
.getOperand(i
-1));
3108 if (ThisIsNonZero
) {
3109 ThisElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i16
, Op
.getOperand(i
));
3110 ThisElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
,
3111 ThisElt
, DAG
.getConstant(8, MVT::i8
));
3113 ThisElt
= DAG
.getNode(ISD::OR
, dl
, MVT::i16
, ThisElt
, LastElt
);
3117 if (ThisElt
.getNode())
3118 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, V
, ThisElt
,
3119 DAG
.getIntPtrConstant(i
/2));
3123 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V
);
3126 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3128 static SDValue
LowerBuildVectorv8i16(SDValue Op
, unsigned NonZeros
,
3129 unsigned NumNonZero
, unsigned NumZero
,
3130 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3134 DebugLoc dl
= Op
.getDebugLoc();
3137 for (unsigned i
= 0; i
< 8; ++i
) {
3138 bool isNonZero
= (NonZeros
& (1 << i
)) != 0;
3142 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3144 V
= DAG
.getUNDEF(MVT::v8i16
);
3147 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
,
3148 MVT::v8i16
, V
, Op
.getOperand(i
),
3149 DAG
.getIntPtrConstant(i
));
3156 /// getVShift - Return a vector logical shift node.
3158 static SDValue
getVShift(bool isLeft
, MVT VT
, SDValue SrcOp
,
3159 unsigned NumBits
, SelectionDAG
&DAG
,
3160 const TargetLowering
&TLI
, DebugLoc dl
) {
3161 bool isMMX
= VT
.getSizeInBits() == 64;
3162 MVT ShVT
= isMMX
? MVT::v1i64
: MVT::v2i64
;
3163 unsigned Opc
= isLeft
? X86ISD::VSHL
: X86ISD::VSRL
;
3164 SrcOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ShVT
, SrcOp
);
3165 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3166 DAG
.getNode(Opc
, dl
, ShVT
, SrcOp
,
3167 DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy())));
3171 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
3172 DebugLoc dl
= Op
.getDebugLoc();
3173 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3174 if (ISD::isBuildVectorAllZeros(Op
.getNode())
3175 || ISD::isBuildVectorAllOnes(Op
.getNode())) {
3176 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3177 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3178 // eliminated on x86-32 hosts.
3179 if (Op
.getValueType() == MVT::v4i32
|| Op
.getValueType() == MVT::v2i32
)
3182 if (ISD::isBuildVectorAllOnes(Op
.getNode()))
3183 return getOnesVector(Op
.getValueType(), DAG
, dl
);
3184 return getZeroVector(Op
.getValueType(), Subtarget
->hasSSE2(), DAG
, dl
);
3187 MVT VT
= Op
.getValueType();
3188 MVT EVT
= VT
.getVectorElementType();
3189 unsigned EVTBits
= EVT
.getSizeInBits();
3191 unsigned NumElems
= Op
.getNumOperands();
3192 unsigned NumZero
= 0;
3193 unsigned NumNonZero
= 0;
3194 unsigned NonZeros
= 0;
3195 bool IsAllConstants
= true;
3196 SmallSet
<SDValue
, 8> Values
;
3197 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3198 SDValue Elt
= Op
.getOperand(i
);
3199 if (Elt
.getOpcode() == ISD::UNDEF
)
3202 if (Elt
.getOpcode() != ISD::Constant
&&
3203 Elt
.getOpcode() != ISD::ConstantFP
)
3204 IsAllConstants
= false;
3205 if (isZeroNode(Elt
))
3208 NonZeros
|= (1 << i
);
3213 if (NumNonZero
== 0) {
3214 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3215 return DAG
.getUNDEF(VT
);
3218 // Special case for single non-zero, non-undef, element.
3219 if (NumNonZero
== 1) {
3220 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3221 SDValue Item
= Op
.getOperand(Idx
);
3223 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3224 // the value are obviously zero, truncate the value to i32 and do the
3225 // insertion that way. Only do this if the value is non-constant or if the
3226 // value is a constant being inserted into element 0. It is cheaper to do
3227 // a constant pool load than it is to do a movd + shuffle.
3228 if (EVT
== MVT::i64
&& !Subtarget
->is64Bit() &&
3229 (!IsAllConstants
|| Idx
== 0)) {
3230 if (DAG
.MaskedValueIsZero(Item
, APInt::getBitsSet(64, 32, 64))) {
3231 // Handle MMX and SSE both.
3232 MVT VecVT
= VT
== MVT::v2i64
? MVT::v4i32
: MVT::v2i32
;
3233 unsigned VecElts
= VT
== MVT::v2i64
? 4 : 2;
3235 // Truncate the value (which may itself be a constant) to i32, and
3236 // convert it to a vector with movd (S2V+shuffle to zero extend).
3237 Item
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Item
);
3238 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecVT
, Item
);
3239 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3240 Subtarget
->hasSSE2(), DAG
);
3242 // Now we have our 32-bit value zero extended in the low element of
3243 // a vector. If Idx != 0, swizzle it into place.
3245 SmallVector
<int, 4> Mask
;
3246 Mask
.push_back(Idx
);
3247 for (unsigned i
= 1; i
!= VecElts
; ++i
)
3249 Item
= DAG
.getVectorShuffle(VecVT
, dl
, Item
,
3250 DAG
.getUNDEF(Item
.getValueType()),
3253 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Item
);
3257 // If we have a constant or non-constant insertion into the low element of
3258 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3259 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3260 // depending on what the source datatype is.
3263 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3264 } else if (EVT
== MVT::i32
|| EVT
== MVT::f32
|| EVT
== MVT::f64
||
3265 (EVT
== MVT::i64
&& Subtarget
->is64Bit())) {
3266 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3267 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3268 return getShuffleVectorZeroOrUndef(Item
, 0, true, Subtarget
->hasSSE2(),
3270 } else if (EVT
== MVT::i16
|| EVT
== MVT::i8
) {
3271 Item
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Item
);
3272 MVT MiddleVT
= VT
.getSizeInBits() == 64 ? MVT::v2i32
: MVT::v4i32
;
3273 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MiddleVT
, Item
);
3274 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3275 Subtarget
->hasSSE2(), DAG
);
3276 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Item
);
3280 // Is it a vector logical left shift?
3281 if (NumElems
== 2 && Idx
== 1 &&
3282 isZeroNode(Op
.getOperand(0)) && !isZeroNode(Op
.getOperand(1))) {
3283 unsigned NumBits
= VT
.getSizeInBits();
3284 return getVShift(true, VT
,
3285 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3286 VT
, Op
.getOperand(1)),
3287 NumBits
/2, DAG
, *this, dl
);
3290 if (IsAllConstants
) // Otherwise, it's better to do a constpool load.
3293 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3294 // is a non-constant being inserted into an element other than the low one,
3295 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3296 // movd/movss) to move this into the low element, then shuffle it into
3298 if (EVTBits
== 32) {
3299 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3301 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3302 Item
= getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3303 Subtarget
->hasSSE2(), DAG
);
3304 SmallVector
<int, 8> MaskVec
;
3305 for (unsigned i
= 0; i
< NumElems
; i
++)
3306 MaskVec
.push_back(i
== Idx
? 0 : 1);
3307 return DAG
.getVectorShuffle(VT
, dl
, Item
, DAG
.getUNDEF(VT
), &MaskVec
[0]);
3311 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3312 if (Values
.size() == 1)
3315 // A vector full of immediates; various special cases are already
3316 // handled, so this is best done with a single constant-pool load.
3320 // Let legalizer expand 2-wide build_vectors.
3321 if (EVTBits
== 64) {
3322 if (NumNonZero
== 1) {
3323 // One half is zero or undef.
3324 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3325 SDValue V2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
,
3326 Op
.getOperand(Idx
));
3327 return getShuffleVectorZeroOrUndef(V2
, Idx
, true,
3328 Subtarget
->hasSSE2(), DAG
);
3333 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3334 if (EVTBits
== 8 && NumElems
== 16) {
3335 SDValue V
= LowerBuildVectorv16i8(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3337 if (V
.getNode()) return V
;
3340 if (EVTBits
== 16 && NumElems
== 8) {
3341 SDValue V
= LowerBuildVectorv8i16(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3343 if (V
.getNode()) return V
;
3346 // If element VT is == 32 bits, turn it into a number of shuffles.
3347 SmallVector
<SDValue
, 8> V
;
3349 if (NumElems
== 4 && NumZero
> 0) {
3350 for (unsigned i
= 0; i
< 4; ++i
) {
3351 bool isZero
= !(NonZeros
& (1 << i
));
3353 V
[i
] = getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3355 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3358 for (unsigned i
= 0; i
< 2; ++i
) {
3359 switch ((NonZeros
& (0x3 << i
*2)) >> (i
*2)) {
3362 V
[i
] = V
[i
*2]; // Must be a zero vector.
3365 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2+1], V
[i
*2]);
3368 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3371 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3376 SmallVector
<int, 8> MaskVec
;
3377 bool Reverse
= (NonZeros
& 0x3) == 2;
3378 for (unsigned i
= 0; i
< 2; ++i
)
3379 MaskVec
.push_back(Reverse
? 1-i
: i
);
3380 Reverse
= ((NonZeros
& (0x3 << 2)) >> 2) == 2;
3381 for (unsigned i
= 0; i
< 2; ++i
)
3382 MaskVec
.push_back(Reverse
? 1-i
+NumElems
: i
+NumElems
);
3383 return DAG
.getVectorShuffle(VT
, dl
, V
[0], V
[1], &MaskVec
[0]);
3386 if (Values
.size() > 2) {
3387 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3388 // values to be inserted is equal to the number of elements, in which case
3389 // use the unpack code below in the hopes of matching the consecutive elts
3390 // load merge pattern for shuffles.
3391 // FIXME: We could probably just check that here directly.
3392 if (Values
.size() < NumElems
&& VT
.getSizeInBits() == 128 &&
3393 getSubtarget()->hasSSE41()) {
3394 V
[0] = DAG
.getUNDEF(VT
);
3395 for (unsigned i
= 0; i
< NumElems
; ++i
)
3396 if (Op
.getOperand(i
).getOpcode() != ISD::UNDEF
)
3397 V
[0] = DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, V
[0],
3398 Op
.getOperand(i
), DAG
.getIntPtrConstant(i
));
3401 // Expand into a number of unpckl*.
3403 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3404 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3405 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3406 for (unsigned i
= 0; i
< NumElems
; ++i
)
3407 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3409 while (NumElems
!= 0) {
3410 for (unsigned i
= 0; i
< NumElems
; ++i
)
3411 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
], V
[i
+ NumElems
]);
3420 // v8i16 shuffles - Prefer shuffles in the following order:
3421 // 1. [all] pshuflw, pshufhw, optional move
3422 // 2. [ssse3] 1 x pshufb
3423 // 3. [ssse3] 2 x pshufb + 1 x por
3424 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3426 SDValue
LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode
*SVOp
,
3427 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3428 SDValue V1
= SVOp
->getOperand(0);
3429 SDValue V2
= SVOp
->getOperand(1);
3430 DebugLoc dl
= SVOp
->getDebugLoc();
3431 SmallVector
<int, 8> MaskVals
;
3433 // Determine if more than 1 of the words in each of the low and high quadwords
3434 // of the result come from the same quadword of one of the two inputs. Undef
3435 // mask values count as coming from any quadword, for better codegen.
3436 SmallVector
<unsigned, 4> LoQuad(4);
3437 SmallVector
<unsigned, 4> HiQuad(4);
3438 BitVector
InputQuads(4);
3439 for (unsigned i
= 0; i
< 8; ++i
) {
3440 SmallVectorImpl
<unsigned> &Quad
= i
< 4 ? LoQuad
: HiQuad
;
3441 int EltIdx
= SVOp
->getMaskElt(i
);
3442 MaskVals
.push_back(EltIdx
);
3451 InputQuads
.set(EltIdx
/ 4);
3454 int BestLoQuad
= -1;
3455 unsigned MaxQuad
= 1;
3456 for (unsigned i
= 0; i
< 4; ++i
) {
3457 if (LoQuad
[i
] > MaxQuad
) {
3459 MaxQuad
= LoQuad
[i
];
3463 int BestHiQuad
= -1;
3465 for (unsigned i
= 0; i
< 4; ++i
) {
3466 if (HiQuad
[i
] > MaxQuad
) {
3468 MaxQuad
= HiQuad
[i
];
3472 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3473 // of the two input vectors, shuffle them into one input vector so only a
3474 // single pshufb instruction is necessary. If There are more than 2 input
3475 // quads, disable the next transformation since it does not help SSSE3.
3476 bool V1Used
= InputQuads
[0] || InputQuads
[1];
3477 bool V2Used
= InputQuads
[2] || InputQuads
[3];
3478 if (TLI
.getSubtarget()->hasSSSE3()) {
3479 if (InputQuads
.count() == 2 && V1Used
&& V2Used
) {
3480 BestLoQuad
= InputQuads
.find_first();
3481 BestHiQuad
= InputQuads
.find_next(BestLoQuad
);
3483 if (InputQuads
.count() > 2) {
3489 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3490 // the shuffle mask. If a quad is scored as -1, that means that it contains
3491 // words from all 4 input quadwords.
3493 if (BestLoQuad
>= 0 || BestHiQuad
>= 0) {
3494 SmallVector
<int, 8> MaskV
;
3495 MaskV
.push_back(BestLoQuad
< 0 ? 0 : BestLoQuad
);
3496 MaskV
.push_back(BestHiQuad
< 0 ? 1 : BestHiQuad
);
3497 NewV
= DAG
.getVectorShuffle(MVT::v2i64
, dl
,
3498 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V1
),
3499 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V2
), &MaskV
[0]);
3500 NewV
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, NewV
);
3502 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3503 // source words for the shuffle, to aid later transformations.
3504 bool AllWordsInNewV
= true;
3505 bool InOrder
[2] = { true, true };
3506 for (unsigned i
= 0; i
!= 8; ++i
) {
3507 int idx
= MaskVals
[i
];
3509 InOrder
[i
/4] = false;
3510 if (idx
< 0 || (idx
/4) == BestLoQuad
|| (idx
/4) == BestHiQuad
)
3512 AllWordsInNewV
= false;
3516 bool pshuflw
= AllWordsInNewV
, pshufhw
= AllWordsInNewV
;
3517 if (AllWordsInNewV
) {
3518 for (int i
= 0; i
!= 8; ++i
) {
3519 int idx
= MaskVals
[i
];
3522 idx
= MaskVals
[i
] = (idx
/ 4) == BestLoQuad
? (idx
& 3) : (idx
& 3) + 4;
3523 if ((idx
!= i
) && idx
< 4)
3525 if ((idx
!= i
) && idx
> 3)
3534 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3535 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3536 if ((pshufhw
&& InOrder
[0]) || (pshuflw
&& InOrder
[1])) {
3537 return DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
,
3538 DAG
.getUNDEF(MVT::v8i16
), &MaskVals
[0]);
3542 // If we have SSSE3, and all words of the result are from 1 input vector,
3543 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3544 // is present, fall back to case 4.
3545 if (TLI
.getSubtarget()->hasSSSE3()) {
3546 SmallVector
<SDValue
,16> pshufbMask
;
3548 // If we have elements from both input vectors, set the high bit of the
3549 // shuffle mask element to zero out elements that come from V2 in the V1
3550 // mask, and elements that come from V1 in the V2 mask, so that the two
3551 // results can be OR'd together.
3552 bool TwoInputs
= V1Used
&& V2Used
;
3553 for (unsigned i
= 0; i
!= 8; ++i
) {
3554 int EltIdx
= MaskVals
[i
] * 2;
3555 if (TwoInputs
&& (EltIdx
>= 16)) {
3556 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3557 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3560 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3561 pshufbMask
.push_back(DAG
.getConstant(EltIdx
+1, MVT::i8
));
3563 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V1
);
3564 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3565 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3566 MVT::v16i8
, &pshufbMask
[0], 16));
3568 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3570 // Calculate the shuffle mask for the second input, shuffle it, and
3571 // OR it with the first shuffled input.
3573 for (unsigned i
= 0; i
!= 8; ++i
) {
3574 int EltIdx
= MaskVals
[i
] * 2;
3576 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3577 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3580 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3581 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 15, MVT::i8
));
3583 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V2
);
3584 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3585 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3586 MVT::v16i8
, &pshufbMask
[0], 16));
3587 V1
= DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3588 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3591 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3592 // and update MaskVals with new element order.
3593 BitVector
InOrder(8);
3594 if (BestLoQuad
>= 0) {
3595 SmallVector
<int, 8> MaskV
;
3596 for (int i
= 0; i
!= 4; ++i
) {
3597 int idx
= MaskVals
[i
];
3599 MaskV
.push_back(-1);
3601 } else if ((idx
/ 4) == BestLoQuad
) {
3602 MaskV
.push_back(idx
& 3);
3605 MaskV
.push_back(-1);
3608 for (unsigned i
= 4; i
!= 8; ++i
)
3610 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3614 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3615 // and update MaskVals with the new element order.
3616 if (BestHiQuad
>= 0) {
3617 SmallVector
<int, 8> MaskV
;
3618 for (unsigned i
= 0; i
!= 4; ++i
)
3620 for (unsigned i
= 4; i
!= 8; ++i
) {
3621 int idx
= MaskVals
[i
];
3623 MaskV
.push_back(-1);
3625 } else if ((idx
/ 4) == BestHiQuad
) {
3626 MaskV
.push_back((idx
& 3) + 4);
3629 MaskV
.push_back(-1);
3632 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3636 // In case BestHi & BestLo were both -1, which means each quadword has a word
3637 // from each of the four input quadwords, calculate the InOrder bitvector now
3638 // before falling through to the insert/extract cleanup.
3639 if (BestLoQuad
== -1 && BestHiQuad
== -1) {
3641 for (int i
= 0; i
!= 8; ++i
)
3642 if (MaskVals
[i
] < 0 || MaskVals
[i
] == i
)
3646 // The other elements are put in the right place using pextrw and pinsrw.
3647 for (unsigned i
= 0; i
!= 8; ++i
) {
3650 int EltIdx
= MaskVals
[i
];
3653 SDValue ExtOp
= (EltIdx
< 8)
3654 ? DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V1
,
3655 DAG
.getIntPtrConstant(EltIdx
))
3656 : DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V2
,
3657 DAG
.getIntPtrConstant(EltIdx
- 8));
3658 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, ExtOp
,
3659 DAG
.getIntPtrConstant(i
));
3664 // v16i8 shuffles - Prefer shuffles in the following order:
3665 // 1. [ssse3] 1 x pshufb
3666 // 2. [ssse3] 2 x pshufb + 1 x por
3667 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3669 SDValue
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode
*SVOp
,
3670 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3671 SDValue V1
= SVOp
->getOperand(0);
3672 SDValue V2
= SVOp
->getOperand(1);
3673 DebugLoc dl
= SVOp
->getDebugLoc();
3674 SmallVector
<int, 16> MaskVals
;
3675 SVOp
->getMask(MaskVals
);
3677 // If we have SSSE3, case 1 is generated when all result bytes come from
3678 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3679 // present, fall back to case 3.
3680 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3683 for (unsigned i
= 0; i
< 16; ++i
) {
3684 int EltIdx
= MaskVals
[i
];
3693 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3694 if (TLI
.getSubtarget()->hasSSSE3()) {
3695 SmallVector
<SDValue
,16> pshufbMask
;
3697 // If all result elements are from one input vector, then only translate
3698 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3700 // Otherwise, we have elements from both input vectors, and must zero out
3701 // elements that come from V2 in the first mask, and V1 in the second mask
3702 // so that we can OR them together.
3703 bool TwoInputs
= !(V1Only
|| V2Only
);
3704 for (unsigned i
= 0; i
!= 16; ++i
) {
3705 int EltIdx
= MaskVals
[i
];
3706 if (EltIdx
< 0 || (TwoInputs
&& EltIdx
>= 16)) {
3707 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3710 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3712 // If all the elements are from V2, assign it to V1 and return after
3713 // building the first pshufb.
3716 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3717 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3718 MVT::v16i8
, &pshufbMask
[0], 16));
3722 // Calculate the shuffle mask for the second input, shuffle it, and
3723 // OR it with the first shuffled input.
3725 for (unsigned i
= 0; i
!= 16; ++i
) {
3726 int EltIdx
= MaskVals
[i
];
3728 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3731 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3733 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3734 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3735 MVT::v16i8
, &pshufbMask
[0], 16));
3736 return DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3739 // No SSSE3 - Calculate in place words and then fix all out of place words
3740 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3741 // the 16 different words that comprise the two doublequadword input vectors.
3742 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3743 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V2
);
3744 SDValue NewV
= V2Only
? V2
: V1
;
3745 for (int i
= 0; i
!= 8; ++i
) {
3746 int Elt0
= MaskVals
[i
*2];
3747 int Elt1
= MaskVals
[i
*2+1];
3749 // This word of the result is all undef, skip it.
3750 if (Elt0
< 0 && Elt1
< 0)
3753 // This word of the result is already in the correct place, skip it.
3754 if (V1Only
&& (Elt0
== i
*2) && (Elt1
== i
*2+1))
3756 if (V2Only
&& (Elt0
== i
*2+16) && (Elt1
== i
*2+17))
3759 SDValue Elt0Src
= Elt0
< 16 ? V1
: V2
;
3760 SDValue Elt1Src
= Elt1
< 16 ? V1
: V2
;
3763 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3764 // using a single extract together, load it and store it.
3765 if ((Elt0
>= 0) && ((Elt0
+ 1) == Elt1
) && ((Elt0
& 1) == 0)) {
3766 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3767 DAG
.getIntPtrConstant(Elt1
/ 2));
3768 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3769 DAG
.getIntPtrConstant(i
));
3773 // If Elt1 is defined, extract it from the appropriate source. If the
3774 // source byte is not also odd, shift the extracted word left 8 bits
3775 // otherwise clear the bottom 8 bits if we need to do an or.
3777 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3778 DAG
.getIntPtrConstant(Elt1
/ 2));
3779 if ((Elt1
& 1) == 0)
3780 InsElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
, InsElt
,
3781 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3783 InsElt
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt
,
3784 DAG
.getConstant(0xFF00, MVT::i16
));
3786 // If Elt0 is defined, extract it from the appropriate source. If the
3787 // source byte is not also even, shift the extracted word right 8 bits. If
3788 // Elt1 was also defined, OR the extracted values together before
3789 // inserting them in the result.
3791 SDValue InsElt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
,
3792 Elt0Src
, DAG
.getIntPtrConstant(Elt0
/ 2));
3793 if ((Elt0
& 1) != 0)
3794 InsElt0
= DAG
.getNode(ISD::SRL
, dl
, MVT::i16
, InsElt0
,
3795 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3797 InsElt0
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt0
,
3798 DAG
.getConstant(0x00FF, MVT::i16
));
3799 InsElt
= Elt1
>= 0 ? DAG
.getNode(ISD::OR
, dl
, MVT::i16
, InsElt
, InsElt0
)
3802 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3803 DAG
.getIntPtrConstant(i
));
3805 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, NewV
);
3808 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3809 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3810 /// done when every pair / quad of shuffle mask elements point to elements in
3811 /// the right sequence. e.g.
3812 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3814 SDValue
RewriteAsNarrowerShuffle(ShuffleVectorSDNode
*SVOp
,
3816 TargetLowering
&TLI
, DebugLoc dl
) {
3817 MVT VT
= SVOp
->getValueType(0);
3818 SDValue V1
= SVOp
->getOperand(0);
3819 SDValue V2
= SVOp
->getOperand(1);
3820 unsigned NumElems
= VT
.getVectorNumElements();
3821 unsigned NewWidth
= (NumElems
== 4) ? 2 : 4;
3822 MVT MaskVT
= MVT::getIntVectorWithNumElements(NewWidth
);
3823 MVT MaskEltVT
= MaskVT
.getVectorElementType();
3825 switch (VT
.getSimpleVT()) {
3826 default: assert(false && "Unexpected!");
3827 case MVT::v4f32
: NewVT
= MVT::v2f64
; break;
3828 case MVT::v4i32
: NewVT
= MVT::v2i64
; break;
3829 case MVT::v8i16
: NewVT
= MVT::v4i32
; break;
3830 case MVT::v16i8
: NewVT
= MVT::v4i32
; break;
3833 if (NewWidth
== 2) {
3839 int Scale
= NumElems
/ NewWidth
;
3840 SmallVector
<int, 8> MaskVec
;
3841 for (unsigned i
= 0; i
< NumElems
; i
+= Scale
) {
3843 for (int j
= 0; j
< Scale
; ++j
) {
3844 int EltIdx
= SVOp
->getMaskElt(i
+j
);
3848 StartIdx
= EltIdx
- (EltIdx
% Scale
);
3849 if (EltIdx
!= StartIdx
+ j
)
3853 MaskVec
.push_back(-1);
3855 MaskVec
.push_back(StartIdx
/ Scale
);
3858 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V1
);
3859 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V2
);
3860 return DAG
.getVectorShuffle(NewVT
, dl
, V1
, V2
, &MaskVec
[0]);
3863 /// getVZextMovL - Return a zero-extending vector move low node.
3865 static SDValue
getVZextMovL(MVT VT
, MVT OpVT
,
3866 SDValue SrcOp
, SelectionDAG
&DAG
,
3867 const X86Subtarget
*Subtarget
, DebugLoc dl
) {
3868 if (VT
== MVT::v2f64
|| VT
== MVT::v4f32
) {
3869 LoadSDNode
*LD
= NULL
;
3870 if (!isScalarLoadToVector(SrcOp
.getNode(), &LD
))
3871 LD
= dyn_cast
<LoadSDNode
>(SrcOp
);
3873 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3875 MVT EVT
= (OpVT
== MVT::v2f64
) ? MVT::i64
: MVT::i32
;
3876 if ((EVT
!= MVT::i64
|| Subtarget
->is64Bit()) &&
3877 SrcOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
3878 SrcOp
.getOperand(0).getOpcode() == ISD::BIT_CONVERT
&&
3879 SrcOp
.getOperand(0).getOperand(0).getValueType() == EVT
) {
3881 OpVT
= (OpVT
== MVT::v2f64
) ? MVT::v2i64
: MVT::v4i32
;
3882 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3883 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3884 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3892 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3893 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3894 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3898 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3901 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
3902 SDValue V1
= SVOp
->getOperand(0);
3903 SDValue V2
= SVOp
->getOperand(1);
3904 DebugLoc dl
= SVOp
->getDebugLoc();
3905 MVT VT
= SVOp
->getValueType(0);
3907 SmallVector
<std::pair
<int, int>, 8> Locs
;
3909 SmallVector
<int, 8> Mask1(4U, -1);
3910 SmallVector
<int, 8> PermMask
;
3911 SVOp
->getMask(PermMask
);
3915 for (unsigned i
= 0; i
!= 4; ++i
) {
3916 int Idx
= PermMask
[i
];
3918 Locs
[i
] = std::make_pair(-1, -1);
3920 assert(Idx
< 8 && "Invalid VECTOR_SHUFFLE index!");
3922 Locs
[i
] = std::make_pair(0, NumLo
);
3926 Locs
[i
] = std::make_pair(1, NumHi
);
3928 Mask1
[2+NumHi
] = Idx
;
3934 if (NumLo
<= 2 && NumHi
<= 2) {
3935 // If no more than two elements come from either vector. This can be
3936 // implemented with two shuffles. First shuffle gather the elements.
3937 // The second shuffle, which takes the first shuffle as both of its
3938 // vector operands, put the elements into the right order.
3939 V1
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3941 SmallVector
<int, 8> Mask2(4U, -1);
3943 for (unsigned i
= 0; i
!= 4; ++i
) {
3944 if (Locs
[i
].first
== -1)
3947 unsigned Idx
= (i
< 2) ? 0 : 4;
3948 Idx
+= Locs
[i
].first
* 2 + Locs
[i
].second
;
3953 return DAG
.getVectorShuffle(VT
, dl
, V1
, V1
, &Mask2
[0]);
3954 } else if (NumLo
== 3 || NumHi
== 3) {
3955 // Otherwise, we must have three elements from one vector, call it X, and
3956 // one element from the other, call it Y. First, use a shufps to build an
3957 // intermediate vector with the one element from Y and the element from X
3958 // that will be in the same half in the final destination (the indexes don't
3959 // matter). Then, use a shufps to build the final vector, taking the half
3960 // containing the element from Y from the intermediate, and the other half
3963 // Normalize it so the 3 elements come from V1.
3964 CommuteVectorShuffleMask(PermMask
, VT
);
3968 // Find the element from V2.
3970 for (HiIndex
= 0; HiIndex
< 3; ++HiIndex
) {
3971 int Val
= PermMask
[HiIndex
];
3978 Mask1
[0] = PermMask
[HiIndex
];
3980 Mask1
[2] = PermMask
[HiIndex
^1];
3982 V2
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3985 Mask1
[0] = PermMask
[0];
3986 Mask1
[1] = PermMask
[1];
3987 Mask1
[2] = HiIndex
& 1 ? 6 : 4;
3988 Mask1
[3] = HiIndex
& 1 ? 4 : 6;
3989 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3991 Mask1
[0] = HiIndex
& 1 ? 2 : 0;
3992 Mask1
[1] = HiIndex
& 1 ? 0 : 2;
3993 Mask1
[2] = PermMask
[2];
3994 Mask1
[3] = PermMask
[3];
3999 return DAG
.getVectorShuffle(VT
, dl
, V2
, V1
, &Mask1
[0]);
4003 // Break it into (shuffle shuffle_hi, shuffle_lo).
4005 SmallVector
<int,8> LoMask(4U, -1);
4006 SmallVector
<int,8> HiMask(4U, -1);
4008 SmallVector
<int,8> *MaskPtr
= &LoMask
;
4009 unsigned MaskIdx
= 0;
4012 for (unsigned i
= 0; i
!= 4; ++i
) {
4019 int Idx
= PermMask
[i
];
4021 Locs
[i
] = std::make_pair(-1, -1);
4022 } else if (Idx
< 4) {
4023 Locs
[i
] = std::make_pair(MaskIdx
, LoIdx
);
4024 (*MaskPtr
)[LoIdx
] = Idx
;
4027 Locs
[i
] = std::make_pair(MaskIdx
, HiIdx
);
4028 (*MaskPtr
)[HiIdx
] = Idx
;
4033 SDValue LoShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &LoMask
[0]);
4034 SDValue HiShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &HiMask
[0]);
4035 SmallVector
<int, 8> MaskOps
;
4036 for (unsigned i
= 0; i
!= 4; ++i
) {
4037 if (Locs
[i
].first
== -1) {
4038 MaskOps
.push_back(-1);
4040 unsigned Idx
= Locs
[i
].first
* 4 + Locs
[i
].second
;
4041 MaskOps
.push_back(Idx
);
4044 return DAG
.getVectorShuffle(VT
, dl
, LoShuffle
, HiShuffle
, &MaskOps
[0]);
4048 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) {
4049 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4050 SDValue V1
= Op
.getOperand(0);
4051 SDValue V2
= Op
.getOperand(1);
4052 MVT VT
= Op
.getValueType();
4053 DebugLoc dl
= Op
.getDebugLoc();
4054 unsigned NumElems
= VT
.getVectorNumElements();
4055 bool isMMX
= VT
.getSizeInBits() == 64;
4056 bool V1IsUndef
= V1
.getOpcode() == ISD::UNDEF
;
4057 bool V2IsUndef
= V2
.getOpcode() == ISD::UNDEF
;
4058 bool V1IsSplat
= false;
4059 bool V2IsSplat
= false;
4061 if (isZeroShuffle(SVOp
))
4062 return getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
4064 // Promote splats to v4f32.
4065 if (SVOp
->isSplat()) {
4066 if (isMMX
|| NumElems
< 4)
4068 return PromoteSplat(SVOp
, DAG
, Subtarget
->hasSSE2());
4071 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4073 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
4074 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4075 if (NewOp
.getNode())
4076 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4077 LowerVECTOR_SHUFFLE(NewOp
, DAG
));
4078 } else if ((VT
== MVT::v4i32
|| (VT
== MVT::v4f32
&& Subtarget
->hasSSE2()))) {
4079 // FIXME: Figure out a cleaner way to do this.
4080 // Try to make use of movq to zero out the top part.
4081 if (ISD::isBuildVectorAllZeros(V2
.getNode())) {
4082 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4083 if (NewOp
.getNode()) {
4084 if (isCommutedMOVL(cast
<ShuffleVectorSDNode
>(NewOp
), true, false))
4085 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(0),
4086 DAG
, Subtarget
, dl
);
4088 } else if (ISD::isBuildVectorAllZeros(V1
.getNode())) {
4089 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4090 if (NewOp
.getNode() && X86::isMOVLMask(cast
<ShuffleVectorSDNode
>(NewOp
)))
4091 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(1),
4092 DAG
, Subtarget
, dl
);
4096 if (X86::isPSHUFDMask(SVOp
))
4099 // Check if this can be converted into a logical shift.
4100 bool isLeft
= false;
4103 bool isShift
= getSubtarget()->hasSSE2() &&
4104 isVectorShift(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
);
4105 if (isShift
&& ShVal
.hasOneUse()) {
4106 // If the shifted value has multiple uses, it may be cheaper to use
4107 // v_set0 + movlhps or movhlps, etc.
4108 MVT EVT
= VT
.getVectorElementType();
4109 ShAmt
*= EVT
.getSizeInBits();
4110 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4113 if (X86::isMOVLMask(SVOp
)) {
4116 if (ISD::isBuildVectorAllZeros(V1
.getNode()))
4117 return getVZextMovL(VT
, VT
, V2
, DAG
, Subtarget
, dl
);
4122 // FIXME: fold these into legal mask.
4123 if (!isMMX
&& (X86::isMOVSHDUPMask(SVOp
) ||
4124 X86::isMOVSLDUPMask(SVOp
) ||
4125 X86::isMOVHLPSMask(SVOp
) ||
4126 X86::isMOVHPMask(SVOp
) ||
4127 X86::isMOVLPMask(SVOp
)))
4130 if (ShouldXformToMOVHLPS(SVOp
) ||
4131 ShouldXformToMOVLP(V1
.getNode(), V2
.getNode(), SVOp
))
4132 return CommuteVectorShuffle(SVOp
, DAG
);
4135 // No better options. Use a vshl / vsrl.
4136 MVT EVT
= VT
.getVectorElementType();
4137 ShAmt
*= EVT
.getSizeInBits();
4138 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4141 bool Commuted
= false;
4142 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4143 // 1,1,1,1 -> v8i16 though.
4144 V1IsSplat
= isSplatVector(V1
.getNode());
4145 V2IsSplat
= isSplatVector(V2
.getNode());
4147 // Canonicalize the splat or undef, if present, to be on the RHS.
4148 if ((V1IsSplat
|| V1IsUndef
) && !(V2IsSplat
|| V2IsUndef
)) {
4149 Op
= CommuteVectorShuffle(SVOp
, DAG
);
4150 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4151 V1
= SVOp
->getOperand(0);
4152 V2
= SVOp
->getOperand(1);
4153 std::swap(V1IsSplat
, V2IsSplat
);
4154 std::swap(V1IsUndef
, V2IsUndef
);
4158 if (isCommutedMOVL(SVOp
, V2IsSplat
, V2IsUndef
)) {
4159 // Shuffling low element of v1 into undef, just return v1.
4162 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4163 // the instruction selector will not match, so get a canonical MOVL with
4164 // swapped operands to undo the commute.
4165 return getMOVL(DAG
, dl
, VT
, V2
, V1
);
4168 if (X86::isUNPCKL_v_undef_Mask(SVOp
) ||
4169 X86::isUNPCKH_v_undef_Mask(SVOp
) ||
4170 X86::isUNPCKLMask(SVOp
) ||
4171 X86::isUNPCKHMask(SVOp
))
4175 // Normalize mask so all entries that point to V2 points to its first
4176 // element then try to match unpck{h|l} again. If match, return a
4177 // new vector_shuffle with the corrected mask.
4178 SDValue NewMask
= NormalizeMask(SVOp
, DAG
);
4179 ShuffleVectorSDNode
*NSVOp
= cast
<ShuffleVectorSDNode
>(NewMask
);
4180 if (NSVOp
!= SVOp
) {
4181 if (X86::isUNPCKLMask(NSVOp
, true)) {
4183 } else if (X86::isUNPCKHMask(NSVOp
, true)) {
4190 // Commute is back and try unpck* again.
4191 // FIXME: this seems wrong.
4192 SDValue NewOp
= CommuteVectorShuffle(SVOp
, DAG
);
4193 ShuffleVectorSDNode
*NewSVOp
= cast
<ShuffleVectorSDNode
>(NewOp
);
4194 if (X86::isUNPCKL_v_undef_Mask(NewSVOp
) ||
4195 X86::isUNPCKH_v_undef_Mask(NewSVOp
) ||
4196 X86::isUNPCKLMask(NewSVOp
) ||
4197 X86::isUNPCKHMask(NewSVOp
))
4201 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4203 // Normalize the node to match x86 shuffle ops if needed
4204 if (!isMMX
&& V2
.getOpcode() != ISD::UNDEF
&& isCommutedSHUFP(SVOp
))
4205 return CommuteVectorShuffle(SVOp
, DAG
);
4207 // Check for legal shuffle and return?
4208 SmallVector
<int, 16> PermMask
;
4209 SVOp
->getMask(PermMask
);
4210 if (isShuffleMaskLegal(PermMask
, VT
))
4213 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4214 if (VT
== MVT::v8i16
) {
4215 SDValue NewOp
= LowerVECTOR_SHUFFLEv8i16(SVOp
, DAG
, *this);
4216 if (NewOp
.getNode())
4220 if (VT
== MVT::v16i8
) {
4221 SDValue NewOp
= LowerVECTOR_SHUFFLEv16i8(SVOp
, DAG
, *this);
4222 if (NewOp
.getNode())
4226 // Handle all 4 wide cases with a number of shuffles except for MMX.
4227 if (NumElems
== 4 && !isMMX
)
4228 return LowerVECTOR_SHUFFLE_4wide(SVOp
, DAG
);
4234 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
,
4235 SelectionDAG
&DAG
) {
4236 MVT VT
= Op
.getValueType();
4237 DebugLoc dl
= Op
.getDebugLoc();
4238 if (VT
.getSizeInBits() == 8) {
4239 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRB
, dl
, MVT::i32
,
4240 Op
.getOperand(0), Op
.getOperand(1));
4241 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4242 DAG
.getValueType(VT
));
4243 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4244 } else if (VT
.getSizeInBits() == 16) {
4245 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4246 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4248 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4249 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4250 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4254 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, MVT::i32
,
4255 Op
.getOperand(0), Op
.getOperand(1));
4256 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4257 DAG
.getValueType(VT
));
4258 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4259 } else if (VT
== MVT::f32
) {
4260 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4261 // the result back to FR32 register. It's only worth matching if the
4262 // result has a single use which is a store or a bitcast to i32. And in
4263 // the case of a store, it's not worth it if the index is a constant 0,
4264 // because a MOVSSmr can be used instead, which is smaller and faster.
4265 if (!Op
.hasOneUse())
4267 SDNode
*User
= *Op
.getNode()->use_begin();
4268 if ((User
->getOpcode() != ISD::STORE
||
4269 (isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
4270 cast
<ConstantSDNode
>(Op
.getOperand(1))->isNullValue())) &&
4271 (User
->getOpcode() != ISD::BIT_CONVERT
||
4272 User
->getValueType(0) != MVT::i32
))
4274 SDValue Extract
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4275 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
,
4278 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, Extract
);
4279 } else if (VT
== MVT::i32
) {
4280 // ExtractPS works with constant index.
4281 if (isa
<ConstantSDNode
>(Op
.getOperand(1)))
4289 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4290 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4293 if (Subtarget
->hasSSE41()) {
4294 SDValue Res
= LowerEXTRACT_VECTOR_ELT_SSE4(Op
, DAG
);
4299 MVT VT
= Op
.getValueType();
4300 DebugLoc dl
= Op
.getDebugLoc();
4301 // TODO: handle v16i8.
4302 if (VT
.getSizeInBits() == 16) {
4303 SDValue Vec
= Op
.getOperand(0);
4304 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4306 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4307 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4308 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4311 // Transform it so it match pextrw which produces a 32-bit result.
4312 MVT EVT
= (MVT::SimpleValueType
)(VT
.getSimpleVT()+1);
4313 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, EVT
,
4314 Op
.getOperand(0), Op
.getOperand(1));
4315 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, EVT
, Extract
,
4316 DAG
.getValueType(VT
));
4317 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4318 } else if (VT
.getSizeInBits() == 32) {
4319 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4323 // SHUFPS the element to the lowest double word, then movss.
4324 int Mask
[4] = { Idx
, -1, -1, -1 };
4325 MVT VVT
= Op
.getOperand(0).getValueType();
4326 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4327 DAG
.getUNDEF(VVT
), Mask
);
4328 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4329 DAG
.getIntPtrConstant(0));
4330 } else if (VT
.getSizeInBits() == 64) {
4331 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4332 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4333 // to match extract_elt for f64.
4334 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4338 // UNPCKHPD the element to the lowest double word, then movsd.
4339 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4340 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4341 int Mask
[2] = { 1, -1 };
4342 MVT VVT
= Op
.getOperand(0).getValueType();
4343 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4344 DAG
.getUNDEF(VVT
), Mask
);
4345 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4346 DAG
.getIntPtrConstant(0));
4353 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
){
4354 MVT VT
= Op
.getValueType();
4355 MVT EVT
= VT
.getVectorElementType();
4356 DebugLoc dl
= Op
.getDebugLoc();
4358 SDValue N0
= Op
.getOperand(0);
4359 SDValue N1
= Op
.getOperand(1);
4360 SDValue N2
= Op
.getOperand(2);
4362 if ((EVT
.getSizeInBits() == 8 || EVT
.getSizeInBits() == 16) &&
4363 isa
<ConstantSDNode
>(N2
)) {
4364 unsigned Opc
= (EVT
.getSizeInBits() == 8) ? X86ISD::PINSRB
4366 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4368 if (N1
.getValueType() != MVT::i32
)
4369 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4370 if (N2
.getValueType() != MVT::i32
)
4371 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4372 return DAG
.getNode(Opc
, dl
, VT
, N0
, N1
, N2
);
4373 } else if (EVT
== MVT::f32
&& isa
<ConstantSDNode
>(N2
)) {
4374 // Bits [7:6] of the constant are the source select. This will always be
4375 // zero here. The DAG Combiner may combine an extract_elt index into these
4376 // bits. For example (insert (extract, 3), 2) could be matched by putting
4377 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4378 // Bits [5:4] of the constant are the destination select. This is the
4379 // value of the incoming immediate.
4380 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4381 // combine either bitwise AND or insert of float 0.0 to set these bits.
4382 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue() << 4);
4383 return DAG
.getNode(X86ISD::INSERTPS
, dl
, VT
, N0
, N1
, N2
);
4384 } else if (EVT
== MVT::i32
) {
4385 // InsertPS works with constant index.
4386 if (isa
<ConstantSDNode
>(N2
))
4393 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4394 MVT VT
= Op
.getValueType();
4395 MVT EVT
= VT
.getVectorElementType();
4397 if (Subtarget
->hasSSE41())
4398 return LowerINSERT_VECTOR_ELT_SSE4(Op
, DAG
);
4403 DebugLoc dl
= Op
.getDebugLoc();
4404 SDValue N0
= Op
.getOperand(0);
4405 SDValue N1
= Op
.getOperand(1);
4406 SDValue N2
= Op
.getOperand(2);
4408 if (EVT
.getSizeInBits() == 16 && isa
<ConstantSDNode
>(N2
)) {
4409 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4410 // as its second argument.
4411 if (N1
.getValueType() != MVT::i32
)
4412 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4413 if (N2
.getValueType() != MVT::i32
)
4414 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4415 return DAG
.getNode(X86ISD::PINSRW
, dl
, VT
, N0
, N1
, N2
);
4421 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
4422 DebugLoc dl
= Op
.getDebugLoc();
4423 if (Op
.getValueType() == MVT::v2f32
)
4424 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f32
,
4425 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i32
,
4426 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
,
4427 Op
.getOperand(0))));
4429 SDValue AnyExt
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Op
.getOperand(0));
4430 MVT VT
= MVT::v2i32
;
4431 switch (Op
.getValueType().getSimpleVT()) {
4438 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(),
4439 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, AnyExt
));
4442 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4443 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4444 // one of the above mentioned nodes. It has to be wrapped because otherwise
4445 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4446 // be used to form addressing mode. These wrapped nodes will be selected
4449 X86TargetLowering::LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) {
4450 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
4452 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4454 unsigned char OpFlag
= 0;
4455 unsigned WrapperKind
= X86ISD::Wrapper
;
4457 if (Subtarget
->isPICStyleRIPRel() &&
4458 getTargetMachine().getCodeModel() == CodeModel::Small
)
4459 WrapperKind
= X86ISD::WrapperRIP
;
4460 else if (Subtarget
->isPICStyleGOT())
4461 OpFlag
= X86II::MO_GOTOFF
;
4462 else if (Subtarget
->isPICStyleStubPIC())
4463 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4465 SDValue Result
= DAG
.getTargetConstantPool(CP
->getConstVal(), getPointerTy(),
4467 CP
->getOffset(), OpFlag
);
4468 DebugLoc DL
= CP
->getDebugLoc();
4469 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4470 // With PIC, the address is actually $g + Offset.
4472 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4473 DAG
.getNode(X86ISD::GlobalBaseReg
,
4474 DebugLoc::getUnknownLoc(), getPointerTy()),
4481 SDValue
X86TargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) {
4482 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
4484 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4486 unsigned char OpFlag
= 0;
4487 unsigned WrapperKind
= X86ISD::Wrapper
;
4489 if (Subtarget
->isPICStyleRIPRel() &&
4490 getTargetMachine().getCodeModel() == CodeModel::Small
)
4491 WrapperKind
= X86ISD::WrapperRIP
;
4492 else if (Subtarget
->isPICStyleGOT())
4493 OpFlag
= X86II::MO_GOTOFF
;
4494 else if (Subtarget
->isPICStyleStubPIC())
4495 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4497 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), getPointerTy(),
4499 DebugLoc DL
= JT
->getDebugLoc();
4500 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4502 // With PIC, the address is actually $g + Offset.
4504 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4505 DAG
.getNode(X86ISD::GlobalBaseReg
,
4506 DebugLoc::getUnknownLoc(), getPointerTy()),
4514 X86TargetLowering::LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) {
4515 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
4517 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4519 unsigned char OpFlag
= 0;
4520 unsigned WrapperKind
= X86ISD::Wrapper
;
4521 if (Subtarget
->isPICStyleRIPRel() &&
4522 getTargetMachine().getCodeModel() == CodeModel::Small
)
4523 WrapperKind
= X86ISD::WrapperRIP
;
4524 else if (Subtarget
->isPICStyleGOT())
4525 OpFlag
= X86II::MO_GOTOFF
;
4526 else if (Subtarget
->isPICStyleStubPIC())
4527 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4529 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy(), OpFlag
);
4531 DebugLoc DL
= Op
.getDebugLoc();
4532 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4535 // With PIC, the address is actually $g + Offset.
4536 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4537 !Subtarget
->is64Bit()) {
4538 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4539 DAG
.getNode(X86ISD::GlobalBaseReg
,
4540 DebugLoc::getUnknownLoc(),
4549 X86TargetLowering::LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
4551 SelectionDAG
&DAG
) const {
4552 // Create the TargetGlobalAddress node, folding in the constant
4553 // offset if it is legal.
4554 unsigned char OpFlags
=
4555 Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
4557 if (OpFlags
== X86II::MO_NO_FLAG
&& isInt32(Offset
)) {
4558 // A direct static reference to a global.
4559 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), Offset
);
4562 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), 0, OpFlags
);
4565 if (Subtarget
->isPICStyleRIPRel() &&
4566 getTargetMachine().getCodeModel() == CodeModel::Small
)
4567 Result
= DAG
.getNode(X86ISD::WrapperRIP
, dl
, getPointerTy(), Result
);
4569 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4571 // With PIC, the address is actually $g + Offset.
4572 if (isGlobalRelativeToPICBase(OpFlags
)) {
4573 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4574 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
4578 // For globals that require a load from a stub to get the address, emit the
4580 if (isGlobalStubReference(OpFlags
))
4581 Result
= DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(), Result
,
4582 PseudoSourceValue::getGOT(), 0);
4584 // If there was a non-zero offset that we didn't fold, create an explicit
4587 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Result
,
4588 DAG
.getConstant(Offset
, getPointerTy()));
4594 X86TargetLowering::LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) {
4595 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4596 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
4597 return LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
4601 GetTLSADDR(SelectionDAG
&DAG
, SDValue Chain
, GlobalAddressSDNode
*GA
,
4602 SDValue
*InFlag
, const MVT PtrVT
, unsigned ReturnReg
,
4603 unsigned char OperandFlags
) {
4604 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
4605 DebugLoc dl
= GA
->getDebugLoc();
4606 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4607 GA
->getValueType(0),
4611 SDValue Ops
[] = { Chain
, TGA
, *InFlag
};
4612 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 3);
4614 SDValue Ops
[] = { Chain
, TGA
};
4615 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 2);
4617 SDValue Flag
= Chain
.getValue(1);
4618 return DAG
.getCopyFromReg(Chain
, dl
, ReturnReg
, PtrVT
, Flag
);
4621 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4623 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4626 DebugLoc dl
= GA
->getDebugLoc(); // ? function entry point might be better
4627 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, X86::EBX
,
4628 DAG
.getNode(X86ISD::GlobalBaseReg
,
4629 DebugLoc::getUnknownLoc(),
4631 InFlag
= Chain
.getValue(1);
4633 return GetTLSADDR(DAG
, Chain
, GA
, &InFlag
, PtrVT
, X86::EAX
, X86II::MO_TLSGD
);
4636 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4638 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4640 return GetTLSADDR(DAG
, DAG
.getEntryNode(), GA
, NULL
, PtrVT
,
4641 X86::RAX
, X86II::MO_TLSGD
);
4644 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4645 // "local exec" model.
4646 static SDValue
LowerToTLSExecModel(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4647 const MVT PtrVT
, TLSModel::Model model
,
4649 DebugLoc dl
= GA
->getDebugLoc();
4650 // Get the Thread Pointer
4651 SDValue Base
= DAG
.getNode(X86ISD::SegmentBaseAddress
,
4652 DebugLoc::getUnknownLoc(), PtrVT
,
4653 DAG
.getRegister(is64Bit
? X86::FS
: X86::GS
,
4656 SDValue ThreadPointer
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Base
,
4659 unsigned char OperandFlags
= 0;
4660 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4662 unsigned WrapperKind
= X86ISD::Wrapper
;
4663 if (model
== TLSModel::LocalExec
) {
4664 OperandFlags
= is64Bit
? X86II::MO_TPOFF
: X86II::MO_NTPOFF
;
4665 } else if (is64Bit
) {
4666 assert(model
== TLSModel::InitialExec
);
4667 OperandFlags
= X86II::MO_GOTTPOFF
;
4668 WrapperKind
= X86ISD::WrapperRIP
;
4670 assert(model
== TLSModel::InitialExec
);
4671 OperandFlags
= X86II::MO_INDNTPOFF
;
4674 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4676 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), GA
->getValueType(0),
4677 GA
->getOffset(), OperandFlags
);
4678 SDValue Offset
= DAG
.getNode(WrapperKind
, dl
, PtrVT
, TGA
);
4680 if (model
== TLSModel::InitialExec
)
4681 Offset
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Offset
,
4682 PseudoSourceValue::getGOT(), 0);
4684 // The address of the thread local variable is the add of the thread
4685 // pointer with the offset of the variable.
4686 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
4690 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) {
4691 // TODO: implement the "local dynamic" model
4692 // TODO: implement the "initial exec"model for pic executables
4693 assert(Subtarget
->isTargetELF() &&
4694 "TLS not implemented for non-ELF targets");
4695 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4696 const GlobalValue
*GV
= GA
->getGlobal();
4698 // If GV is an alias then use the aliasee for determining
4699 // thread-localness.
4700 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
4701 GV
= GA
->resolveAliasedGlobal(false);
4703 TLSModel::Model model
= getTLSModel(GV
,
4704 getTargetMachine().getRelocationModel());
4707 case TLSModel::GeneralDynamic
:
4708 case TLSModel::LocalDynamic
: // not implemented
4709 if (Subtarget
->is64Bit())
4710 return LowerToTLSGeneralDynamicModel64(GA
, DAG
, getPointerTy());
4711 return LowerToTLSGeneralDynamicModel32(GA
, DAG
, getPointerTy());
4713 case TLSModel::InitialExec
:
4714 case TLSModel::LocalExec
:
4715 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
,
4716 Subtarget
->is64Bit());
4719 llvm_unreachable("Unreachable");
4724 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4725 /// take a 2 x i32 value to shift plus a shift amount.
4726 SDValue
X86TargetLowering::LowerShift(SDValue Op
, SelectionDAG
&DAG
) {
4727 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
4728 MVT VT
= Op
.getValueType();
4729 unsigned VTBits
= VT
.getSizeInBits();
4730 DebugLoc dl
= Op
.getDebugLoc();
4731 bool isSRA
= Op
.getOpcode() == ISD::SRA_PARTS
;
4732 SDValue ShOpLo
= Op
.getOperand(0);
4733 SDValue ShOpHi
= Op
.getOperand(1);
4734 SDValue ShAmt
= Op
.getOperand(2);
4735 SDValue Tmp1
= isSRA
?
4736 DAG
.getNode(ISD::SRA
, dl
, VT
, ShOpHi
,
4737 DAG
.getConstant(VTBits
- 1, MVT::i8
)) :
4738 DAG
.getConstant(0, VT
);
4741 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4742 Tmp2
= DAG
.getNode(X86ISD::SHLD
, dl
, VT
, ShOpHi
, ShOpLo
, ShAmt
);
4743 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
4745 Tmp2
= DAG
.getNode(X86ISD::SHRD
, dl
, VT
, ShOpLo
, ShOpHi
, ShAmt
);
4746 Tmp3
= DAG
.getNode(isSRA
? ISD::SRA
: ISD::SRL
, dl
, VT
, ShOpHi
, ShAmt
);
4749 SDValue AndNode
= DAG
.getNode(ISD::AND
, dl
, MVT::i8
, ShAmt
,
4750 DAG
.getConstant(VTBits
, MVT::i8
));
4751 SDValue Cond
= DAG
.getNode(X86ISD::CMP
, dl
, VT
,
4752 AndNode
, DAG
.getConstant(0, MVT::i8
));
4755 SDValue CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
4756 SDValue Ops0
[4] = { Tmp2
, Tmp3
, CC
, Cond
};
4757 SDValue Ops1
[4] = { Tmp3
, Tmp1
, CC
, Cond
};
4759 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4760 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4761 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4763 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4764 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4767 SDValue Ops
[2] = { Lo
, Hi
};
4768 return DAG
.getMergeValues(Ops
, 2, dl
);
4771 SDValue
X86TargetLowering::LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4772 MVT SrcVT
= Op
.getOperand(0).getValueType();
4774 if (SrcVT
.isVector()) {
4775 if (SrcVT
== MVT::v2i32
&& Op
.getValueType() == MVT::v2f64
) {
4781 assert(SrcVT
.getSimpleVT() <= MVT::i64
&& SrcVT
.getSimpleVT() >= MVT::i16
&&
4782 "Unknown SINT_TO_FP to lower!");
4784 // These are really Legal; return the operand so the caller accepts it as
4786 if (SrcVT
== MVT::i32
&& isScalarFPTypeInSSEReg(Op
.getValueType()))
4788 if (SrcVT
== MVT::i64
&& isScalarFPTypeInSSEReg(Op
.getValueType()) &&
4789 Subtarget
->is64Bit()) {
4793 DebugLoc dl
= Op
.getDebugLoc();
4794 unsigned Size
= SrcVT
.getSizeInBits()/8;
4795 MachineFunction
&MF
= DAG
.getMachineFunction();
4796 int SSFI
= MF
.getFrameInfo()->CreateStackObject(Size
, Size
);
4797 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4798 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
4800 PseudoSourceValue::getFixedStack(SSFI
), 0);
4801 return BuildFILD(Op
, SrcVT
, Chain
, StackSlot
, DAG
);
4804 SDValue
X86TargetLowering::BuildFILD(SDValue Op
, MVT SrcVT
, SDValue Chain
,
4806 SelectionDAG
&DAG
) {
4808 DebugLoc dl
= Op
.getDebugLoc();
4810 bool useSSE
= isScalarFPTypeInSSEReg(Op
.getValueType());
4812 Tys
= DAG
.getVTList(MVT::f64
, MVT::Other
, MVT::Flag
);
4814 Tys
= DAG
.getVTList(Op
.getValueType(), MVT::Other
);
4815 SmallVector
<SDValue
, 8> Ops
;
4816 Ops
.push_back(Chain
);
4817 Ops
.push_back(StackSlot
);
4818 Ops
.push_back(DAG
.getValueType(SrcVT
));
4819 SDValue Result
= DAG
.getNode(useSSE
? X86ISD::FILD_FLAG
: X86ISD::FILD
, dl
,
4820 Tys
, &Ops
[0], Ops
.size());
4823 Chain
= Result
.getValue(1);
4824 SDValue InFlag
= Result
.getValue(2);
4826 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4827 // shouldn't be necessary except that RFP cannot be live across
4828 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4829 MachineFunction
&MF
= DAG
.getMachineFunction();
4830 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8);
4831 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4832 Tys
= DAG
.getVTList(MVT::Other
);
4833 SmallVector
<SDValue
, 8> Ops
;
4834 Ops
.push_back(Chain
);
4835 Ops
.push_back(Result
);
4836 Ops
.push_back(StackSlot
);
4837 Ops
.push_back(DAG
.getValueType(Op
.getValueType()));
4838 Ops
.push_back(InFlag
);
4839 Chain
= DAG
.getNode(X86ISD::FST
, dl
, Tys
, &Ops
[0], Ops
.size());
4840 Result
= DAG
.getLoad(Op
.getValueType(), dl
, Chain
, StackSlot
,
4841 PseudoSourceValue::getFixedStack(SSFI
), 0);
4847 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4848 SDValue
X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) {
4849 // This algorithm is not obvious. Here it is in C code, more or less:
4851 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4852 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4853 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4855 // Copy ints to xmm registers.
4856 __m128i xh = _mm_cvtsi32_si128( hi );
4857 __m128i xl = _mm_cvtsi32_si128( lo );
4859 // Combine into low half of a single xmm register.
4860 __m128i x = _mm_unpacklo_epi32( xh, xl );
4864 // Merge in appropriate exponents to give the integer bits the right
4866 x = _mm_unpacklo_epi32( x, exp );
4868 // Subtract away the biases to deal with the IEEE-754 double precision
4870 d = _mm_sub_pd( (__m128d) x, bias );
4872 // All conversions up to here are exact. The correctly rounded result is
4873 // calculated using the current rounding mode using the following
4875 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4876 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4877 // store doesn't really need to be here (except
4878 // maybe to zero the other double)
4883 DebugLoc dl
= Op
.getDebugLoc();
4884 LLVMContext
*Context
= DAG
.getContext();
4886 // Build some magic constants.
4887 std::vector
<Constant
*> CV0
;
4888 CV0
.push_back(Context
->getConstantInt(APInt(32, 0x45300000)));
4889 CV0
.push_back(Context
->getConstantInt(APInt(32, 0x43300000)));
4890 CV0
.push_back(Context
->getConstantInt(APInt(32, 0)));
4891 CV0
.push_back(Context
->getConstantInt(APInt(32, 0)));
4892 Constant
*C0
= Context
->getConstantVector(CV0
);
4893 SDValue CPIdx0
= DAG
.getConstantPool(C0
, getPointerTy(), 16);
4895 std::vector
<Constant
*> CV1
;
4897 Context
->getConstantFP(APFloat(APInt(64, 0x4530000000000000ULL
))));
4899 Context
->getConstantFP(APFloat(APInt(64, 0x4330000000000000ULL
))));
4900 Constant
*C1
= Context
->getConstantVector(CV1
);
4901 SDValue CPIdx1
= DAG
.getConstantPool(C1
, getPointerTy(), 16);
4903 SDValue XR1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4904 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4906 DAG
.getIntPtrConstant(1)));
4907 SDValue XR2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4908 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4910 DAG
.getIntPtrConstant(0)));
4911 SDValue Unpck1
= getUnpackl(DAG
, dl
, MVT::v4i32
, XR1
, XR2
);
4912 SDValue CLod0
= DAG
.getLoad(MVT::v4i32
, dl
, DAG
.getEntryNode(), CPIdx0
,
4913 PseudoSourceValue::getConstantPool(), 0,
4915 SDValue Unpck2
= getUnpackl(DAG
, dl
, MVT::v4i32
, Unpck1
, CLod0
);
4916 SDValue XR2F
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Unpck2
);
4917 SDValue CLod1
= DAG
.getLoad(MVT::v2f64
, dl
, CLod0
.getValue(1), CPIdx1
,
4918 PseudoSourceValue::getConstantPool(), 0,
4920 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::v2f64
, XR2F
, CLod1
);
4922 // Add the halves; easiest way is to swap them into another reg first.
4923 int ShufMask
[2] = { 1, -1 };
4924 SDValue Shuf
= DAG
.getVectorShuffle(MVT::v2f64
, dl
, Sub
,
4925 DAG
.getUNDEF(MVT::v2f64
), ShufMask
);
4926 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::v2f64
, Shuf
, Sub
);
4927 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Add
,
4928 DAG
.getIntPtrConstant(0));
4931 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4932 SDValue
X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) {
4933 DebugLoc dl
= Op
.getDebugLoc();
4934 // FP constant to bias correct the final result.
4935 SDValue Bias
= DAG
.getConstantFP(BitsToDouble(0x4330000000000000ULL
),
4938 // Load the 32-bit value into an XMM register.
4939 SDValue Load
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4940 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4942 DAG
.getIntPtrConstant(0)));
4944 Load
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4945 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Load
),
4946 DAG
.getIntPtrConstant(0));
4948 // Or the load with the bias.
4949 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, MVT::v2i64
,
4950 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4951 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4953 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4954 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4955 MVT::v2f64
, Bias
)));
4956 Or
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4957 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Or
),
4958 DAG
.getIntPtrConstant(0));
4960 // Subtract the bias.
4961 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Or
, Bias
);
4963 // Handle final rounding.
4964 MVT DestVT
= Op
.getValueType();
4966 if (DestVT
.bitsLT(MVT::f64
)) {
4967 return DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
4968 DAG
.getIntPtrConstant(0));
4969 } else if (DestVT
.bitsGT(MVT::f64
)) {
4970 return DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
4973 // Handle final rounding.
4977 SDValue
X86TargetLowering::LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4978 SDValue N0
= Op
.getOperand(0);
4979 DebugLoc dl
= Op
.getDebugLoc();
4981 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4982 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4983 // the optimization here.
4984 if (DAG
.SignBitIsZero(N0
))
4985 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, Op
.getValueType(), N0
);
4987 MVT SrcVT
= N0
.getValueType();
4988 if (SrcVT
== MVT::i64
) {
4989 // We only handle SSE2 f64 target here; caller can expand the rest.
4990 if (Op
.getValueType() != MVT::f64
|| !X86ScalarSSEf64
)
4993 return LowerUINT_TO_FP_i64(Op
, DAG
);
4994 } else if (SrcVT
== MVT::i32
&& X86ScalarSSEf64
) {
4995 return LowerUINT_TO_FP_i32(Op
, DAG
);
4998 assert(SrcVT
== MVT::i32
&& "Unknown UINT_TO_FP to lower!");
5000 // Make a 64-bit buffer, and use it to build an FILD.
5001 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::i64
);
5002 SDValue WordOff
= DAG
.getConstant(4, getPointerTy());
5003 SDValue OffsetSlot
= DAG
.getNode(ISD::ADD
, dl
,
5004 getPointerTy(), StackSlot
, WordOff
);
5005 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
5006 StackSlot
, NULL
, 0);
5007 SDValue Store2
= DAG
.getStore(Store1
, dl
, DAG
.getConstant(0, MVT::i32
),
5008 OffsetSlot
, NULL
, 0);
5009 return BuildFILD(Op
, MVT::i64
, Store2
, StackSlot
, DAG
);
5012 std::pair
<SDValue
,SDValue
> X86TargetLowering::
5013 FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool IsSigned
) {
5014 DebugLoc dl
= Op
.getDebugLoc();
5016 MVT DstTy
= Op
.getValueType();
5019 assert(DstTy
== MVT::i32
&& "Unexpected FP_TO_UINT");
5023 assert(DstTy
.getSimpleVT() <= MVT::i64
&&
5024 DstTy
.getSimpleVT() >= MVT::i16
&&
5025 "Unknown FP_TO_SINT to lower!");
5027 // These are really Legal.
5028 if (DstTy
== MVT::i32
&&
5029 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5030 return std::make_pair(SDValue(), SDValue());
5031 if (Subtarget
->is64Bit() &&
5032 DstTy
== MVT::i64
&&
5033 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5034 return std::make_pair(SDValue(), SDValue());
5036 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5038 MachineFunction
&MF
= DAG
.getMachineFunction();
5039 unsigned MemSize
= DstTy
.getSizeInBits()/8;
5040 int SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5041 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5044 switch (DstTy
.getSimpleVT()) {
5045 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5046 case MVT::i16
: Opc
= X86ISD::FP_TO_INT16_IN_MEM
; break;
5047 case MVT::i32
: Opc
= X86ISD::FP_TO_INT32_IN_MEM
; break;
5048 case MVT::i64
: Opc
= X86ISD::FP_TO_INT64_IN_MEM
; break;
5051 SDValue Chain
= DAG
.getEntryNode();
5052 SDValue Value
= Op
.getOperand(0);
5053 if (isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType())) {
5054 assert(DstTy
== MVT::i64
&& "Invalid FP_TO_SINT to lower!");
5055 Chain
= DAG
.getStore(Chain
, dl
, Value
, StackSlot
,
5056 PseudoSourceValue::getFixedStack(SSFI
), 0);
5057 SDVTList Tys
= DAG
.getVTList(Op
.getOperand(0).getValueType(), MVT::Other
);
5059 Chain
, StackSlot
, DAG
.getValueType(Op
.getOperand(0).getValueType())
5061 Value
= DAG
.getNode(X86ISD::FLD
, dl
, Tys
, Ops
, 3);
5062 Chain
= Value
.getValue(1);
5063 SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5064 StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5067 // Build the FP_TO_INT*_IN_MEM
5068 SDValue Ops
[] = { Chain
, Value
, StackSlot
};
5069 SDValue FIST
= DAG
.getNode(Opc
, dl
, MVT::Other
, Ops
, 3);
5071 return std::make_pair(FIST
, StackSlot
);
5074 SDValue
X86TargetLowering::LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) {
5075 if (Op
.getValueType().isVector()) {
5076 if (Op
.getValueType() == MVT::v2i32
&&
5077 Op
.getOperand(0).getValueType() == MVT::v2f64
) {
5083 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, true);
5084 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5085 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5086 if (FIST
.getNode() == 0) return Op
;
5089 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5090 FIST
, StackSlot
, NULL
, 0);
5093 SDValue
X86TargetLowering::LowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) {
5094 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, false);
5095 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5096 assert(FIST
.getNode() && "Unexpected failure");
5099 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5100 FIST
, StackSlot
, NULL
, 0);
5103 SDValue
X86TargetLowering::LowerFABS(SDValue Op
, SelectionDAG
&DAG
) {
5104 LLVMContext
*Context
= DAG
.getContext();
5105 DebugLoc dl
= Op
.getDebugLoc();
5106 MVT VT
= Op
.getValueType();
5109 EltVT
= VT
.getVectorElementType();
5110 std::vector
<Constant
*> CV
;
5111 if (EltVT
== MVT::f64
) {
5112 Constant
*C
= Context
->getConstantFP(APFloat(APInt(64, ~(1ULL << 63))));
5116 Constant
*C
= Context
->getConstantFP(APFloat(APInt(32, ~(1U << 31))));
5122 Constant
*C
= Context
->getConstantVector(CV
);
5123 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5124 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5125 PseudoSourceValue::getConstantPool(), 0,
5127 return DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op
.getOperand(0), Mask
);
5130 SDValue
X86TargetLowering::LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) {
5131 LLVMContext
*Context
= DAG
.getContext();
5132 DebugLoc dl
= Op
.getDebugLoc();
5133 MVT VT
= Op
.getValueType();
5135 unsigned EltNum
= 1;
5136 if (VT
.isVector()) {
5137 EltVT
= VT
.getVectorElementType();
5138 EltNum
= VT
.getVectorNumElements();
5140 std::vector
<Constant
*> CV
;
5141 if (EltVT
== MVT::f64
) {
5142 Constant
*C
= Context
->getConstantFP(APFloat(APInt(64, 1ULL << 63)));
5146 Constant
*C
= Context
->getConstantFP(APFloat(APInt(32, 1U << 31)));
5152 Constant
*C
= Context
->getConstantVector(CV
);
5153 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5154 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5155 PseudoSourceValue::getConstantPool(), 0,
5157 if (VT
.isVector()) {
5158 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
5159 DAG
.getNode(ISD::XOR
, dl
, MVT::v2i64
,
5160 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
5162 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, Mask
)));
5164 return DAG
.getNode(X86ISD::FXOR
, dl
, VT
, Op
.getOperand(0), Mask
);
5168 SDValue
X86TargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) {
5169 LLVMContext
*Context
= DAG
.getContext();
5170 SDValue Op0
= Op
.getOperand(0);
5171 SDValue Op1
= Op
.getOperand(1);
5172 DebugLoc dl
= Op
.getDebugLoc();
5173 MVT VT
= Op
.getValueType();
5174 MVT SrcVT
= Op1
.getValueType();
5176 // If second operand is smaller, extend it first.
5177 if (SrcVT
.bitsLT(VT
)) {
5178 Op1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Op1
);
5181 // And if it is bigger, shrink it first.
5182 if (SrcVT
.bitsGT(VT
)) {
5183 Op1
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op1
, DAG
.getIntPtrConstant(1));
5187 // At this point the operands and the result should have the same
5188 // type, and that won't be f80 since that is not custom lowered.
5190 // First get the sign bit of second operand.
5191 std::vector
<Constant
*> CV
;
5192 if (SrcVT
== MVT::f64
) {
5193 CV
.push_back(Context
->getConstantFP(APFloat(APInt(64, 1ULL << 63))));
5194 CV
.push_back(Context
->getConstantFP(APFloat(APInt(64, 0))));
5196 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, 1U << 31))));
5197 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, 0))));
5198 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, 0))));
5199 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, 0))));
5201 Constant
*C
= Context
->getConstantVector(CV
);
5202 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5203 SDValue Mask1
= DAG
.getLoad(SrcVT
, dl
, DAG
.getEntryNode(), CPIdx
,
5204 PseudoSourceValue::getConstantPool(), 0,
5206 SDValue SignBit
= DAG
.getNode(X86ISD::FAND
, dl
, SrcVT
, Op1
, Mask1
);
5208 // Shift sign bit right or left if the two operands have different types.
5209 if (SrcVT
.bitsGT(VT
)) {
5210 // Op0 is MVT::f32, Op1 is MVT::f64.
5211 SignBit
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f64
, SignBit
);
5212 SignBit
= DAG
.getNode(X86ISD::FSRL
, dl
, MVT::v2f64
, SignBit
,
5213 DAG
.getConstant(32, MVT::i32
));
5214 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, SignBit
);
5215 SignBit
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, SignBit
,
5216 DAG
.getIntPtrConstant(0));
5219 // Clear first operand sign bit.
5221 if (VT
== MVT::f64
) {
5222 CV
.push_back(Context
->getConstantFP(APFloat(APInt(64, ~(1ULL << 63)))));
5223 CV
.push_back(Context
->getConstantFP(APFloat(APInt(64, 0))));
5225 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, ~(1U << 31)))));
5226 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, 0))));
5227 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, 0))));
5228 CV
.push_back(Context
->getConstantFP(APFloat(APInt(32, 0))));
5230 C
= Context
->getConstantVector(CV
);
5231 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5232 SDValue Mask2
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5233 PseudoSourceValue::getConstantPool(), 0,
5235 SDValue Val
= DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op0
, Mask2
);
5237 // Or the value with the sign bit.
5238 return DAG
.getNode(X86ISD::FOR
, dl
, VT
, Val
, SignBit
);
5241 /// Emit nodes that will be selected as "test Op0,Op0", or something
5243 SDValue
X86TargetLowering::EmitTest(SDValue Op
, unsigned X86CC
,
5244 SelectionDAG
&DAG
) {
5245 DebugLoc dl
= Op
.getDebugLoc();
5247 // CF and OF aren't always set the way we want. Determine which
5248 // of these we need.
5249 bool NeedCF
= false;
5250 bool NeedOF
= false;
5252 case X86::COND_A
: case X86::COND_AE
:
5253 case X86::COND_B
: case X86::COND_BE
:
5256 case X86::COND_G
: case X86::COND_GE
:
5257 case X86::COND_L
: case X86::COND_LE
:
5258 case X86::COND_O
: case X86::COND_NO
:
5264 // See if we can use the EFLAGS value from the operand instead of
5265 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5266 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5267 if (Op
.getResNo() == 0 && !NeedOF
&& !NeedCF
) {
5268 unsigned Opcode
= 0;
5269 unsigned NumOperands
= 0;
5270 switch (Op
.getNode()->getOpcode()) {
5272 // Due to an isel shortcoming, be conservative if this add is likely to
5273 // be selected as part of a load-modify-store instruction. When the root
5274 // node in a match is a store, isel doesn't know how to remap non-chain
5275 // non-flag uses of other nodes in the match, such as the ADD in this
5276 // case. This leads to the ADD being left around and reselected, with
5277 // the result being two adds in the output.
5278 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5279 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5280 if (UI
->getOpcode() == ISD::STORE
)
5282 if (ConstantSDNode
*C
=
5283 dyn_cast
<ConstantSDNode
>(Op
.getNode()->getOperand(1))) {
5284 // An add of one will be selected as an INC.
5285 if (C
->getAPIntValue() == 1) {
5286 Opcode
= X86ISD::INC
;
5290 // An add of negative one (subtract of one) will be selected as a DEC.
5291 if (C
->getAPIntValue().isAllOnesValue()) {
5292 Opcode
= X86ISD::DEC
;
5297 // Otherwise use a regular EFLAGS-setting add.
5298 Opcode
= X86ISD::ADD
;
5302 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5303 // likely to be selected as part of a load-modify-store instruction.
5304 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5305 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5306 if (UI
->getOpcode() == ISD::STORE
)
5308 // Otherwise use a regular EFLAGS-setting sub.
5309 Opcode
= X86ISD::SUB
;
5316 return SDValue(Op
.getNode(), 1);
5322 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
5323 SmallVector
<SDValue
, 4> Ops
;
5324 for (unsigned i
= 0; i
!= NumOperands
; ++i
)
5325 Ops
.push_back(Op
.getOperand(i
));
5326 SDValue New
= DAG
.getNode(Opcode
, dl
, VTs
, &Ops
[0], NumOperands
);
5327 DAG
.ReplaceAllUsesWith(Op
, New
);
5328 return SDValue(New
.getNode(), 1);
5332 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5333 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
5334 DAG
.getConstant(0, Op
.getValueType()));
5337 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5339 SDValue
X86TargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
5340 SelectionDAG
&DAG
) {
5341 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op1
))
5342 if (C
->getAPIntValue() == 0)
5343 return EmitTest(Op0
, X86CC
, DAG
);
5345 DebugLoc dl
= Op0
.getDebugLoc();
5346 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op0
, Op1
);
5349 SDValue
X86TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5350 assert(Op
.getValueType() == MVT::i8
&& "SetCC type must be 8-bit integer");
5351 SDValue Op0
= Op
.getOperand(0);
5352 SDValue Op1
= Op
.getOperand(1);
5353 DebugLoc dl
= Op
.getDebugLoc();
5354 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5356 // Lower (X & (1 << N)) == 0 to BT(X, N).
5357 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5358 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5359 if (Op0
.getOpcode() == ISD::AND
&&
5361 Op1
.getOpcode() == ISD::Constant
&&
5362 cast
<ConstantSDNode
>(Op1
)->getZExtValue() == 0 &&
5363 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5365 if (Op0
.getOperand(1).getOpcode() == ISD::SHL
) {
5366 if (ConstantSDNode
*Op010C
=
5367 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1).getOperand(0)))
5368 if (Op010C
->getZExtValue() == 1) {
5369 LHS
= Op0
.getOperand(0);
5370 RHS
= Op0
.getOperand(1).getOperand(1);
5372 } else if (Op0
.getOperand(0).getOpcode() == ISD::SHL
) {
5373 if (ConstantSDNode
*Op000C
=
5374 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(0).getOperand(0)))
5375 if (Op000C
->getZExtValue() == 1) {
5376 LHS
= Op0
.getOperand(1);
5377 RHS
= Op0
.getOperand(0).getOperand(1);
5379 } else if (Op0
.getOperand(1).getOpcode() == ISD::Constant
) {
5380 ConstantSDNode
*AndRHS
= cast
<ConstantSDNode
>(Op0
.getOperand(1));
5381 SDValue AndLHS
= Op0
.getOperand(0);
5382 if (AndRHS
->getZExtValue() == 1 && AndLHS
.getOpcode() == ISD::SRL
) {
5383 LHS
= AndLHS
.getOperand(0);
5384 RHS
= AndLHS
.getOperand(1);
5388 if (LHS
.getNode()) {
5389 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5390 // instruction. Since the shift amount is in-range-or-undefined, we know
5391 // that doing a bittest on the i16 value is ok. We extend to i32 because
5392 // the encoding for the i16 version is larger than the i32 version.
5393 if (LHS
.getValueType() == MVT::i8
)
5394 LHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
5396 // If the operand types disagree, extend the shift amount to match. Since
5397 // BT ignores high bits (like shifts) we can use anyextend.
5398 if (LHS
.getValueType() != RHS
.getValueType())
5399 RHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, LHS
.getValueType(), RHS
);
5401 SDValue BT
= DAG
.getNode(X86ISD::BT
, dl
, MVT::i32
, LHS
, RHS
);
5402 unsigned Cond
= CC
== ISD::SETEQ
? X86::COND_AE
: X86::COND_B
;
5403 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5404 DAG
.getConstant(Cond
, MVT::i8
), BT
);
5408 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5409 unsigned X86CC
= TranslateX86CC(CC
, isFP
, Op0
, Op1
, DAG
);
5411 SDValue Cond
= EmitCmp(Op0
, Op1
, X86CC
, DAG
);
5412 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5413 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5416 SDValue
X86TargetLowering::LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5418 SDValue Op0
= Op
.getOperand(0);
5419 SDValue Op1
= Op
.getOperand(1);
5420 SDValue CC
= Op
.getOperand(2);
5421 MVT VT
= Op
.getValueType();
5422 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5423 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5424 DebugLoc dl
= Op
.getDebugLoc();
5428 MVT VT0
= Op0
.getValueType();
5429 assert(VT0
== MVT::v4f32
|| VT0
== MVT::v2f64
);
5430 unsigned Opc
= VT0
== MVT::v4f32
? X86ISD::CMPPS
: X86ISD::CMPPD
;
5433 switch (SetCCOpcode
) {
5436 case ISD::SETEQ
: SSECC
= 0; break;
5438 case ISD::SETGT
: Swap
= true; // Fallthrough
5440 case ISD::SETOLT
: SSECC
= 1; break;
5442 case ISD::SETGE
: Swap
= true; // Fallthrough
5444 case ISD::SETOLE
: SSECC
= 2; break;
5445 case ISD::SETUO
: SSECC
= 3; break;
5447 case ISD::SETNE
: SSECC
= 4; break;
5448 case ISD::SETULE
: Swap
= true;
5449 case ISD::SETUGE
: SSECC
= 5; break;
5450 case ISD::SETULT
: Swap
= true;
5451 case ISD::SETUGT
: SSECC
= 6; break;
5452 case ISD::SETO
: SSECC
= 7; break;
5455 std::swap(Op0
, Op1
);
5457 // In the two special cases we can't handle, emit two comparisons.
5459 if (SetCCOpcode
== ISD::SETUEQ
) {
5461 UNORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(3, MVT::i8
));
5462 EQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(0, MVT::i8
));
5463 return DAG
.getNode(ISD::OR
, dl
, VT
, UNORD
, EQ
);
5465 else if (SetCCOpcode
== ISD::SETONE
) {
5467 ORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(7, MVT::i8
));
5468 NEQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(4, MVT::i8
));
5469 return DAG
.getNode(ISD::AND
, dl
, VT
, ORD
, NEQ
);
5471 llvm_unreachable("Illegal FP comparison");
5473 // Handle all other FP comparisons here.
5474 return DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(SSECC
, MVT::i8
));
5477 // We are handling one of the integer comparisons here. Since SSE only has
5478 // GT and EQ comparisons for integer, swapping operands and multiple
5479 // operations may be required for some comparisons.
5480 unsigned Opc
= 0, EQOpc
= 0, GTOpc
= 0;
5481 bool Swap
= false, Invert
= false, FlipSigns
= false;
5483 switch (VT
.getSimpleVT()) {
5485 case MVT::v16i8
: EQOpc
= X86ISD::PCMPEQB
; GTOpc
= X86ISD::PCMPGTB
; break;
5486 case MVT::v8i16
: EQOpc
= X86ISD::PCMPEQW
; GTOpc
= X86ISD::PCMPGTW
; break;
5487 case MVT::v4i32
: EQOpc
= X86ISD::PCMPEQD
; GTOpc
= X86ISD::PCMPGTD
; break;
5488 case MVT::v2i64
: EQOpc
= X86ISD::PCMPEQQ
; GTOpc
= X86ISD::PCMPGTQ
; break;
5491 switch (SetCCOpcode
) {
5493 case ISD::SETNE
: Invert
= true;
5494 case ISD::SETEQ
: Opc
= EQOpc
; break;
5495 case ISD::SETLT
: Swap
= true;
5496 case ISD::SETGT
: Opc
= GTOpc
; break;
5497 case ISD::SETGE
: Swap
= true;
5498 case ISD::SETLE
: Opc
= GTOpc
; Invert
= true; break;
5499 case ISD::SETULT
: Swap
= true;
5500 case ISD::SETUGT
: Opc
= GTOpc
; FlipSigns
= true; break;
5501 case ISD::SETUGE
: Swap
= true;
5502 case ISD::SETULE
: Opc
= GTOpc
; FlipSigns
= true; Invert
= true; break;
5505 std::swap(Op0
, Op1
);
5507 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5508 // bits of the inputs before performing those operations.
5510 MVT EltVT
= VT
.getVectorElementType();
5511 SDValue SignBit
= DAG
.getConstant(APInt::getSignBit(EltVT
.getSizeInBits()),
5513 std::vector
<SDValue
> SignBits(VT
.getVectorNumElements(), SignBit
);
5514 SDValue SignVec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &SignBits
[0],
5516 Op0
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
, SignVec
);
5517 Op1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op1
, SignVec
);
5520 SDValue Result
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
);
5522 // If the logical-not of the result is required, perform that now.
5524 Result
= DAG
.getNOT(dl
, Result
, VT
);
5529 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5530 static bool isX86LogicalCmp(SDValue Op
) {
5531 unsigned Opc
= Op
.getNode()->getOpcode();
5532 if (Opc
== X86ISD::CMP
|| Opc
== X86ISD::COMI
|| Opc
== X86ISD::UCOMI
)
5534 if (Op
.getResNo() == 1 &&
5535 (Opc
== X86ISD::ADD
||
5536 Opc
== X86ISD::SUB
||
5537 Opc
== X86ISD::SMUL
||
5538 Opc
== X86ISD::UMUL
||
5539 Opc
== X86ISD::INC
||
5540 Opc
== X86ISD::DEC
))
5546 SDValue
X86TargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) {
5547 bool addTest
= true;
5548 SDValue Cond
= Op
.getOperand(0);
5549 DebugLoc dl
= Op
.getDebugLoc();
5552 if (Cond
.getOpcode() == ISD::SETCC
)
5553 Cond
= LowerSETCC(Cond
, DAG
);
5555 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5556 // setting operand in place of the X86ISD::SETCC.
5557 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5558 CC
= Cond
.getOperand(0);
5560 SDValue Cmp
= Cond
.getOperand(1);
5561 unsigned Opc
= Cmp
.getOpcode();
5562 MVT VT
= Op
.getValueType();
5564 bool IllegalFPCMov
= false;
5565 if (VT
.isFloatingPoint() && !VT
.isVector() &&
5566 !isScalarFPTypeInSSEReg(VT
)) // FPStack?
5567 IllegalFPCMov
= !hasFPCMov(cast
<ConstantSDNode
>(CC
)->getSExtValue());
5569 if ((isX86LogicalCmp(Cmp
) && !IllegalFPCMov
) ||
5570 Opc
== X86ISD::BT
) { // FIXME
5577 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5578 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5581 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Flag
);
5582 SmallVector
<SDValue
, 4> Ops
;
5583 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5584 // condition is true.
5585 Ops
.push_back(Op
.getOperand(2));
5586 Ops
.push_back(Op
.getOperand(1));
5588 Ops
.push_back(Cond
);
5589 return DAG
.getNode(X86ISD::CMOV
, dl
, VTs
, &Ops
[0], Ops
.size());
5592 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5593 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5594 // from the AND / OR.
5595 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
5596 Opc
= Op
.getOpcode();
5597 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
5599 return (Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5600 Op
.getOperand(0).hasOneUse() &&
5601 Op
.getOperand(1).getOpcode() == X86ISD::SETCC
&&
5602 Op
.getOperand(1).hasOneUse());
5605 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5606 // 1 and that the SETCC node has a single use.
5607 static bool isXor1OfSetCC(SDValue Op
) {
5608 if (Op
.getOpcode() != ISD::XOR
)
5610 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5611 if (N1C
&& N1C
->getAPIntValue() == 1) {
5612 return Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5613 Op
.getOperand(0).hasOneUse();
5618 SDValue
X86TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) {
5619 bool addTest
= true;
5620 SDValue Chain
= Op
.getOperand(0);
5621 SDValue Cond
= Op
.getOperand(1);
5622 SDValue Dest
= Op
.getOperand(2);
5623 DebugLoc dl
= Op
.getDebugLoc();
5626 if (Cond
.getOpcode() == ISD::SETCC
)
5627 Cond
= LowerSETCC(Cond
, DAG
);
5629 // FIXME: LowerXALUO doesn't handle these!!
5630 else if (Cond
.getOpcode() == X86ISD::ADD
||
5631 Cond
.getOpcode() == X86ISD::SUB
||
5632 Cond
.getOpcode() == X86ISD::SMUL
||
5633 Cond
.getOpcode() == X86ISD::UMUL
)
5634 Cond
= LowerXALUO(Cond
, DAG
);
5637 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5638 // setting operand in place of the X86ISD::SETCC.
5639 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5640 CC
= Cond
.getOperand(0);
5642 SDValue Cmp
= Cond
.getOperand(1);
5643 unsigned Opc
= Cmp
.getOpcode();
5644 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5645 if (isX86LogicalCmp(Cmp
) || Opc
== X86ISD::BT
) {
5649 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
5653 // These can only come from an arithmetic instruction with overflow,
5654 // e.g. SADDO, UADDO.
5655 Cond
= Cond
.getNode()->getOperand(1);
5662 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
5663 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
5664 if (CondOpc
== ISD::OR
) {
5665 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5666 // two branches instead of an explicit OR instruction with a
5668 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5669 isX86LogicalCmp(Cmp
)) {
5670 CC
= Cond
.getOperand(0).getOperand(0);
5671 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5672 Chain
, Dest
, CC
, Cmp
);
5673 CC
= Cond
.getOperand(1).getOperand(0);
5677 } else { // ISD::AND
5678 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5679 // two branches instead of an explicit AND instruction with a
5680 // separate test. However, we only do this if this block doesn't
5681 // have a fall-through edge, because this requires an explicit
5682 // jmp when the condition is false.
5683 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5684 isX86LogicalCmp(Cmp
) &&
5685 Op
.getNode()->hasOneUse()) {
5686 X86::CondCode CCode
=
5687 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5688 CCode
= X86::GetOppositeBranchCondition(CCode
);
5689 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5690 SDValue User
= SDValue(*Op
.getNode()->use_begin(), 0);
5691 // Look for an unconditional branch following this conditional branch.
5692 // We need this because we need to reverse the successors in order
5693 // to implement FCMP_OEQ.
5694 if (User
.getOpcode() == ISD::BR
) {
5695 SDValue FalseBB
= User
.getOperand(1);
5697 DAG
.UpdateNodeOperands(User
, User
.getOperand(0), Dest
);
5698 assert(NewBR
== User
);
5701 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5702 Chain
, Dest
, CC
, Cmp
);
5703 X86::CondCode CCode
=
5704 (X86::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
5705 CCode
= X86::GetOppositeBranchCondition(CCode
);
5706 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5712 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
5713 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5714 // It should be transformed during dag combiner except when the condition
5715 // is set by a arithmetics with overflow node.
5716 X86::CondCode CCode
=
5717 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5718 CCode
= X86::GetOppositeBranchCondition(CCode
);
5719 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5720 Cond
= Cond
.getOperand(0).getOperand(1);
5726 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5727 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5729 return DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5730 Chain
, Dest
, CC
, Cond
);
5734 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5735 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5736 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5737 // that the guard pages used by the OS virtual memory manager are allocated in
5738 // correct sequence.
5740 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
5741 SelectionDAG
&DAG
) {
5742 assert(Subtarget
->isTargetCygMing() &&
5743 "This should be used only on Cygwin/Mingw targets");
5744 DebugLoc dl
= Op
.getDebugLoc();
5747 SDValue Chain
= Op
.getOperand(0);
5748 SDValue Size
= Op
.getOperand(1);
5749 // FIXME: Ensure alignment here
5753 MVT IntPtr
= getPointerTy();
5754 MVT SPTy
= Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
;
5756 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
5758 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EAX
, Size
, Flag
);
5759 Flag
= Chain
.getValue(1);
5761 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5762 SDValue Ops
[] = { Chain
,
5763 DAG
.getTargetExternalSymbol("_alloca", IntPtr
),
5764 DAG
.getRegister(X86::EAX
, IntPtr
),
5765 DAG
.getRegister(X86StackPtr
, SPTy
),
5767 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, Ops
, 5);
5768 Flag
= Chain
.getValue(1);
5770 Chain
= DAG
.getCALLSEQ_END(Chain
,
5771 DAG
.getIntPtrConstant(0, true),
5772 DAG
.getIntPtrConstant(0, true),
5775 Chain
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, SPTy
).getValue(1);
5777 SDValue Ops1
[2] = { Chain
.getValue(0), Chain
};
5778 return DAG
.getMergeValues(Ops1
, 2, dl
);
5782 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
5784 SDValue Dst
, SDValue Src
,
5785 SDValue Size
, unsigned Align
,
5787 uint64_t DstSVOff
) {
5788 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5790 // If not DWORD aligned or size is more than the threshold, call the library.
5791 // The libc version is likely to be faster for these cases. It can use the
5792 // address value and run time information about the CPU.
5793 if ((Align
& 3) != 0 ||
5795 ConstantSize
->getZExtValue() >
5796 getSubtarget()->getMaxInlineSizeThreshold()) {
5797 SDValue
InFlag(0, 0);
5799 // Check to see if there is a specialized entry-point for memory zeroing.
5800 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Src
);
5802 if (const char *bzeroEntry
= V
&&
5803 V
->isNullValue() ? Subtarget
->getBZeroEntry() : 0) {
5804 MVT IntPtr
= getPointerTy();
5805 const Type
*IntPtrTy
= TD
->getIntPtrType();
5806 TargetLowering::ArgListTy Args
;
5807 TargetLowering::ArgListEntry Entry
;
5809 Entry
.Ty
= IntPtrTy
;
5810 Args
.push_back(Entry
);
5812 Args
.push_back(Entry
);
5813 std::pair
<SDValue
,SDValue
> CallResult
=
5814 LowerCallTo(Chain
, Type::VoidTy
, false, false, false, false,
5815 0, CallingConv::C
, false,
5816 DAG
.getExternalSymbol(bzeroEntry
, IntPtr
), Args
, DAG
, dl
);
5817 return CallResult
.second
;
5820 // Otherwise have the target-independent code call memset.
5824 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5825 SDValue
InFlag(0, 0);
5828 ConstantSDNode
*ValC
= dyn_cast
<ConstantSDNode
>(Src
);
5829 unsigned BytesLeft
= 0;
5830 bool TwoRepStos
= false;
5833 uint64_t Val
= ValC
->getZExtValue() & 255;
5835 // If the value is a constant, then we can potentially use larger sets.
5836 switch (Align
& 3) {
5837 case 2: // WORD aligned
5840 Val
= (Val
<< 8) | Val
;
5842 case 0: // DWORD aligned
5845 Val
= (Val
<< 8) | Val
;
5846 Val
= (Val
<< 16) | Val
;
5847 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) { // QWORD aligned
5850 Val
= (Val
<< 32) | Val
;
5853 default: // Byte aligned
5856 Count
= DAG
.getIntPtrConstant(SizeVal
);
5860 if (AVT
.bitsGT(MVT::i8
)) {
5861 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5862 Count
= DAG
.getIntPtrConstant(SizeVal
/ UBytes
);
5863 BytesLeft
= SizeVal
% UBytes
;
5866 Chain
= DAG
.getCopyToReg(Chain
, dl
, ValReg
, DAG
.getConstant(Val
, AVT
),
5868 InFlag
= Chain
.getValue(1);
5871 Count
= DAG
.getIntPtrConstant(SizeVal
);
5872 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
, Src
, InFlag
);
5873 InFlag
= Chain
.getValue(1);
5876 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5879 InFlag
= Chain
.getValue(1);
5880 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5883 InFlag
= Chain
.getValue(1);
5885 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5886 SmallVector
<SDValue
, 8> Ops
;
5887 Ops
.push_back(Chain
);
5888 Ops
.push_back(DAG
.getValueType(AVT
));
5889 Ops
.push_back(InFlag
);
5890 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5893 InFlag
= Chain
.getValue(1);
5895 MVT CVT
= Count
.getValueType();
5896 SDValue Left
= DAG
.getNode(ISD::AND
, dl
, CVT
, Count
,
5897 DAG
.getConstant((AVT
== MVT::i64
) ? 7 : 3, CVT
));
5898 Chain
= DAG
.getCopyToReg(Chain
, dl
, (CVT
== MVT::i64
) ? X86::RCX
:
5901 InFlag
= Chain
.getValue(1);
5902 Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5904 Ops
.push_back(Chain
);
5905 Ops
.push_back(DAG
.getValueType(MVT::i8
));
5906 Ops
.push_back(InFlag
);
5907 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5908 } else if (BytesLeft
) {
5909 // Handle the last 1 - 7 bytes.
5910 unsigned Offset
= SizeVal
- BytesLeft
;
5911 MVT AddrVT
= Dst
.getValueType();
5912 MVT SizeVT
= Size
.getValueType();
5914 Chain
= DAG
.getMemset(Chain
, dl
,
5915 DAG
.getNode(ISD::ADD
, dl
, AddrVT
, Dst
,
5916 DAG
.getConstant(Offset
, AddrVT
)),
5918 DAG
.getConstant(BytesLeft
, SizeVT
),
5919 Align
, DstSV
, DstSVOff
+ Offset
);
5922 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5927 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
5928 SDValue Chain
, SDValue Dst
, SDValue Src
,
5929 SDValue Size
, unsigned Align
,
5931 const Value
*DstSV
, uint64_t DstSVOff
,
5932 const Value
*SrcSV
, uint64_t SrcSVOff
) {
5933 // This requires the copy size to be a constant, preferrably
5934 // within a subtarget-specific limit.
5935 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5938 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5939 if (!AlwaysInline
&& SizeVal
> getSubtarget()->getMaxInlineSizeThreshold())
5942 /// If not DWORD aligned, call the library.
5943 if ((Align
& 3) != 0)
5948 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) // QWORD aligned
5951 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5952 unsigned CountVal
= SizeVal
/ UBytes
;
5953 SDValue Count
= DAG
.getIntPtrConstant(CountVal
);
5954 unsigned BytesLeft
= SizeVal
% UBytes
;
5956 SDValue
InFlag(0, 0);
5957 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5960 InFlag
= Chain
.getValue(1);
5961 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5964 InFlag
= Chain
.getValue(1);
5965 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RSI
:
5968 InFlag
= Chain
.getValue(1);
5970 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5971 SmallVector
<SDValue
, 8> Ops
;
5972 Ops
.push_back(Chain
);
5973 Ops
.push_back(DAG
.getValueType(AVT
));
5974 Ops
.push_back(InFlag
);
5975 SDValue RepMovs
= DAG
.getNode(X86ISD::REP_MOVS
, dl
, Tys
, &Ops
[0], Ops
.size());
5977 SmallVector
<SDValue
, 4> Results
;
5978 Results
.push_back(RepMovs
);
5980 // Handle the last 1 - 7 bytes.
5981 unsigned Offset
= SizeVal
- BytesLeft
;
5982 MVT DstVT
= Dst
.getValueType();
5983 MVT SrcVT
= Src
.getValueType();
5984 MVT SizeVT
= Size
.getValueType();
5985 Results
.push_back(DAG
.getMemcpy(Chain
, dl
,
5986 DAG
.getNode(ISD::ADD
, dl
, DstVT
, Dst
,
5987 DAG
.getConstant(Offset
, DstVT
)),
5988 DAG
.getNode(ISD::ADD
, dl
, SrcVT
, Src
,
5989 DAG
.getConstant(Offset
, SrcVT
)),
5990 DAG
.getConstant(BytesLeft
, SizeVT
),
5991 Align
, AlwaysInline
,
5992 DstSV
, DstSVOff
+ Offset
,
5993 SrcSV
, SrcSVOff
+ Offset
));
5996 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5997 &Results
[0], Results
.size());
6000 SDValue
X86TargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
6001 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
6002 DebugLoc dl
= Op
.getDebugLoc();
6004 if (!Subtarget
->is64Bit()) {
6005 // vastart just stores the address of the VarArgsFrameIndex slot into the
6006 // memory location argument.
6007 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6008 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1), SV
, 0);
6012 // gp_offset (0 - 6 * 8)
6013 // fp_offset (48 - 48 + 8 * 16)
6014 // overflow_arg_area (point to parameters coming in memory).
6016 SmallVector
<SDValue
, 8> MemOps
;
6017 SDValue FIN
= Op
.getOperand(1);
6019 SDValue Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6020 DAG
.getConstant(VarArgsGPOffset
, MVT::i32
),
6022 MemOps
.push_back(Store
);
6025 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6026 FIN
, DAG
.getIntPtrConstant(4));
6027 Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6028 DAG
.getConstant(VarArgsFPOffset
, MVT::i32
),
6030 MemOps
.push_back(Store
);
6032 // Store ptr to overflow_arg_area
6033 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6034 FIN
, DAG
.getIntPtrConstant(4));
6035 SDValue OVFIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6036 Store
= DAG
.getStore(Op
.getOperand(0), dl
, OVFIN
, FIN
, SV
, 0);
6037 MemOps
.push_back(Store
);
6039 // Store ptr to reg_save_area.
6040 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6041 FIN
, DAG
.getIntPtrConstant(8));
6042 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
6043 Store
= DAG
.getStore(Op
.getOperand(0), dl
, RSFIN
, FIN
, SV
, 0);
6044 MemOps
.push_back(Store
);
6045 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
6046 &MemOps
[0], MemOps
.size());
6049 SDValue
X86TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) {
6050 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6051 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_arg!");
6052 SDValue Chain
= Op
.getOperand(0);
6053 SDValue SrcPtr
= Op
.getOperand(1);
6054 SDValue SrcSV
= Op
.getOperand(2);
6056 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6060 SDValue
X86TargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) {
6061 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6062 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_copy!");
6063 SDValue Chain
= Op
.getOperand(0);
6064 SDValue DstPtr
= Op
.getOperand(1);
6065 SDValue SrcPtr
= Op
.getOperand(2);
6066 const Value
*DstSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
6067 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6068 DebugLoc dl
= Op
.getDebugLoc();
6070 return DAG
.getMemcpy(Chain
, dl
, DstPtr
, SrcPtr
,
6071 DAG
.getIntPtrConstant(24), 8, false,
6072 DstSV
, 0, SrcSV
, 0);
6076 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) {
6077 DebugLoc dl
= Op
.getDebugLoc();
6078 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6080 default: return SDValue(); // Don't custom lower most intrinsics.
6081 // Comparison intrinsics.
6082 case Intrinsic::x86_sse_comieq_ss
:
6083 case Intrinsic::x86_sse_comilt_ss
:
6084 case Intrinsic::x86_sse_comile_ss
:
6085 case Intrinsic::x86_sse_comigt_ss
:
6086 case Intrinsic::x86_sse_comige_ss
:
6087 case Intrinsic::x86_sse_comineq_ss
:
6088 case Intrinsic::x86_sse_ucomieq_ss
:
6089 case Intrinsic::x86_sse_ucomilt_ss
:
6090 case Intrinsic::x86_sse_ucomile_ss
:
6091 case Intrinsic::x86_sse_ucomigt_ss
:
6092 case Intrinsic::x86_sse_ucomige_ss
:
6093 case Intrinsic::x86_sse_ucomineq_ss
:
6094 case Intrinsic::x86_sse2_comieq_sd
:
6095 case Intrinsic::x86_sse2_comilt_sd
:
6096 case Intrinsic::x86_sse2_comile_sd
:
6097 case Intrinsic::x86_sse2_comigt_sd
:
6098 case Intrinsic::x86_sse2_comige_sd
:
6099 case Intrinsic::x86_sse2_comineq_sd
:
6100 case Intrinsic::x86_sse2_ucomieq_sd
:
6101 case Intrinsic::x86_sse2_ucomilt_sd
:
6102 case Intrinsic::x86_sse2_ucomile_sd
:
6103 case Intrinsic::x86_sse2_ucomigt_sd
:
6104 case Intrinsic::x86_sse2_ucomige_sd
:
6105 case Intrinsic::x86_sse2_ucomineq_sd
: {
6107 ISD::CondCode CC
= ISD::SETCC_INVALID
;
6110 case Intrinsic::x86_sse_comieq_ss
:
6111 case Intrinsic::x86_sse2_comieq_sd
:
6115 case Intrinsic::x86_sse_comilt_ss
:
6116 case Intrinsic::x86_sse2_comilt_sd
:
6120 case Intrinsic::x86_sse_comile_ss
:
6121 case Intrinsic::x86_sse2_comile_sd
:
6125 case Intrinsic::x86_sse_comigt_ss
:
6126 case Intrinsic::x86_sse2_comigt_sd
:
6130 case Intrinsic::x86_sse_comige_ss
:
6131 case Intrinsic::x86_sse2_comige_sd
:
6135 case Intrinsic::x86_sse_comineq_ss
:
6136 case Intrinsic::x86_sse2_comineq_sd
:
6140 case Intrinsic::x86_sse_ucomieq_ss
:
6141 case Intrinsic::x86_sse2_ucomieq_sd
:
6142 Opc
= X86ISD::UCOMI
;
6145 case Intrinsic::x86_sse_ucomilt_ss
:
6146 case Intrinsic::x86_sse2_ucomilt_sd
:
6147 Opc
= X86ISD::UCOMI
;
6150 case Intrinsic::x86_sse_ucomile_ss
:
6151 case Intrinsic::x86_sse2_ucomile_sd
:
6152 Opc
= X86ISD::UCOMI
;
6155 case Intrinsic::x86_sse_ucomigt_ss
:
6156 case Intrinsic::x86_sse2_ucomigt_sd
:
6157 Opc
= X86ISD::UCOMI
;
6160 case Intrinsic::x86_sse_ucomige_ss
:
6161 case Intrinsic::x86_sse2_ucomige_sd
:
6162 Opc
= X86ISD::UCOMI
;
6165 case Intrinsic::x86_sse_ucomineq_ss
:
6166 case Intrinsic::x86_sse2_ucomineq_sd
:
6167 Opc
= X86ISD::UCOMI
;
6172 SDValue LHS
= Op
.getOperand(1);
6173 SDValue RHS
= Op
.getOperand(2);
6174 unsigned X86CC
= TranslateX86CC(CC
, true, LHS
, RHS
, DAG
);
6175 SDValue Cond
= DAG
.getNode(Opc
, dl
, MVT::i32
, LHS
, RHS
);
6176 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
6177 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
6178 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
6181 // Fix vector shift instructions where the last operand is a non-immediate
6183 case Intrinsic::x86_sse2_pslli_w
:
6184 case Intrinsic::x86_sse2_pslli_d
:
6185 case Intrinsic::x86_sse2_pslli_q
:
6186 case Intrinsic::x86_sse2_psrli_w
:
6187 case Intrinsic::x86_sse2_psrli_d
:
6188 case Intrinsic::x86_sse2_psrli_q
:
6189 case Intrinsic::x86_sse2_psrai_w
:
6190 case Intrinsic::x86_sse2_psrai_d
:
6191 case Intrinsic::x86_mmx_pslli_w
:
6192 case Intrinsic::x86_mmx_pslli_d
:
6193 case Intrinsic::x86_mmx_pslli_q
:
6194 case Intrinsic::x86_mmx_psrli_w
:
6195 case Intrinsic::x86_mmx_psrli_d
:
6196 case Intrinsic::x86_mmx_psrli_q
:
6197 case Intrinsic::x86_mmx_psrai_w
:
6198 case Intrinsic::x86_mmx_psrai_d
: {
6199 SDValue ShAmt
= Op
.getOperand(2);
6200 if (isa
<ConstantSDNode
>(ShAmt
))
6203 unsigned NewIntNo
= 0;
6204 MVT ShAmtVT
= MVT::v4i32
;
6206 case Intrinsic::x86_sse2_pslli_w
:
6207 NewIntNo
= Intrinsic::x86_sse2_psll_w
;
6209 case Intrinsic::x86_sse2_pslli_d
:
6210 NewIntNo
= Intrinsic::x86_sse2_psll_d
;
6212 case Intrinsic::x86_sse2_pslli_q
:
6213 NewIntNo
= Intrinsic::x86_sse2_psll_q
;
6215 case Intrinsic::x86_sse2_psrli_w
:
6216 NewIntNo
= Intrinsic::x86_sse2_psrl_w
;
6218 case Intrinsic::x86_sse2_psrli_d
:
6219 NewIntNo
= Intrinsic::x86_sse2_psrl_d
;
6221 case Intrinsic::x86_sse2_psrli_q
:
6222 NewIntNo
= Intrinsic::x86_sse2_psrl_q
;
6224 case Intrinsic::x86_sse2_psrai_w
:
6225 NewIntNo
= Intrinsic::x86_sse2_psra_w
;
6227 case Intrinsic::x86_sse2_psrai_d
:
6228 NewIntNo
= Intrinsic::x86_sse2_psra_d
;
6231 ShAmtVT
= MVT::v2i32
;
6233 case Intrinsic::x86_mmx_pslli_w
:
6234 NewIntNo
= Intrinsic::x86_mmx_psll_w
;
6236 case Intrinsic::x86_mmx_pslli_d
:
6237 NewIntNo
= Intrinsic::x86_mmx_psll_d
;
6239 case Intrinsic::x86_mmx_pslli_q
:
6240 NewIntNo
= Intrinsic::x86_mmx_psll_q
;
6242 case Intrinsic::x86_mmx_psrli_w
:
6243 NewIntNo
= Intrinsic::x86_mmx_psrl_w
;
6245 case Intrinsic::x86_mmx_psrli_d
:
6246 NewIntNo
= Intrinsic::x86_mmx_psrl_d
;
6248 case Intrinsic::x86_mmx_psrli_q
:
6249 NewIntNo
= Intrinsic::x86_mmx_psrl_q
;
6251 case Intrinsic::x86_mmx_psrai_w
:
6252 NewIntNo
= Intrinsic::x86_mmx_psra_w
;
6254 case Intrinsic::x86_mmx_psrai_d
:
6255 NewIntNo
= Intrinsic::x86_mmx_psra_d
;
6257 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6262 MVT VT
= Op
.getValueType();
6263 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
6264 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, ShAmtVT
, ShAmt
));
6265 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6266 DAG
.getConstant(NewIntNo
, MVT::i32
),
6267 Op
.getOperand(1), ShAmt
);
6272 SDValue
X86TargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) {
6273 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6274 DebugLoc dl
= Op
.getDebugLoc();
6277 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
6279 DAG
.getConstant(TD
->getPointerSize(),
6280 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
6281 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6282 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6287 // Just load the return address.
6288 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
6289 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6290 RetAddrFI
, NULL
, 0);
6293 SDValue
X86TargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) {
6294 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6295 MFI
->setFrameAddressIsTaken(true);
6296 MVT VT
= Op
.getValueType();
6297 DebugLoc dl
= Op
.getDebugLoc(); // FIXME probably not meaningful
6298 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6299 unsigned FrameReg
= Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
;
6300 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
6302 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
, NULL
, 0);
6306 SDValue
X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op
,
6307 SelectionDAG
&DAG
) {
6308 return DAG
.getIntPtrConstant(2*TD
->getPointerSize());
6311 SDValue
X86TargetLowering::LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
6313 MachineFunction
&MF
= DAG
.getMachineFunction();
6314 SDValue Chain
= Op
.getOperand(0);
6315 SDValue Offset
= Op
.getOperand(1);
6316 SDValue Handler
= Op
.getOperand(2);
6317 DebugLoc dl
= Op
.getDebugLoc();
6319 SDValue Frame
= DAG
.getRegister(Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
,
6321 unsigned StoreAddrReg
= (Subtarget
->is64Bit() ? X86::RCX
: X86::ECX
);
6323 SDValue StoreAddr
= DAG
.getNode(ISD::SUB
, dl
, getPointerTy(), Frame
,
6324 DAG
.getIntPtrConstant(-TD
->getPointerSize()));
6325 StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StoreAddr
, Offset
);
6326 Chain
= DAG
.getStore(Chain
, dl
, Handler
, StoreAddr
, NULL
, 0);
6327 Chain
= DAG
.getCopyToReg(Chain
, dl
, StoreAddrReg
, StoreAddr
);
6328 MF
.getRegInfo().addLiveOut(StoreAddrReg
);
6330 return DAG
.getNode(X86ISD::EH_RETURN
, dl
,
6332 Chain
, DAG
.getRegister(StoreAddrReg
, getPointerTy()));
6335 SDValue
X86TargetLowering::LowerTRAMPOLINE(SDValue Op
,
6336 SelectionDAG
&DAG
) {
6337 SDValue Root
= Op
.getOperand(0);
6338 SDValue Trmp
= Op
.getOperand(1); // trampoline
6339 SDValue FPtr
= Op
.getOperand(2); // nested function
6340 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
6341 DebugLoc dl
= Op
.getDebugLoc();
6343 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6345 const X86InstrInfo
*TII
=
6346 ((X86TargetMachine
&)getTargetMachine()).getInstrInfo();
6348 if (Subtarget
->is64Bit()) {
6349 SDValue OutChains
[6];
6351 // Large code-model.
6353 const unsigned char JMP64r
= TII
->getBaseOpcodeFor(X86::JMP64r
);
6354 const unsigned char MOV64ri
= TII
->getBaseOpcodeFor(X86::MOV64ri
);
6356 const unsigned char N86R10
= RegInfo
->getX86RegNum(X86::R10
);
6357 const unsigned char N86R11
= RegInfo
->getX86RegNum(X86::R11
);
6359 const unsigned char REX_WB
= 0x40 | 0x08 | 0x01; // REX prefix
6361 // Load the pointer to the nested function into R11.
6362 unsigned OpCode
= ((MOV64ri
| N86R11
) << 8) | REX_WB
; // movabsq r11
6363 SDValue Addr
= Trmp
;
6364 OutChains
[0] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6367 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6368 DAG
.getConstant(2, MVT::i64
));
6369 OutChains
[1] = DAG
.getStore(Root
, dl
, FPtr
, Addr
, TrmpAddr
, 2, false, 2);
6371 // Load the 'nest' parameter value into R10.
6372 // R10 is specified in X86CallingConv.td
6373 OpCode
= ((MOV64ri
| N86R10
) << 8) | REX_WB
; // movabsq r10
6374 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6375 DAG
.getConstant(10, MVT::i64
));
6376 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6377 Addr
, TrmpAddr
, 10);
6379 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6380 DAG
.getConstant(12, MVT::i64
));
6381 OutChains
[3] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 12, false, 2);
6383 // Jump to the nested function.
6384 OpCode
= (JMP64r
<< 8) | REX_WB
; // jmpq *...
6385 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6386 DAG
.getConstant(20, MVT::i64
));
6387 OutChains
[4] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6388 Addr
, TrmpAddr
, 20);
6390 unsigned char ModRM
= N86R11
| (4 << 3) | (3 << 6); // ...r11
6391 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6392 DAG
.getConstant(22, MVT::i64
));
6393 OutChains
[5] = DAG
.getStore(Root
, dl
, DAG
.getConstant(ModRM
, MVT::i8
), Addr
,
6397 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 6) };
6398 return DAG
.getMergeValues(Ops
, 2, dl
);
6400 const Function
*Func
=
6401 cast
<Function
>(cast
<SrcValueSDNode
>(Op
.getOperand(5))->getValue());
6402 unsigned CC
= Func
->getCallingConv();
6407 llvm_unreachable("Unsupported calling convention");
6408 case CallingConv::C
:
6409 case CallingConv::X86_StdCall
: {
6410 // Pass 'nest' parameter in ECX.
6411 // Must be kept in sync with X86CallingConv.td
6414 // Check that ECX wasn't needed by an 'inreg' parameter.
6415 const FunctionType
*FTy
= Func
->getFunctionType();
6416 const AttrListPtr
&Attrs
= Func
->getAttributes();
6418 if (!Attrs
.isEmpty() && !Func
->isVarArg()) {
6419 unsigned InRegCount
= 0;
6422 for (FunctionType::param_iterator I
= FTy
->param_begin(),
6423 E
= FTy
->param_end(); I
!= E
; ++I
, ++Idx
)
6424 if (Attrs
.paramHasAttr(Idx
, Attribute::InReg
))
6425 // FIXME: should only count parameters that are lowered to integers.
6426 InRegCount
+= (TD
->getTypeSizeInBits(*I
) + 31) / 32;
6428 if (InRegCount
> 2) {
6429 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6434 case CallingConv::X86_FastCall
:
6435 case CallingConv::Fast
:
6436 // Pass 'nest' parameter in EAX.
6437 // Must be kept in sync with X86CallingConv.td
6442 SDValue OutChains
[4];
6445 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6446 DAG
.getConstant(10, MVT::i32
));
6447 Disp
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, FPtr
, Addr
);
6449 const unsigned char MOV32ri
= TII
->getBaseOpcodeFor(X86::MOV32ri
);
6450 const unsigned char N86Reg
= RegInfo
->getX86RegNum(NestReg
);
6451 OutChains
[0] = DAG
.getStore(Root
, dl
,
6452 DAG
.getConstant(MOV32ri
|N86Reg
, MVT::i8
),
6455 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6456 DAG
.getConstant(1, MVT::i32
));
6457 OutChains
[1] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 1, false, 1);
6459 const unsigned char JMP
= TII
->getBaseOpcodeFor(X86::JMP
);
6460 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6461 DAG
.getConstant(5, MVT::i32
));
6462 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(JMP
, MVT::i8
), Addr
,
6463 TrmpAddr
, 5, false, 1);
6465 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6466 DAG
.getConstant(6, MVT::i32
));
6467 OutChains
[3] = DAG
.getStore(Root
, dl
, Disp
, Addr
, TrmpAddr
, 6, false, 1);
6470 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 4) };
6471 return DAG
.getMergeValues(Ops
, 2, dl
);
6475 SDValue
X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) {
6477 The rounding mode is in bits 11:10 of FPSR, and has the following
6484 FLT_ROUNDS, on the other hand, expects the following:
6491 To perform the conversion, we do:
6492 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6495 MachineFunction
&MF
= DAG
.getMachineFunction();
6496 const TargetMachine
&TM
= MF
.getTarget();
6497 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
6498 unsigned StackAlignment
= TFI
.getStackAlignment();
6499 MVT VT
= Op
.getValueType();
6500 DebugLoc dl
= Op
.getDebugLoc();
6502 // Save FP Control Word to stack slot
6503 int SSFI
= MF
.getFrameInfo()->CreateStackObject(2, StackAlignment
);
6504 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6506 SDValue Chain
= DAG
.getNode(X86ISD::FNSTCW16m
, dl
, MVT::Other
,
6507 DAG
.getEntryNode(), StackSlot
);
6509 // Load FP Control Word from stack slot
6510 SDValue CWD
= DAG
.getLoad(MVT::i16
, dl
, Chain
, StackSlot
, NULL
, 0);
6512 // Transform as necessary
6514 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6515 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6516 CWD
, DAG
.getConstant(0x800, MVT::i16
)),
6517 DAG
.getConstant(11, MVT::i8
));
6519 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6520 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6521 CWD
, DAG
.getConstant(0x400, MVT::i16
)),
6522 DAG
.getConstant(9, MVT::i8
));
6525 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6526 DAG
.getNode(ISD::ADD
, dl
, MVT::i16
,
6527 DAG
.getNode(ISD::OR
, dl
, MVT::i16
, CWD1
, CWD2
),
6528 DAG
.getConstant(1, MVT::i16
)),
6529 DAG
.getConstant(3, MVT::i16
));
6532 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
6533 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
6536 SDValue
X86TargetLowering::LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) {
6537 MVT VT
= Op
.getValueType();
6539 unsigned NumBits
= VT
.getSizeInBits();
6540 DebugLoc dl
= Op
.getDebugLoc();
6542 Op
= Op
.getOperand(0);
6543 if (VT
== MVT::i8
) {
6544 // Zero extend to i32 since there is not an i8 bsr.
6546 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6549 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6550 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6551 Op
= DAG
.getNode(X86ISD::BSR
, dl
, VTs
, Op
);
6553 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6554 SmallVector
<SDValue
, 4> Ops
;
6556 Ops
.push_back(DAG
.getConstant(NumBits
+NumBits
-1, OpVT
));
6557 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6558 Ops
.push_back(Op
.getValue(1));
6559 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6561 // Finally xor with NumBits-1.
6562 Op
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Op
, DAG
.getConstant(NumBits
-1, OpVT
));
6565 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6569 SDValue
X86TargetLowering::LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) {
6570 MVT VT
= Op
.getValueType();
6572 unsigned NumBits
= VT
.getSizeInBits();
6573 DebugLoc dl
= Op
.getDebugLoc();
6575 Op
= Op
.getOperand(0);
6576 if (VT
== MVT::i8
) {
6578 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6581 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6582 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6583 Op
= DAG
.getNode(X86ISD::BSF
, dl
, VTs
, Op
);
6585 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6586 SmallVector
<SDValue
, 4> Ops
;
6588 Ops
.push_back(DAG
.getConstant(NumBits
, OpVT
));
6589 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6590 Ops
.push_back(Op
.getValue(1));
6591 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6594 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6598 SDValue
X86TargetLowering::LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) {
6599 MVT VT
= Op
.getValueType();
6600 assert(VT
== MVT::v2i64
&& "Only know how to lower V2I64 multiply");
6601 DebugLoc dl
= Op
.getDebugLoc();
6603 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6604 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6605 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6606 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6607 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6609 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6610 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6611 // return AloBlo + AloBhi + AhiBlo;
6613 SDValue A
= Op
.getOperand(0);
6614 SDValue B
= Op
.getOperand(1);
6616 SDValue Ahi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6617 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6618 A
, DAG
.getConstant(32, MVT::i32
));
6619 SDValue Bhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6620 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6621 B
, DAG
.getConstant(32, MVT::i32
));
6622 SDValue AloBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6623 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6625 SDValue AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6626 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6628 SDValue AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6629 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6631 AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6632 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6633 AloBhi
, DAG
.getConstant(32, MVT::i32
));
6634 AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6635 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6636 AhiBlo
, DAG
.getConstant(32, MVT::i32
));
6637 SDValue Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, AloBlo
, AloBhi
);
6638 Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, Res
, AhiBlo
);
6643 SDValue
X86TargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
6644 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6645 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6646 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6647 // has only one use.
6648 SDNode
*N
= Op
.getNode();
6649 SDValue LHS
= N
->getOperand(0);
6650 SDValue RHS
= N
->getOperand(1);
6651 unsigned BaseOp
= 0;
6653 DebugLoc dl
= Op
.getDebugLoc();
6655 switch (Op
.getOpcode()) {
6656 default: llvm_unreachable("Unknown ovf instruction!");
6658 // A subtract of one will be selected as a INC. Note that INC doesn't
6659 // set CF, so we can't do this for UADDO.
6660 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6661 if (C
->getAPIntValue() == 1) {
6662 BaseOp
= X86ISD::INC
;
6666 BaseOp
= X86ISD::ADD
;
6670 BaseOp
= X86ISD::ADD
;
6674 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6675 // set CF, so we can't do this for USUBO.
6676 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6677 if (C
->getAPIntValue() == 1) {
6678 BaseOp
= X86ISD::DEC
;
6682 BaseOp
= X86ISD::SUB
;
6686 BaseOp
= X86ISD::SUB
;
6690 BaseOp
= X86ISD::SMUL
;
6694 BaseOp
= X86ISD::UMUL
;
6699 // Also sets EFLAGS.
6700 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i32
);
6701 SDValue Sum
= DAG
.getNode(BaseOp
, dl
, VTs
, LHS
, RHS
);
6704 DAG
.getNode(X86ISD::SETCC
, dl
, N
->getValueType(1),
6705 DAG
.getConstant(Cond
, MVT::i32
), SDValue(Sum
.getNode(), 1));
6707 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), SetCC
);
6711 SDValue
X86TargetLowering::LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) {
6712 MVT T
= Op
.getValueType();
6713 DebugLoc dl
= Op
.getDebugLoc();
6716 switch(T
.getSimpleVT()) {
6718 assert(false && "Invalid value type!");
6719 case MVT::i8
: Reg
= X86::AL
; size
= 1; break;
6720 case MVT::i16
: Reg
= X86::AX
; size
= 2; break;
6721 case MVT::i32
: Reg
= X86::EAX
; size
= 4; break;
6723 assert(Subtarget
->is64Bit() && "Node not type legal!");
6724 Reg
= X86::RAX
; size
= 8;
6727 SDValue cpIn
= DAG
.getCopyToReg(Op
.getOperand(0), dl
, Reg
,
6728 Op
.getOperand(2), SDValue());
6729 SDValue Ops
[] = { cpIn
.getValue(0),
6732 DAG
.getTargetConstant(size
, MVT::i8
),
6734 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6735 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG_DAG
, dl
, Tys
, Ops
, 5);
6737 DAG
.getCopyFromReg(Result
.getValue(0), dl
, Reg
, T
, Result
.getValue(1));
6741 SDValue
X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op
,
6742 SelectionDAG
&DAG
) {
6743 assert(Subtarget
->is64Bit() && "Result not type legalized?");
6744 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6745 SDValue TheChain
= Op
.getOperand(0);
6746 DebugLoc dl
= Op
.getDebugLoc();
6747 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6748 SDValue rax
= DAG
.getCopyFromReg(rd
, dl
, X86::RAX
, MVT::i64
, rd
.getValue(1));
6749 SDValue rdx
= DAG
.getCopyFromReg(rax
.getValue(1), dl
, X86::RDX
, MVT::i64
,
6751 SDValue Tmp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, rdx
,
6752 DAG
.getConstant(32, MVT::i8
));
6754 DAG
.getNode(ISD::OR
, dl
, MVT::i64
, rax
, Tmp
),
6757 return DAG
.getMergeValues(Ops
, 2, dl
);
6760 SDValue
X86TargetLowering::LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) {
6761 SDNode
*Node
= Op
.getNode();
6762 DebugLoc dl
= Node
->getDebugLoc();
6763 MVT T
= Node
->getValueType(0);
6764 SDValue negOp
= DAG
.getNode(ISD::SUB
, dl
, T
,
6765 DAG
.getConstant(0, T
), Node
->getOperand(2));
6766 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
,
6767 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
6768 Node
->getOperand(0),
6769 Node
->getOperand(1), negOp
,
6770 cast
<AtomicSDNode
>(Node
)->getSrcValue(),
6771 cast
<AtomicSDNode
>(Node
)->getAlignment());
6774 /// LowerOperation - Provide custom lowering hooks for some operations.
6776 SDValue
X86TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
6777 switch (Op
.getOpcode()) {
6778 default: llvm_unreachable("Should not custom lower this!");
6779 case ISD::ATOMIC_CMP_SWAP
: return LowerCMP_SWAP(Op
,DAG
);
6780 case ISD::ATOMIC_LOAD_SUB
: return LowerLOAD_SUB(Op
,DAG
);
6781 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
6782 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
6783 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
6784 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
6785 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
6786 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
6787 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
6788 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
6789 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
6790 case ISD::SHL_PARTS
:
6791 case ISD::SRA_PARTS
:
6792 case ISD::SRL_PARTS
: return LowerShift(Op
, DAG
);
6793 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
6794 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
6795 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
6796 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
6797 case ISD::FABS
: return LowerFABS(Op
, DAG
);
6798 case ISD::FNEG
: return LowerFNEG(Op
, DAG
);
6799 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
6800 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
6801 case ISD::VSETCC
: return LowerVSETCC(Op
, DAG
);
6802 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
6803 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
6804 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
6805 case ISD::CALL
: return LowerCALL(Op
, DAG
);
6806 case ISD::RET
: return LowerRET(Op
, DAG
);
6807 case ISD::FORMAL_ARGUMENTS
: return LowerFORMAL_ARGUMENTS(Op
, DAG
);
6808 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
6809 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
6810 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
6811 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
6812 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
6813 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
6814 case ISD::FRAME_TO_ARGS_OFFSET
:
6815 return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
6816 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
6817 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
6818 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
6819 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
6820 case ISD::CTLZ
: return LowerCTLZ(Op
, DAG
);
6821 case ISD::CTTZ
: return LowerCTTZ(Op
, DAG
);
6822 case ISD::MUL
: return LowerMUL_V2I64(Op
, DAG
);
6828 case ISD::UMULO
: return LowerXALUO(Op
, DAG
);
6829 case ISD::READCYCLECOUNTER
: return LowerREADCYCLECOUNTER(Op
, DAG
);
6833 void X86TargetLowering::
6834 ReplaceATOMIC_BINARY_64(SDNode
*Node
, SmallVectorImpl
<SDValue
>&Results
,
6835 SelectionDAG
&DAG
, unsigned NewOp
) {
6836 MVT T
= Node
->getValueType(0);
6837 DebugLoc dl
= Node
->getDebugLoc();
6838 assert (T
== MVT::i64
&& "Only know how to expand i64 atomics");
6840 SDValue Chain
= Node
->getOperand(0);
6841 SDValue In1
= Node
->getOperand(1);
6842 SDValue In2L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6843 Node
->getOperand(2), DAG
.getIntPtrConstant(0));
6844 SDValue In2H
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6845 Node
->getOperand(2), DAG
.getIntPtrConstant(1));
6846 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6847 // have a MemOperand. Pass the info through as a normal operand.
6848 SDValue LSI
= DAG
.getMemOperand(cast
<MemSDNode
>(Node
)->getMemOperand());
6849 SDValue Ops
[] = { Chain
, In1
, In2L
, In2H
, LSI
};
6850 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
6851 SDValue Result
= DAG
.getNode(NewOp
, dl
, Tys
, Ops
, 5);
6852 SDValue OpsF
[] = { Result
.getValue(0), Result
.getValue(1)};
6853 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6854 Results
.push_back(Result
.getValue(2));
6857 /// ReplaceNodeResults - Replace a node with an illegal result type
6858 /// with a new node built out of custom code.
6859 void X86TargetLowering::ReplaceNodeResults(SDNode
*N
,
6860 SmallVectorImpl
<SDValue
>&Results
,
6861 SelectionDAG
&DAG
) {
6862 DebugLoc dl
= N
->getDebugLoc();
6863 switch (N
->getOpcode()) {
6865 assert(false && "Do not know how to custom type legalize this operation!");
6867 case ISD::FP_TO_SINT
: {
6868 std::pair
<SDValue
,SDValue
> Vals
=
6869 FP_TO_INTHelper(SDValue(N
, 0), DAG
, true);
6870 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6871 if (FIST
.getNode() != 0) {
6872 MVT VT
= N
->getValueType(0);
6873 // Return a load from the stack slot.
6874 Results
.push_back(DAG
.getLoad(VT
, dl
, FIST
, StackSlot
, NULL
, 0));
6878 case ISD::READCYCLECOUNTER
: {
6879 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6880 SDValue TheChain
= N
->getOperand(0);
6881 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6882 SDValue eax
= DAG
.getCopyFromReg(rd
, dl
, X86::EAX
, MVT::i32
,
6884 SDValue edx
= DAG
.getCopyFromReg(eax
.getValue(1), dl
, X86::EDX
, MVT::i32
,
6886 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6887 SDValue Ops
[] = { eax
, edx
};
6888 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Ops
, 2));
6889 Results
.push_back(edx
.getValue(1));
6892 case ISD::ATOMIC_CMP_SWAP
: {
6893 MVT T
= N
->getValueType(0);
6894 assert (T
== MVT::i64
&& "Only know how to expand i64 Cmp and Swap");
6895 SDValue cpInL
, cpInH
;
6896 cpInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6897 DAG
.getConstant(0, MVT::i32
));
6898 cpInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6899 DAG
.getConstant(1, MVT::i32
));
6900 cpInL
= DAG
.getCopyToReg(N
->getOperand(0), dl
, X86::EAX
, cpInL
, SDValue());
6901 cpInH
= DAG
.getCopyToReg(cpInL
.getValue(0), dl
, X86::EDX
, cpInH
,
6903 SDValue swapInL
, swapInH
;
6904 swapInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6905 DAG
.getConstant(0, MVT::i32
));
6906 swapInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6907 DAG
.getConstant(1, MVT::i32
));
6908 swapInL
= DAG
.getCopyToReg(cpInH
.getValue(0), dl
, X86::EBX
, swapInL
,
6910 swapInH
= DAG
.getCopyToReg(swapInL
.getValue(0), dl
, X86::ECX
, swapInH
,
6911 swapInL
.getValue(1));
6912 SDValue Ops
[] = { swapInH
.getValue(0),
6914 swapInH
.getValue(1) };
6915 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6916 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG8_DAG
, dl
, Tys
, Ops
, 3);
6917 SDValue cpOutL
= DAG
.getCopyFromReg(Result
.getValue(0), dl
, X86::EAX
,
6918 MVT::i32
, Result
.getValue(1));
6919 SDValue cpOutH
= DAG
.getCopyFromReg(cpOutL
.getValue(1), dl
, X86::EDX
,
6920 MVT::i32
, cpOutL
.getValue(2));
6921 SDValue OpsF
[] = { cpOutL
.getValue(0), cpOutH
.getValue(0)};
6922 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6923 Results
.push_back(cpOutH
.getValue(1));
6926 case ISD::ATOMIC_LOAD_ADD
:
6927 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMADD64_DAG
);
6929 case ISD::ATOMIC_LOAD_AND
:
6930 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMAND64_DAG
);
6932 case ISD::ATOMIC_LOAD_NAND
:
6933 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMNAND64_DAG
);
6935 case ISD::ATOMIC_LOAD_OR
:
6936 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMOR64_DAG
);
6938 case ISD::ATOMIC_LOAD_SUB
:
6939 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSUB64_DAG
);
6941 case ISD::ATOMIC_LOAD_XOR
:
6942 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMXOR64_DAG
);
6944 case ISD::ATOMIC_SWAP
:
6945 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSWAP64_DAG
);
6950 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode
) const {
6952 default: return NULL
;
6953 case X86ISD::BSF
: return "X86ISD::BSF";
6954 case X86ISD::BSR
: return "X86ISD::BSR";
6955 case X86ISD::SHLD
: return "X86ISD::SHLD";
6956 case X86ISD::SHRD
: return "X86ISD::SHRD";
6957 case X86ISD::FAND
: return "X86ISD::FAND";
6958 case X86ISD::FOR
: return "X86ISD::FOR";
6959 case X86ISD::FXOR
: return "X86ISD::FXOR";
6960 case X86ISD::FSRL
: return "X86ISD::FSRL";
6961 case X86ISD::FILD
: return "X86ISD::FILD";
6962 case X86ISD::FILD_FLAG
: return "X86ISD::FILD_FLAG";
6963 case X86ISD::FP_TO_INT16_IN_MEM
: return "X86ISD::FP_TO_INT16_IN_MEM";
6964 case X86ISD::FP_TO_INT32_IN_MEM
: return "X86ISD::FP_TO_INT32_IN_MEM";
6965 case X86ISD::FP_TO_INT64_IN_MEM
: return "X86ISD::FP_TO_INT64_IN_MEM";
6966 case X86ISD::FLD
: return "X86ISD::FLD";
6967 case X86ISD::FST
: return "X86ISD::FST";
6968 case X86ISD::CALL
: return "X86ISD::CALL";
6969 case X86ISD::TAILCALL
: return "X86ISD::TAILCALL";
6970 case X86ISD::RDTSC_DAG
: return "X86ISD::RDTSC_DAG";
6971 case X86ISD::BT
: return "X86ISD::BT";
6972 case X86ISD::CMP
: return "X86ISD::CMP";
6973 case X86ISD::COMI
: return "X86ISD::COMI";
6974 case X86ISD::UCOMI
: return "X86ISD::UCOMI";
6975 case X86ISD::SETCC
: return "X86ISD::SETCC";
6976 case X86ISD::CMOV
: return "X86ISD::CMOV";
6977 case X86ISD::BRCOND
: return "X86ISD::BRCOND";
6978 case X86ISD::RET_FLAG
: return "X86ISD::RET_FLAG";
6979 case X86ISD::REP_STOS
: return "X86ISD::REP_STOS";
6980 case X86ISD::REP_MOVS
: return "X86ISD::REP_MOVS";
6981 case X86ISD::GlobalBaseReg
: return "X86ISD::GlobalBaseReg";
6982 case X86ISD::Wrapper
: return "X86ISD::Wrapper";
6983 case X86ISD::WrapperRIP
: return "X86ISD::WrapperRIP";
6984 case X86ISD::PEXTRB
: return "X86ISD::PEXTRB";
6985 case X86ISD::PEXTRW
: return "X86ISD::PEXTRW";
6986 case X86ISD::INSERTPS
: return "X86ISD::INSERTPS";
6987 case X86ISD::PINSRB
: return "X86ISD::PINSRB";
6988 case X86ISD::PINSRW
: return "X86ISD::PINSRW";
6989 case X86ISD::PSHUFB
: return "X86ISD::PSHUFB";
6990 case X86ISD::FMAX
: return "X86ISD::FMAX";
6991 case X86ISD::FMIN
: return "X86ISD::FMIN";
6992 case X86ISD::FRSQRT
: return "X86ISD::FRSQRT";
6993 case X86ISD::FRCP
: return "X86ISD::FRCP";
6994 case X86ISD::TLSADDR
: return "X86ISD::TLSADDR";
6995 case X86ISD::SegmentBaseAddress
: return "X86ISD::SegmentBaseAddress";
6996 case X86ISD::EH_RETURN
: return "X86ISD::EH_RETURN";
6997 case X86ISD::TC_RETURN
: return "X86ISD::TC_RETURN";
6998 case X86ISD::FNSTCW16m
: return "X86ISD::FNSTCW16m";
6999 case X86ISD::LCMPXCHG_DAG
: return "X86ISD::LCMPXCHG_DAG";
7000 case X86ISD::LCMPXCHG8_DAG
: return "X86ISD::LCMPXCHG8_DAG";
7001 case X86ISD::ATOMADD64_DAG
: return "X86ISD::ATOMADD64_DAG";
7002 case X86ISD::ATOMSUB64_DAG
: return "X86ISD::ATOMSUB64_DAG";
7003 case X86ISD::ATOMOR64_DAG
: return "X86ISD::ATOMOR64_DAG";
7004 case X86ISD::ATOMXOR64_DAG
: return "X86ISD::ATOMXOR64_DAG";
7005 case X86ISD::ATOMAND64_DAG
: return "X86ISD::ATOMAND64_DAG";
7006 case X86ISD::ATOMNAND64_DAG
: return "X86ISD::ATOMNAND64_DAG";
7007 case X86ISD::VZEXT_MOVL
: return "X86ISD::VZEXT_MOVL";
7008 case X86ISD::VZEXT_LOAD
: return "X86ISD::VZEXT_LOAD";
7009 case X86ISD::VSHL
: return "X86ISD::VSHL";
7010 case X86ISD::VSRL
: return "X86ISD::VSRL";
7011 case X86ISD::CMPPD
: return "X86ISD::CMPPD";
7012 case X86ISD::CMPPS
: return "X86ISD::CMPPS";
7013 case X86ISD::PCMPEQB
: return "X86ISD::PCMPEQB";
7014 case X86ISD::PCMPEQW
: return "X86ISD::PCMPEQW";
7015 case X86ISD::PCMPEQD
: return "X86ISD::PCMPEQD";
7016 case X86ISD::PCMPEQQ
: return "X86ISD::PCMPEQQ";
7017 case X86ISD::PCMPGTB
: return "X86ISD::PCMPGTB";
7018 case X86ISD::PCMPGTW
: return "X86ISD::PCMPGTW";
7019 case X86ISD::PCMPGTD
: return "X86ISD::PCMPGTD";
7020 case X86ISD::PCMPGTQ
: return "X86ISD::PCMPGTQ";
7021 case X86ISD::ADD
: return "X86ISD::ADD";
7022 case X86ISD::SUB
: return "X86ISD::SUB";
7023 case X86ISD::SMUL
: return "X86ISD::SMUL";
7024 case X86ISD::UMUL
: return "X86ISD::UMUL";
7025 case X86ISD::INC
: return "X86ISD::INC";
7026 case X86ISD::DEC
: return "X86ISD::DEC";
7027 case X86ISD::MUL_IMM
: return "X86ISD::MUL_IMM";
7031 // isLegalAddressingMode - Return true if the addressing mode represented
7032 // by AM is legal for this target, for a load/store of the specified type.
7033 bool X86TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
7034 const Type
*Ty
) const {
7035 // X86 supports extremely general addressing modes.
7037 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7038 if (AM
.BaseOffs
<= -(1LL << 32) || AM
.BaseOffs
>= (1LL << 32)-1)
7043 Subtarget
->ClassifyGlobalReference(AM
.BaseGV
, getTargetMachine());
7045 // If a reference to this global requires an extra load, we can't fold it.
7046 if (isGlobalStubReference(GVFlags
))
7049 // If BaseGV requires a register for the PIC base, we cannot also have a
7050 // BaseReg specified.
7051 if (AM
.HasBaseReg
&& isGlobalRelativeToPICBase(GVFlags
))
7054 // X86-64 only supports addr of globals in small code model.
7055 if (Subtarget
->is64Bit()) {
7056 if (getTargetMachine().getCodeModel() != CodeModel::Small
)
7058 // If lower 4G is not available, then we must use rip-relative addressing.
7059 if (AM
.BaseOffs
|| AM
.Scale
> 1)
7070 // These scales always work.
7075 // These scales are formed with basereg+scalereg. Only accept if there is
7080 default: // Other stuff never works.
7088 bool X86TargetLowering::isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const {
7089 if (!Ty1
->isInteger() || !Ty2
->isInteger())
7091 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
7092 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
7093 if (NumBits1
<= NumBits2
)
7095 return Subtarget
->is64Bit() || NumBits1
< 64;
7098 bool X86TargetLowering::isTruncateFree(MVT VT1
, MVT VT2
) const {
7099 if (!VT1
.isInteger() || !VT2
.isInteger())
7101 unsigned NumBits1
= VT1
.getSizeInBits();
7102 unsigned NumBits2
= VT2
.getSizeInBits();
7103 if (NumBits1
<= NumBits2
)
7105 return Subtarget
->is64Bit() || NumBits1
< 64;
7108 bool X86TargetLowering::isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const {
7109 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7110 return Ty1
== Type::Int32Ty
&& Ty2
== Type::Int64Ty
&& Subtarget
->is64Bit();
7113 bool X86TargetLowering::isZExtFree(MVT VT1
, MVT VT2
) const {
7114 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7115 return VT1
== MVT::i32
&& VT2
== MVT::i64
&& Subtarget
->is64Bit();
7118 bool X86TargetLowering::isNarrowingProfitable(MVT VT1
, MVT VT2
) const {
7119 // i16 instructions are longer (0x66 prefix) and potentially slower.
7120 return !(VT1
== MVT::i32
&& VT2
== MVT::i16
);
7123 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7124 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7125 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7126 /// are assumed to be legal.
7128 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl
<int> &M
,
7130 // Only do shuffles on 128-bit vector types for now.
7131 if (VT
.getSizeInBits() == 64)
7134 // FIXME: pshufb, blends, palignr, shifts.
7135 return (VT
.getVectorNumElements() == 2 ||
7136 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7137 isMOVLMask(M
, VT
) ||
7138 isSHUFPMask(M
, VT
) ||
7139 isPSHUFDMask(M
, VT
) ||
7140 isPSHUFHWMask(M
, VT
) ||
7141 isPSHUFLWMask(M
, VT
) ||
7142 isUNPCKLMask(M
, VT
) ||
7143 isUNPCKHMask(M
, VT
) ||
7144 isUNPCKL_v_undef_Mask(M
, VT
) ||
7145 isUNPCKH_v_undef_Mask(M
, VT
));
7149 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
7151 unsigned NumElts
= VT
.getVectorNumElements();
7152 // FIXME: This collection of masks seems suspect.
7155 if (NumElts
== 4 && VT
.getSizeInBits() == 128) {
7156 return (isMOVLMask(Mask
, VT
) ||
7157 isCommutedMOVLMask(Mask
, VT
, true) ||
7158 isSHUFPMask(Mask
, VT
) ||
7159 isCommutedSHUFPMask(Mask
, VT
));
7164 //===----------------------------------------------------------------------===//
7165 // X86 Scheduler Hooks
7166 //===----------------------------------------------------------------------===//
7168 // private utility function
7170 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr
*bInstr
,
7171 MachineBasicBlock
*MBB
,
7179 TargetRegisterClass
*RC
,
7180 bool invSrc
) const {
7181 // For the atomic bitwise operator, we generate
7184 // ld t1 = [bitinstr.addr]
7185 // op t2 = t1, [bitinstr.val]
7187 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7189 // fallthrough -->nextMBB
7190 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7191 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7192 MachineFunction::iterator MBBIter
= MBB
;
7195 /// First build the CFG
7196 MachineFunction
*F
= MBB
->getParent();
7197 MachineBasicBlock
*thisMBB
= MBB
;
7198 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7199 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7200 F
->insert(MBBIter
, newMBB
);
7201 F
->insert(MBBIter
, nextMBB
);
7203 // Move all successors to thisMBB to nextMBB
7204 nextMBB
->transferSuccessors(thisMBB
);
7206 // Update thisMBB to fall through to newMBB
7207 thisMBB
->addSuccessor(newMBB
);
7209 // newMBB jumps to itself and fall through to nextMBB
7210 newMBB
->addSuccessor(nextMBB
);
7211 newMBB
->addSuccessor(newMBB
);
7213 // Insert instructions into newMBB based on incoming instruction
7214 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7215 "unexpected number of operands");
7216 DebugLoc dl
= bInstr
->getDebugLoc();
7217 MachineOperand
& destOper
= bInstr
->getOperand(0);
7218 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7219 int numArgs
= bInstr
->getNumOperands() - 1;
7220 for (int i
=0; i
< numArgs
; ++i
)
7221 argOpers
[i
] = &bInstr
->getOperand(i
+1);
7223 // x86 address has 4 operands: base, index, scale, and displacement
7224 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7225 int valArgIndx
= lastAddrIndx
+ 1;
7227 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7228 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(LoadOpc
), t1
);
7229 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7230 (*MIB
).addOperand(*argOpers
[i
]);
7232 unsigned tt
= F
->getRegInfo().createVirtualRegister(RC
);
7234 MIB
= BuildMI(newMBB
, dl
, TII
->get(notOpc
), tt
).addReg(t1
);
7239 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7240 assert((argOpers
[valArgIndx
]->isReg() ||
7241 argOpers
[valArgIndx
]->isImm()) &&
7243 if (argOpers
[valArgIndx
]->isReg())
7244 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpc
), t2
);
7246 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpc
), t2
);
7248 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7250 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), EAXreg
);
7253 MIB
= BuildMI(newMBB
, dl
, TII
->get(CXchgOpc
));
7254 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7255 (*MIB
).addOperand(*argOpers
[i
]);
7257 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7258 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7260 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), destOper
.getReg());
7264 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7266 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7270 // private utility function: 64 bit atomics on 32 bit host.
7272 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr
*bInstr
,
7273 MachineBasicBlock
*MBB
,
7278 bool invSrc
) const {
7279 // For the atomic bitwise operator, we generate
7280 // thisMBB (instructions are in pairs, except cmpxchg8b)
7281 // ld t1,t2 = [bitinstr.addr]
7283 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7284 // op t5, t6 <- out1, out2, [bitinstr.val]
7285 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7286 // mov ECX, EBX <- t5, t6
7287 // mov EAX, EDX <- t1, t2
7288 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7289 // mov t3, t4 <- EAX, EDX
7291 // result in out1, out2
7292 // fallthrough -->nextMBB
7294 const TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
7295 const unsigned LoadOpc
= X86::MOV32rm
;
7296 const unsigned copyOpc
= X86::MOV32rr
;
7297 const unsigned NotOpc
= X86::NOT32r
;
7298 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7299 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7300 MachineFunction::iterator MBBIter
= MBB
;
7303 /// First build the CFG
7304 MachineFunction
*F
= MBB
->getParent();
7305 MachineBasicBlock
*thisMBB
= MBB
;
7306 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7307 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7308 F
->insert(MBBIter
, newMBB
);
7309 F
->insert(MBBIter
, nextMBB
);
7311 // Move all successors to thisMBB to nextMBB
7312 nextMBB
->transferSuccessors(thisMBB
);
7314 // Update thisMBB to fall through to newMBB
7315 thisMBB
->addSuccessor(newMBB
);
7317 // newMBB jumps to itself and fall through to nextMBB
7318 newMBB
->addSuccessor(nextMBB
);
7319 newMBB
->addSuccessor(newMBB
);
7321 DebugLoc dl
= bInstr
->getDebugLoc();
7322 // Insert instructions into newMBB based on incoming instruction
7323 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7324 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 14 &&
7325 "unexpected number of operands");
7326 MachineOperand
& dest1Oper
= bInstr
->getOperand(0);
7327 MachineOperand
& dest2Oper
= bInstr
->getOperand(1);
7328 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7329 for (int i
=0; i
< 2 + X86AddrNumOperands
; ++i
)
7330 argOpers
[i
] = &bInstr
->getOperand(i
+2);
7332 // x86 address has 4 operands: base, index, scale, and displacement
7333 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7335 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7336 MachineInstrBuilder MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t1
);
7337 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7338 (*MIB
).addOperand(*argOpers
[i
]);
7339 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7340 MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t2
);
7341 // add 4 to displacement.
7342 for (int i
=0; i
<= lastAddrIndx
-2; ++i
)
7343 (*MIB
).addOperand(*argOpers
[i
]);
7344 MachineOperand newOp3
= *(argOpers
[3]);
7346 newOp3
.setImm(newOp3
.getImm()+4);
7348 newOp3
.setOffset(newOp3
.getOffset()+4);
7349 (*MIB
).addOperand(newOp3
);
7350 (*MIB
).addOperand(*argOpers
[lastAddrIndx
]);
7352 // t3/4 are defined later, at the bottom of the loop
7353 unsigned t3
= F
->getRegInfo().createVirtualRegister(RC
);
7354 unsigned t4
= F
->getRegInfo().createVirtualRegister(RC
);
7355 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest1Oper
.getReg())
7356 .addReg(t1
).addMBB(thisMBB
).addReg(t3
).addMBB(newMBB
);
7357 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest2Oper
.getReg())
7358 .addReg(t2
).addMBB(thisMBB
).addReg(t4
).addMBB(newMBB
);
7360 unsigned tt1
= F
->getRegInfo().createVirtualRegister(RC
);
7361 unsigned tt2
= F
->getRegInfo().createVirtualRegister(RC
);
7363 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt1
).addReg(t1
);
7364 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt2
).addReg(t2
);
7370 int valArgIndx
= lastAddrIndx
+ 1;
7371 assert((argOpers
[valArgIndx
]->isReg() ||
7372 argOpers
[valArgIndx
]->isImm()) &&
7374 unsigned t5
= F
->getRegInfo().createVirtualRegister(RC
);
7375 unsigned t6
= F
->getRegInfo().createVirtualRegister(RC
);
7376 if (argOpers
[valArgIndx
]->isReg())
7377 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcL
), t5
);
7379 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcL
), t5
);
7380 if (regOpcL
!= X86::MOV32rr
)
7382 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7383 assert(argOpers
[valArgIndx
+ 1]->isReg() ==
7384 argOpers
[valArgIndx
]->isReg());
7385 assert(argOpers
[valArgIndx
+ 1]->isImm() ==
7386 argOpers
[valArgIndx
]->isImm());
7387 if (argOpers
[valArgIndx
+ 1]->isReg())
7388 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcH
), t6
);
7390 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcH
), t6
);
7391 if (regOpcH
!= X86::MOV32rr
)
7393 (*MIB
).addOperand(*argOpers
[valArgIndx
+ 1]);
7395 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EAX
);
7397 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EDX
);
7400 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EBX
);
7402 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::ECX
);
7405 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG8B
));
7406 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7407 (*MIB
).addOperand(*argOpers
[i
]);
7409 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7410 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7412 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t3
);
7413 MIB
.addReg(X86::EAX
);
7414 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t4
);
7415 MIB
.addReg(X86::EDX
);
7418 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7420 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7424 // private utility function
7426 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr
*mInstr
,
7427 MachineBasicBlock
*MBB
,
7428 unsigned cmovOpc
) const {
7429 // For the atomic min/max operator, we generate
7432 // ld t1 = [min/max.addr]
7433 // mov t2 = [min/max.val]
7435 // cmov[cond] t2 = t1
7437 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7439 // fallthrough -->nextMBB
7441 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7442 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7443 MachineFunction::iterator MBBIter
= MBB
;
7446 /// First build the CFG
7447 MachineFunction
*F
= MBB
->getParent();
7448 MachineBasicBlock
*thisMBB
= MBB
;
7449 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7450 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7451 F
->insert(MBBIter
, newMBB
);
7452 F
->insert(MBBIter
, nextMBB
);
7454 // Move all successors to thisMBB to nextMBB
7455 nextMBB
->transferSuccessors(thisMBB
);
7457 // Update thisMBB to fall through to newMBB
7458 thisMBB
->addSuccessor(newMBB
);
7460 // newMBB jumps to newMBB and fall through to nextMBB
7461 newMBB
->addSuccessor(nextMBB
);
7462 newMBB
->addSuccessor(newMBB
);
7464 DebugLoc dl
= mInstr
->getDebugLoc();
7465 // Insert instructions into newMBB based on incoming instruction
7466 assert(mInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7467 "unexpected number of operands");
7468 MachineOperand
& destOper
= mInstr
->getOperand(0);
7469 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7470 int numArgs
= mInstr
->getNumOperands() - 1;
7471 for (int i
=0; i
< numArgs
; ++i
)
7472 argOpers
[i
] = &mInstr
->getOperand(i
+1);
7474 // x86 address has 4 operands: base, index, scale, and displacement
7475 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7476 int valArgIndx
= lastAddrIndx
+ 1;
7478 unsigned t1
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7479 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rm
), t1
);
7480 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7481 (*MIB
).addOperand(*argOpers
[i
]);
7483 // We only support register and immediate values
7484 assert((argOpers
[valArgIndx
]->isReg() ||
7485 argOpers
[valArgIndx
]->isImm()) &&
7488 unsigned t2
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7489 if (argOpers
[valArgIndx
]->isReg())
7490 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7492 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7493 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7495 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), X86::EAX
);
7498 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::CMP32rr
));
7503 unsigned t3
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7504 MIB
= BuildMI(newMBB
, dl
, TII
->get(cmovOpc
),t3
);
7508 // Cmp and exchange if none has modified the memory location
7509 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG32
));
7510 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7511 (*MIB
).addOperand(*argOpers
[i
]);
7513 assert(mInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7514 (*MIB
).addMemOperand(*F
, *mInstr
->memoperands_begin());
7516 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), destOper
.getReg());
7517 MIB
.addReg(X86::EAX
);
7520 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7522 F
->DeleteMachineInstr(mInstr
); // The pseudo instruction is gone now.
7528 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
7529 MachineBasicBlock
*BB
) const {
7530 DebugLoc dl
= MI
->getDebugLoc();
7531 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7532 switch (MI
->getOpcode()) {
7533 default: assert(false && "Unexpected instr type to insert");
7534 case X86::CMOV_V1I64
:
7535 case X86::CMOV_FR32
:
7536 case X86::CMOV_FR64
:
7537 case X86::CMOV_V4F32
:
7538 case X86::CMOV_V2F64
:
7539 case X86::CMOV_V2I64
: {
7540 // To "insert" a SELECT_CC instruction, we actually have to insert the
7541 // diamond control-flow pattern. The incoming instruction knows the
7542 // destination vreg to set, the condition code register to branch on, the
7543 // true/false values to select between, and a branch opcode to use.
7544 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
7545 MachineFunction::iterator It
= BB
;
7551 // cmpTY ccX, r1, r2
7553 // fallthrough --> copy0MBB
7554 MachineBasicBlock
*thisMBB
= BB
;
7555 MachineFunction
*F
= BB
->getParent();
7556 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7557 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7559 X86::GetCondBranchFromCond((X86::CondCode
)MI
->getOperand(3).getImm());
7560 BuildMI(BB
, dl
, TII
->get(Opc
)).addMBB(sinkMBB
);
7561 F
->insert(It
, copy0MBB
);
7562 F
->insert(It
, sinkMBB
);
7563 // Update machine-CFG edges by transferring all successors of the current
7564 // block to the new block which will contain the Phi node for the select.
7565 sinkMBB
->transferSuccessors(BB
);
7567 // Add the true and fallthrough blocks as its successors.
7568 BB
->addSuccessor(copy0MBB
);
7569 BB
->addSuccessor(sinkMBB
);
7572 // %FalseValue = ...
7573 // # fallthrough to sinkMBB
7576 // Update machine-CFG edges
7577 BB
->addSuccessor(sinkMBB
);
7580 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7583 BuildMI(BB
, dl
, TII
->get(X86::PHI
), MI
->getOperand(0).getReg())
7584 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
7585 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
7587 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7591 case X86::FP32_TO_INT16_IN_MEM
:
7592 case X86::FP32_TO_INT32_IN_MEM
:
7593 case X86::FP32_TO_INT64_IN_MEM
:
7594 case X86::FP64_TO_INT16_IN_MEM
:
7595 case X86::FP64_TO_INT32_IN_MEM
:
7596 case X86::FP64_TO_INT64_IN_MEM
:
7597 case X86::FP80_TO_INT16_IN_MEM
:
7598 case X86::FP80_TO_INT32_IN_MEM
:
7599 case X86::FP80_TO_INT64_IN_MEM
: {
7600 // Change the floating point control register to use "round towards zero"
7601 // mode when truncating to an integer value.
7602 MachineFunction
*F
= BB
->getParent();
7603 int CWFrameIdx
= F
->getFrameInfo()->CreateStackObject(2, 2);
7604 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FNSTCW16m
)), CWFrameIdx
);
7606 // Load the old value of the high byte of the control word...
7608 F
->getRegInfo().createVirtualRegister(X86::GR16RegisterClass
);
7609 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16rm
), OldCW
),
7612 // Set the high part to be round to zero...
7613 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mi
)), CWFrameIdx
)
7616 // Reload the modified control word now...
7617 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7619 // Restore the memory image of control word to original value
7620 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mr
)), CWFrameIdx
)
7623 // Get the X86 opcode to use.
7625 switch (MI
->getOpcode()) {
7626 default: llvm_unreachable("illegal opcode!");
7627 case X86::FP32_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m32
; break;
7628 case X86::FP32_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m32
; break;
7629 case X86::FP32_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m32
; break;
7630 case X86::FP64_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m64
; break;
7631 case X86::FP64_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m64
; break;
7632 case X86::FP64_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m64
; break;
7633 case X86::FP80_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m80
; break;
7634 case X86::FP80_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m80
; break;
7635 case X86::FP80_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m80
; break;
7639 MachineOperand
&Op
= MI
->getOperand(0);
7641 AM
.BaseType
= X86AddressMode::RegBase
;
7642 AM
.Base
.Reg
= Op
.getReg();
7644 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
7645 AM
.Base
.FrameIndex
= Op
.getIndex();
7647 Op
= MI
->getOperand(1);
7649 AM
.Scale
= Op
.getImm();
7650 Op
= MI
->getOperand(2);
7652 AM
.IndexReg
= Op
.getImm();
7653 Op
= MI
->getOperand(3);
7654 if (Op
.isGlobal()) {
7655 AM
.GV
= Op
.getGlobal();
7657 AM
.Disp
= Op
.getImm();
7659 addFullAddress(BuildMI(BB
, dl
, TII
->get(Opc
)), AM
)
7660 .addReg(MI
->getOperand(X86AddrNumOperands
).getReg());
7662 // Reload the original control word now.
7663 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7665 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7668 case X86::ATOMAND32
:
7669 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7670 X86::AND32ri
, X86::MOV32rm
,
7671 X86::LCMPXCHG32
, X86::MOV32rr
,
7672 X86::NOT32r
, X86::EAX
,
7673 X86::GR32RegisterClass
);
7675 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR32rr
,
7676 X86::OR32ri
, X86::MOV32rm
,
7677 X86::LCMPXCHG32
, X86::MOV32rr
,
7678 X86::NOT32r
, X86::EAX
,
7679 X86::GR32RegisterClass
);
7680 case X86::ATOMXOR32
:
7681 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR32rr
,
7682 X86::XOR32ri
, X86::MOV32rm
,
7683 X86::LCMPXCHG32
, X86::MOV32rr
,
7684 X86::NOT32r
, X86::EAX
,
7685 X86::GR32RegisterClass
);
7686 case X86::ATOMNAND32
:
7687 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7688 X86::AND32ri
, X86::MOV32rm
,
7689 X86::LCMPXCHG32
, X86::MOV32rr
,
7690 X86::NOT32r
, X86::EAX
,
7691 X86::GR32RegisterClass
, true);
7692 case X86::ATOMMIN32
:
7693 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL32rr
);
7694 case X86::ATOMMAX32
:
7695 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG32rr
);
7696 case X86::ATOMUMIN32
:
7697 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB32rr
);
7698 case X86::ATOMUMAX32
:
7699 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA32rr
);
7701 case X86::ATOMAND16
:
7702 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7703 X86::AND16ri
, X86::MOV16rm
,
7704 X86::LCMPXCHG16
, X86::MOV16rr
,
7705 X86::NOT16r
, X86::AX
,
7706 X86::GR16RegisterClass
);
7708 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR16rr
,
7709 X86::OR16ri
, X86::MOV16rm
,
7710 X86::LCMPXCHG16
, X86::MOV16rr
,
7711 X86::NOT16r
, X86::AX
,
7712 X86::GR16RegisterClass
);
7713 case X86::ATOMXOR16
:
7714 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR16rr
,
7715 X86::XOR16ri
, X86::MOV16rm
,
7716 X86::LCMPXCHG16
, X86::MOV16rr
,
7717 X86::NOT16r
, X86::AX
,
7718 X86::GR16RegisterClass
);
7719 case X86::ATOMNAND16
:
7720 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7721 X86::AND16ri
, X86::MOV16rm
,
7722 X86::LCMPXCHG16
, X86::MOV16rr
,
7723 X86::NOT16r
, X86::AX
,
7724 X86::GR16RegisterClass
, true);
7725 case X86::ATOMMIN16
:
7726 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL16rr
);
7727 case X86::ATOMMAX16
:
7728 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG16rr
);
7729 case X86::ATOMUMIN16
:
7730 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB16rr
);
7731 case X86::ATOMUMAX16
:
7732 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA16rr
);
7735 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7736 X86::AND8ri
, X86::MOV8rm
,
7737 X86::LCMPXCHG8
, X86::MOV8rr
,
7738 X86::NOT8r
, X86::AL
,
7739 X86::GR8RegisterClass
);
7741 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR8rr
,
7742 X86::OR8ri
, X86::MOV8rm
,
7743 X86::LCMPXCHG8
, X86::MOV8rr
,
7744 X86::NOT8r
, X86::AL
,
7745 X86::GR8RegisterClass
);
7747 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR8rr
,
7748 X86::XOR8ri
, X86::MOV8rm
,
7749 X86::LCMPXCHG8
, X86::MOV8rr
,
7750 X86::NOT8r
, X86::AL
,
7751 X86::GR8RegisterClass
);
7752 case X86::ATOMNAND8
:
7753 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7754 X86::AND8ri
, X86::MOV8rm
,
7755 X86::LCMPXCHG8
, X86::MOV8rr
,
7756 X86::NOT8r
, X86::AL
,
7757 X86::GR8RegisterClass
, true);
7758 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7759 // This group is for 64-bit host.
7760 case X86::ATOMAND64
:
7761 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7762 X86::AND64ri32
, X86::MOV64rm
,
7763 X86::LCMPXCHG64
, X86::MOV64rr
,
7764 X86::NOT64r
, X86::RAX
,
7765 X86::GR64RegisterClass
);
7767 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR64rr
,
7768 X86::OR64ri32
, X86::MOV64rm
,
7769 X86::LCMPXCHG64
, X86::MOV64rr
,
7770 X86::NOT64r
, X86::RAX
,
7771 X86::GR64RegisterClass
);
7772 case X86::ATOMXOR64
:
7773 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR64rr
,
7774 X86::XOR64ri32
, X86::MOV64rm
,
7775 X86::LCMPXCHG64
, X86::MOV64rr
,
7776 X86::NOT64r
, X86::RAX
,
7777 X86::GR64RegisterClass
);
7778 case X86::ATOMNAND64
:
7779 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7780 X86::AND64ri32
, X86::MOV64rm
,
7781 X86::LCMPXCHG64
, X86::MOV64rr
,
7782 X86::NOT64r
, X86::RAX
,
7783 X86::GR64RegisterClass
, true);
7784 case X86::ATOMMIN64
:
7785 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL64rr
);
7786 case X86::ATOMMAX64
:
7787 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG64rr
);
7788 case X86::ATOMUMIN64
:
7789 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB64rr
);
7790 case X86::ATOMUMAX64
:
7791 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA64rr
);
7793 // This group does 64-bit operations on a 32-bit host.
7794 case X86::ATOMAND6432
:
7795 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7796 X86::AND32rr
, X86::AND32rr
,
7797 X86::AND32ri
, X86::AND32ri
,
7799 case X86::ATOMOR6432
:
7800 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7801 X86::OR32rr
, X86::OR32rr
,
7802 X86::OR32ri
, X86::OR32ri
,
7804 case X86::ATOMXOR6432
:
7805 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7806 X86::XOR32rr
, X86::XOR32rr
,
7807 X86::XOR32ri
, X86::XOR32ri
,
7809 case X86::ATOMNAND6432
:
7810 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7811 X86::AND32rr
, X86::AND32rr
,
7812 X86::AND32ri
, X86::AND32ri
,
7814 case X86::ATOMADD6432
:
7815 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7816 X86::ADD32rr
, X86::ADC32rr
,
7817 X86::ADD32ri
, X86::ADC32ri
,
7819 case X86::ATOMSUB6432
:
7820 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7821 X86::SUB32rr
, X86::SBB32rr
,
7822 X86::SUB32ri
, X86::SBB32ri
,
7824 case X86::ATOMSWAP6432
:
7825 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7826 X86::MOV32rr
, X86::MOV32rr
,
7827 X86::MOV32ri
, X86::MOV32ri
,
7832 //===----------------------------------------------------------------------===//
7833 // X86 Optimization Hooks
7834 //===----------------------------------------------------------------------===//
7836 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
7840 const SelectionDAG
&DAG
,
7841 unsigned Depth
) const {
7842 unsigned Opc
= Op
.getOpcode();
7843 assert((Opc
>= ISD::BUILTIN_OP_END
||
7844 Opc
== ISD::INTRINSIC_WO_CHAIN
||
7845 Opc
== ISD::INTRINSIC_W_CHAIN
||
7846 Opc
== ISD::INTRINSIC_VOID
) &&
7847 "Should use MaskedValueIsZero if you don't know whether Op"
7848 " is a target node!");
7850 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0); // Don't know anything.
7859 // These nodes' second result is a boolean.
7860 if (Op
.getResNo() == 0)
7864 KnownZero
|= APInt::getHighBitsSet(Mask
.getBitWidth(),
7865 Mask
.getBitWidth() - 1);
7870 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7871 /// node is a GlobalAddress + offset.
7872 bool X86TargetLowering::isGAPlusOffset(SDNode
*N
,
7873 GlobalValue
* &GA
, int64_t &Offset
) const{
7874 if (N
->getOpcode() == X86ISD::Wrapper
) {
7875 if (isa
<GlobalAddressSDNode
>(N
->getOperand(0))) {
7876 GA
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getGlobal();
7877 Offset
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getOffset();
7881 return TargetLowering::isGAPlusOffset(N
, GA
, Offset
);
7884 static bool isBaseAlignmentOfN(unsigned N
, SDNode
*Base
,
7885 const TargetLowering
&TLI
) {
7888 if (TLI
.isGAPlusOffset(Base
, GV
, Offset
))
7889 return (GV
->getAlignment() >= N
&& (Offset
% N
) == 0);
7890 // DAG combine handles the stack object case.
7894 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode
*N
, unsigned NumElems
,
7895 MVT EVT
, LoadSDNode
*&LDBase
,
7896 unsigned &LastLoadedElt
,
7897 SelectionDAG
&DAG
, MachineFrameInfo
*MFI
,
7898 const TargetLowering
&TLI
) {
7900 LastLoadedElt
= -1U;
7901 for (unsigned i
= 0; i
< NumElems
; ++i
) {
7902 if (N
->getMaskElt(i
) < 0) {
7908 SDValue Elt
= DAG
.getShuffleScalarElt(N
, i
);
7909 if (!Elt
.getNode() ||
7910 (Elt
.getOpcode() != ISD::UNDEF
&& !ISD::isNON_EXTLoad(Elt
.getNode())))
7913 if (Elt
.getNode()->getOpcode() == ISD::UNDEF
)
7915 LDBase
= cast
<LoadSDNode
>(Elt
.getNode());
7919 if (Elt
.getOpcode() == ISD::UNDEF
)
7922 LoadSDNode
*LD
= cast
<LoadSDNode
>(Elt
);
7923 if (!TLI
.isConsecutiveLoad(LD
, LDBase
, EVT
.getSizeInBits()/8, i
, MFI
))
7930 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7931 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7932 /// if the load addresses are consecutive, non-overlapping, and in the right
7933 /// order. In the case of v2i64, it will see if it can rewrite the
7934 /// shuffle to be an appropriate build vector so it can take advantage of
7935 // performBuildVectorCombine.
7936 static SDValue
PerformShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
,
7937 const TargetLowering
&TLI
) {
7938 DebugLoc dl
= N
->getDebugLoc();
7939 MVT VT
= N
->getValueType(0);
7940 MVT EVT
= VT
.getVectorElementType();
7941 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
7942 unsigned NumElems
= VT
.getVectorNumElements();
7944 if (VT
.getSizeInBits() != 128)
7947 // Try to combine a vector_shuffle into a 128-bit load.
7948 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7949 LoadSDNode
*LD
= NULL
;
7950 unsigned LastLoadedElt
;
7951 if (!EltsFromConsecutiveLoads(SVN
, NumElems
, EVT
, LD
, LastLoadedElt
, DAG
,
7955 if (LastLoadedElt
== NumElems
- 1) {
7956 if (isBaseAlignmentOfN(16, LD
->getBasePtr().getNode(), TLI
))
7957 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7958 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7960 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7961 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7962 LD
->isVolatile(), LD
->getAlignment());
7963 } else if (NumElems
== 4 && LastLoadedElt
== 1) {
7964 SDVTList Tys
= DAG
.getVTList(MVT::v2i64
, MVT::Other
);
7965 SDValue Ops
[] = { LD
->getChain(), LD
->getBasePtr() };
7966 SDValue ResNode
= DAG
.getNode(X86ISD::VZEXT_LOAD
, dl
, Tys
, Ops
, 2);
7967 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, ResNode
);
7972 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7973 static SDValue
PerformSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
7974 const X86Subtarget
*Subtarget
) {
7975 DebugLoc DL
= N
->getDebugLoc();
7976 SDValue Cond
= N
->getOperand(0);
7977 // Get the LHS/RHS of the select.
7978 SDValue LHS
= N
->getOperand(1);
7979 SDValue RHS
= N
->getOperand(2);
7981 // If we have SSE[12] support, try to form min/max nodes.
7982 if (Subtarget
->hasSSE2() &&
7983 (LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
) &&
7984 Cond
.getOpcode() == ISD::SETCC
) {
7985 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
7987 unsigned Opcode
= 0;
7988 if (LHS
== Cond
.getOperand(0) && RHS
== Cond
.getOperand(1)) {
7991 case ISD::SETOLE
: // (X <= Y) ? X : Y -> min
7994 if (!UnsafeFPMath
) break;
7996 case ISD::SETOLT
: // (X olt/lt Y) ? X : Y -> min
7998 Opcode
= X86ISD::FMIN
;
8001 case ISD::SETOGT
: // (X > Y) ? X : Y -> max
8004 if (!UnsafeFPMath
) break;
8006 case ISD::SETUGE
: // (X uge/ge Y) ? X : Y -> max
8008 Opcode
= X86ISD::FMAX
;
8011 } else if (LHS
== Cond
.getOperand(1) && RHS
== Cond
.getOperand(0)) {
8014 case ISD::SETOGT
: // (X > Y) ? Y : X -> min
8017 if (!UnsafeFPMath
) break;
8019 case ISD::SETUGE
: // (X uge/ge Y) ? Y : X -> min
8021 Opcode
= X86ISD::FMIN
;
8024 case ISD::SETOLE
: // (X <= Y) ? Y : X -> max
8027 if (!UnsafeFPMath
) break;
8029 case ISD::SETOLT
: // (X olt/lt Y) ? Y : X -> max
8031 Opcode
= X86ISD::FMAX
;
8037 return DAG
.getNode(Opcode
, DL
, N
->getValueType(0), LHS
, RHS
);
8040 // If this is a select between two integer constants, try to do some
8042 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(LHS
)) {
8043 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(RHS
))
8044 // Don't do this for crazy integer types.
8045 if (DAG
.getTargetLoweringInfo().isTypeLegal(LHS
.getValueType())) {
8046 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8047 // so that TrueC (the true value) is larger than FalseC.
8048 bool NeedsCondInvert
= false;
8050 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue()) &&
8051 // Efficiently invertible.
8052 (Cond
.getOpcode() == ISD::SETCC
|| // setcc -> invertible.
8053 (Cond
.getOpcode() == ISD::XOR
&& // xor(X, C) -> invertible.
8054 isa
<ConstantSDNode
>(Cond
.getOperand(1))))) {
8055 NeedsCondInvert
= true;
8056 std::swap(TrueC
, FalseC
);
8059 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8060 if (FalseC
->getAPIntValue() == 0 &&
8061 TrueC
->getAPIntValue().isPowerOf2()) {
8062 if (NeedsCondInvert
) // Invert the condition if needed.
8063 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8064 DAG
.getConstant(1, Cond
.getValueType()));
8066 // Zero extend the condition if needed.
8067 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LHS
.getValueType(), Cond
);
8069 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8070 return DAG
.getNode(ISD::SHL
, DL
, LHS
.getValueType(), Cond
,
8071 DAG
.getConstant(ShAmt
, MVT::i8
));
8074 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8075 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8076 if (NeedsCondInvert
) // Invert the condition if needed.
8077 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8078 DAG
.getConstant(1, Cond
.getValueType()));
8080 // Zero extend the condition if needed.
8081 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8082 FalseC
->getValueType(0), Cond
);
8083 return DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8084 SDValue(FalseC
, 0));
8087 // Optimize cases that will turn into an LEA instruction. This requires
8088 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8089 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8090 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8091 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8093 bool isFastMultiplier
= false;
8095 switch ((unsigned char)Diff
) {
8097 case 1: // result = add base, cond
8098 case 2: // result = lea base( , cond*2)
8099 case 3: // result = lea base(cond, cond*2)
8100 case 4: // result = lea base( , cond*4)
8101 case 5: // result = lea base(cond, cond*4)
8102 case 8: // result = lea base( , cond*8)
8103 case 9: // result = lea base(cond, cond*8)
8104 isFastMultiplier
= true;
8109 if (isFastMultiplier
) {
8110 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8111 if (NeedsCondInvert
) // Invert the condition if needed.
8112 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8113 DAG
.getConstant(1, Cond
.getValueType()));
8115 // Zero extend the condition if needed.
8116 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8118 // Scale the condition by the difference.
8120 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8121 DAG
.getConstant(Diff
, Cond
.getValueType()));
8123 // Add the base if non-zero.
8124 if (FalseC
->getAPIntValue() != 0)
8125 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8126 SDValue(FalseC
, 0));
8136 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8137 static SDValue
PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
,
8138 TargetLowering::DAGCombinerInfo
&DCI
) {
8139 DebugLoc DL
= N
->getDebugLoc();
8141 // If the flag operand isn't dead, don't touch this CMOV.
8142 if (N
->getNumValues() == 2 && !SDValue(N
, 1).use_empty())
8145 // If this is a select between two integer constants, try to do some
8146 // optimizations. Note that the operands are ordered the opposite of SELECT
8148 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
8149 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
8150 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8151 // larger than FalseC (the false value).
8152 X86::CondCode CC
= (X86::CondCode
)N
->getConstantOperandVal(2);
8154 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue())) {
8155 CC
= X86::GetOppositeBranchCondition(CC
);
8156 std::swap(TrueC
, FalseC
);
8159 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8160 // This is efficient for any integer data type (including i8/i16) and
8162 if (FalseC
->getAPIntValue() == 0 && TrueC
->getAPIntValue().isPowerOf2()) {
8163 SDValue Cond
= N
->getOperand(3);
8164 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8165 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8167 // Zero extend the condition if needed.
8168 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TrueC
->getValueType(0), Cond
);
8170 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8171 Cond
= DAG
.getNode(ISD::SHL
, DL
, Cond
.getValueType(), Cond
,
8172 DAG
.getConstant(ShAmt
, MVT::i8
));
8173 if (N
->getNumValues() == 2) // Dead flag value?
8174 return DCI
.CombineTo(N
, Cond
, SDValue());
8178 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8179 // for any integer data type, including i8/i16.
8180 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8181 SDValue Cond
= N
->getOperand(3);
8182 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8183 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8185 // Zero extend the condition if needed.
8186 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8187 FalseC
->getValueType(0), Cond
);
8188 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8189 SDValue(FalseC
, 0));
8191 if (N
->getNumValues() == 2) // Dead flag value?
8192 return DCI
.CombineTo(N
, Cond
, SDValue());
8196 // Optimize cases that will turn into an LEA instruction. This requires
8197 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8198 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8199 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8200 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8202 bool isFastMultiplier
= false;
8204 switch ((unsigned char)Diff
) {
8206 case 1: // result = add base, cond
8207 case 2: // result = lea base( , cond*2)
8208 case 3: // result = lea base(cond, cond*2)
8209 case 4: // result = lea base( , cond*4)
8210 case 5: // result = lea base(cond, cond*4)
8211 case 8: // result = lea base( , cond*8)
8212 case 9: // result = lea base(cond, cond*8)
8213 isFastMultiplier
= true;
8218 if (isFastMultiplier
) {
8219 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8220 SDValue Cond
= N
->getOperand(3);
8221 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8222 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8223 // Zero extend the condition if needed.
8224 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8226 // Scale the condition by the difference.
8228 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8229 DAG
.getConstant(Diff
, Cond
.getValueType()));
8231 // Add the base if non-zero.
8232 if (FalseC
->getAPIntValue() != 0)
8233 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8234 SDValue(FalseC
, 0));
8235 if (N
->getNumValues() == 2) // Dead flag value?
8236 return DCI
.CombineTo(N
, Cond
, SDValue());
8246 /// PerformMulCombine - Optimize a single multiply with constant into two
8247 /// in order to implement it with two cheaper instructions, e.g.
8248 /// LEA + SHL, LEA + LEA.
8249 static SDValue
PerformMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
8250 TargetLowering::DAGCombinerInfo
&DCI
) {
8251 if (DAG
.getMachineFunction().
8252 getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
8255 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
8258 MVT VT
= N
->getValueType(0);
8262 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
8265 uint64_t MulAmt
= C
->getZExtValue();
8266 if (isPowerOf2_64(MulAmt
) || MulAmt
== 3 || MulAmt
== 5 || MulAmt
== 9)
8269 uint64_t MulAmt1
= 0;
8270 uint64_t MulAmt2
= 0;
8271 if ((MulAmt
% 9) == 0) {
8273 MulAmt2
= MulAmt
/ 9;
8274 } else if ((MulAmt
% 5) == 0) {
8276 MulAmt2
= MulAmt
/ 5;
8277 } else if ((MulAmt
% 3) == 0) {
8279 MulAmt2
= MulAmt
/ 3;
8282 (isPowerOf2_64(MulAmt2
) || MulAmt2
== 3 || MulAmt2
== 5 || MulAmt2
== 9)){
8283 DebugLoc DL
= N
->getDebugLoc();
8285 if (isPowerOf2_64(MulAmt2
) &&
8286 !(N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::ADD
))
8287 // If second multiplifer is pow2, issue it first. We want the multiply by
8288 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8290 std::swap(MulAmt1
, MulAmt2
);
8293 if (isPowerOf2_64(MulAmt1
))
8294 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
8295 DAG
.getConstant(Log2_64(MulAmt1
), MVT::i8
));
8297 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, N
->getOperand(0),
8298 DAG
.getConstant(MulAmt1
, VT
));
8300 if (isPowerOf2_64(MulAmt2
))
8301 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewMul
,
8302 DAG
.getConstant(Log2_64(MulAmt2
), MVT::i8
));
8304 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, NewMul
,
8305 DAG
.getConstant(MulAmt2
, VT
));
8307 // Do not add new nodes to DAG combiner worklist.
8308 DCI
.CombineTo(N
, NewMul
, false);
8314 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8316 static SDValue
PerformShiftCombine(SDNode
* N
, SelectionDAG
&DAG
,
8317 const X86Subtarget
*Subtarget
) {
8318 // On X86 with SSE2 support, we can transform this to a vector shift if
8319 // all elements are shifted by the same amount. We can't do this in legalize
8320 // because the a constant vector is typically transformed to a constant pool
8321 // so we have no knowledge of the shift amount.
8322 if (!Subtarget
->hasSSE2())
8325 MVT VT
= N
->getValueType(0);
8326 if (VT
!= MVT::v2i64
&& VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
8329 SDValue ShAmtOp
= N
->getOperand(1);
8330 MVT EltVT
= VT
.getVectorElementType();
8331 DebugLoc DL
= N
->getDebugLoc();
8333 if (ShAmtOp
.getOpcode() == ISD::BUILD_VECTOR
) {
8334 unsigned NumElts
= VT
.getVectorNumElements();
8336 for (; i
!= NumElts
; ++i
) {
8337 SDValue Arg
= ShAmtOp
.getOperand(i
);
8338 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8342 for (; i
!= NumElts
; ++i
) {
8343 SDValue Arg
= ShAmtOp
.getOperand(i
);
8344 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8345 if (Arg
!= BaseShAmt
) {
8349 } else if (ShAmtOp
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
8350 cast
<ShuffleVectorSDNode
>(ShAmtOp
)->isSplat()) {
8351 BaseShAmt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, ShAmtOp
,
8352 DAG
.getIntPtrConstant(0));
8356 if (EltVT
.bitsGT(MVT::i32
))
8357 BaseShAmt
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, BaseShAmt
);
8358 else if (EltVT
.bitsLT(MVT::i32
))
8359 BaseShAmt
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, BaseShAmt
);
8361 // The shift amount is identical so we can do a vector shift.
8362 SDValue ValOp
= N
->getOperand(0);
8363 switch (N
->getOpcode()) {
8365 llvm_unreachable("Unknown shift opcode!");
8368 if (VT
== MVT::v2i64
)
8369 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8370 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8372 if (VT
== MVT::v4i32
)
8373 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8374 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
8376 if (VT
== MVT::v8i16
)
8377 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8378 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
8382 if (VT
== MVT::v4i32
)
8383 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8384 DAG
.getConstant(Intrinsic::x86_sse2_psrai_d
, MVT::i32
),
8386 if (VT
== MVT::v8i16
)
8387 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8388 DAG
.getConstant(Intrinsic::x86_sse2_psrai_w
, MVT::i32
),
8392 if (VT
== MVT::v2i64
)
8393 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8394 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8396 if (VT
== MVT::v4i32
)
8397 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8398 DAG
.getConstant(Intrinsic::x86_sse2_psrli_d
, MVT::i32
),
8400 if (VT
== MVT::v8i16
)
8401 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8402 DAG
.getConstant(Intrinsic::x86_sse2_psrli_w
, MVT::i32
),
8409 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8410 static SDValue
PerformSTORECombine(SDNode
*N
, SelectionDAG
&DAG
,
8411 const X86Subtarget
*Subtarget
) {
8412 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8413 // the FP state in cases where an emms may be missing.
8414 // A preferable solution to the general problem is to figure out the right
8415 // places to insert EMMS. This qualifies as a quick hack.
8417 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8418 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
8419 MVT VT
= St
->getValue().getValueType();
8420 if (VT
.getSizeInBits() != 64)
8423 const Function
*F
= DAG
.getMachineFunction().getFunction();
8424 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
8425 bool F64IsLegal
= !UseSoftFloat
&& !NoImplicitFloatOps
8426 && Subtarget
->hasSSE2();
8427 if ((VT
.isVector() ||
8428 (VT
== MVT::i64
&& F64IsLegal
&& !Subtarget
->is64Bit())) &&
8429 isa
<LoadSDNode
>(St
->getValue()) &&
8430 !cast
<LoadSDNode
>(St
->getValue())->isVolatile() &&
8431 St
->getChain().hasOneUse() && !St
->isVolatile()) {
8432 SDNode
* LdVal
= St
->getValue().getNode();
8434 int TokenFactorIndex
= -1;
8435 SmallVector
<SDValue
, 8> Ops
;
8436 SDNode
* ChainVal
= St
->getChain().getNode();
8437 // Must be a store of a load. We currently handle two cases: the load
8438 // is a direct child, and it's under an intervening TokenFactor. It is
8439 // possible to dig deeper under nested TokenFactors.
8440 if (ChainVal
== LdVal
)
8441 Ld
= cast
<LoadSDNode
>(St
->getChain());
8442 else if (St
->getValue().hasOneUse() &&
8443 ChainVal
->getOpcode() == ISD::TokenFactor
) {
8444 for (unsigned i
=0, e
= ChainVal
->getNumOperands(); i
!= e
; ++i
) {
8445 if (ChainVal
->getOperand(i
).getNode() == LdVal
) {
8446 TokenFactorIndex
= i
;
8447 Ld
= cast
<LoadSDNode
>(St
->getValue());
8449 Ops
.push_back(ChainVal
->getOperand(i
));
8453 if (!Ld
|| !ISD::isNormalLoad(Ld
))
8456 // If this is not the MMX case, i.e. we are just turning i64 load/store
8457 // into f64 load/store, avoid the transformation if there are multiple
8458 // uses of the loaded value.
8459 if (!VT
.isVector() && !Ld
->hasNUsesOfValue(1, 0))
8462 DebugLoc LdDL
= Ld
->getDebugLoc();
8463 DebugLoc StDL
= N
->getDebugLoc();
8464 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8465 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8467 if (Subtarget
->is64Bit() || F64IsLegal
) {
8468 MVT LdVT
= Subtarget
->is64Bit() ? MVT::i64
: MVT::f64
;
8469 SDValue NewLd
= DAG
.getLoad(LdVT
, LdDL
, Ld
->getChain(),
8470 Ld
->getBasePtr(), Ld
->getSrcValue(),
8471 Ld
->getSrcValueOffset(), Ld
->isVolatile(),
8472 Ld
->getAlignment());
8473 SDValue NewChain
= NewLd
.getValue(1);
8474 if (TokenFactorIndex
!= -1) {
8475 Ops
.push_back(NewChain
);
8476 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8479 return DAG
.getStore(NewChain
, StDL
, NewLd
, St
->getBasePtr(),
8480 St
->getSrcValue(), St
->getSrcValueOffset(),
8481 St
->isVolatile(), St
->getAlignment());
8484 // Otherwise, lower to two pairs of 32-bit loads / stores.
8485 SDValue LoAddr
= Ld
->getBasePtr();
8486 SDValue HiAddr
= DAG
.getNode(ISD::ADD
, LdDL
, MVT::i32
, LoAddr
,
8487 DAG
.getConstant(4, MVT::i32
));
8489 SDValue LoLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), LoAddr
,
8490 Ld
->getSrcValue(), Ld
->getSrcValueOffset(),
8491 Ld
->isVolatile(), Ld
->getAlignment());
8492 SDValue HiLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), HiAddr
,
8493 Ld
->getSrcValue(), Ld
->getSrcValueOffset()+4,
8495 MinAlign(Ld
->getAlignment(), 4));
8497 SDValue NewChain
= LoLd
.getValue(1);
8498 if (TokenFactorIndex
!= -1) {
8499 Ops
.push_back(LoLd
);
8500 Ops
.push_back(HiLd
);
8501 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8505 LoAddr
= St
->getBasePtr();
8506 HiAddr
= DAG
.getNode(ISD::ADD
, StDL
, MVT::i32
, LoAddr
,
8507 DAG
.getConstant(4, MVT::i32
));
8509 SDValue LoSt
= DAG
.getStore(NewChain
, StDL
, LoLd
, LoAddr
,
8510 St
->getSrcValue(), St
->getSrcValueOffset(),
8511 St
->isVolatile(), St
->getAlignment());
8512 SDValue HiSt
= DAG
.getStore(NewChain
, StDL
, HiLd
, HiAddr
,
8514 St
->getSrcValueOffset() + 4,
8516 MinAlign(St
->getAlignment(), 4));
8517 return DAG
.getNode(ISD::TokenFactor
, StDL
, MVT::Other
, LoSt
, HiSt
);
8522 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8523 /// X86ISD::FXOR nodes.
8524 static SDValue
PerformFORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8525 assert(N
->getOpcode() == X86ISD::FOR
|| N
->getOpcode() == X86ISD::FXOR
);
8526 // F[X]OR(0.0, x) -> x
8527 // F[X]OR(x, 0.0) -> x
8528 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8529 if (C
->getValueAPF().isPosZero())
8530 return N
->getOperand(1);
8531 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8532 if (C
->getValueAPF().isPosZero())
8533 return N
->getOperand(0);
8537 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8538 static SDValue
PerformFANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8539 // FAND(0.0, x) -> 0.0
8540 // FAND(x, 0.0) -> 0.0
8541 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8542 if (C
->getValueAPF().isPosZero())
8543 return N
->getOperand(0);
8544 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8545 if (C
->getValueAPF().isPosZero())
8546 return N
->getOperand(1);
8550 static SDValue
PerformBTCombine(SDNode
*N
,
8552 TargetLowering::DAGCombinerInfo
&DCI
) {
8553 // BT ignores high bits in the bit index operand.
8554 SDValue Op1
= N
->getOperand(1);
8555 if (Op1
.hasOneUse()) {
8556 unsigned BitWidth
= Op1
.getValueSizeInBits();
8557 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, Log2_32(BitWidth
));
8558 APInt KnownZero
, KnownOne
;
8559 TargetLowering::TargetLoweringOpt
TLO(DAG
);
8560 TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8561 if (TLO
.ShrinkDemandedConstant(Op1
, DemandedMask
) ||
8562 TLI
.SimplifyDemandedBits(Op1
, DemandedMask
, KnownZero
, KnownOne
, TLO
))
8563 DCI
.CommitTargetLoweringOpt(TLO
);
8568 static SDValue
PerformVZEXT_MOVLCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8569 SDValue Op
= N
->getOperand(0);
8570 if (Op
.getOpcode() == ISD::BIT_CONVERT
)
8571 Op
= Op
.getOperand(0);
8572 MVT VT
= N
->getValueType(0), OpVT
= Op
.getValueType();
8573 if (Op
.getOpcode() == X86ISD::VZEXT_LOAD
&&
8574 VT
.getVectorElementType().getSizeInBits() ==
8575 OpVT
.getVectorElementType().getSizeInBits()) {
8576 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, Op
);
8581 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8582 // Locked instructions, in turn, have implicit fence semantics (all memory
8583 // operations are flushed before issuing the locked instruction, and the
8584 // are not buffered), so we can fold away the common pattern of
8585 // fence-atomic-fence.
8586 static SDValue
PerformMEMBARRIERCombine(SDNode
* N
, SelectionDAG
&DAG
) {
8587 SDValue atomic
= N
->getOperand(0);
8588 switch (atomic
.getOpcode()) {
8589 case ISD::ATOMIC_CMP_SWAP
:
8590 case ISD::ATOMIC_SWAP
:
8591 case ISD::ATOMIC_LOAD_ADD
:
8592 case ISD::ATOMIC_LOAD_SUB
:
8593 case ISD::ATOMIC_LOAD_AND
:
8594 case ISD::ATOMIC_LOAD_OR
:
8595 case ISD::ATOMIC_LOAD_XOR
:
8596 case ISD::ATOMIC_LOAD_NAND
:
8597 case ISD::ATOMIC_LOAD_MIN
:
8598 case ISD::ATOMIC_LOAD_MAX
:
8599 case ISD::ATOMIC_LOAD_UMIN
:
8600 case ISD::ATOMIC_LOAD_UMAX
:
8606 SDValue fence
= atomic
.getOperand(0);
8607 if (fence
.getOpcode() != ISD::MEMBARRIER
)
8610 switch (atomic
.getOpcode()) {
8611 case ISD::ATOMIC_CMP_SWAP
:
8612 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8613 atomic
.getOperand(1), atomic
.getOperand(2),
8614 atomic
.getOperand(3));
8615 case ISD::ATOMIC_SWAP
:
8616 case ISD::ATOMIC_LOAD_ADD
:
8617 case ISD::ATOMIC_LOAD_SUB
:
8618 case ISD::ATOMIC_LOAD_AND
:
8619 case ISD::ATOMIC_LOAD_OR
:
8620 case ISD::ATOMIC_LOAD_XOR
:
8621 case ISD::ATOMIC_LOAD_NAND
:
8622 case ISD::ATOMIC_LOAD_MIN
:
8623 case ISD::ATOMIC_LOAD_MAX
:
8624 case ISD::ATOMIC_LOAD_UMIN
:
8625 case ISD::ATOMIC_LOAD_UMAX
:
8626 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8627 atomic
.getOperand(1), atomic
.getOperand(2));
8633 SDValue
X86TargetLowering::PerformDAGCombine(SDNode
*N
,
8634 DAGCombinerInfo
&DCI
) const {
8635 SelectionDAG
&DAG
= DCI
.DAG
;
8636 switch (N
->getOpcode()) {
8638 case ISD::VECTOR_SHUFFLE
: return PerformShuffleCombine(N
, DAG
, *this);
8639 case ISD::SELECT
: return PerformSELECTCombine(N
, DAG
, Subtarget
);
8640 case X86ISD::CMOV
: return PerformCMOVCombine(N
, DAG
, DCI
);
8641 case ISD::MUL
: return PerformMulCombine(N
, DAG
, DCI
);
8644 case ISD::SRL
: return PerformShiftCombine(N
, DAG
, Subtarget
);
8645 case ISD::STORE
: return PerformSTORECombine(N
, DAG
, Subtarget
);
8647 case X86ISD::FOR
: return PerformFORCombine(N
, DAG
);
8648 case X86ISD::FAND
: return PerformFANDCombine(N
, DAG
);
8649 case X86ISD::BT
: return PerformBTCombine(N
, DAG
, DCI
);
8650 case X86ISD::VZEXT_MOVL
: return PerformVZEXT_MOVLCombine(N
, DAG
);
8651 case ISD::MEMBARRIER
: return PerformMEMBARRIERCombine(N
, DAG
);
8657 //===----------------------------------------------------------------------===//
8658 // X86 Inline Assembly Support
8659 //===----------------------------------------------------------------------===//
8661 /// getConstraintType - Given a constraint letter, return the type of
8662 /// constraint it is for this target.
8663 X86TargetLowering::ConstraintType
8664 X86TargetLowering::getConstraintType(const std::string
&Constraint
) const {
8665 if (Constraint
.size() == 1) {
8666 switch (Constraint
[0]) {
8678 return C_RegisterClass
;
8686 return TargetLowering::getConstraintType(Constraint
);
8689 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8690 /// with another that has more specific requirements based on the type of the
8691 /// corresponding operand.
8692 const char *X86TargetLowering::
8693 LowerXConstraint(MVT ConstraintVT
) const {
8694 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8695 // 'f' like normal targets.
8696 if (ConstraintVT
.isFloatingPoint()) {
8697 if (Subtarget
->hasSSE2())
8699 if (Subtarget
->hasSSE1())
8703 return TargetLowering::LowerXConstraint(ConstraintVT
);
8706 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8707 /// vector. If it is invalid, don't add anything to Ops.
8708 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
8711 std::vector
<SDValue
>&Ops
,
8712 SelectionDAG
&DAG
) const {
8713 SDValue
Result(0, 0);
8715 switch (Constraint
) {
8718 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8719 if (C
->getZExtValue() <= 31) {
8720 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8726 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8727 if (C
->getZExtValue() <= 63) {
8728 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8734 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8735 if ((int8_t)C
->getSExtValue() == C
->getSExtValue()) {
8736 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8742 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8743 if (C
->getZExtValue() <= 255) {
8744 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8750 // 32-bit signed value
8751 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8752 const ConstantInt
*CI
= C
->getConstantIntValue();
8753 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getSExtValue())) {
8754 // Widen to 64 bits here to get it sign extended.
8755 Result
= DAG
.getTargetConstant(C
->getSExtValue(), MVT::i64
);
8758 // FIXME gcc accepts some relocatable values here too, but only in certain
8759 // memory models; it's complicated.
8764 // 32-bit unsigned value
8765 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8766 const ConstantInt
*CI
= C
->getConstantIntValue();
8767 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getZExtValue())) {
8768 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8772 // FIXME gcc accepts some relocatable values here too, but only in certain
8773 // memory models; it's complicated.
8777 // Literal immediates are always ok.
8778 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
)) {
8779 // Widen to 64 bits here to get it sign extended.
8780 Result
= DAG
.getTargetConstant(CST
->getSExtValue(), MVT::i64
);
8784 // If we are in non-pic codegen mode, we allow the address of a global (with
8785 // an optional displacement) to be used with 'i'.
8786 GlobalAddressSDNode
*GA
= 0;
8789 // Match either (GA), (GA+C), (GA+C1+C2), etc.
8791 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
))) {
8792 Offset
+= GA
->getOffset();
8794 } else if (Op
.getOpcode() == ISD::ADD
) {
8795 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8796 Offset
+= C
->getZExtValue();
8797 Op
= Op
.getOperand(0);
8800 } else if (Op
.getOpcode() == ISD::SUB
) {
8801 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8802 Offset
+= -C
->getZExtValue();
8803 Op
= Op
.getOperand(0);
8808 // Otherwise, this isn't something we can handle, reject it.
8812 GlobalValue
*GV
= GA
->getGlobal();
8813 // If we require an extra load to get this address, as in PIC mode, we
8815 if (isGlobalStubReference(Subtarget
->ClassifyGlobalReference(GV
,
8816 getTargetMachine())))
8820 Op
= LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
8822 Op
= DAG
.getTargetGlobalAddress(GV
, GA
->getValueType(0), Offset
);
8828 if (Result
.getNode()) {
8829 Ops
.push_back(Result
);
8832 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, hasMemory
,
8836 std::vector
<unsigned> X86TargetLowering::
8837 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
8839 if (Constraint
.size() == 1) {
8840 // FIXME: not handling fp-stack yet!
8841 switch (Constraint
[0]) { // GCC X86 Constraint Letters
8842 default: break; // Unknown constraint letter
8843 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
8846 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
, 0);
8847 else if (VT
== MVT::i16
)
8848 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
, 0);
8849 else if (VT
== MVT::i8
)
8850 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
, 0);
8851 else if (VT
== MVT::i64
)
8852 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
, 0);
8857 return std::vector
<unsigned>();
8860 std::pair
<unsigned, const TargetRegisterClass
*>
8861 X86TargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
8863 // First, see if this is a constraint that directly corresponds to an LLVM
8865 if (Constraint
.size() == 1) {
8866 // GCC Constraint Letters
8867 switch (Constraint
[0]) {
8869 case 'r': // GENERAL_REGS
8870 case 'R': // LEGACY_REGS
8871 case 'l': // INDEX_REGS
8873 return std::make_pair(0U, X86::GR8RegisterClass
);
8875 return std::make_pair(0U, X86::GR16RegisterClass
);
8876 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
8877 return std::make_pair(0U, X86::GR32RegisterClass
);
8878 return std::make_pair(0U, X86::GR64RegisterClass
);
8879 case 'f': // FP Stack registers.
8880 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8881 // value to the correct fpstack register class.
8882 if (VT
== MVT::f32
&& !isScalarFPTypeInSSEReg(VT
))
8883 return std::make_pair(0U, X86::RFP32RegisterClass
);
8884 if (VT
== MVT::f64
&& !isScalarFPTypeInSSEReg(VT
))
8885 return std::make_pair(0U, X86::RFP64RegisterClass
);
8886 return std::make_pair(0U, X86::RFP80RegisterClass
);
8887 case 'y': // MMX_REGS if MMX allowed.
8888 if (!Subtarget
->hasMMX()) break;
8889 return std::make_pair(0U, X86::VR64RegisterClass
);
8890 case 'Y': // SSE_REGS if SSE2 allowed
8891 if (!Subtarget
->hasSSE2()) break;
8893 case 'x': // SSE_REGS if SSE1 allowed
8894 if (!Subtarget
->hasSSE1()) break;
8896 switch (VT
.getSimpleVT()) {
8898 // Scalar SSE types.
8901 return std::make_pair(0U, X86::FR32RegisterClass
);
8904 return std::make_pair(0U, X86::FR64RegisterClass
);
8912 return std::make_pair(0U, X86::VR128RegisterClass
);
8918 // Use the default implementation in TargetLowering to convert the register
8919 // constraint into a member of a register class.
8920 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
8921 Res
= TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
8923 // Not found as a standard register?
8924 if (Res
.second
== 0) {
8925 // GCC calls "st(0)" just plain "st".
8926 if (StringsEqualNoCase("{st}", Constraint
)) {
8927 Res
.first
= X86::ST0
;
8928 Res
.second
= X86::RFP80RegisterClass
;
8930 // 'A' means EAX + EDX.
8931 if (Constraint
== "A") {
8932 Res
.first
= X86::EAX
;
8933 Res
.second
= X86::GRADRegisterClass
;
8938 // Otherwise, check to see if this is a register class of the wrong value
8939 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8940 // turn into {ax},{dx}.
8941 if (Res
.second
->hasType(VT
))
8942 return Res
; // Correct type already, nothing to do.
8944 // All of the single-register GCC register classes map their values onto
8945 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
8946 // really want an 8-bit or 32-bit register, map to the appropriate register
8947 // class and return the appropriate register.
8948 if (Res
.second
== X86::GR16RegisterClass
) {
8949 if (VT
== MVT::i8
) {
8950 unsigned DestReg
= 0;
8951 switch (Res
.first
) {
8953 case X86::AX
: DestReg
= X86::AL
; break;
8954 case X86::DX
: DestReg
= X86::DL
; break;
8955 case X86::CX
: DestReg
= X86::CL
; break;
8956 case X86::BX
: DestReg
= X86::BL
; break;
8959 Res
.first
= DestReg
;
8960 Res
.second
= X86::GR8RegisterClass
;
8962 } else if (VT
== MVT::i32
) {
8963 unsigned DestReg
= 0;
8964 switch (Res
.first
) {
8966 case X86::AX
: DestReg
= X86::EAX
; break;
8967 case X86::DX
: DestReg
= X86::EDX
; break;
8968 case X86::CX
: DestReg
= X86::ECX
; break;
8969 case X86::BX
: DestReg
= X86::EBX
; break;
8970 case X86::SI
: DestReg
= X86::ESI
; break;
8971 case X86::DI
: DestReg
= X86::EDI
; break;
8972 case X86::BP
: DestReg
= X86::EBP
; break;
8973 case X86::SP
: DestReg
= X86::ESP
; break;
8976 Res
.first
= DestReg
;
8977 Res
.second
= X86::GR32RegisterClass
;
8979 } else if (VT
== MVT::i64
) {
8980 unsigned DestReg
= 0;
8981 switch (Res
.first
) {
8983 case X86::AX
: DestReg
= X86::RAX
; break;
8984 case X86::DX
: DestReg
= X86::RDX
; break;
8985 case X86::CX
: DestReg
= X86::RCX
; break;
8986 case X86::BX
: DestReg
= X86::RBX
; break;
8987 case X86::SI
: DestReg
= X86::RSI
; break;
8988 case X86::DI
: DestReg
= X86::RDI
; break;
8989 case X86::BP
: DestReg
= X86::RBP
; break;
8990 case X86::SP
: DestReg
= X86::RSP
; break;
8993 Res
.first
= DestReg
;
8994 Res
.second
= X86::GR64RegisterClass
;
8997 } else if (Res
.second
== X86::FR32RegisterClass
||
8998 Res
.second
== X86::FR64RegisterClass
||
8999 Res
.second
== X86::VR128RegisterClass
) {
9000 // Handle references to XMM physical registers that got mapped into the
9001 // wrong class. This can happen with constraints like {xmm0} where the
9002 // target independent register mapper will just pick the first match it can
9003 // find, ignoring the required type.
9005 Res
.second
= X86::FR32RegisterClass
;
9006 else if (VT
== MVT::f64
)
9007 Res
.second
= X86::FR64RegisterClass
;
9008 else if (X86::VR128RegisterClass
->hasType(VT
))
9009 Res
.second
= X86::VR128RegisterClass
;
9015 //===----------------------------------------------------------------------===//
9016 // X86 Widen vector type
9017 //===----------------------------------------------------------------------===//
9019 /// getWidenVectorType: given a vector type, returns the type to widen
9020 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9021 /// If there is no vector type that we want to widen to, returns MVT::Other
9022 /// When and where to widen is target dependent based on the cost of
9023 /// scalarizing vs using the wider vector type.
9025 MVT
X86TargetLowering::getWidenVectorType(MVT VT
) const {
9026 assert(VT
.isVector());
9027 if (isTypeLegal(VT
))
9030 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9031 // type based on element type. This would speed up our search (though
9032 // it may not be worth it since the size of the list is relatively
9034 MVT EltVT
= VT
.getVectorElementType();
9035 unsigned NElts
= VT
.getVectorNumElements();
9037 // On X86, it make sense to widen any vector wider than 1
9041 for (unsigned nVT
= MVT::FIRST_VECTOR_VALUETYPE
;
9042 nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
9043 MVT SVT
= (MVT::SimpleValueType
)nVT
;
9045 if (isTypeLegal(SVT
) &&
9046 SVT
.getVectorElementType() == EltVT
&&
9047 SVT
.getVectorNumElements() > NElts
)